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Abstract

In the steady state model, costs at user equilibrium are unique and the system con-
verges to user equilibrium. In the dynamic model, there are various traffic perfor-
mance models. Our focus here is on the bottleneck queueing model; although the
results can be applied to any dynamic model satisfying the stated properties. The
bottleneck queueing model has deterministic queueing at link exits when flow ex-
ceeds capacity. Within-day time is considered as continuous, and flow rates into
routes connecting origin-destination (OD) pairs are represented by functions of time.
The day-to-day route-swapping is modelled by a continuous dynamical system that
is derived naturally from the dynamic user equilibrium condition. Demand for travel
between each OD pair in the network is considered to be rigid, in the sense that it is
time-varying within-day but unchanging from day to day.

Existence of equilibrium is guaranteed provided that the route cost vector is a contin-
uous function of the route flow vector, which holds in the bottleneck model. Costs at
dynamic user equilibrium are unique in the single OD pair case provided that certain
(natural) non-decreasing properties are satisfied; the bottleneck model satisfies these
properties. It seems likely that this could be extended to the single origin case and the
single destination case. The dynamical system simulating a swap to less costly routes
converges to equilibrium if the route cost is either monotone or decay-monotone; es-
sentially this is true in the single bottleneck per route case, but not in the multiple
bottlenecks per route case. In the multiple origins and multiple destinations case,
dynamic user equilibrium may not be unique; there may be separate equilibria each
having their own respective domains of attraction. In this case any optimisation
strategy would have to guide the system towards a more favourable equilibrium.

1. Introduction

There are a number of ways to model the dynamic flow of traffic in networks. These
include the outflow model that was proposed by Merchant and Nemhauser [1978],
which considers the outflow from a link to be entirely dependent upon the amount
of traffic on the link. Another approach proposed by Lighthill and Whitham [1955]
and Richards [1956] is to model flow as one-dimensional compressible fluid, which
is approximated in discrete space and time by the cell transmission model (Da-
ganzo [1994]). The model that we will adopt here is a deterministic queueing model.
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This type of model was considered by Smith and Ghali [1990a,1990b] and Bernstein et
al. [1993], and later expanded upon by Smith and Wisten [1995] and Mounce [2006].
In such a model, queueing occurs in a first in first out (FIFO) manner vertically at
the exit of links when flow exceeds capacity. It is possible to model queues forming
backwards and potentially spilling back onto other links (see e.g. Adamo et. al. [1999]
and Kuwahara and Akamatsu [2001]), which is a more realistic model of road traffic,
but also more complex.

Traffic assignment models must take account of the behaviour of travellers in the
network. The system optimal problem seeks to minimise the total cost of all travellers
throughout the network. A model for approximately solving the dynamic system
optimal problem is given by Ghali and Smith [1995]. In this paper, we assume that
travellers make routing decisions aimed at reducing their own travel costs. In the
steady state case, this is quite straightforward to formulate (see e.g. Wardrop [1952])
but in the dynamic model there are different interpretations. In the instantaneous
cost path problem, travellers attempt to minimise the instantaneous cost (the sum of
link costs along the route evaluated at the current time) to their destination. They
may later revise their route if a new path becomes less costly (instantaneously). The
model we adopt for route choice is based on dynamical user equilibrium, where more
costly routes are unused for all within-day time. Perceived cost is the cost actually
experienced by a traveller traversing the route, and a traveller cannot change their
route once they have left their origin. They may, however, change their route for
tomorrow if there is one available that was today less costly.

2. The steady state model

In the steady state model, the cost to traverse each link ci(x) is a real-valued function
of the link flow xi (also real-valued). Link flows are found by summing route flows,
denoted Xr, over all of the routes traversing that link, i.e.

xi =
∑

r:i∈r

Xr

where i ∈ r means that route r traverses link i. Route costs, denoted Cr(X), are
found by summing link costs, i.e.

Cr(X) =
∑

i:i∈r

ci(x)

If all link cost functions are non-decreasing functions of link flow, then the route
cost vector is a non-decreasing function of the route flow vector (this will be defined
precisely in Section 4). Minty’s Lemma then tells us that the set of equilibria is convex.
Mounce and Smith [2007] show that costs at user equilibrium are unique in this case.
If each link cost is an increasing function of link flow, then the equilibrium link flows
are unique. If each link cost is a non-decreasing function of link flow, then the costs at
equilibrium are unique. Given any starting route flow vector, the dynamical system
modeling a swap to less costly routes converges to the set of equilibria (Smith [1984]).
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3. The dynamic model

The traffic network is considered to be a directed graph where traffic flows along
acyclic directed paths, called routes, connecting origins to destinations. Within-day
time is considered to be continuous and varying within the interval [0,1]. Traffic flow
is considered to be a continuous variable and the flow rate into route r, denoted Xr,
is a real-valued function of within-day time t in [0, 1] - this function may or may
not be continuous, but it will be a non-negative, measurable and essentially bounded
function of time t. The null sets are quotiented out, leaving equivalence classes of
functions equal almost everywhere (unequal only on a null set). This means that
each route flow function belongs to the space L∞[0, 1]. If there are N routes in the
network, then these route flow functions combine to give the route flow vector X, i.e.
X = (X1, X2, . . . , XN), which is in the space ⊕N

i=1L
∞[0, 1].

The demand for travel between OD pair k, denoted by ρk, is supposed rigid, i.e. it
is a fixed element of L∞[0, 1] for each k. The route flow vector X belongs to the
feasible set D, consisting of all those vectors in ⊕N

i=1L
∞[0, 1] that have non-negative

components and also meet the given rigid demand for travel between each OD pair.
Hence, if Rk to be the set of all routes joining OD pair k,

D = {X ∈ ⊕N
i=1L

∞[0, 1] : Xr ≥ 0 ∀ r &
∑

r∈Rk

Xr = ρk}.

Given any link inflow function xi, the cost to traverse link i if entered at time t is
the sum of a constant (congestion-free) travel time ci, a constant (monetary) price
pi (that will be converted into a cost in time units) and a bottleneck delay dx

i (t)
(depending on the whole link flow function). Let si represent the capacity flow rate
at the exit of link i. When traffic flow exceeds this capacity, a queue starts to form at
the exit of the link. The bottleneck is said to be congested when the queue (and hence
the delay) is positive. The bottleneck delay at link i is connected to the bottleneck
capacity si and the bottleneck inflow xi by the following integral equation:

∫ t

t0

xi(u)du =

∫ t+dx

i
(t)

t0

si(u)du. (1)

for all t in some congested period [t0, t1] (i.e. the bottleneck becomes congested
immediately after time t0 and remains congested until time t1).

Bottleneck queueing is first-in first-out (Mounce [2007]), i.e. if traveller A enters the
link before traveller B, then traveller A must also exit the link before traveller B. The
cost to traverse a route is the sum of the link costs at the time each link is reached,
i.e.

CX
r (t) =

∑

i:i∈r

cx
i (A

X
ir(t))

where AX
ir(t) is the time that link i is reached if route r is entered at time t and the

route flow vector is X. The route cost vector is defined by C(X) = (CX

1 , CX

2 , . . . , CX

N ),
which is in ⊕N

i=1C[0, 1] (Mounce [2006]). In order to consider continuity of the route
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cost vector with respect to the route flow vector, it is necessary to introduce appro-
priate measures of distance on the set of feasible route flow vectors and on the set
of feasible route cost vectors. The norm on the set of feasible route flow vectors is
determined by the supremum norm of the cumulative route flows, so that the distance
between two feasible route flow vectors X and Y is given by

d(X,Y) = sup
r

sup
t∈[0,1]

∣

∣

∣

∣

∫ t

0

(Xr(u) − Yr(u))du

∣

∣

∣

∣

.

The norm on the set of route costs is the supremum norm, i.e.

‖C(X)‖ = sup
r

sup
t∈[0,1]

∣

∣CX
r (t)

∣

∣ .

The model adopted for route choice is based on dynamical user equilibrium, where
more costly routes are unused for all within-day time (an extension of Wardrop’s [1952]
definition of user equilibrium to the dynamic model). A traveller cannot change their
route once they have left their origin, but they may change their route for tomorrow
if there is one available that was today less costly. The dynamical system evolves
continuously (in this case) over day-to-day time with each element being a within-
day flow pattern. Given a route-flow vector X, define the day-to-day route swap
vector φ(X), for each t ∈ [0, 1], by

φ(X)(t) =
∑

r,s:r∼s

Xr(t)[C
X
r (t) − CX

s (t)]+δrs (2)

where r ∼ s if r and s connect the same OD pair, x+ = max{0, x} and δrs is the swap
from route r to route s vector (i.e. it is an N -vector with −1 in the rth place and
1 in the sth place and zeros elsewhere). Then let τ represent day-to-day time, and
consider the dynamical system

dX(τ)

dτ
= φ(X)(τ),

X(0) = X0, (3)

for τ ≥ 0 and where X0 ∈ D. A state X∗ is now termed an equilibrium of (3) if and
only if φ(X∗) = 0, i.e. the dynamical system remains in the state X∗ for all future
time if and when it is reached. Naturally, dynamical user equilibrium is such that for
all within-day time and all OD pairs, more costly routes are not used, and therefore
there is no incentive to change route, i.e. for any routes r and s connecting the same
OD pair, CX

r (t) > CX
s (t) =⇒ Xr(t) = 0 for all within-day time t. Clearly, dynamical

user-equilibrium coincides with an equilibrium of the dynamical system (3). If, for
each choice of initial state X0 ∈ D, there exists an X∗ such that X(τ) → X∗ as
τ → ∞, the dynamical system is said to be globally convergent.
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4. Monotonicity

In the steady state model, the link cost ci(xi) is a non-decreasing function of the link
flow xi if and only if ci(xi) ≥ ci(yi) whenever xi > yi, or equivalently

(ci(xi) − ci(yi))(xi − yi) ≥ 0 (4)

for all link flows xi and yi. Link cost is an increasing function of link flow if strict
positivity holds in (4) whenever xi 6= yi. Generalising this to vectors, the link cost
vector c(x) is a non-decreasing function of the link flow vector x if and only if (where
the dot represents the vector dot product)

(c(x) − c(y)) � (x − y) ≥ 0 (5)

for all link flow vectors x and y.

In the dynamic case, the route cost vector is an operator, i.e. the route cost vector
function depends upon the whole route flow vector function. A natural generalisation
of (4) in the dynamic case is to say that:

Definition 1. The bottleneck delay dx
i is a monotone function of xi if and only

if
∫ 1

0

(dx
i (t) − d

y
i (t))(xi(t) − yi(t))dt ≥ 0

for all link flows xi and yi.

Only the bottleneck delay varies with the link flow, so that link cost is a monotone
function of link flow if and only the link delay is a monotone function of link flow. A
natural generalisation of (5) in the dynamic case is to say that:

Definition 2. The route cost vector C(X) is a monotone function of the route
flow vector X if and only if

∑

r

∫ 1

0

(CX
r (t) − CY

r (t))(Xr(t) − Yr(t))dt ≥ 0

for all route flow vectors X and Y.

In the single bottleneck per route case each route passes through at most one ac-
tive bottleneck (i.e. a link that is congested for some within-day time). Smith and
Ghali [1990] showed that in the single bottleneck per route case, route cost is a mono-
tone function of route flow if link cost is a monotone function of link flow for every
link. This is trivially true for non-bottleneck links. Mounce [2006] showed that the
delay function is a monotone function of the flow into the bottleneck if and only if
the bottleneck capacity is a non-decreasing function of within-day time. Therefore, in
the single bottleneck per route case with non-decreasing capacities at each bottleneck,
the route cost vector is a monotone function of the route flow vector. If route cost is
monotone, Minty’s Lemma can be used to show that the set of equilibria is convex
(Mounce [2007]). However, in the multiple bottleneck per route case, route cost is
not generally monotone (Mounce and Smith [2007]). It is also possible to define the
route cost vector as a non-decreasing function of the route flow vector in terms of a
partial order (Mounce and Smith [2007]).
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5. Decay-monotonicity

Link delay fails to be a monotone function of link flow if the bottleneck capacity is
not a nondecreasing function of within-day time. However, even in this case, when
cumulative link flow increases on an interval, link delay does increase; at least on some
future time interval. This notion is captured by the property of decay-monotonicity
defined below:

Definition 3. Bottleneck delay dx
i is a decay-monotone function of link flow xi

if and only if there exists a constant k ∈ R such that
∫ 1

0

(dx
i (t) − d

y
i (t))(xi(t) − yi(t))e

−ktdt ≥ 0.

for all link flow functions xi and yi.

The bottleneck delay is a decay-monotone function of the bottleneck link flow pro-
videdthat the bottleneck capacity is continuously differentiable (Mounce [2008]). In
practice this means that the bottleneck capacity is in general decay-monotone since
any piecewise continuous function can be approximated arbitrarily closely by a con-
tinuously differentiable function.

Definition 4. The route cost vector is a decay-monotone function of the route
flow vector if and only if there exists a constant k ∈ R such that

∑

r

∫ 1

0

(CX
r (t) − CY

r (t))(Xr(t) − Yr(t))e
−ktdt ≥ 0 (6)

for all route flow vectors X and Y.

If each route passes through at most one bottleneck, with the travel time to the
bottleneck constant for all routes passing through it, then the route cost vector is a
decay-monotone function of the route flow vector if and only if link cost is a decay-
monotone function of link flow at every link. This is a restricted version of the single
bottleneck per route case; and unlikely to be satisfied in practice. It remains to
be seen whether the decay-monotonicity property will prove of more use in tackling
convergence in dynamic traffic networks in a more general context.

6. Existence of equilibrium

Smith and Wisten (1995) proved that existence of dynamic user equilibrium is guar-
anteed if the route cost vector is a continuous function of the route flow vector. This
was achieved by applying Schauder’s fixed point theorem to the map T defined by

T (X) = X + αφ(X)

(where α is a small constant) to give the existence of a fixed point of T ; and therefore
an equilibrium of the dynamical system (3).

Mounce [2006] proved that the link delay function (and hence the link cost function) is
a continuous function of link flow. Mounce [2007] proved that the route cost vector is a
continuous function of the link cost vector and that the link flow vector is a continuous
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function of the route flow vector; this second result was achieved by defining a function
of the link inflows and link outflows (which vary independently of each other) that
is Lipschitz continuous to which an Implicit Function Theorem was applied to prove
that link outflows are a continuous function of link inflows. Therefore the route cost
vector is a continuous function of the route flow vector (in the bottleneck model) and
existence of equilibrium is guaranteed by Smith and Wisten [1995].

7. Uniqueness of equilibrium

When route cost is monotone, the set of equilibria is convex (Mounce [2007]). So in
this case, we know that there cannot be two disconnected equilibria. However, in the
dynamic model, route cost is not in general monotone. Mounce and Smith [2007] use
a partial order to define the notions of increasing and non-decreasing as follows:

Definition 5. Link cost cx
i is a non-decreasing function of link flow xi if and

only if whenever
∫ t′

t
xi(u)du ≥

∫ t′

t
yi(u)du for all t, t′ ∈ [0, 1] with t ≤ t′, we have

cx
i (t) ≥ c

y
i (t) for all t ∈ [0, 1].

Costs at dynamic user equilibrium are then shown, using a proof by contradiction,
to be unique in the single OD pair case provided that link cost is a non-decreasing
function of link flow, link outflow is a non-decreasing function of link inflow, and
certain other natural non-decreasing properties are satisfied; the bottleneck model is
shown to satisfy these properties. In the bottleneck model, if costs are unique then
link flows are unique when there is congestion. Uniqueness of equilibria is also likely
in the single origin case and in the single destination case; although this has not
yet been shown. In networks with both multiple origins and multiple destinations,
dynamic user equilibrium may not in general be unique; there may be disconnected
equilibria.

8. Convergence to equilibrium

The dynamical system (3) is globally convergent to equilibrium if for each choice of
initial state X0 ∈ D, there exists an equilibrium vector X∗ such that X(τ) → X∗ as
τ → ∞, i.e. the system gets closer and closer to equilibrium as day-to-day time goes
by. A standard method of proving global convergence to equilibrium is to define a
Lyapunov function, as in the following theorem:

Theorem 1. The dynamical system (3) is globally convergent to equilibrium if
there is a continuous scalar-valued function V (�) defined throughout D such that:

(1) V (X) ≥ 0 for all X in D,
(2) V (X) = 0 if and only if X is an equilibrium, and

(3) dV (X)
dτ

< 0 for all non-equilibrium X.

A proof of this result in the steady state model is given in Smith [1984] and a proof
in the dynamic model is given in Mounce [2008]. When route cost is monotone, the
following theorem can be applied:
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Theorem 2. If the route cost vector is a monotone function of the route flow
vector, then

V (X) =
∑

r,s:r∼s

∫ 1

0

Xr(t)(C
X
r (t) − CX

s (t))2
+dt

is a Lyapunov function for the dynamical system (3) and therefore the dynamical
system (3) is globally convergent to equilibrium in this case.

Proof. See Mounce [2006]. �

Route cost is not in general monotone in the multiple bottlenecks per route case
(Mounce and Smith [2007]). Mounce [2001] gives a simple example network where
non-monotonicity is utilised in showing that the Lyapunov function in Theorem 2 is
not a Lyapunov function, in general, for the multiple bottlenecks per route case.

When route cost is decay-monotone, the following theorem applies:

Theorem 3. If the route cost vector is a decay-monotone function of the route
flow vector, then

V (X) =
∑

r,s:r∼s

∫ 1

0

Xr(t)(C
X
r (t) − CX

s (t))2
+e−ktdt

is a Lyapunov function for the dynamical system (3).

Proof. See Mounce [2008]. �

9. Conclusion

In the bottleneck model, existence of equilibrium is guaranteed since the route cost
vector is a continuous function of the route flow vector. When the route cost vector
is a monotone function of the route flow vector, it follows that the set of equilibria is
convex and the dynamical system simulating a swap to less costly routes converges
to equilibrium for all starting route flow vectors. Convergence also follows when the
route cost vector is a decay-monotone function of the route flow vector. In general,
route cost is monotone in the single bottleneck per route case but not in the multiple
bottlenecks per route case. However, costs at equilibrium are unique in the single OD
pair case; this result may well be extended to the single origin case and the single
destination case. However, in general, there may be separated equilibria.

The results in the paper require certain properties of the dynamic traffic assignment
model. The bottleneck model satisfies these properties; but these properties may well
be satisfied by other traffic assignment models.
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