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In vehicle routing problems (VRPs) a set of customers needs to be served and a fleet of
capacitated vehicles is available to do so. The objective is the minimization of costs, which
usually means minimizing the total distance traveled. In most VRPs it is assumed that
the demand of a customer is less than or equal to the capacity of a vehicle and that each
customer has to be served by exactly one vehicle, i.e., there is a single-visit assumption.
While it is obvious that when a customer’s demand exceeds the vehicle capacity it is
necessary to visit that customer more than once, it requires only a little more thought to
see that even when all customer demands are less than or equal to the vehicle capacity, it
may be beneficial to use more than one vehicle to serve a customer. In the split delivery
vehicle routing problem (SDVRP) the single-visit assumption is relaxed and each customer
may be served by more than one vehicle.

While the SDVRP has received little attention in the past, compared to other variants
of the VRP, it has recently been studied by a number of researchers. The SDVRP was
introduced by Dror and Trudeau ([4] and [5]) who defined the problem, derived some
structural properties, and proposed a local search heuristic. The computational complexity
of the SDVRP was analyzed by Archetti et al. ([2]) while a tight bound on the cost
reduction that can be obtained by allowing split deliveries was given by Archetti et al.
([3]).

The purpose of this work is to propose a heuristic solution approach for the SDVRP.
At present, no exact methods exist for the SDVRP given to its high complexity. A branch
and price exact algorithm has been proposed for the time windows case by Gueguen ([8])
and Gendreau et al. ([6]). In addition to the heuristic local search proposed by Dror and
Trudeau ([4] and [5]), a tabu search algorithm can be found in Archetti et al.([1]).

In this work we present a new solution approach that integrates heuristic search with
optimization. The proposed approach is based on two main ideas. The first is to use the
information provided by a tabu search heuristic to identify parts of the solution space
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that most likely contain good solutions. The second idea is to explore these parts of the
solution space by means of a suitable integer programming model.

An Integer Programming Model

In the SDVRP, a set C of customers has to be served by a fleet M of capacitated vehicles.
Each vehicle v ∈M has capacity Q and has to start and finish its tour at the depot, which
we denote by 0. Each customer i ∈ C has demand di, which can be less than, equal, or
greater than the vehicle capacity Q. A customer may be visited more than once. The cost
to travel between locations i and j is cij . We assume that the costs cij satisfy the triangle
inequality. The objective is to serve customers demand at minimum cost.

We present a route-based formulation for the SDVRP. Let R represent a set of routes
and let cr denote the cost of route r. The formulation has two sets of variables. The binary
variable xr takes on value 1 if route r is selected and 0 otherwise. The continuous variable
yi

r represents the quantity delivered to customer i on route r. The integer programming
model is presented below.

min
∑

r

crxr (1)

∑
i∈r

yi
r ≤ Qxr r ∈ R, (2)

∑
r∈R:i∈r

yi
r ≥ di i ∈ C, (3)

xr ∈ {0, 1} r ∈ R, (4)

yi
r ≥ 0 r ∈ R, i ∈ C. (5)

The objective function (1) minimizes the total cost of the selected routes. Constraints
(2) impose that a delivery to a customer i on route r can only take place if route r
is selected and that the total quantity delivered on a selected route cannot exceed the
vehicle capacity. Constraints (3) ensure that the demand di of customer i is completely
satisfied.

Model (1)-(5), strengthened by a set of valid inequalities, is implemented in the opti-
mization phase of our solution approach.

A Solution Approach

One of the key ideas underlying our solution approach is that tabu search can identify
parts of the solution space that are likely to contain high quality solutions. In particular,
we refer to the tabu serch algorithm proposed by Archetti et al.([1]).
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The simplest use of this idea is the identification of a set C ′ of customers which are
likely to be served by a single vehicle in high-quality SDVRP solutions. If a customer is
never, or rarely, split in the solutions encountered during the tabu search, we interpret this
as an indication that it is likely that the customer will be served by a single vehicle in high
quality SDVRP solutions (and therefore should be in the set C ′). We have implemented
this idea as follows. Let S denote the set of all SDVRP solutions encountered during the
tabu search. For each customer i, we calculate the node counter ni, the number of times
customer i is split in the solutions in S, where we say that a customer is split k− 1 times
if the customer is served by k routes in a solution s ∈ S. Let nmax = maxi ni. We include
customer i in C ′ if ni < 0.1 × nmax and if i is not split in the final solution of the tabu
search.

The use of this idea in the identification of the set R of promising routes is more
involved. For each edge {i, j}, we calculate nij , the number of times edge {i, j} appears
in any of the routes of the solutions in S. We will refer to nij as the edge counter of edge
{i, j}. Again, we interpret a large value nij as an indication that it is likely that edge
{i, j} will be included in high quality SDVRP solutions. The edge counters nij guide the
construction of a set of promising routes R̄. The procedure which constructs the set R̄
starts from a set B of base edges which includes those edges {i, j} with an edge counter
that is greater than or equal to a given percentage pB of the maximum edge counter, i.e.,
{i, j} ∈ B if nij ≥ pB ×max{i,j} nij . For each edge {i, j} ∈ B a set of routes is generated.
The routes in R′

{i,j} are generated as follows. We start with a path P consisting only
of the base edge {i, j} and then extend the path from both endpoints until the depot is
encountered, in which case we have identified a route. More precisely, we look at the edges
incident to an endpoint u of P , i.e., edges {u, v} with v /∈ P . Whenever the edge counter
of an edge {u, v} is greater than some threshold L or the edge {u, v} belongs to at least
one route of an improving solution found during the tabu search (where an improving
solution is a solution that improved the current best solution), we extend the path with
edge {u, v}. The threshold is calculated as a percentage of the maximum counter of an
edge incident to u, i.e., L = pI ×maxv nuv. There is one additional precaution. When the
total demand of a partial path starting at i or j exceeds Q + δ

2 , where δ is the average
customer demand, we connect the other endpoint of the partial path to the depot.

The set R̄ is not used directly in the route optimization IP, because it is usually too
large, but the route optimization IP is solved several times with subsets R of R̄.

The identification of good subsets is based on three ideas. First, we always include the
routes of the best known solution. That way it is possible for the route optimization IP to
improve just a portion of the best solution, i.e., to perform a local improvement. Second,
we include the routes with a positive value in the solution to the linear programming
relaxation of the route optimization IP over the entire set R̄. As the linear programming
relaxation considers the entire set of routes R̄, it may be able to identify sets of complimen-
tary routes from a global perspective. Finally, we include routes based on a desirability
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criterion (we tested different desirability criteria).
Let rmax be the maximum number of routes we allow in R and let nmax be the max-

imum number of IPs we want to solve. Parameter rmax is set so as to ensure that the
route optimization IP will solve in a reasonably short time. In effect, preliminary tests
have shown that it is possible to reach better solutions by solving many ”small” IPs than
solving only one ”big” IP. The routes of the best known solution are always included in
R. The first IP includes also the routes with positive values in the linear programming
relaxation of the route optimization IP over the entire set R̄. These routes are comple-
mented with desirable routes that have not been used before, i.e., starting from the first
not yet used desirable route and following the order determined by the desirability crite-
rion, routes are added until the maximum number of routes rmax is reached (or all the
desirable routes have been used). An overview of the proposed route optimization can be
found in Algorithm 1.

Algorithm 1 Route optimization
counterip = 1
while the elapsed time is less than Tmax and counterip ≤ nmax do

R← ∅.
Add the routes of best known solution to R.
If counterip = 1 add the routes with a positive value in the LP relaxation to R.
Add desirable routes to R until |R| = rmax (or no more desirable routes exist).
Delete the selected desirable routes from the set of desirable routes.
Solve the route optimization IP over R.
if the solution found improves the best known solution s∗ then

Update s∗.
end if
counterip ← counterip + 1

end while

Computational Results

To evaluate the merits of the proposed optimization-based heuristic, we tested it on a set
of 42 instances with varying demand characteristics. The instances are derived from seven
basic instances; the same instances used to test the tabu search algorithm of Archetti et
al. ([1]). These basic instances vary in terms of the number of customers (ranging from
50 to 199) and in terms of vehicle capacity (ranging from 140 to 200). Five additional set
of instances are created by changing the demand of the customers in the basic instances
(following Dror ([4])), but keeping all other characteristics the same. Each of the new sets
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of instances is characterized by a lower bound and an upper bound on the demand at the
customers, expressed as a fraction of the vehicle capacity Q.

The computational results we have obtained are encouraging and validate the interest
in non-traditional uses of integer programming. The proposed optimization-based heuristic
was able to find an improved solution for all but one instance (the only exception is basic
instance p11). The average improvement is a little over 0.5 percent. Even though the
improvements are relatively small, we believe this is primarily because the tabu solutions
are already very good. Moreover, we observe very small gaps between the value of the
solutions found and the value of the linear relaxation. Although the value of the linear
program over the entire set of promising route is not a true lower bound, as we are not
optimizing over the entire set of routes, it is likely to be very close to a true lower bound
and this substantiate the fact that the solutions obtained are likely to be close to optimal.
Recently, Golden et al. ([7]) also proposed a solution approach for the SDVRP that
incorporates heuristic as well as integer programming components.
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