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1 Introduction

The objective of the present paper is the definition of an optimization problem, named Intermodal

Assignment Problem (IAP), for the operational planning of freight intermodal transportation operations.

More specifically, we are considering transportation operations of fruit and vegetable products in order to

meet some specific constraints (concerning requested place and time of picking up and delivering, required

service level, availability of trucks and trains, and so on), and minimizing the total transportation costs.

In order to face the IAP, an Ant Colony Optimization (ACO) metaheuristic approach is proposed.

Ant Colony Optimization (ACO) is a recent metaheuristic which tries to emulate the successful behaviour

of real ants in cooperating to find shortest paths to food for solving combinatorial problems [5]. Real

ants have an effective indirect way to communicate each other the most promising trail, and finally the

optimal one, towards food: ants produce a natural essence, called pheromone, that they leave on the

followed trail to food in order to mark it. The pheromone trail evaporates and disappears on the paths

abandoned by ants. On the other hand, the pheromone trail can be reinforced by the passage of further

ants: thus, effective (i.e., shortest) paths leading to food are finally characterized by a strong pheromone

track, and they are followed by most of ants. The ACO metaheuristic was first introduced by Dorigo and

colleagues [4] and since then it has been the subject of both theoretical studies and successful applications

to several combinatorial optimization problems (e.g., the travelling salesman problem [4], vehicle routing

problems [6] and scheduling problems [8]).

2 Problem description

The problem we are facing concerns the planning of transportation operations of fruits and vegetables,

moved in special refrigerating containers, whose length can be either 20 feet or 40 feet. These trans-

portation operations are necessary in order to satisfy a specific demand, represented by a set of orders

(characterized by a given product quantity, an origin, a destination, a deadline and so on). These pro-

ducts have to cover a given route, as indicated in Fig. 1, which starts from an agro-centre AC where fruits

and vegetables are stored in pallets and, then, are put into boxes. When the agro-products are loaded in

containers onto vehicles, they must be transported to their destinations, which are the general markets

GM. For this transportation operation two alternatives are possible: all the route can be covered by road

vehicles or an intermodal transport by road and rail can be performed. In this latter case, road transport

is needed from AC to the origin rail terminal RTo (first road route) and, then, from the destination rail

terminal RTd to the GM (second road route).
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Figure 1: Layout of the logistic chain

Each road carrier owns a set of vehicles, which can be either tractors or trucks, a set of trailers and

a set of flatcars (20 foot and 40 foot flatcars). Differently from road vehicles, trains present a fixed

timetable, and fixed time windows in which the transhipment of containers from and on the train must

be realized. Moreover, there are 5 possible different configurations of vehicles and boxes: 1) a tractor, a

20’ flatcar and a 20’ box, 2) a tractor, a 40’ flatcar and a 20’ box, 3) a tractor, a 40’ flatcar and a 40’

box, 4) a truck and a 20’ box, 5) a truck, a trailer and two 20’ boxes.

For each vehicle v ∈ V , the following data are considered: the corresponding road carrier cv ∈ C,

the vehicle type vtv ∈ {0, 1} → {tractor, truck}, a set of possible configurations Iv ⊂ {1, 2, 3, 4, 5}, the

availability at time t (state variable) av(t) ∈ {0, 1} → {not available, available}.

Moreover, the following quantities are associated with each train r ∈ R: the origin rail terminal

rtor ∈ RTo (departure place), the destination rail terminal rtdr ∈ RTd (arrival place), the departure

time dtr ∈ N, the arrival time atr ∈ N, the number of slots available slb,r ∈ N, b ∈ {20, 40}.

For each order o ∈ O, the following data are considered: the origin (agro-center) aco ∈ AC, the

destination (general market) gmo ∈ GM , the number of pallets npo ∈ N, the deadline dlo ∈ N, the

requested service level ŝo ∈ {1, 2, 3}, the set of possible road carriers for the first road route C1

o ⊂ C1,

the maximum time interval for products to remain in the box ∆tmax
o .

Moreover, for each train r ∈ Ro (where Ro is a set of trains compatible with order o, computed in a

pre-processing analysis phase), we have to consider the following data: start time for the first road route

st1o,r ∈ N, time length of the first road route ∆t1o,r ∈ N, start time for the second road route st2o,r ∈ N,

time length of the second road route ∆t2o,r ∈ N, the set of possible road carriers for the second road route

C2

o,r ⊂ C2.

For each road carrier c ∈ C = C1 ∪ C2 (respectively, the set of road carriers for the first and the

second road route), the following data are considered: the provided service level sc ∈ {1, 2, 3}, the number

of flatcars available at time t (state variable) flb,c(t) ∈ N, b ∈ {20, 40}, the number of trailers available

at time t (state variable) trc(t) ∈ N.

Other data of the problem concern: the fixed loading time on train ∆TL, the fixed unloading time

from train ∆TU , the maximum number of pallets in a box pb, b ∈ {20, 40}, a matrix TT whose generic

element tt(i, j) represents the travelling time between node i and node j.

A pre-processing phase has been defined, in order to simplify the problem structure, with two main

objectives: the definition of the set Ro of trains compatible with a generic order o and the determination

of a different time scale, in which each time step corresponds to an assignment decision.

For the determination of the set Ro, it is necessary to consider each train and to verify three conditions:

1) whether train r is compatible with the deadline of order o or not, 2) whether the vehicle departure

time with train r is non negative or not, 3) whether the route time length using train r is compatible
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with ∆tmax
o . If these conditions are verified, then train r is compatible with order o and all the time

instants and time intervals concerning the route associated with the couple (o, r) are determined (i.e.,

st1o,r, ∆1

o,r ∀o ∈ O, ∀r ∈ Ro; st2o,r, ∆2

o,r ∀o ∈ O, ∀r ∈ Ro \ {0}). Moreover, r = 0 is inserted in the

set Ro, corresponding to the case in which no train is used and all the route is covered on road. More

specifically, this procedure can be formalized as follows:

In order to simplify the problem structure, we suppose that decisions are taken only in some particular

time instants, instead of at each time t = 1, 2, . . .. More in particular, time instants in which decisions are

taken are those related to the departures of vehicles (st1o,r ∀o ∈ O, ∀r ∈ Ro; st2o,r ∀o ∈ O, ∀r ∈ Ro \ {0}),

also called departure events. These departure events make up the time set T of the considered decision

problem and, for simplicity, are rewritten by means of the variable τ ∈ T . Thus, a relation ϕ must be

defined such that ϕ(t) = τ means that the departure event indexed by τ refers to time instant t. Moreover,

the durations of the different routes (∆t1o,r ∀o ∈ O, ∀r ∈ Ro; ∆t2o,r ∀o ∈ O, ∀r ∈ Ro\{0}) are transformed

into a corresponding number of departure events (∆N1

o,r ∀o ∈ O, ∀r ∈ Ro; ∆N2

o,r ∀o ∈ O, ∀r ∈ Ro \{0}).

3 Definition of the Intermodal Assignment Problem

Starting from the results of the pre-processing phase, an optimization problem has been formalized as

a linear mixed-integer programming problem that, from now on, will be referred to as the Intermodal

Assignment Problem (IAP).

The decision variables of the IAP are the following:

• y1

o,r,v,i, o ∈ O, r ∈ Ro, v ∈ V : cv ∈ C1

o , i ∈ Iv: binary variable equal to 1 if order o associated

with train r is assigned to vehicle v in the configuration i (for the first part of the road route) and

0 otherwise;

• y2

o,r,v,i, o ∈ O, r ∈ Ro \ {0}, v ∈ V : cv ∈ C2

o,r, i ∈ Iv: binary variable equal to 1 if order o

associated with train r is assigned to vehicle v in the configuration i (for the second part of the

road route) and 0 otherwise;

• xb,o,r, b ∈ {20, 40}, o ∈ O, r ∈ Ro \ {0}: integer variable corresponding to the number of boxes (20

foot or 40 foot long) assigned to order o and transported on train r;

• state variables: av(τ) ∈ {0, 1}, v ∈ V , for vehicles, flb,c(τ) ∈ N, b ∈ {20, 40}, c ∈ C, for flatcars,

trc(τ) ∈ N, c ∈ C, for trailers.

The cost function, given by the sum of the transportation cost for the first road route, the trans-

portation cost for the train route and the transportation cost for the second road route, can be stated

as:

∑

o∈O

∑

r∈Ro

∑

v∈V :cv∈C1
o

∑

i∈Iv

(k1

v + p1

o,r,v,i) · y
1

o,r,v,i +
∑

b∈{20,40}

∑

o∈O

∑

r∈Ro\{0}

pb,r · xb,o,r+

+
∑

o∈O

∑

r∈Ro\{0}

∑

v∈V :cv∈C2
o,r

∑

i∈Iv

(k2

v + p2

o,r,v,i) · y
2

o,r,v,i (1)

where k1

v and k2

v represent a fixed cost for vehicle v (for the first and the second road route, respectively),

p1

o,r,v,i and p2

o,r,v,i are the transportation costs for products of order o, associated with train r, assigned

to vehicle v in the configuration i (for the first and the second road route, respectively), pb,r is the cost

for a slot of type b ∈ {20, 40} on train r.

The mathematical formalization of the constraints of the IAP is not reported in the present paper

for the sake of brevity, thus a brief description of their meanings is given in the following. Assignment

and availability constraints for vehicles are considered in order to assure that a vehicle is assigned to an
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order only if it is available (for both road routes) and that the availability of the vehicle becomes equal

to 0 if it is assigned and keeps equal to 1 otherwise. Analogous assignment and availability constraints

have been considered for flatcars and trailers. Moreover, other constraints have the purpose of assuring

that only vehicles whose road carriers can guarantee a sufficient service level are chosen. Other types of

constraints are those assuring that a sufficient number of boxes are assigned to each order (characterized

by a given number of pallets). Finally, another set of constraints is considered, assuring that, for a given

order, the same number and type of boxes are assigned to road vehicles and trains.

4 A metaheuristic Ant Colony Optimization approach

A suitable Ant Colony Optimization (ACO) metaheuristic approach is proposed, in order to face the

Intermodal Assignment Problem (IAP) also for large problem instances. The ACO algorithm develo-

ped for the IAP is basically inspired by the Ant Colony System (ACS) [3] and Max-Min Ant System

(MMAS) [7] versions of the basic algorithm; the general framework of this ACO algorithm is analogous

to the one described in [1], where an approach based on a new global pheromone update mechanism

has been proposed. The basic structure of the implemented ACO algorithm is summarized in Fig. 2: at

each iteration of the main loop, any ant constructs a solution performing an inner loop of progressive

assignment decisions.

Initialization;

k=1;

While <termination condition not met>

{

For each ant aÎA

{

Construction of solution xa
k;

Local pheromone update;

}

Local Search phase;

Global pheromone update;

k=k+1;

}

Figure 2: The overall ACO algorithm

An ant has a state that is updated during the construction process to dynamically check its feasibility.

In particular, an ant must know the number of pallets that remains to be served for each order, the number

of slots available for each train, and the partial solution (assignment of pallets to vehicle configurations

and trains) constructed so far. The steps executed in the inner loop of the ACO algorithm correspond to

the decision stages associated with the set T of discrete departure events. Assuming n = |T |, the decision

stages for an ant can be represented as in Fig. 3: at each stage τ there is a square node Sτ representing

the state of the ant before the decision (in the initial square node with τ0 = 0, the ant starts with an

empty partial solution).

The circle nodes h = 1, . . . , Lτ , at stage τ , are associated with different sets of boxes that can be

used to serve the order o up to the number of remaining pallets to send. The ant selects (according to a

suitable ACO construction rule, as in [2]) which arc to follow from Sτ leading to a circle node h that will

change the ant state. The circle node generation process is based on the computation of the maximum

number of 20’ and 40’ boxes needed to completely serve the remaining pallets. A greedy configuration

heuristic procedure is called to establish whether the selected set of boxes can be actually transported by

vehicles, trailers and flatcars currently available, or if the selected node is unfeasible. This procedure tries

to determine the feasible vehicle configurations to ship the boxes of the node selected by the ant, taking

into account the current resource availabilities and the fixed and the transportation costs. If no finite
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Figure 3: The solution construction stages for an ant

cost assignment is found for the selected node, the ant eliminates it and proceeds with a new selection,

until a feasible assignment is determined. When the ant has considered all the decision stages, the cost

of the solution is computed; if a complete feasible solution has not been found, the cost will include a

penalty term.

The node selection is performed by an ant in two steps. First, the ant determines which node

selection rule to use between an exploitation and exploration one, by extracting a random number from

the uniform distribution U [0, 1]. The exploitation rule selects the node h∗ in a deterministic way, whereas

the exploration rule is computed according to a selection probability. The pair (τ, h) identifies a so-

called solution component, i.e., a possible selection during the ant solution construction process. The

quantity πk(τ, h) is the pheromone trail at iteration k associated with the selection of node h at stage

τ : this pheromone trail represents a measure of the appropriateness of selecting a component during the

construction of good solutions, which are progressively learned from the solution space exploration.

5 Experimental results

In order to evaluate the effectiveness of the proposed ACO algorithm, a problem generator has been imple-

mented, which randomly produces different instances depending on the values of some input parameters.

Thus, several sets of different problem instances, for different problem dimensions, have been solved by

applying two separate approaches: the former solution method is the application of the mathematical

programming formulation of the IAP using the Cplex 9.0 MIP solver, while the latter solution approach

is the ACO metaheuristic algorithm, implemented in C++.

The generated instances have been classified into 6 difficulty groups (in increasing order) according to

the number of variables and constraints produced for the corresponding MIP formulation. Table 1 reports

the summarizing results of the comparison between the MIP solver and the ACO solution, aggregated by

instance groups. The average results of the ACO approach put into evidence that this algorithm was able

to solve all the instances in quite acceptable computation times; also for instances of group 6, not solved

by Cplex, the ACO was able to find solutions serving all the orders with a 236.6 s average CPU time.

Moreover, the ACO algorithm performance is even more appreciable when the difficulty of the instances

increases (ACO algorithm terminated with an average CPU time that is usually a fraction of the time

needed by the MIP solver, finding a solution very close to the optimal one). Finally, it is important to

note that the average and best ACO results are quite close and the standard deviations for the ACO

average results are very small, thus implying that the ACO algorithm shows a stable behaviour.
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Table 1: Summarizing results for the 6 groups of problem instances

MIP solver ACO

Group CPU time Time dev. (%) Avg ACO obj. dev. (%) Best ACO obj. dev. (%)

1 39.23 -35.39 2.09 1.87

2 154.44 -57.15 1.61 0.88

3 345.48 -72.09 0.64 0.60

4 408.50 -58.69 1.21 1.08

5 836.44 -75.94 0.82 0.51

6 - - - -

Global 356.82 -59.85 1.27 0.99

6 Conclusions

In this paper, a model and an optimization problem for the operational planning of transportation

operations have been defined. For this problem, a mathematical programming formulation has been

provided (linear mixed-integer programming problem), together with a metaheuristic approach based on

the development of an Ant Colony Optimization (ACO) algorithm.

The proposed ACO algorithm has been tested on different randomly generated problem instances, by

comparing the solutions obtained with those coming from the application of the MIP formulation. The

obtained experimental results have shown the effectiveness of the proposed metaheuristic approach.
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