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1. INTRODUCTION 

The problem of multi-carrier, freight train scheduling for regular demand (i.e. demand 

units that are to be shipped at regular intervals of time) within a corridor containing multiple 

service routes is addressed in this paper. Specifically, a train slot generation optimization model 

based on concepts of multicommodity network flows is developed for determining the optimal 

multi-carrier, multi-line train timetable and an exact column generation technique is proposed for 

its solution. The train slot generation model seeks to minimize operational costs and delays in 

delivery from scheduled arrival times (referred to herein as delay). Carriers are assumed to share 

the track capacity within the corridor. 

Solutions to the train slot generation model are tested in a mesoscopic simulation 

platform (Mahmassani, et al., 2006). Feedback in terms of delay from the simulation is used by 

the train slot generation model to make further improvements to the timetable. Given an initial 

timetable from the train slot generation model and the origin-destination (O-D) demand table for 

shipping within and across the region, a mode choice model is employed that estimates the 

amount of demand (i.e. number of containers or railcars) that will use the corridor. The 

simulation platform simulates the operations of the corridor for the given timetable and demand 

levels, allowing estimation of delays at terminals, classification yards and border crossings. The 

estimated delay is fed back to the train slot generation model and a new train timetable is 

obtained. This process is repeated until termination criteria are met. 

Related freight train scheduling works from the literature are briefly reviewed in section 

2. The assumptions made in developing the train slot generation model and relevant solution 

techniques are provided in section 3. The train scheduling problem is formulated as an integral 

multicommodity network flow problem, referred to herein as the train slot generation model, in 

section 4. A method for generating feasible input for the model is proposed in section 5. An 

integer programming solution technique based on the concepts of column generation for solving 
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the problem is proposed in section 6.  A case study based on a corridor in Europe is described in 

section 7. 

 
2. LITERATURE REVIEW 

The majority of the rail scheduling literature has focused on modeling single-line 

operations (for example, Szpigel, 1973; Assad, 1978; Petersen et al, 1986; Kraft, 1987; Carey 

and Lockwood, 1995; Brannlund et al., 1997; Higgins et al, 1996; Nou, 1997; Cordeau et al., 

1998). Single-line operations may involve single or double tracks between two yards and 

junctions or other significant points. Thus, the network over which the trains are assumed to 

operate is very simple (i.e. forming a directed, simple and elementary path). Few works address 

problems with multi-line operations (for example, Jovanvic and Harker, 1991; Odijk, 1996; 

Kwon et al., 1998; Newman and Yano 2000). Odijk (1996) and Jovanvic and Harker (1991) 

focused on modifying existing schedules to increase reliability. Kwon et al. (1998) proposed a 

combined routing and scheduling model to minimize the total delay. They tested their solution 

approach for their model in a T-shape network. Newman and Yano (2000) proposed a model in 

which on-time delivery is required to minimize the operating costs.  

None of the existing works in the literature considers the objectives of both the shipper 

and the carrier. Nor does any of these works consider multiple carriers or elasticity in demand. 

The multi-line, multi-carrier, multi-objective freight train scheduling problem is addressed herein. 

The solution approach is embedded in an iterative framework where the demand is re-estimated 

in light of the train schedule (and resulting estimates of level-of-service) that results from 

solution of this freight train scheduling problem. The scheduling problem is resolved in response 

to changes in demand estimates and the procedure repeats until termination criteria are met. Thus, 

this framework allows solution of the freight train scheduling problem with elastic demand. 

 
3. PROBLEM ASSUMPTION 

Important assumptions have been made in developing the train slot generation model, 

simulation platform (developed externally: Mahmassani et al., 2006), and relevant solution 

techniques. Such assumptions are necessary where relevant data is unavailable or to create 

mathematically tractable problem formulations. These assumptions involve the definition of a 

train slot with reference to time; prioritization of passenger over freight traffic within the corridor; 

availability of an O-D demand table; predetermined classification and train make-up policies; 
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delay estimates at the terminals, classification yards or border crossings; and carrier preferences 

for the O-D pairs. The problem of empty car distribution is not considered in this work. 

 
4. TRAIN SLOT GENERATION MODEL FORMULATION 

A formulation of the train slot generation model as an integral multicommodity network 

flow problem with block-angular structure required for column generation is proposed in this 

section. The formulation relies on a train slot representation of the track capacity of each route, 

where a train slot is defined as the use of a route from shipment origin to shipment destination 

during a given period of time. The formulation is a path-based one in which each column is a 

binary variable that represents whether or not a time slot t of route r will be operated by carrier c. 

 
Notations 

:c
rtx  binary variable that indicates whether or not the train slot t  of route r  is operated 

by carrier c . 

:c
rtδ  shipment delay (penalty cost) on train slot t  of route r  operated by carrier c.  

:c
rtθ  train operational cost on train slot t  of route r  operated by carrier c. 

:rα  number of train slots needed to be operated to complete shipments on route r. 

:c
kβ  number of train slots between a O-D pair (k) that a carrier c would like to operate on. 

:rcT  set of train slots of route r operated by carrier c. 

:C  set of carriers. 

:K  set of origin and destination (O-D) pairs.  

:kcR  set of routes of a O-D pair k operated by carrier c. 

Model Formulation 
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{ }1,0∈c
rtx  , KkRrTtCc kc ∈∀∈∀∈∀∈∀                        (4) 

The objective given in equation (1) seeks to minimize the total delay incurred along the 

corridor and total operational costs required to complete the shipments within the corridor. The 

decision-maker’s preferences with respect to delay and cost minimization can be reflected by 

including appropriate weights on the delay and cost components of the objective function. This 

formulation assumes that the decision-maker’s preference function can be represented through an 

additive function of delay and cost. Constraints (2) ensure that the total number of train slots 

available on a route is equivalent to the number of train slots, rα , that may be operated by the 

carriers to complete the shipments required for the route. Constraints (3) ensure that for a 

specific O-D pair over all routes, the number of train slots operated by any specific carrier does 

not exceed the number of train slots, c
kβ , available to that carrier. Binary integral requirements of 

the decision variables are given in constraints (4).  

 
5. PREPROCESSING METHOD TO GENERATE THE MODEL INPUT 

A preprocessing method is proposed to generate a set of potential feasible train slots for 

multiple carriers that can be used as an input for the train slot generation model. Given the O-D 

demand table and a set of potential externally defined routes that comprise the service corridor, a 

set of train slots that repeat on a weekly basis are assigned to carriers based on carrier 

preferences through the use of this preprocessing method. The resulting set of train slots must not, 

if operated concurrently, create conflicts and only one carrier can operate a particular route in a 

particular train slot. It is assumed that any preferences for operating between an O-D pair are 

presented by the carriers prior to running this preprocessing method. Thus, for each O-D pair, 

train slots can be randomly assigned to carriers that are interested in operating such slots. 

Many different combinations of train slots and train slot assignments to carriers can be 

generated through the use of this method. The resulting set of potential feasible train slots and 

assignments provide necessary input to the column generation technique proposed for 

determining the optimal train timetable that is described next. The technique can be repeated on 

different initial sets of potential feasible train slots and the best solution from these runs can be 

employed. 

 
6. SOLUTION TECHNIQUE FOR TRAIN SLOT GENERATION MODEL 

Algorithm Overview 
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In this work, column generation is employed to solve exactly a binary integral CMCNP 

representation of the multi-line, multi-carrier freight train scheduling problem. Column 

generation has been successfully applied to solve many large-scale optimization problems in, for 

example, vehicle routing (Desrosiers et al., 1984), air crew scheduling (Lavoie et al., 1988), and 

production scheduling for multiple items in a single machine (discrete lotsizing and scheduling) 

(Cattrysse et al., 1993). Column generation is a price-directive method in which tolls (or prices) 

are placed on the complicating bundle capacity constraints. The procedure takes advantage of a 

block-angular structure of the problem formulation in which r independent constraints exist (i.e. 

the demand constraints) and joint constraints (i.e. the bundle constraints) link the commodities. 

This structure makes it possible to decompose the problem into r easier subproblems.  

At each iteration of the column generation approach, a master problem is formulated 

including only a subset of the columns (i.e. variables) of the original formulation. This smaller 

program is solved to optimality by, for example, the simplex method. The key idea of column 

generation is never to explicitly list all of the columns given in the original problem formulation, 

but rather to generate them only “as needed.” The algorithm determines whether the solution is 

optimal for the original program or if additional columns must be added to improve the solution. 

A subproblem of each commodity is used to generate a new column for the master problem and 

to assess optimality of the solution resulting from each iteration. The column with the most 

negative reduced cost in each subproblem will be added to the restricted master program and the 

process is repeated.  

A brief overview of a generic column generation procedure is provided next. See, for 

example, Ahuja et al. (1993) or Hu (1963) for additional background. Italicized text in bold will 

be discussed in detail in following subsections.  

Generic Column Generation Procedure 

Step 1. Solve the master problem. 

Step 2. Use the dual variable values resulting from solution of the master problem to update the 

cost coefficients of the subproblem associated with each commodity. 

Step 3. Solve each single commodity subproblem. Identify the column (variable) in each 

subproblem with the most negative reduced cost based on the subproblem solution and 

add a new column to the master problem for each such subproblem. Return to step 1 if a 

new column is identified for inclusion. Otherwise, if no column in any subproblem has a 
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negative reduced cost, the procedure is terminated. The optimal solution has been 

obtained. 

master problem 

The goal of the master problem is to obtain the value of the dual variables so that the 

reduced cost for each train slot can be calculated for the subproblems. Since the train slot 

generation formulation has a block-angular structure, this formulation associated with a smaller 

set of variables than would be required otherwise can be treated as the master problem 

subproblem 

The goal of the subproblem is to find the column (train slot) with the minimum reduced 

cost to be added to the master problem. If the minimum reduced cost is nonnegative, then we can 

terminate the column generation procedure and the problem is solved to optimality. Let rσ  

denote the dual variable corresponding to each route r in constraints (2) and c
kw  denote the dual 

variable corresponding to O-D pair k operated by carrier c in constraints (3). Thus, the reduced 

cost, c
rtλ  , of the column corresponding to the master problem is given by (5). The value of the 

reduced cost of each column, c
trλ  can be treated as the benefit (i.e. reducing the train operational 

and penalty costs) obtained by carrier c using a train slot t of route r. 
rc

k
c
rt

c
rt

c
rt w σθδλ −++=   KkRrTtCc kcrc ∈∀∈∀∈∀∈∀   ,  ,  ,          (5) 

 
7. CASE STUDY 

The solution technique proposed in this work is applied on a multi-national rail network 

that bridges the Nordic European region with the south and southeastern European regions via 

central Europe (known as the REORIENT corridor). Real-world data concerning the network 

attributes are employed.  

The multi-carrier weekly based train timetable is intended for use in making customer 

commitments. The train timetable includes carrier assignment to time slots and departure and 

arrival times at terminals, stations, and classification yards. The delay of each shipment is 

calculated from the difference between the shipment’s arrival time resulting from implementing 

the timetable and the shipper’s preferred arrival time. The track capacity utilization within the 

corridor is analyzed by track segment and day of week. It is hoped that by using this train 

timetable within the corridor, new markets will open and trade will increase along this corridor, 

fostering economic growth in the region. 
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