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ABSTRACT 
 
 

This paper proposes a formulation of deterministic equilibrium in a public transit corridor 
that takes into account the congestion effect as perceived directly in travel times. The 
identification of the relationship between flows and travel times includes time at transit stops 
for passenger boarding and alighting. A simple case is analyzed that demonstrates the 
existence of equilibria in which identical users adopt different travel strategies, and a method 
is supplied for determining such an equilibrium. To find the general case assignment for a 
corridor, an assignment algorithm based on incremental flow increases is also presented. 
Finally, the algorithm is implemented in a simple corridor. The results show that identical 
users faced with the same trip must be allowed to take different decisions for an equilibrium 
assignment to exist. 
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1 INTRODUCTION 

The last decade or so has witnessed the emergence in various of the world’s cities of 
dedicated public transit corridors in which buses can pass each other in the approaches to a 
bus stop they do not intend to pull in at. This allows operators to run express services that 
omit certain stops and thereby demonstrably improve the functioning of the system by 
reducing travel times, operating costs and the fleet size needed to serve the corridor. Demand 
for such services is particularly high in systems with integrated fares, a common feature of 
modern public transit networks.  

The proper design of an express bus system turns on the ability to predict the demand each 
bus service or line would capture and the costs it would incur. To identify demand, a model is 
required that would predict rider behavior as regards the choice of lines to make any given 
journey. Typically, riders minimize expected total travel time. Since we will confine 
ourselves to services whose only difference is the set of stops they serve, it is essential that 
vehicle travel time be modeled so as to include all phenomena related to serving or omitting a 
stop that can affect it. This implies that the impact of an additional passenger on travel time 
must be analyzed.  

Existing studies on the design of express services are limited by their tendency to assume that 
travel times are independent of network flows. In Turnquist (1979), for example, express 
lines can benefit passengers by taking advantage of urban freeways paralleling dedicated 
corridors to provide faster routes between origin and destination. But such a mode restricts 
the demand structure by assuming that the destination of all trips is the corridor’s final node, 
or that all journeys are generated at the initial node.  

Based on empirical evidence, recent studies suggest some general guidelines for designing 
express bus services on the context of Bus Rapid Transit. Vuchic et al. (1994), and Goodman 
et al (1999) characterize key elements of BRT, while Silverman et al (1998) and Schwarcz 
(2004) focus on specific design elements. Sun and Hickman (2005) studied the convenience 
of skipping bus stops in real time. 

As regards the assignment of passengers in transit systems, early works such as those by Dial 
(1967), Fearnside and Draper (1971) and Le Clercq (1972) assumed riders simply chose the 
lines whose travel times were shortest. This approach not only underestimates the importance 
of congestion, it also supposes that passengers wait till their chosen line appears, an 
assumption valid only when there are no parallel routes serving the same origin-destination 
pair. Chriqui and Robillard (1975) presented a model that addressed this latter limitation by 
allowing riders to choose a subset of lines that minimized expected travel time, defined to 
include the trip itself plus waiting time. Although they did not take congestion into account, 
the assumption of a set of attractive lines has been widely accepted for modeling this type of 
rider assignment. 

One of the earliest models that does incorporate the effect of congestion in transit assignment 
is found in Spiess (1984), who modeled the phenomenon as the discomfort suffered by the 



rider. However, this approach still excludes the impact of congestion on travel time. 
Gendreau (1984) accounted for congestion’s travel time effects by including an analysis of 
bus boarding queues, but the complexity of the resulting model is such that equilibria cannot 
be found. The first study to successfully treat congestion was that of De Cea and Fernández 
(1994), who assumed that it translates into longer waiting times at bus stops and modeled it 
by defining an “effective frequency” of service that decreases with the rise in network flow 
levels. A disadvantage of this technique is that it supposes all passengers consider the same 
set of lines to be attractive, which in certain cases prevents the existence of a Wardrop 
equilibrium. Finally, Cominetti and Correa (2001) presented a model in which riders can 
choose between different sets of attractive lines, but always on the assumption that 
congestion results in waiting times at bus stops due to bus capacity constraints. 

In this paper we propose a model in which deterministic non-homogeneous equilibria for 
identical transit users are permitted (that is, identical users can choose different sets of lines 
to make their journeys) and flow levels directly affect travel times, thus allowing us to study 
the advantages and disadvantages of having routes along a given corridor that do not serve 
certain stops. 

The remainder of this article is organized as follows: Section 2 describes the passenger 
assignment problem, outlining the main characteristics of the proposed model and how it 
relates to earlier works. Section 3 builds a model to solve the problem as formulated in the 
previous section, presenting the necessary notation and then studying two specific cases. The 
first case is a simplified version of the problem that affords an understanding of bus network 
behavior and a characterization of its solution, while the second case addresses the problem 
in its fullest dimension and offers a detailed solution algorithm. Section 4 sets forth and 
analyzes the results obtained from a particular application of the algorithm, and finally, 
Section 5 summarizes the main conclusions of our study. 

2 DESCRIPTION OF THE PROBLEM 

2.1 Main characteristics 

To simplify the passenger assignment problem we consider a single-corridor network which 
is used by various bus lines with known frequencies and stops and has a known and fixed trip 
matrix (origin-destination, hereafter also “OD”). We also assume that bus stop time due to the 
mere effect of decelerating and accelerating can be considered part of (known) travel time 
between two successive stops, and that the time spent at the stop itself depends on passenger 
boarding and alighting flows. This latter time factor is taken to be directly proportional to the 
number of passengers boarding and alighting. The model we propose allows us to predict 
how passengers are assigned to the available services and therefore also the number of 
passengers carried by each service on each of its arcs.  

In Chriqui and Robillard (1975), the passenger assignment model posited the existence of a 
set of attractive lines for each OD pair that minimizes expected total waiting time on the 
assumption that a user at a stop takes the first bus belonging to a line in the set. Cominetti and 
Correa (2001) showed that if congestion due to vehicle capacity limits is taken into account, 



the attractive set is no longer unique for each OD pair, and different passengers traveling on 
the same pair must adopt different attractive sets simultaneously in order for an equilibrium 
to exist.  

The assignment model proposed in this paper does not include capacity restraints. Although 
in some cases such an omission may be unrealistic, it is justifiable in the present context 
because the model is intended as part of a larger design problem for which, at least in the 
initial stages, it is useful to consider an ideal system that can operate with buses of whatever 
size may be necessary. 

Another assumption in our model is that for the sake of simplicity, the various services 
charge the same fare and all other relevant attributes are also similar (comfort, safety, etc.) so 
that users choose exclusively on the basis of travel time. Passengers are also assumed to have 
perfect information about the services and value all their attributes in identical manner. In 
that sense, passengers are assumed identical. Explicitly incorporating these additional factors 
is a simple matter, though they would have to be converted into their equivalents in time 
units.  

Finally, the model does not allow passengers to change buses at any point on the way to their 
destination. This constraint imposes a condition on the design of the network in that for each 
OD pair where there is a flow (in principle, any pair) there must be at least one line 
connecting them. 

3 FORMULATION AND SOLUTION OF THE MODEL 

3.1 Notation 

We begin building our model of the assignment problem by assuming a unidirectional public 
transit corridor with n bus stops. Together they comprise a set P, ordered in the same 
sequence the stops p are encountered by the buses traveling the corridor (p=1,..,n). The set of 
stops defines the set of origin-destination pairs W in the corridor, whose elements w 
correspond to all pairs of stops i,j in P such that i < j. 

A set of lines (or services) denoted L operates along the corridor, each line identified as lj 
where j is a number between 1 and m. The set of all non-empty subsets of lines belonging to 
L is called S. Thus, each element s ∈ S is a possible subset of lines. We will denote {i1,…,in} 
as the subset s of lines li1,…,lin. Every passenger traveling a given OD pair has a “strategy” 
consisting of a subset of lines all of which stop at the passenger’s origin and destination, and 
which are considered to be attractive in the sense that the first bus to arrive from that subset 
will be the one taken, and expected travel time will be minimized. 

The lines in a subset do not necessarily all serve the same set of stops, but it will be assumed 
that each line’s set of stops is fixed and known. Also, the demand for trips in the corridor is 
known for each w, is denoted Tw and is measured in passenger units per time unit.  



Each line has two known attributes that determine how trips are assigned to it: frequency, and 
fixed travel time between each pair of stops served. Frequency is represented by fi for each 
line li, and is measured as the number of buses per time unit, whereas fixed travel time for an 
OD pair w on line li is denoted ci

w. This latter factor is the bus’s travel time for the pair, 
taking into account the intermediate stops it serves but excluding actual dwell time at the 
stops for taking on and letting off passengers.  

De Cea and Fernández (1993) formulate the equilibrium assignment using a vector of 
variables V = {vi

w} representing the total flow traveling a pair w on line li. However, when 
passengers boarding and alighting times are considered, these variables are not enough for the 
equilibrium to be characterized. As will be shown, in this case, the output variables for the 
assignment problem model comprise the vector Y = {ys

w}, each of whose elements is defined 
as the flow of passengers traveling an OD pair who consider the subset of lines s to be 
attractive.  

The relationship between the variables ys
w and vi

w is given by  
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This equation is derived by assuming that the flow ys
w is distributed between the various lines 

in s in inverse proportion to their frequencies. 

A passenger’s travel time is the sum of actual time on the vehicle and waiting time at the bus 
stop. Following the notation defined by Chriqui and Robillard (1975), also employed by De 
Cea and Fernández (1993), and widely used in many transit assignment models, the expected 
travel time (ETT) for passengers traveling the OD pair w who consider s to be attractive is 
expressed by: 
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where ti
w(V) is the travel time for OD pair w on line i. This travel time indicator takes into 

account actual dwell times at each stop, and thus includes boarding and alighting times. It 
therefore depends on the trip assignments to all other pairs that could have used line i and 
thereby affected its value. The constant term λ represents two effects: passengers’ valuation 
of waiting time relative to travel time, and the proportion of the average interval between 
buses actually experienced as average waiting time. 

According to Wardrop’s first principle, a flow vector Y* represents an equilibrium if and only 
if for each OD pair there is a minimum expected travel time corresponding to each subset of 
lines that is attractive for some user and therefore experiences some passenger flow. In 
mathematical terms, 
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where ( )VTTE wˆ  is defined as ( )VETT w
sSs∈min . The simultaneous complement of equations 

(1), (2) and (3) constitute the equilibrium model that determines user assignment in the 
corridor.  

3.2 Wardrop assignment for an isolated OD pair 

The nature of the proposed model and its behavior can be better understood by considering a 
simple case of equilibrium on an isolated OD pair w served by a set of lines with their 
respective times and frequencies. This example will allow us to derive an analytic expression 
for the equilibrium flows on each line. Since w here is fixed and unique, we will not use a 
superindex in the various terms indexed to it. 

To formulate this version of the model we must determine the function ti (V) that appears in 
the expression for ETTs

w(V). In this case ti (V) is modeled as: 
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where the first term on the right-hand side (ci) is the constant part of travel time and the 
second term is the total boarding/alighting time. The constant tba represents a single rider’s 
boarding/alighting time while vi is the flow (in pax/hr) carried on line i. The term vi /fi is the 
expected number of passengers that will travel on each line i bus.  

The assignment problem with congestion is isomorphic to a conventional assignment 
problem. Assume that the network nodes are the origin and destination stops of the corridor, 
and that for each strategy (that is, for each subset s) there exists an arc between the two 
nodes. The cost of traveling each arc in the network is analogous to the ETT of each strategy, 
and the flow along any arc corresponds to each variable ys

w in the problem. The only 
difference is that now the cost function for each arc is not separable as a function of its own 
flow but rather depends on the arcs with which it shares one or more services. 

To solve such a Wardrop equilibrium problem there are various resources available whose 
choice will depend on the characteristics of the network. A first option might be to find the 
optimization problem equivalent to the assignment. A factor that will ensure the existence of 
this problem is a cost function whose Jacobian matrix (for the ETT values in this case) is 
symmetric, implying that the network interactions are also symmetric. In this simple case the 
Jacobian is seen to have this property, so the assignment can indeed be obtained from the 
equivalent optimization model. Another option for solving the problem would be to use a 
diagonalization algorithm (Florian, 1977; Abdulaal and LeBlanc, 1979), a version of the 
iterative Jacobi method for solving non-linear equations (Pang y Chan, 1982). Both of these 
methods, however, fail to exploit certain special characteristics of the problem that facilitate 
the derivation of a more direct solution.  



Suppose we know the lines l1, l2,…, ln that serve a given OD pair. For ease of explanation we 
further assume they are ordered such that c1 < c2 <…< cn. It will also be useful to define the 
subsets si := {l1, l2,…, li}.  

We want to assign a total flow of T trips to the OD pair. To understand the network flow 
assignment, suppose that initially the network has no load (i.e., no flow) and begins to load 
slowly, all care being taken so that with each flow increment the assignment continues to 
satisfy the equilibrium conditions. The network flow at any stage in the process is given by 
the variable x, where x < T.  

Now consider the first increase in the level of flow. Clearly, there will always exist a flow 
level sufficiently small that its attractive lines are the same as those that would obtain if the 
problem involved no congestion. According to Chriqui and Robillard (1974), this attractive 
line subset will always be of the form {l1, l2,…, li}, implying that if a given line belongs to 
the subset, all lines with lower fixed travel time will necessarily belong to it as well. We will 
call lq the line with the highest fixed travel cost in the subset, and the latter will thus be 
denoted sq. 

As the arc corresponding to the optimal strategy without congestion begins to load, its ETT 
increases and the ETTs of other strategy arcs in the network begin to rise by varying 
amounts. At a given moment the ETT of an arc with no flow (recall that the arcs correspond 
to line subsets) may come into equality with that of the arc that is loading (ysq). From that 
point on we cannot be sure that as ysq continues to mount the network will remain in 
equilibrium; indeed, except for special cases it normally will not. Also, the first arc to become 
attractive during this stage (that is, its ETT equalizes with that of the loading arc) is the one 
corresponding to subset sq+1, and this occurs when the network flow reaches a given 
threshold.  

If only the newly active arc continues to load once this threshold is reached, the equilibrium 
will hold until the ETT of a new arc reaches TTE ˆ  at some point. This new arc will be sq+2. 
The process just described will continue until x equalizes with T. If the flow that activates arc 
sq+i, and which we will call the flow threshold, is denoted xi, it can then be calculated as 
follows: 
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This expression enables us to identify the equilibrium assignment for any desired level of 
demand; knowing the thresholds, we can easily determine the flow values for each arc. A 
simple method of calculating the flow in each line for any network flow level T would be to 
draw a diagram such as the one shown here in Figure 1. In the diagram different values of T 
generate varying flows for each strategy and thus for each line. The arc flows calculated for 
these thresholds satisfy the Wardrop equilibrium conditions, as was demonstrated in Larrain 
(2006). 

The assignment obtained through this method is not unique as regards the flows ys; in fact, 
examples in which equilibrium can be attained with various values of Y for a given flow level 



are easily found. However, the solution does seem to be unique in terms of the flows V, 
formal proof of which is currently being developed. 

This equilibrium assignment for the isolated OD pair case, implies that identical users make 
different decisions (i.e. consider a different set of attractive lines) for the same trip. A simple 
example where this type of equilibrium is the only possible one is provided in Figure 2. Thus, 
when on-board travel times consider a congestion term, the analysis must allow passengers to 
adopt different attractive line sets in order for an equilibrium to exist. This shows the 
importance of expressing the equilibrium in terms of the set of variables Y. 

3.3 Wardrop assignment for a public transit corridor  

Our study of a simple case has elucidated some important characteristics of the assignment 
problem. First, it confirmed the need to use different flows for each strategy on each OD pair. 
And second, it demonstrated that as the level of flow through the network increases, the 
number of attractive alternatives for different users rises. The method used in the simple 
example for determining the thresholds also provides the inspiration for an algorithm we will 
now use in a more complex case to find the Wardrop equilibrium for a congested transit 
corridor in which we seek to make assignments among various OD pairs. 

As with the simple case, we must derive an expression for travel time ti
w which appears in the 

ETT function. Whereas in the previous situation the only flow affecting the travel time of a 
line was its own flow, in this more complex case there are flows of the same line in other 
network OD pairs that also affect travel time. This can be expressed in the following manner: 
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In this formula the term αwk measures the effect on travel time for the OD pair w of an 
additional flow unit on a line for pair k. For example, if k = w then αwk = 2, which is the 
situation in the simple case of the previous section. On the other hand, if w and k do not 
overlap then αwk = 0. 

To identify the equilibrium assignment, an attractive approach is to extend the threshold 
concept of the simple example, although the analysis will be much more complex. Whereas 
with a single OD pair the equilibrium flow level of an arc is given by a single variable x, in 
the complex case it is expressed as a flow vector (x1, x2,…, xw,…, xm) where m is the number 
of OD pairs in the corridor. The threshold values for a given OD pair will depend on the flow 
levels for the other pairs. The threshold flows of a corridor should thus be represented by 
hyperplanes within an m-dimensional space. Since values for the thresholds cannot be found 
a priori, we propose an algorithm for finding the network user equilibrium based on the 
strategy employed for determining the assignment in the simple case with a single OD pair. 
In broad terms the algorithm, to be described in detail below, proceeds in two phases: the 
search for the “direction of movement” of flow and the determination of the size of that 
movement. 



3.3.1 Algorithm (Phase 1) 

Phase 1 of the algorithm begins by considering an incomplete assignment of the demand 
matrix that satisfies the equilibrium conditions, that is, the equilibrium that would be sought 
if the demand matrix were the assigned one. We then identify how network flows should 
change if the flow for a given OD pair is increased so that under the new assignment the 
equilibrium conditions continue to be satisfied.   

The first step is therefore to arbitrarily choose an OD pair for which to increase the flow to 
meet the demand increase. The pair must be one for which xw, calculated as ∑∈Li

w
iv , is 

initially less than Tw (if there were no pairs for which xw was less than Tw, the assignment 
would be complete.) The chosen pair is denoted w~ .  

Once the flow in w~ has been increased from wx~  to ε+wx ~  (ε  sufficiently small), we must 
determine which arcs for this and other pairs will see their flows affected. To refer to a given 
arc we will use the notation (s, w), which identifies it in terms of its attractive line strategy 
and its OD pair. Before the flow in w~  was increased, the network was in Wardrop 
equilibrium. In this situation there exist some arcs whose ETT is equal to the minimum for its 
pair, and only these arcs can carry flow both before and after the increase in demand (by the 
small amount ε ). These arcs will be referred to as active, even if they carry no flow. Each 
iteration of the algorithm will only modify the flows in these arcs. The change of flow k

ryΔ  
will be of particular interest. 

To determine how to redistribute the network flows ys
w without altering the equilibrium, we 

must ascertain how changes in these flows impact each ETTs
w. In Larrain (2006) it was 

demonstrated that the relationship between flow changes in network arcs ( k
ryΔ ) and the 

consequent change in an arc’s travel time is a linear one given by the following expression: 
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combinations of subsets before launching the algorithm, as also with αwk. 

The conditions that must be satisfied in order to maintain equilibrium when flow in the 
chosen in the OD pair is increased are set out below: 

1) For every OD pair w, all arcs that carry flow after the iteration must have the same ETT 
equal to wTTE ˆ . For a sufficiently small flow this is equivalent to requiring that ∆ETTs

w 
be equal for all active arcs in the pair.  

2) For every OD pair ww ~≠ , flow variations must add up to 0; for w~ , they must add up to 
ε  (a sufficiently small number). 



A third condition must be added to the preceding two to rule out negative flows in the 
network: 

3) If ys
w = 0 (despite being active) then ∆ys

w > 0. 

Given that ε  is sufficiently small, it is required in this phase that if (w, s) is a non-active arc, 
the condition ∆ys

w = 0 must hold. Conditions 1, 2 and 3 associated with the variables ∆ys
w for 

active arcs constitute a system of equations with the same number of variables as equations. 
The system is built as follows: 

• For each OD pair, the equation below is added to the system: 
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This equation ensures that Condition 2 above is satisfied. Since each OD pair has only one 
reference arc, this condition is applied once for each pair. Note that some variables in the 
summation were removed from the system and are given a value of 0; in other words, they 
should not figure in the summation.  

• For each active variable of an OD pair whose current flow is positive ( 0w
sy > ), a ETT 

equality is added to the system:  

 ( ) 0=Δ−Δ w
ws

w
s ETTETT  (9) 

Here, ( )s w  is an arc associated with an active positive flow variable for the pair (if the pair 
has no arc with flow, the one with the fewest lines can be chosen). 

• If ∆ys
w is associated with an active arc with no flow ( 0w

sy = ), the following equations 
must be added to the system: 

  (10) 

(11) 

(12) 

 
If an active arc has no flow, there are two alternatives: the flow change is positive and its 
ETT is equal to the minimum for the pair, or its flow change is zero and its ETT does not fall 
below the group’s minimum level. These alternatives are represented by the three expressions 
above. In the case where the flow change is zero, the arc is no longer active at the next 
iteration. The solution to the resulting system of equations can be found using conventional 
mathematical techniques. 
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The outcome of this phase is the values of the set of variables ∆ys
w that enable an additional 

flow unit (ε ) to be assigned while still maintaining the network in equilibrium. Given the 
characteristics of the resulting system of equations, all the variables are expressed linearly in 
ε . Thus, since we are interested in determining the assignment for non-small values of ε , we 
must attempt to identify the maximum value that ε  can take without any constraints on the 
problem being activated by the changes in the variables. The second phase of the algorithm 
aims at precisely that. 

3.3.2 Algorithm (Phase 2) 

The system of equations in Phase 1 of the algorithm defined the direction of movement of 
flow for each arc in the system as a function of the flow increase in the chosen OD pair. The 
objective of Phase 2 is to determine how much movement there can be in that direction 
without losing network equilibrium.  

The maximum size of ε  is determined by the first of three situations described below: 

1) In some OD pair, an inactive arc becomes active; that is, its ETT becomes equal to that of 
the active arcs. 

2) In some OD pair, the flow in an arc (initially strictly positive) whose ∆ys
w is negative falls 

to 0.  

3) The total flow of arc w~ , that is, wx~ , reaches the flow level wT~  it is desired to assign.  

Each of these three conditions determines an upper bound for ε , to be called z1, z2 and z3, 
respectively. The value we seek is denoted z and defined as ( )321 ,,min zzzz = . 

To calculate z1, note first that ∆ETTs
w is a (linear) function of the flow variations. We must 

therefore determine, for each arc, the value of ε  that yields a ETTs which attains the 
minimum for the OD pair. The arc with the smallest ε  becomes the critical arc that 
determines z1. 

Calculating z2 is simple; its value is just the smallest flow whose associated change is 
negative divided by the absolute value of the change. Finally, calculating z3 trivial, being 
equal to the difference between wT~  and wx~ . 

Once z has been determined, the network flows are updated by adding to each of them the 
value given by · w

sz y εΔ . Since the new assignment is an equilibrium for all values of ε  
smaller than or equal to z, it is a (partial) Wardrop equilibrium for the network, and provides 
the next point of departure for a new stage of the algorithm until the desired equilibrium 
where the OD matrix has been completely assigned is finally reached. 

The convergence of the algorithm has not been formally proven; it does, however, appear 
intuitively to do so. Regarding the uniqueness of the solution, it can be easily shown that it is 



not unique in terms of Y (an example can be found in Larrain, 2006). However, the solution 
appears to be unique in terms of V since uniqueness has prevailed in many examples studied 
no matter in which order the arcs are loaded in the first phase of the algorithm. As in the case 
of classical user equilibrium that can be expressed uniquely in terms of arc flows but not in 
terms of path flows, although path flows must be used to model and solve analytically the 
problem, the same appears to be true here about V and Y. 

4 APPLICATION OF THE ALGORITHM 

4.1 The network 

In this section the algorithm is implemented in a four-stops corridor where three lines operate 
(lines 1, 2 and 3). Lines 1 and 3 stop in all four bus stops, while line 3 skips bus stop 2. The 
network configuration, including trip times and frequencies, is detailed in Figure 3, while its 
OD matrix is given in Table 1. 

4.2 Executing the algorithm 

Before executing the algorithm, parameters αwk and βsr must be computed. Their values for 
this case are shown in Figure 4.The first few iterations of the algorithm are straightforward so 
they have been omitted from this text. When few arcs carry flow, is very likely that the 
system of equations resulting from Phase 1 considers a single equation, implying that flow 
could be added to the critical link as long as the threshold determined in Phase 2 of the 
algorithm is not reached. Thus, following the order in which OD pairs appear in the matrix, 
after six iterations the assignment shown in Table 2 is reached. Table 3 displays its associated 
ETT matrix. This assignment is not the seek equilibrium since it only considers four out of 
the six OD pair flows. 

The next iteration is now presented in more detail. In Phase 1 the OD pair 2-4 (currently with 
no flow assigned) is chosen to increment its assigned flow. The following system of 
equations is reached: 

  (10) 
(11) 

(12) 

 
The solution of this system is ε231.043
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equilibrium conditions and yielding an assignment in which the first four OD pair flows and 
part of the fifth one are assigned in the network. Once two similar iterations are completed, 
the global equilibrium assignment presented in Tables 4 and 5 is reached.  
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It can be observed that the assignment satisfies user equilibrium conditions since each OD 
pair demand is divided only among fastest available strategies which ensure that no user has 
an incentive to change his decision. Also notice the case of the demand of OD pair 3-4 where 
212.31 pax/hr wait for buses of lines 1 and 2 only while 87.69 pax/hr take the first bus of any 
line. 

5 CONCLUSIONS 

This study has revealed a number of important points regarding public transit corridor  
assignment when it is assumed that travel time on each line depends on its number of users. 
The principal finding is that there exist equilibrium situations in which identical users can 
choose different travel strategies to make the same journey. Also, the number of different 
simultaneous strategies in an equilibrium for a given origin-destination pair can be fairly 
large. Such situations can be easily constructed by applying the formulas in Section 3.2. 

Traditional public transit assignment models often do not take into account congestion, or if 
they do, they assume it to be associated with the limited capacity of the transit vehicles. In 
many transit systems around the world this type of congestion in fact rarely arises; the type 
analyzed here, by contrast, is inherent in almost any system. The approach developed here is 
intended to provide a starting point for complex transit network assignment models as well as 
for network design models. 

In more specific terms, the most direct application for the model we have presented is in a 
transit route design model for a public transit corridor. The model addresses the lower level 
of the optimization problem in such a design model. At an intermediate level a method would 
have to be found to optimize frequencies for a given operation scheme, while at the highest 
level the model would have to optimize the line routes. To employ this type of model the 
ability of users to change lines in order to reach their destination would have to be 
incorporated. The authors are currently working on this issue. 

A possible extension of this study that could be of interest in this area of research would be to 
find a way of broadening the algorithm not only to allow movement from one equilibrium to 
another for a set of fixed data, but also to predict how flows would be reassigned when 
frequencies are varied. Such a tool would considerably simplify the transit corridor design 
problem. Another worthwhile line of inquiry would be to determine how to incorporate line 
capacity constraints to absorb the flows assigned by this method, or to allow passengers 
transferring between services to complete their trip. 
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Figure 1. Passenger assignment when sq contains two lines. 
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Figure 2. Example of equilibrium on a single OD pair. 

 

12 min 15 min 20 min

26 min 18 min

14 min 20 min 25 min

Line 1, freq. = 8 bus/hr
Line 2, freq. = 6 bus/hr λ = 1
Line 3, freq. = 5 bus/hr tba = 3sec

1 2 3 4

 
Figure 3: Network configuration for application in Section 4. 

 

12 23 34 13 24 14 {1} {2} {3} {12} {13} {23} {123}
12 2 0 0 1 0 1 {1} 0.13 0 0 0.07 0.08 0 0.05
23 0 2 0 1 1 0 {2} 0 0.17 0 0.07 0 0.09 0.05
34 0 0 2 0 1 1 {3} 0 0 0.2 0 0.08 0.09 0.05
13 2 2 0 2 1 1 {12} 0.07 0.07 0 0.07 0.04 0.04 0.05
24 0 2 2 1 2 1 {13} 0.08 0 0.08 0.04 0.08 0.03 0.05
14 2 2 2 2 2 2 {23} 0 0.09 0.09 0.04 0.03 0.09 0.05

{123} 0.05 0.05 0.05 0.05 0.05 0.05 0.05

w

k

s

rα wk βsr

 
Figure 4: Values of αwk y βsr for application in Section 4. 

 

{ } { }

{ }
( )

1215
·1.0

1215
60

1215
22·1217·15

12
·1.0

12
6022

15
·1.0

15
6017

21

21

2211
2,1

2

2

22
2

1

1

11
1

+
+

+
+

+
+
+

=
+

++
=

++=
+

=++=
+

=

vv
ff
tftfETT

v
f

tfETTv
f

tfETT

λ

λλ

Case Only l 1 l 1  and l 2 Equilibrium
v 1  = 300 v 1  = 166,7 v 1  = 233.3
v 2  = 0 v 2  = 133,3 v 2  = 66.7

(y {1} =y {1,2} =150)
ETT {1} 23.00 22.11 22.56
ETT {2} 27.00 28.11 27.55
ETT {1,2} 22.56 22.56 22.56
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w T w  (pax/hr)
12 300
23 200
34 300
13 600
24 400
14 200  

Table 1: OD matrix for application in Section 4. 
 

1-2 2-3 3-4 1-3 2-4 1-4
{1} 0.00 0.00 0.00 0.00 0.00 0.00
{2} 0.00 0.00 0.00 0.00 0.00 0.00
{3} 0.00 0.00 0.00 0.00 0.00 0.00
{12} 0.00 0.00 220.00 600.00 0.00 0.00
{13} 300.00 200.00 0.00 0.00 0.00 0.00
{23} 0.00 0.00 0.00 0.00 0.00 0.00

{123} 0.00 0.00 80.00 0.00 0.00 0.00

y s
w

s

w

 
Table 2: Flows after six iterations. 

 

1-2 2-3 3-4 1-3 2-4 1-4
{1} 23.95 26.18 29.49 42.63 48.17 64.62
{2} 1012.14 1012.14 29.99 40.29 1014.14 60.28
{3} 28.31 33.54 37.42 49.85 58.96 75.27
{12} 443.18 444.45 25.42 37.34 457.87 58.48
{13} 21.01 24.40 27.93 40.79 47.71 64.10
{23} 559.49 561.87 27.91 39.18 574.51 61.64

{123} 330.84 333.16 25.42 37.47 349.74 59.74

s

ETT s
w w

 
Table 3: ETT’s after six iterations. 

 

1-2 2-3 3-4 1-3 2-4 1-4
{1} 0.00 0.00 0.00 0.00 0.00 0.00
{2} 0.00 0.00 0.00 0.00 0.00 0.00
{3} 0.00 0.00 0.00 0.00 0.00 0.00
{12} 0.00 0.00 212.31 600.00 0.00 200.00
{13} 300.00 200.00 0.00 0.00 400.00 0.00
{23} 0.00 0.00 0.00 0.00 0.00 0.00

{123} 0.00 0.00 87.69 0.00 0.00 0.00

y s
w w

s

 
Table 4: Equilibrium assignment flows for the network in Section 4. 

 

1-2 2-3 3-4 1-3 2-4 1-4
{1} 24.66 27.72 31.73 44.88 51.95 69.12
{2} 1012.86 1012.14 30.69 41.00 1014.84 61.69
{3} 28.31 35.08 39.00 51.38 62.08 78.38
{12} 443.89 445.33 27.00 38.93 460.33 61.65
{13} 21.45 25.93 29.91 42.77 51.23 68.07
{23} 559.88 562.57 29.01 40.27 576.31 63.83

{123} 331.37 334.21 27.00 39.05 352.37 62.89

ETT s
w w

s

 
Table 5: Equilibriums assignment ETT’s for the network in Section 4. 

  


