
 1 

Predictions of Urban Flow Volumes and Incident Detection 
 
T. Thomas University of Twente t.thomas@utwente.nl 
E.C. van Berkum University of Twente 
 
 
Abstract 
Travel demand and supply increasingly are in a delicate balance in urban areas of the 
Netherlands. This has led to more awareness of the importance of accurate demand 
predictions and detections of incidents. In this paper we present a prediction scheme and 
detection algorithm which are based on an extensive study of volume patterns that were 
collected for about 20 urban intersections in the Dutch city of Almelo. Our scheme 
consists of: (1) base-line predictions for a given pre-selected day, (2) predictions with a 
24 hours time horizon and (3) short term predictions with horizons smaller than 80 
minutes. It appears that 24 hours predictions and short term predictions are significant 
more accurate that base-line predictions. In fact, in most cases prediction errors are 
negligible small for the short term predictions. We then use our knowledge about the 
random variations in volume measurements to construct a simple 3 plus 4-sigma clipping 
method to remove outlying measurements. Most of these measurements are caused by 
incidents or events. We briefly discuss how our methods can be used in practical 
applications. 
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1. Introduction 
 
Congestion has increased significantly in the last few decades. The efficient use of  
existing infrastructure by dynamic traffic management (DTM) is one of the strategies to 
reduce congestion. An important requirement is the availability of detailed information 
about travel demand. In general demand cannot be measured directly, but must be 
estimated using information on volumes, i.e. traffic counts. In urban areas traffic 
information is scarce (i.e. compared to highways) and only since recently, traffic data are 
becoming available in traffic information centers (e.g. Hasberg and Serwill 2000, 
Kellerman and Schmid 2000, Leitsch 2000). However, an increasing number of volume 
measurements will lead to more reliable demand predictions and thus to better forecasts 
of the traffic circulation. 
 
Different approaches exist for volume predictions. Unfortunately, few methods include 
random variations or noise in their predictions. Contrary to systematic variations (e.g. 
weekly, seasonal or weather related variations) these variations have no periodic 
character and they are unpredictable. Without knowing the nature and amount of noise it 
is impossible to evaluate prediction models properly. Besides, knowledge about noise 
levels can be used in the detection of outlying events.  
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In this paper we present a prediction scheme for travel demand and an incident detection 
method in which we have distinguished between systematic prediction errors and the 
noise. In section 2 we describe the data. In section 3 we pre-select urban volume patterns 
(daily profiles) into groups, and by using correlations within these groups we develop a 
prediction scheme for different prediction horizons (sections 4 and 5). In section 6 we 
present a fairly simple 3 plus 4-sigma clipping method which enables us to detect 
incidents (i.e. strong deviations from the predictions) in real time. In section 7 we briefly 
discuss possible applications. 
 
 
2. Data 
 
The study area for this research consists of the urban network of the Dutch city of 
Almelo. Traffic data were collected at about 20 intersections from September 2004 till 
2005. Vehicles were detected by means of inductive loop detectors. These data were 
processed into volume measurements per link. In most cases measurements were 
provided in 5 minute intervals, which means that each daily time-series or volume profile 
contains 288 volumes. However, for about 30% off all links only 30 minute time-series 
were available. These profiles contain 48 volumes per profile. In Fig. 1 we show the 
study area. The thick lines in the figure correspond with intersection links for which 
traffic data were collected. 
 
 

 
 
Fig 1. The city of Almelo. The thick lines correspond with intersection links for which traffic data 
were collected. 
 
The volume measurements were inspected and invalid data were rejected (Weijermars et 
al. 2006). In Thomas et al. (2007a) we have shown that significant systematic short-term 
variations exist in travel demand. We found that recurrent patterns with typical periods of 
30 minutes are quite common. An explanation for these patterns is that society is 
regulated by 30 minute intervals. The amplitude of these patterns can be as large as 20% 
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during rush hour. Because volumes generated by events also vary within short time 
intervals (minutes rather than hours), we argue that predictions should be made within 5 
or 10 minute time intervals.   
 
Contrary to these recurrent patterns are random variations or noise. Random variations in 
successive traffic counts are uncorrelated and therefore unpredictable. On highways they 
are caused by variations in headways between cars. In urban areas traffic flows are 
interrupted, e.g. by traffic signals, which refract the random process. However, variable 
green times also add to quasi-random variations or noise. We therefore consider all 
processes which are locally constrained, which have short time-scales and which don’t 
have a clear recurrent pattern as random. In Thomas et al. (2007a) we studied random 
variations and we have shown that for urban areas the noise in first order can be 
approximated by a Poisson distribution, although this probably is an under limit. Like e.g. 
Wild (1997), we decided to use 10 minute time lags for our predictions. These lags are 
short enough to follow significant systematic short-term variations, but are long enough 
to get the noise down to an acceptable level. 
 
 
3. Base line predictions 
 
Several authors (e.g., Wild 1997, Grol et al. 2000) have found that the shape of daily 
volume profiles depends on the day of the week. As a  results they suggested that volume 
predictions can be improved when daily profiles are pre-selected into groups. For the 
Almelo data Weijermars et al. (2007) found significant differences between individual 
weekdays and between holidays and non-holidays, which they could explain by social-
geographic factors. Based on their results we pre-selected our days in the following 
groups: Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays and 
working days in the school holiday period (week 43 in 2004, and weeks 1, 7, 18 and 30 
till 35 in 2005).  
 
We then estimated the base-line prediction, qbase’, for day d, link l and time interval t as 
the historical mean of the pre-selected group to which day d belongs (note that we 
excluded event related traffic; see below): 
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in which qobs are the historical measured profiles and in which the pre-selected group D 
consists of ND days, denoted by  d’. Note that we demanded that ND ≥ 10. 
 
When large events take place traffic flows are influenced by the visitors of these events. 
At certain locations this will lead to a significant increase of traffic just before the event 
has started and after the event has finished. In Almelo home matches of the local 
professional football club can be counted among such events. In Thomas et al. (2007b)  
we isolated the event related volumes by subtracting the average profile without events 
from the average profile with events. Note that we corrected for possible time shifts. Per 
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link the event related peak was modelled by a Gaussian fit, qev (which in first order is a 
good approximation, although for large events the peaks sometimes have one-sided tails).  
 
The final base-line prediction, qbase, for day d, link l and time interval t, is the sum of the 
non-event and event related volumes:    
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The predictions can be validated by examining the distribution of the residuals 
(differences between measurements and predictions).  In Thomas et al. (2007c) we show 
that, even when we take the noise into account, there still is a significant variation left in 
the residuals. In other words, the base-line predictions can en should be improved.  
 
 
4. 24 hour predictions 
 
Travel demand may depend on the season. Seasonal variations can be quite substantial. 
The reason for these variations are not always clear. Sometimes they are caused by road 
works, and therefore they are not really ‘seasonal’. Some variations however are periodic. 
In any case, volume residuals (with respect to the base-line predictions) are strongly 
correlated for successive days (e.g. Thomas et al. 2007a). In other words, actual volume 
measurements can be used to improve the base-line predictions for the next day. We call 
these 24 hour predictions. 
 
We found that for our data the 24 hour predictions, q24, were optimised, i.e. the rms (root-
mean-square) of the residuals was minimised, when we used the following prediction 
model (for 10 minute time-series). 
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In the formula qbase are the base-line predictions and qobs are the measured volumes. 
According to the formula, the 24 hour prediction for day d, link l and time interval t is an 
update of the base-line prediction. The update is based on a power of 0.8 of the ratio 
between the averages of measurements and base-line predictions from the previous day. 
These averages are in fact central moving averages with a box width of 3 hours. Note that 
the power of 0.8 only is applied for successive weekdays. The 24 hour predictions of a 
Monday and a Saturday however can only be updated with the volumes of the previous 
Friday and Sunday respectively. For these non-successive weekdays the power of the 
ratio is 0.5, i.e. the update gets less weight. The reason for this is that volumes of non-
successive weekdays are less strongly correlated. 
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5. Short term predictions 
 
Apart from weekly and seasonal variations there may be other variations that are more 
difficult to model. Weather for example can have an effect on travel demand. Because 
some of these variations have short time-scales (shorter than 24 hours), they are not 
included in 24 hours predictions. We can however combine actual measurements and 24 
hour predictions to update predictions for the short term. This kind of short term 
predictions has been applied previously by e.g. Wild (1997).  
 
The problem of such extrapolation methods is that the actual measurements contain noise 
which contaminates the short term prediction. A solution for this problem is to reduce the 
noise by using moving averages of actual measurements. Unfortunately, we were not able 
to improve the predictions, i.e. decrease the rms of the residuals, in this way. We 
therefore filtered the noise by a Kalman filter (Kalman 1960). The principle of this filter 
is that the noise in the measurements is smoothed by expected model values that are 
given by a state equation. We used the following state equation in which we estimated the 
volume of the next time step according to the expected increase (or decrease) in the 24 
hour prediction.  
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The filtered volume qt

kal is then calculated by taking the linear combination of the state 
estimate qt

est and the measured volume qt
obs,  in which the total variance due to model 

errors and measurement noise is minimised (for details see Kalman 1960). According to 
this recepy we need an estimate for the variance of the noise Rt and for the variance of the 
model error Qt. We estimated these variances in the following way: 
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The noise in the measurements can be approximated by a Poisson distribution (Thomas et 
al. 2007a) with variance R equal to the predicted volume. The model error also contains 
some noise, which is described by the second term in (6). This noise is the result of the 
fact that the prediction model is based on a limited amount of historical data. If the 
number of days ND in the group D is large this noise term becomes negligible small. The 
first term in (6) describes the systematic model error due to imperfections in the 24 hour 
predictions. In fact, these are the errors that we want to eliminate from the short term 
predictions. According to the state equation (3) we look for the error in the difference 
between two successive predictions. In Thomas et al. (2007c) we show that a good 
estimate for c’ (the relative part of this error) is 0.03.      
 
Given the filtered data we optimised the short term prediction qst in the following way:  
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According to the formula we updated the 24 hour prediction with the filtered data of the 
previous hour. The maximum horizon T is 80 minutes (in 80 minutes the prediction will 
be equal to the 24 hour prediction).  
 
In Fig. 2 we show two examples of predictions with a 10 minute horizon. The predictions 
appear to follow the measurement quite well. In Thomas et al. (2007c) we show that 
these predictions are a significant improvement compared to base-line predictions, and 
that in fact prediction errors are often negligible small for working days. Note that travel 
demand predictions are less accurate for weekends and school holiday periods.  
 

 
Fig 2. Two examples of predictions (solid line) of volume time-series (dotted line)   
 
 
6. Identification of incidents 
 
When traffic accidents, road works, or other unique events occur, traffic volumes can 
differ significantly from the average. Most of these events are unexpected and can have a 
large impact on traffic circulation. Therefore it is important to identify these so called 
outliers as quickly as possible. We used a 3 plus 4-sigma clipping method which can 
detect outlying events as they occur. When the absolute value of qobs – qst (qst  is the short 
term prediction with a 10 minute horizon) exceeds 4�qst (�qst is the standard deviation of 
the noise) then the measurement is identified as an outlier. The chance that this happens 
for a measurement that is not an outlier is 6.3*10-5. The number of detected 4 sigma 
outliers is much higher (about 0.2% of all measurements, which is still a marginal 
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fraction). Thus, the chance that a detected outlier is in fact not an outlier (false alarm) is 
about 3% (equal to 6.3*10-5/0.2*10-2). For a detection limit of 3 sigma the fraction of 
‘false alarms’ is much higher (30% or more), which makes it less suited as detection 
limit. However, the chance that two successive ‘false alarms’ occur, is very small for the 
3 sigma detection limit (< 1%). With the latter criterion we can identify outlying events 
that are not very extreme, but that have relatively long timescales (20 minutes or more).  
 
In Fig. 3 we show two examples of outlying events (flagged by symbols). The dotted 
lines are time-series of two observed daily profiles. The solid lines are the predictions 
with a 10 minute time horizon. In the top panel the outlying event occurs late in the 
evening. In fact it occurs on the tail of a peak which was generated by visitors of a 
football match. Note that in this case, the peak itself actually has been predicted quite 
well by the Gaussian model. In the bottom panel the outlying event is caused by an 
accident that occurred during the morning rush hour.  
 
 

 
Fig 3. Two examples of volume time-series (dotted line) with outliers (solid symbols). The   
predictions are the solid lines. 
 
Many algorithms use threshold values for detecting incidents. Some authors have pointed 
out that the choice of threshold values often is rather arbitrary (e.g. Ihler et al. 2006). 
Although we also choose thresholds, our algorithm is very successful for two reason. Our 
expected volumes are, contrary to some algorithms, robust predictions based on historical 
data of many days. More importantly however, the threshold is not arbitrary chosen, but 
depends on the random variation of the volumes, which can be described in an uniform 
way. 
 
 
 
 
 



 8 

7. Applications 
 
In a congested free area like Almelo traffic counts are a measure for travel demand. 
Travel demand predictions can be useful at a local level. It can be applied for travel-time 
predictions or for managing of traffic control systems (e.g. Wang et al. 2005, Smith et al. 
2001). In the latter case demand predictions can be used to optimise intersection traffic 
light split times. In fact, some authors already have developed traffic control systems 
which can adapt to a changing travel demand (e.g. Yang et al. 2005, Yang 2004). In these 
cases artificial neural networks were used. 
 
For large urban networks macroscopic models are often used to estimate traffic 
circulation. These models include an estimate of an origin-destination (OD) matrix and a 
dynamical assignment of OD relations to the network. Reliable estimates of OD matrices 
are essential in macroscopic models. Camus et al. (1997) argued that volume predictions 
can be used to improve predictions of OD matrices. It is our intention to use travel 
demand predictions in macroscopic models.  
 
In the United Kingdom, automatic incident detection systems are being integrated into 
adaptive traffic signal systems in urban areas (e.g. Ash 1997, Bowers et al. 1996). In the 
Netherlands, authorities like to include incident detection and event predictions into the 
management system of Dutch motorways (Taale et al. 2004). We suggest that our 
detection algorithm might be included into traffic management systems of Dutch cities.  
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