
An effective heuristic for

ready mixed concrete delivery

Verena Schmid(1), Karl F. Doerner(1), Richard F. Hartl(1),

Martin W. P. Savelsbergh(2), Wolfgang Stoecher(3)

(1) Department of Management Science, University of Vienna, Bruenner
Strasse 72, 1210 Vienna, Austria

{verena.schmid, karl.doerner, richard.hartl}@univie.ac.at
(2) School of Industrial and Systems Engineering, Georgia Institute of

Technology, Atlanta, GA 30332-0205
mwps@isye.gatech.edu

(3) Profactor Produktionsforschungs GmbH, Steyr-Gleink, Austria
wolfgang.stoecher@profactor.at

1 Introduction

A medium-sized company in the concrete industry located in Upper Austria is
facing the following scheduling problem on a daily basis. Concrete produced
at several plants has to be delivered at customers’ construction sites using a
heterogeneous fleet of vehicles in a timely, but cost-effective manner. As the
ordered quantity of concrete typically exceeds the capacity of a single vehicle
several deliveries need to be scheduled in order to fulfill an order. The deliveries
cannot overlap and the time between consecutive deliveries has to be small.
Some vehicles can only be used for the delivery of concrete. Other vehicles,
with specialized unloading equipment, may have to be present at a construction
site to assist with the unloading operations of other vehicles. Such vehicles need
to arrive first at a construction site and remain at the construction site until
the complete order has been fulfilled.

We present a solution approach for the problem at hand which combines
the power of integer programming solvers with the search schemes of meta-
heuristics. Initial computational experiments have demonstrated that the ap-
proach is capable of producing high quality solutions in a reasonable amount of
time (solutions that improve those produced by a simulated annealing heuristic
currently employed by the company).

The meta-heuristic searches for compatible order fulfillment patterns, which
are used to define an integer multi-commodity flow problem with side constraints
to find optimal truck itineraries. Instances of the integer multi-commodity flow

1



problem with side constraints are rather easy to solve if the number of patterns
is relatively small.

2 Problem Setting

Construction sites require concrete for their daily activities. Concrete consists
of cement, mineral aggregates, such as gravel and sand, and water and is widely
used in the construction industry. In order to satisfy the demand for concrete,
full truckloads of concrete will be delivered at constructions sites. The concrete
is produced at plants. A plant’s loading rate determines the time it takes to
fill up a truck. The fleet of delivery trucks is heterogeneous. Trucks do not
only differ in terms of capacity, but also in terms of their equipment. Orders
for a particular day are known in advance. An order not only specifies the
required quantity of concrete, but also the time window within which the first
delivery has to start, and special loading equipment, if any, that is required.
Furthermore, an expected unloading rate at the construction site is provided.
The objective is to minimize total cost, consisting of total travel cost, (small)
penalties for delays between two consecutive unloading operations for an order,
and (high) penalties for unfulfilled orders.

3 An Integer Multi-commodity Flow Formula-

tion

The problem is modelled as an integer multi-commodity flow problem on a time-
space network (with some similarities to the model proposed by Hoffman and
Durbin [1]). Each type of delivery truck is modelled as a separate commodity.
However, instead of considering all possible loading and unloading operations
and all possible truck movements, only a limited number of options is considered.
This done through the use of order fulfillment patterns. A fulfillment pattern for
an order completely specifies which delivery trucks visit the construction site, in
what order, and when unloading operations take place. Given a (small) set of
fulfillment patterns for each order, the integer multi-commodity flow formulation
selects a fulfillment pattern for each order and determines an itinerary for each
of the delivery trucks. Note that a truck typically makes several full truckload
deliveries during a day and can load concrete at any of the plants.

The time-space network has a node for every plant, time instant combina-
tion and every site, time instance combination. The integer multi-commodity
flow formulation contains flow-balance constraints at every node of the time-
space network for every truck. Starting and ending condition ensure that trucks
depart from and return to their home plants. Side constraint capture the fact
that exactly one fulfillment pattern has to be chosen for every order, otherwise
penalty will accrue.

In most case, trucks leave a construction site immediately after finishing
their unloading operation. However, if an order requires specialized unloading

2



equipment, the first truck to arrive needs to have the required equipment and
remain at the site until the entire order has been fulfilled. That truck departs as
soon as the last unloading operation of a fulfillment pattern has been completed.

4 Fulfillment Pattern Generation

Order fulfillment patterns specify different ways to satisfy the demand for con-
crete at a particular construction site. One fulfillment pattern has to be chosen
for each order. A fulfillment pattern completely specifies which delivery trucks
visit the construction site, in what order, and when unloading operations take
place. Fulfillment patterns are generated iteratively inspired by concepts from
meta-heuristics (see Glover and Kochenberger [2]).

First a number of base patterns is generated for every order. The integer
multi-commodity flow formulation is solved with only these base patterns. Next,
based on an analysis of the current solution, new patterns are generated and
added to the pool of patterns. The integer multi-commodity flow formulation
is solved with the patterns in the pattern pool and the process repeats.

Two types of patterns are generated: (1) completely new patterns, and (2)
modified existing patterns. The generation of these patterns is guided by the
characteristics of the orders as well as by the patterns selected in the last solution
to the integer multi-commodity flow formulation. Care is taken to generate new
patterns that are complementary to the patterns in the last solution (will have
little or no overlap) and new patterns with start times for unloading operations
that differ in peak delivery periods.

4.1 Generation of the base fulfillment patterns

As a first step, one pattern is generated randomly for every order. The start
of the first unloading operation of the pattern is selected randomly within the
time window associated with the order. Next, the truck performing the first
unloading operation is selected randomly applying a roulette wheel method. Of
course only trucks that can feasibly perform the unloading operation will be
considered, e.g., for orders with special requirements concerning instrumenta-
tion only trucks with appropriate instrumentation will be taken into account.
Next, additional unloading operations, and thus trucks, will be added to the
pattern until the cumulative capacity of scheduled trucks exceeds the quantity
of concrete ordered. We properly handle trucks that have already been used in
the emerging pattern, i.e., we ensure that there is sufficient time to drive to the
nearest plant, load concrete, and return to the construction site.

An additional n − 1 fulfillment patterns will be generated for each order,
where we enforce that patterns do not overlap with existing patterns for other
orders. The probability for selecting a truck for an unloading operation is in-
versely proportional to the number of patterns it would overlap with.

3



4.2 Generation of additional fulfillment patterns

Each time the integer multi-commodity flow formulation has been solved, a set
of new patterns is generated and added to the pool of patterns.

As mentioned earlier, new patterns are generated in one of two ways. Either
delays are inserted between consecutive deliveries of an existing pattern or a
completely new pattern is generated.

To generate a modified pattern, a single delivery in the pattern is selected
randomly and its start time is delayed (which forces all subsequent deliveries
to be delayed as well). The selection probability for a delivery depends on the
workload during the time interval of the delivery. The more concrete needs to
be delivered during the time interval, the more likely it is that the start of the
delivery will be delayed.

When generating a new pattern, we try not to generate a pattern that over-
laps with the patterns of the current solution of the integer multi-commodity
flow formulation. Again, all trucks scheduled to make a delivery in a pattern
will be chosen sequentially. The selection probability is inversely proportional
to the number of patterns it would overlap with. Any special requirements con-
cerning instrumentation will be considered, such that only eligible trucks will
be scheduled in the first position of a pattern.

5 Preliminary Results

So far, two representative instances for a medium-sized company in Austria
have been solved. The first instance is relatively small with two plants, three
construction sites, seven trucks, and five small to medium-size orders (quantities
vary between 16 and 45 cubic meters). The second instance is larger and has
45 trucks, nine plants, and five large orders (quantities vary between 23 to 314
cubic meters). The capacity of trucks varies between 5 and 11 cubic meters.

First, we solved these instances by blindly enumerating a large number of
patterns with and without delays. Using this pool of patterns the integer multi-
commodity flow formulation was solved.

Next, we applied the iterative approach described above. Five base patterns
were generated for each order. As long as the solution to the integer multi-
commodity flow formulation did not fulfill all the orders, one existing pattern per
order was modified by inserting delays, and three new patterns were generated
per order.

Table 1: Instance 1
x avg sol avg time avg # iterations # patterns # patterns BF
5 55.08 190.20 16 69 ∼ 200
10 54.00 377.08 15.4 71.6 ∼ 200
20 52.17 1762.31 22.4 109.6 ∼ 200

4



Table 2: Instance 2
x avg sol avg time avg # iterations # patterns # patterns BF
5 712.56 79.13 1.8 12.2 ∼ 200
10 708.40 57.04 1.6 16.4 ∼ 200
20 655.84 31.49 0 20 ∼ 600

Each instance was solved five times. Table 1 and Table 2 show the average
solution quality, average run times (in seconds), and the number of iterations
when starting with x base patterns. The last two columns give the average
number of patterns generated to obtain the solution and the number of randomly
generated patterns that would have been required by the brute-force method to
obtain a comparable solution.

All experiments were performed on Pentium 4, 3.2 GHz machine with 3 GB
RAM.

References

[1] K. Hoffman and M. Durbin. “The Dance of the Thirty Ton Trucks,” Op-
erations Research. To appear.

[2] F. Glover and G.A. Kochenberger. “Handbook of Metaheuristics,” Kluwer
Academic Publishers, Norwell, 2003.

5


