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1 Introduction

In this paper, we propose a schedule-based transit assignment model that uses a monolithic time-
expanded network to describe passenger and vehicle movements over time. The model assumes
that passengers use travel strategies. The latter can be adaptive over time and reduce to simple
paths in systems with infrequent services. When loading passengers either randomly or on a
First-Come-First-Serve (FCFS) basis, the model takes into account vehicle capacities explicitly
and individually. After loading, the percentages of passengers on-board different transit lines
and of those who have to wait can be interpreted as diversion and failure-to-board probabilities,
respectively, in some frequency-based models (see, e.g., [2], and [9]).

To find a user equilibrium assignment, we formulate the problem as a variational inequality
involving a vector-valued function of expected strategy costs. We show that a solution to the
variational inequality exists and propose a method based on successive averages to find it. In
[4], we demonstrate empirically that the method converges to a user equilibrium solution and
discuss its characteristic.

For the remainder, Section 2 discusses the transformation of a static route network into a time-
expanded version. Section 3 describes how to specify valid travel strategies. Section 4 shows
how to calculate the cost associated with a strategy using the node and arc access probabilities
defined in, e.g., [5] and [6]. Section 5 formulates the transit assignment problem as a varia-
tional inequality and proposes an algorithm that is based on successive averages and generates
strategies as it progresses.
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2 Passenger Movements

This section describes two networks. One is the route network that mainly depicts the routes of
all transit lines in a static manner and the other is its time-expanded version that displays all
possible routes passengers can travel to their destinations at various times.

2.1 Route Network

In a route network, nodes are of two types, one consists of origins and destinations and the other
corresponds to transit stations where a transit vehicle stops to load and unload passengers. For
emphasis, we also refer to nodes representing transit stations as station nodes or, more simply,
stations.

We assume that a passenger walks from his or her origin to a transit station, use the transit
system to arrive at another transit station, and walks from there to his or her destination. With
this assumption, arcs in a route network are also of two types. One corresponds to walking
and the other represents route segments of transit lines between two consecutive stations. To
illustrate, Figure 1 displays a system with an origin node q, a destination node r, and three
transit lines. Nodes labeled a, b, c and d are station nodes. In this example, there are two
walk arcs, an access arc (q, a) and an egress arc (d, r). The remaining arcs correspond to route
segments of the three transit lines.

Parameters associated with each arc (i, j) in the route network consist of a transit fare (vij), a
travel time (cij) and a capacity (uij). In Figure 1, both walk arcs, (q, a) and (d, r) have zero
transit fare and a unit travel time. We assume that their capacities are infinite. The remaining
arcs are segments of transit lines and their parameters are as shown in the figure. For each
transit line, the capacities for its route segments are the same and equal to the capacities of
the transit vehicles serving the line. Because of its static nature, the route network cannot
distinguish, e.g., passengers leaving their origins and transit vehicles starting their routes at
different times.
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Figure 1: A route network with three transit lines
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Line 1 Line 2 Line 3
a b c a c d b d
1 3 4 1 3 4 2 4
3 5 6 4 6 7 5 7
5 7 8 7 9 10 8 10
7 9 10

Table 1: Station departure times for the transit lines in Figure 1

2.2 Time-Expanded Network

Associated with each transit line, there is a schedule listing the times at which a transit vehicle
must leave its starting station as well as the scheduled arrival or departure times at stations
along its route throughout each day. One method for incorporating such temporal information
is by using the time-expanded network (see, e.g., [1] and [6]).

Let [0, T ] denote the operating interval of the transit system, i.e., 0 and T represent the start
and end of the daily operating hours. In a time-expanded (TE) network, the interval [0, T ] is
represented as a set of discrete points of the form Γ = {0, δ, 2δ, 3δ, · · · , nδ}, where δ = T/n
and n is a positive integer. To simplify our presentation, we ignore δ and simply write Γ as
{0, 1, 2, 3, · · · , n}. We also assume that all times (arrivals, departures, travel times, etc.) are in
multiples of δ.

A node in a TE network (or a TE node) has two labels. One label represents a node in the
route network. The other label is an element from the set Γ. In general, each node i in the
route network is expanded into (n + 1) nodes of the form it, where t = 0, 1, . . . , n, in the TE
network. As in the route network, movement arcs in a TE network are of two types, in-vehicle
and walk arcs. When a transit vehicle arrives at node i at time t and traverses arc (i, j) in the
route network, this movement corresponds to the in-vehicle arc (it, j(t+cij)) where, as defined in
the previous section, cij denotes the travel time for arc (i, j) in the route network. In general,
a route segment (i, j) in the route network is expanded into (bT/fijc + 1) TE arcs of the form
(it, j(t+cij)), where t = 0, 1, . . . , bT/fijc, and fij is the frequency of the transit line serving the
segment. Walk arcs (q, r) and (i, r) in the route network are similarly expanded into (qt, j(t+cqj))
and (it, r(t+cir)), respectively, where i and j are station nodes and t = 0, 1, . . . , n. As before,
we also refer to (qt, j(t+cqj)) and (it, r(t+cir)) as access and egress arcs. In addition to movement
arcs, there are wait arcs of the form (it, it+1) that represent passengers having to wait at station
i from time t to (t + 1).

To illustrate, Table 1 lists the departure times for each transit line in Figure 1. Using to the
schedule in Table 1, Figure 2 displays all possible routes between q and r with a start time
between 0 and 3.

There is no explicit travel time associated with each arc in the TE network. The travel time for
each TE arc can be deduced from the time indices. For example, the travel time associated with
arc (a1, c3) is 3 - 1 = 2. On the other hand, all arcs in the TE network have associated transit
fares, penalties (measured in monetary units) for, e.g., leaving too early and arriving too late,
and capacities. First, all in-vehicle arcs have zero penalties. The transit fares and capacities
associated with these arcs are the same as those in the route network. Second, all wait arcs
have zero fares, zero penalties and infinite capacities. Finally, all access and egress arcs have
zero fares and infinite capacities. However, the penalties of many access and egress arcs are
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Figure 2: The time-expanded network of the route network in Figure 1

positive and generally different for different passengers, e.g., because penalties depend on each
passenger’s desired arrival and departure times.

3 Travel Strategies and Generalized Hyperpaths

For each origin-destination (OD) pair (q, r), passengers are divided into groups where each is
distinguished by the desired arrival time interval of the passengers in the group. For passengers
in group g, the number of passengers in and the desired arrival time interval for the group are
denoted as dg

(q,r) and [t−(q,r)(g), t+(q,r)(g)], respectively. We assume that passengers use strategies
when traveling. To specify a strategy, passengers provide at each node in the TE network a
successor set or set of immediate successor nodes that enable them to reach their destinations.
The order of nodes in each successor set indicates the passenger’s preference in their choice of
transit lines or their decision to walk in order to advance toward their destinations. Typically,
there is only one successor set for each TE node. However, it is possible to have several successor
sets at a given node, where each set indicates a different preference when a passenger arrives at
node it at a different time τ ≤ t. Nodes irrelevant to the strategy or OD pair have no successor
set. For OD pair (q, r), a strategy for a journey starting at time τ ∈ Γ is valid if the following
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hold:

i) For all t, there is no successor set at node rt.

ii) The successor sets at node qτ must be a subset of the forward-star set, I+(qτ ). For all
t ∈ Γ and t 6= τ , the successor set at qt is empty.

iii) The successor sets at every node must induce an acyclic subnetwork of the TE network
such that node qτ has no predecessor and, for every node it with nonempty successor sets
and i /∈ {q, r}, there is a directed path from qτ to rθ, for some θ ∈ Γ and θ > τ , that passes
through node it.

The induced subnetwork in condition (iii) is a generalization of the hyperpath representation
of travel strategies (see, [7] and [11]). We refer to the subnetwork herein as a “generalized
hyperpath”.

4 Expected Strategy Cost

To calculate the expected cost for each strategy, let S(q,r) denote the set of all strategies for OD
pair (q, r). Thus, an element of S(q,r) is of the form sτ

(q,r)(m) denoting the m-th strategy for OD
pair (q, r) that starts at time τ . However, it is more convenient to also refer to elements of S(q,r)

as s instead of sτ
(q,r)(m). Using this simplified notation, let xs

(q,r,g) be the number of passengers
for OD pair (q, r) in group g using or assigned to strategy s and X be a vector with xs

(q,r,g) as its
components, i.e., X is a strategy assignment (SA) vector. Mathematically, the set of all feasible
SA vectors can be stated as follows:

X = {X :
∑

s∈S(q,r)

xs
(q,r,g) = dg

(q,r),∀(q, r, g)}.

For a given X ∈ X , πs,τ
(it,j(t+cij))

(X) is the (conditional) probability that a passenger using strategy

s will traverse arc (it, j(t+cij)) given that he or she arrives node i at time τ ≤ t. When (it, j(t+cij))
corresponds to a segment of a transit line, πs,τ

(it,j(t+cij))
(X) is the probability that a passenger (or,

intuitively, a proportion of passengers) using strategy s can board the transit vehicle serving
the arc, where boarding can be accomplished in either FCFS or random manner. Conceptually,
these access probabilities are similar to the “diversion probabilities” in, e.g., [9]. On the other
hand, πs,τ

(it,i(t+1))
(X) is similar to the “failure-to-board” probability in, e.g., [2], and corresponds

to the probability that a passenger using strategy s arriving at node i at time τ ≤ t has to wait
at a station i.

Similarly, βs,τ
it

(X) is the probability that a passenger using strategy s and arriving at station i
at time τ ≤ t has to remain at the node at least until time t. For convenience, we also refer to
πs,τ

(it,j(t+cij))
(X) and βs,τ

it
(X) as the arc and node access probabilities, respectively. Both depend

on the strategy assignment vector X because, e.g., different strategy assignments may led to
different transit vehicles being full when arriving at station node i at time t. This would prevent
some passengers from boarding, thereby forcing them to use a wait arc and delaying them from
reaching their destinations. The procedure for determining these probabilities involves loading
the TE network according to a given strategy assignment vector X and is an extension to the
ones in [5] and [6]. See [4] for details.
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Given the node and arc access probabilities, the expected strategy cost is given by the following
expression:

Cs
(q,r,g)(X) =

∑n
t=0

∑t
τ=0

∑
(i,j)∈A(γcij + vij + pg

(it,j(t+cij))
)βs,τ

it
(X) · πs,τ

(it,j(t+cij))
(X)

+
∑n

t=1

∑(t−1)
τ=1 γβs,τ

it
(X) · πs,τ

(it,t(t+1))
(X)

.

where cij , vij , and pg
(it,j(t+cij))

are the travel time, transit fare, and penalty for (it, j(t+cij)),

respectively, and γ is a factor converting time into monetary units. (See [4] for details concerning
the penalty for (it, j(t+cij))). The second summation is the expected cost associated with waiting.
In the above expression, node and arc probabilities associated with events occur prior to the
start time of a strategy s are irrelevant and assumed to be zero.

5 User Equilibrium

We say that a SA vector X∗ is in a user equilibrium if no passenger has any incentive to change
his or her strategy based on expected strategy costs. Using an argument similar to [10] and [3],
X∗ is in a user equilibrium if and only if X∗ solves the following variational inequality (denoted
as VI[C(X),X ]):

C(X∗)T (X −X∗) ≥ 0, ∀X ∈ X ,

where C(X) is a vector of expected strategy costs associated with X. Then, the following results
follow immediately from those in [5].

Theorem 1 C(X) is lower semi-continuous on X .

Theorem 2 VI[C(X),X ] has at least one solution.

Instead of enumerating all possible travel strategies a priori, below is a method that gener-
ates them by solving a dynamic program during each iteration and use successive averages of
previously generated strategies as the current solution to VI[C(X),X ].

Method of Successive Averages

Step 0: For each triplet (q, r, g), select an initial strategy s[1] and set x
s[1]
(q,r,g) = dg

(q,r) and

xs
(q,r,g) = 0, ∀s 6= s[1]. Let X [α] be the associated SA vector. Set α = 1 and go to Step 1.

Step 1: For each triplet (q, r, g), let s[α] be a least (expected) cost strategy with respect to X [α]

and set y
s[α]
(q,r,g) = dg

(q,r) and ys
(q,r,g) = 0,∀s 6= s[α]. Let Y [α] be the associated SA vector.

Step 2: If C(X[α])T (X[α]−Y [α])

C(X[α])T X[α] ≤ ε, stop. Otherwise, set X [α+1] = 1
(α+1)(αX [α] + Y [α]) and

α = α + 1. Go to Step 1.

For each combination (q, r, g), strategy s[1] in Step 0 can correspond to leaving node q at time
Lg

(q,r), the latest departure time (see, e.g., [8]), and taking a shortest path to r in the TE network.

In Step 2, each component of C(X [α]), or Cs
(q,r,g)(X

[α]), can be determined using the loading
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procedure described in [4]. To determine the least cost strategy s[α] in Step 1, we use a dynamic
program or Bellman’s equation similar to the one in [6]. See [4] for details and an example
illustrating the above algorithm.
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