
A large neighborhood search algorithm for the vehicle
routing problem with time windows

Guy Desaulniers†, Eric Prescott-Gagnon†, and Louis-Martin Rousseau‡

Department of mathematics and industrial engineering
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Given a fleet of vehicles assigned to a single depot, the vehicle routing problem with time

windows (vrptw) consists of determining a set of feasible routes to deliver goods to a set

of customers while minimizing, first, the number of vehicles used and, second, total mileage.

Each customer must be visited exactly once by a vehicle within a prescribed time interval. A

route starts from the depot and visits in order a sequence of customers before returning to the

depot. It is feasible if the total amount of goods delivered to the visited customers does not

exceed the vehicle capacity and if it respects the time window of each visited customer. The

cost of a route is given by the sum of the traveling costs between the consecutive locations

visited along the route.

On the one hand, several exact approaches for the vrptw have been developed in the past

fifteen years. Among them, branch-and-price approaches (Desrochers et al., 1992, Kohl et

al., 1999, Irnich and Villeneuve, 2003, Feillet et al., 2004, Chabrier, 2006, Jepsen et al., 2006,

Desaulniers et al., 2006) have produced the best results, mostly because of the quality of the

lower bounds yielded by the column generation method. On the other hand, a very large

number of heuristic approaches have also been proposed (see the survey papers of Bräysy and

Gendreau, 2005a,b), including a wide variety of metaheuristics such as tabu search (Cordeau

et al., 2001), evolutionary and genetic algorithms (Berger et al., 2003), large neighborhood

search (Shaw, 1998), variable neighborhood search (Rousseau et al., 2002, Bräysy, 2003),

and multi-phase approaches (Homberger and Gehring, 2005). However, to our knowledge, no

heuristic approaches taking advantage of the power of branch-and-price have been proposed

in the literature.

In this paper, we present such an approach, namely, a large neighborhood search algorithm
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Algorithm 1 Large neighborhood search for the vrptw

1: Build an initial solution s of value z(s)
2: s

∗ ← s, z
∗ ← z(s)

3: repeat

4: Choose a neighborhood definition strategy
5: Apply this strategy for defining the neighborhood to explore
6: Explore this neighborhood using a branch-and-price heuristic
7: Update the current solution s

8: if z(s) < z
∗ then

9: s
∗ ← s, z

∗ ← z(s)
10: until at least one stopping criterion is met

that relies on a heuristic branch-and-price method for neighborhood exploration. To ensure

diversification during the search, this approach uses different procedures for defining the

neighborhood to explore at each iteration. The framework of this approach is presented

in Section 1, the neighborhood definition procedures are exposed in Section 2, and the

branch-and-price heuristic is described in Section 3. Finally, in Section 4, we discuss the

computational experiments conducted.

1 Large neighborhood search framework

A large neighborhood search algorithm is an iterative process that destroys at each iteration a

part of the current solution using a chosen neighborhood definition procedure and reoptimizes

it in hope of finding a better solution. The pseudo-code of the proposed algorithm is given

in Algorithm 1. In Step 1, an initial solution is built using a very fast greedy heuristic. In

Step 4, a procedure used to define the neighborhood to explore at the current iteration is

randomly chosen as in Ropke and Pisinger (2004) according to weights that assign a high

probability of being selected to the most efficient procedures. A neighborhood is defined

by a subset of customers that are disconnected from their current routes. The resulting

reoptimization problem thus corresponds to the original vrptw where parts of the routes

in the current solution are fixed. This restricted vrptw is solved in Step 6 using a branch-

and-price heuristic. The iterative process is stopped in Step 10 when a maximum number of

iterations is reached or when a time limit is exceeded.
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2 Neighborhood definition procedures

Three different procedures can be used to define the neighborhood to explore at each iter-

ation. Each procedure stops when a given number of customers is selected. Starting with

an initial customer selected at random, the first procedure (similar to the one proposed by

Shaw, 1998) selects at each iteration an additional customer based on a measure of spatio-

temporal proximity from the current set of selected customers. The second procedure was

introduced in Rousseau et al. (2002). It starts by choosing the customer yielding the largest

detour (supplementary distance traveled to cover a customer along its route) and a few of

its preceding and succeeding customers on its route. Then, at each iteration, the customer

closest (according again to a proximity measure) to the set of already selected customers is

chosen and a few preceding and succeeding customers. Compared to the previous procedure,

this one ensures that more than isolated customers are disconnected from their routes. Fi-

nally, a third procedure simply selects all customers that are currently visited within a given

time slice. This procedure corresponds to the first one except that the spatial dimension is

omitted from the proximity measure.

To emphasize the search of solutions with a minimal number of vehicles, we also use a

strategy that imposes an upper bound on the number of vehicles that can be used at each

iteration of the large neighborhood search algorithm. To ensure the respect of this bound,

it is possible (bearing a large penalty) to omit visiting some customers.

Finally, to avoid long computational times at each iteration, the time window of each selected

customer is reduced according to its time of visit in the current solution and the time windows

of the other selected customers.

3 Column generation heuristic

At each iteration of the large neighborhood search, the vrptw restricted to the selected

neighborhood can be modeled as a set partitioning problem. We propose to solve this

problem using a heuristic branch-and-price approach, that is, a heuristic column generation

approach embedded in a heuristic branch-and-cut search tree, where the column generation

subproblem is an espprc defined on a restricted network which guarantees that the fixed

parts of the routes in the current solution remain untouched. This branch-and-price heuristic

3



is an adaptation of the exact approach proposed by Desaulniers et al. (2006) who succeeded

to solve to optimality 5 of the remaining 10 open Solomon’s (1987) benchmark instances with

100 customers. In their approach, a sequence of column generators with varying solution

times is used at each iteration to generate negative reduced cost columns. At each iteration,

the first generator invoked is a tabu search algorithm that rapidly finds negative reduced

cost columns in most iterations. When it fails to do so, an attempt is made to generate such

columns using a dynamic programming algorithm with an aggressive dominance procedure

and/or applied to a network of reduced size. If failure occurs again, then the same dynamic

programming algorithm, this time with an exact dominance procedure and applied to the

full network, is called upon to ensure the optimality of the solution process. Note that this

last option should be avoided as much as possible because it is very time consuming. Hence,

in the heuristic version of the algorithm, we simply omit it, yielding a premature halt of the

column generation process at each node of the branch-and-bound tree. Furthermore, this

process is also stopped when an insufficient decrease of the objective function is observed

over a predefined number of iterations.

The approach of Desaulniers et al. (2006) also includes the generation of cutting planes,

namely, the subset row inequalities for three customers introduced in Jepsen et al. (2006).

A very limited number of these cuts are added in the branch-and-price heuristic. Finally, as

opposed to Desaulniers et al. (2006) who applied branching decisions on arc flow variables,

we impose decisions on the path flow variables and explore the search tree using a depth-first

strategy without backtracking.

4 Computational experiments

To evaluate the efficiency of the proposed methodology, we will perform computational tests

on the well-known Solomon’s (1987) benchmark problems which involve 100 customers, and

also on the Homberger’s instances which contain up to 1000 customers. These tests are in

progress and their results will be presented at the conference.
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