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1. Introduction 

Nowadays competition between port container terminals, especially between 
geographically close ones, is rapidly increasing. How to improve the competitiveness of 
port container terminals is, therefore, an immediate challenge, with which port operators 
are confronted. In terms of port competitiveness, the makespan of a container vessel, which 
is the latest completion time among all handling tasks of the container vessel, is a critical 
success factor (Steenken et al., 2004). In reality, quay crane scheduling significantly affects 
the makespan of a container vessel since quay cranes are the interface between land side 
and water side in any port container terminals. Thus this paper aims to study quay crane 
scheduling problem to enhance the competitiveness of port container terminals. 
 
As illustrated in Figure 1, container vessels are typically divided longitudinally into holds 
that open to the deck through a hatch. Holds are about eight containers deep, and containers 
can also be stacked (about six high) on deck (Daganzo, 1989). The interference between 
quay cranes is that quay cranes cannot cross over each other because they are on the same 
track. In practice, only one quay crane can work on a hold at any time. Generally, a quay 
crane can move to another hold until it completes the current one. The average processing 
time of a hold is about two hours and the travel time of a quay crane between two holds is 
about one minute. The quay crane scheduling problem in port container terminals is to 
determine a handling sequence of holds for quay cranes assigned to a container vessel in 
fulfilling pre-specified objectives and satisfying various constraints. For instance, there are 
ten holds in a container vessel, and two quay cranes are allocated to handle the container 
vessel. Table 1 illustrates a feasible quay crane schedule for this instance. It shows the 
handling sequence of holds for every quay crane, the processing time of each hold and the 
time schedule for handling every hold. 
 

                                                 
∗Corresponding author 
Tel: +65 6516 2131 
Fax: +65 6779 1635 
E-mail: cveleedh@nus.edu.sg

 1

mailto:cveleedh@nus.edu.sg


 

 
Fig. 1. The illustration of the QCSNIP. 

 
Table 1 An illustration of a quay crane schedule 

Quay Crane 1 Quay Crane 2 
Operation 
Sequence 

Hold 
Number 

Processing 
Time of a 

Hold (min) 

Completion 
Time of the 
Quay Crane 

(min) 

Operation 
Sequence 

Hold 
Number 

Processing 
Time of a 

Hold (min) 

Completion 
Time of the 
Quay Crane 

(min) 
1 1 98 98 1 2 81 81 
2 3 119 217 2 5 178 259 
3 4 52 269 3 10 171 430 
4 9 101 370 4 8 162 592 
5 7 114 484     
6 6 81 565     

 
Daganzo (1989) studied the static and dynamic quay crane scheduling problems for 
multiple container vessels. Daganzo (1989) assumed that container vessels were to divide 
into holds, and only one quay crane could work on a hold at a time. Quay cranes could be 
moved freely and quickly from hold to hold, and container vessels could not depart until all 
their holds had been handled. The objective was to serve all these container vessels, while 
minimizing their aggregate cost of delay. Exact and approximate solution methods for quay 
crane scheduling were presented in Daganzo (1989). Furthermore, Peterkofsky and 
Daganzo (1990) developed a branch and bound solution method for the static quay crane 
scheduling problem. Nevertheless, both papers did not consider the interference between 
quay cranes, which means the quay cranes could unrealistically cross over each other.  
 
Lim et al. (2004) augmented the static quay crane scheduling problem for multiple 
container vessels by taking into account non-interference constraints. They assumed that 
containers from a given area on a container vessel were a job, and there was a profit value 
when a job was assigned to a quay crane. The objective was to find a crane-to-job matching 

Sea side 

The front of the 
container vessel 

The tail of the 
container vessel 

Quay 
crane ……

1 2 …… H 

Container vesselHold

H-1 

1 K

Land side 

K: The number of quay cranes 
H: The number of holds 
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which maximized the total profit. Dynamic programming algorithms, a probabilistic tabu 
search, and a squeaky wheel optimization heuristic were proposed in solving the problem. 
However, it is difficult to define a profit value associated with a crane-to-job assignment in 
practice, and hence this research cannot be applied in port container terminals easily. 
 
Kim and Park (2004) discussed the quay crane scheduling problem with non-interference 
constraints in which only single container vessel was considered. Kim and Park (2004) 
defined a task as an unloading or loading operation for a collection of adjacent slots on one 
single container vessel. The objective was to minimize the weighted sum of the makespan 
of the container vessel and the total completion time of all quay cranes. Kim and Park 
(2004) proposed a branch and bound method and a heuristic algorithm called ‘greedy 
randomized adaptive search procedure (GRASP)’ for the solution of the quay crane 
scheduling problem. Nonetheless, Kim and Park (2004) did not discuss computational 
complexity of the studied problem to justify why the heuristic algorithm was adopted. 
 
This paper focuses on the Quay Crane Scheduling with Non-Interference constraints 
Problem (QCSNIP) for any one single container vessel. This work was stimulated from 
Kim and Park (2004). Section 2 provides a more concise mathematical model than Kim and 
Park (2004) for the QCSNIP. Moreover, Kim and Park (2004) did not discuss 
computational complexity of the QCSNIP, but this paper discusses it and proves that the 
QCSNIP is NP-complete in Section 3. Because there exists no polynomial time algorithm 
for the exact solution of the QCSNIP, Section 4 proposes an approximation algorithm 
rather than GRASP of Kim and Park (2004) to obtain its near optimal solution and conducts 
worst case analysis of the approximation algorithm. The results of computational 
experiments in Section 5 show that the proposed approximation algorithm is effective and 
efficient in solving the QCSNIP. 
 
2. Model formulation 

This section proposes a mixed integer programming model for the QCSNIP. According to 
configuration of container vessels, one single container vessel is divided into holds. Figure 
1 illustrates the QCSNIP and shows that both quay cranes and holds are arranged in an 
increasing order from the front to the tail of the container vessel. The following 
assumptions are imposed in formulating the QCSNIP: 
1. Quay cranes are on the same track and thus cannot cross over each other. 
2. Only one quay crane can work on a hold at a time until it completes the hold. 
3. Compared with processing time of a hold by a quay crane, travel time of a quay crane 

between two holds is small and hence it is ignored. 
 
In order to formulate the QCSNIP, the following parameters and decision variables are 
introduced: 
Parameters: 

 the number of quay cranes; K
 the number of holds; H
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hp  the processing time of hold  by a quay crane (1h h H≤ ≤ ); 
 a sufficiently large positive constant number; M

Decision variables: 
 1, if hold  is handled by quay crane ; 0, otherwise (h k,h kX 1 ,  1h H k K≤ ≤ ≤ ≤ ); 
 1, if hold  finishes no later than hold h′h  starts; 0, otherwise (1 , );  h h H′≤ ≤,h hY ′

hC  the completion time of hold  (1h h H≤ ≤ ). 
 
The QCSNIP can be formulated as follows: 
Minimize: 

          (1) max  hh
C

Subject to: 
0   1h hC p h H− ≥ ∀ ≤ ≤         (2) 

,
1

1   1
K

h k
k

X h H
=

= ∀ ≤ ≤∑         (3) 

,( ) 0   1 ,  h h h h hC C p Y M h h H′ ′ ′ ′− − + > ∀ ≤ ≤       (4) 

,( ) (1 ) 0   1 ,  h h h h hC C p Y M h h H′ ′ ′ ′− − − − ≤ ∀ ≤ ≤      (5) 

, , , ,
1 1

( ) 1   1
K K

h h h h h k h l
k l

M Y Y kX lX h h′ ′ ′
= =

′+ ≥ − + ∀ ≤ < ≤∑ ∑ H     (6) 

, ,,  0 or 1   1 ,  ,  1h k h hX Y h h H′ ′= ∀ ≤ ≤ ∀ ≤ ≤k K      (7) 
The objective function (1) minimizes the makespan of handing one single container vessel, 
which is the latest completion time among all holds. Constraints (2) define the property of 
the decision variable . Constraints (3) ensure that every hold must be performed only by 
one quay crane. Constraints (4) and (5) define the properties of decision variables 

hC

,h hY ′ : 
Constraints (4) indicate that  if , 1h hY ′ = h hC C ph′ ′≤ − , which means  when hold  
finishes no later than hold  starts; Constraints (5) indicate that 

h, 1h hY ′ =

h′ , 0h hY ′ =  if , 
which means  when hold  finishes after hold 

h hC C p′ ′> − h

h′h, 0h hY ′ =  starts. Finally, the interference 
between quay cranes can be avoided by imposing Constraints (6). Suppose that holds  

d h′  are performed simultaneously a h
h

an nd h ′< , then this means t 0hat h h h hY Y′ ′+ , , =
 

ho hen k l+ ≤ . 

. Note 
that both quay cranes and holds are arranged in an increasing order from the front to the tail
of the container vessel. Thus, if quay crane k  handles hold h  and quay crane l  handles 

ld h′ , t 1 
 
3. Proof of NP-completeness 

This section discusses computational complexity of the QCSNIP to justify why heuristic 
algorithms are adopted. As well known, if a problem is proved to be NP-complete, then 
there exists no polynomial time algorithm for its exact solution. Hence heuristic algorithms 
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are needed to obtain near optimal solutions for the problem. In this section, the proposed 
QCSNIP is proved to be NP-complete. 
 
With respect to computational complexity, the decision version of a problem is as hard as 
the corresponding optimization version; the decision version of a problem has a natural and 
formal counterpart, which is a suitable object to be studied in a mathematically precise 
theory of computation. Consequently the theory of NP-completeness is designed to be 
applied only to the decision version (Garey and Johnson, 1979). The optimization version 
of the QCSNIP is presented in Section 2, and the decision version is defined as follows: 
Parameter: 
Z +  the set of positive integer. 
Instance: There are  holds and H K  quay cranes. The processing time of hold h  by a quay 
crane is  (1 ). There is a given number Ch H≤ ≤hp Z +∈ Z +∈ . 
Question: Is there a quay crane schedule for these  quay cranes handling these K H  holds 
such that no interference between quay cranes exists and the makespan of the quay crane 
schedule ? C≤
 
The decision version of the QCSNIP is proved to be NP-complete as the following four 
steps: 
Theorem 1: QCSNIP is NP-complete. 
Proof: 
Step 1: Showing that the QCSNIP is in NP. 
If a quay crane schedule for the QCSNIP is given, its feasibility can be checked in 
polynomial time. Checking whether the quay crane schedule satisfies the non-interference 
constraints can be done in  time. Checking whether the makespan of the quay crane 
schedule  can be done in  time. Therefore, the QCSNIP is in NP. 

2(O H )
C≤ ( )O H

 
Step 2: Selecting a known NP-complete problem. 
PARTITION is a known NP-complete problem (Garey and Johnson, 1979). The decision 
version of the PARTITION is defined as follows: 
Instance: There are 1 2{ , , , }HS s s s= ⋅⋅⋅ hs S∈ elements in a finite set . For each element H , 

and the sum of all elements 
h

h
s S

s D
∈

=∑ . hs Z +∈

Question: Can the set  be partitioned into two disjoint subsets  and  such that 
? 

S 1S 2S

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑
 
A numerical example of the PARTITION is provided as follows. There is a finite set 

 and the sum of all elements 806
h

h
s S

s D
∈

= =∑ . The answer {95,71,136,114,192,75,123}S =

 5



 

to Question is Yes because the set  can be partitioned into two disjoint subsets 
 and  such that 

S

1 2

/ 2 403
h h

h h
s S s S

s s D
∈ ∈

= = =∑ ∑1 {95,123,71,114}S = 2 {75,136,192}S = . 

 
Step 3: Constructing a transformation from the PARTITION to the QCSNIP. 
The PARTITION is transformed to the QCSNIP as follows. A QCSNIP instance 
corresponding to an arbitrary PARTITION instance has  quay cranes and K H K+  holds; 
the given number C  is set as ; the following Equations (8)-(10) indicate the processing 
time of each hold which means the processing time of Hold 1 and Hold 

D
 is set as 2H +

/ 2D , the processing time of Hold 2 to Hold 1H +  is set as  to 1s Hs  respectively, and the 
processing time of Hold  to Hold 3H + H K+  is set as D . Figure 2 illustrates this 
transformation. It shows  quay cranes, K H K+  holds and the processing time of each 
hold. 

1 2 / 2Hp p D+= =          (8) 

1    1h hp s h+ = ∀ ≤ ≤ H          (9) 
   3hp D H h H K= ∀ + ≤ ≤ +         (10) 

 

… … Processing time of each hold 

Hold number 1 2 3 … H H+1 H+2 H+3 H+4 … H+K 

2
D 1s 2s 1Hs − Hs

2
D D D D

1 2 3 4 … KQuay crane 

 
Fig. 2. The illustration of the transformation from the PARTITION to the QCSNIP. 

 
Then, it must be proved that the set  can be partitioned into two disjoint subsets  and 

 such that  if and only if all the 
S 1S

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑2S  holds can be completed by H K+

 quay cranes in  time without interference between quay cranes. K D
 
First, suppose that the set  can be partitioned into two disjoint subsets  and  such 
that . Then 

S 1S 2S

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑ K  quay cranes can be scheduled without interference as 

follows: Quay Crane 1 handles all the Holds h 1+ 1hs S∈, where  and then Hold 1; Quay 
Crane 2 handles Hold 1h+ 2hs S∈, and then all the Holds , where 2H + ; Quay Cranes 3  
to Quay Crane 3H + handle Hold  to Hold K H K+ , respectively. Obviously, there is no 
interference in this schedule and the latest completion time among all holds is . Hence, if 
the set  can be partitioned into two disjoint subsets  and  such that 

D
S 1S 2S

 6



 

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑ , all the  holds can be completed by H K+ K  quay cranes in  time 

without interference between quay cranes. 

D

 
 holds can be completed by Conversely, suppose all the H K+ K  quay cranes in  time 

without interference between quay cranes, then all the 
D

K  quay cranes are fully utilized as 
the sum of the processing time of all the holds is KD . Thus, the completion time of each 
quay crane must be . Furthermore, there is no interference in the above mentioned quay 
crane schedule. According to it, the sum of the processing time of all the holds except Hold 
1 handled by Quay Crane 1 must be 

D

/ 2D  and the sum of the processing time of all the 
holds except Hold / 2D handled by Quay Crane 2 must be 2H +  as well, which means 
that the set  can be partitioned into two disjoint subsets  and  such that 

. Hence, if all the 
S 1S 2S

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑  holds can be completed by H K+ K  quay cranes 

in  time without interference between quay cranes, the set  can be partitioned into two 
disjoint subsets  and  such that 

SD

1 2

/ 2
h h

h h
s S s S

s s D
∈ ∈

= =∑ ∑1S 2S . 

 
Step 4: Proving that the above mentioned transformation is a polynomial 
transformation. 
The above mentioned transformation can be done in (O H K )+  time. 
 
Therefore, , and the theorem is proved. PARTITION QCSNIP∝
 
4. An approximation algorithm 

As proved in the previous section, QCSNIP is NP-complete, and thus there exists no 
polynomial time algorithm for the exact solution of QCSNIP. This paper develops a 
problem oriented approximation algorithm to obtain near optimal solution which is 
elaborated as follows: 

 the average working time of a quay crane; AT
k  quay crane number (1 ); k K≤ ≤

1 2,h h  hold number ( ). 1 21 h h H≤ ≤ ≤
Step 0: Set . 1 21,  =1k h h= =

1

/
H

h
h

AT p
=

= ∑Step 1: Calculate K . 

Step 2: If , then and repeat Step 2; if , then go to Step 3. 
2

1

h

h
h h

p AT
=

≤∑
2

1

h

h
h h

p AT
=

>∑2 2 1h h= +
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2 2

1 1

1h h

h h
h h h h

p AT p AT
−

= =

− ≥ −∑ ∑Step 3: If , then assign Hold  to Hold 1h 2 1h −  to Quay Crane , 

set  and go to Step 4; if 

k

2 2

1 1

1h h

h h
h h h h

p AT p AT
−

= =

− < −∑ ∑1 2 ,  1h h k k= = + , then assign 

Hold  to Hold  to Quay Crane k , set 1h 2h 1 2 2 21,  1,  1h h h h k k= + = + = +  and go to 
Step 4. 

Step 4: If , then go to Step 2; if 1k K≤ − k K= , then assign Hold  to Hold 1h H  to Quay 
Crane  and go to End. K

 
Worst case of the proposed approximation algorithm is analyzed as follows: 

kc  the completion time of quay crane  (1k k K≤ ≤ ); 
HZ  the solution obtained by the approximation algorithm; 

Z ∗  the optimal solution to the QCSNIP. 
Theorem 2: . / 2HZ Z ∗ ≤
Proof:  

HZNote that = . Assume the completion time of Quay Crane l  is the latest and 

Hold i  to Hold i  are assigned to Quay Crane l , and thus 

max  kk
c

j

j

+

1 1...H
l i i i j iZ c p p p p+ + −= = + + + + +

i j i i i j i jp AT p p p p+ + − + ++ + + ≤ ≤ + + +

. According to the approximation algorithm, 

, and hence H
i jZ AT p +≤ +1 1 1 1... ...i ip p + − + . From 

the objective function (1) and Constraints (2), it is clear that max   1h hh
Z C p h H∗ = ≥ ∀ ≤ ≤ , 

and therefore 2H
i jZ AT p Z ∗
+≤ + ≤i jp Z ∗

+ ≤ AT Z ∗≤. Obviously , and thus . The theorem 
is proved. 
 
As shown in Figure 3, the error bound of 2 is tight for the proposed approximation 
algorithm in terms of the instance which has K  quay cranes and 2K  holds (assume ). 
The processing time of the leftmost 

3K >
 holds is all K 1K −  and the processing time of the 

rightmost K  holds is all 1. The optimal schedule is to assign two holds to each quay crane, 
one from the leftmost  holds and the other from the rightmost K K  holds. The optimal 
makespan is . The approximation algorithm is to assign Hold 1 to Hold K 1K − to Quay 
Crane 1 to Quay Crane  respectively and to assign Hold  to Hold 1K − K 2K  to Quay 
Crane . The makespan obtained by the approximation algorithm is K 2 1K − . Therefore, 

 as . / (2 1) /HZ Z K K∗ = − → 2 K →∞
 

1 11K-1K-1 K-1

1 … K K+1 … 2K Hold number 

Processing time of each hold 
 

Fig. 3. A tight instance for the approximation algorithm. 
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5. Computational experiments 

In order to evaluate the performance of the proposed approximation algorithm, the lower 
bound can be calculated firstly by relaxing the non-interference constrains. The 
mathematical model of the relaxed problem is formulated as follows: 
Minimize: 
max  kk

c           (11) 

Subject to: 

,
1

1   1
K

h k
k

X h H
=

= ∀ ≤ ≤∑         (12) 

,
1

   1
H

k h k h
h

c X p k
=

≥ ∀ ≤∑ K≤         (13) 

The objective function (11) minimizes the makespan of handing one single container vessel 
without considering interference between quay cranes. Constraints (12) ensure that every 
hold must be performed only by one quay crane. Constraints (13) define the property of the 
decision variable . Then, the mathematical model of the relaxed problem can be exactly 
solved by CPLEX (a commercial software for exactly solving integer programming). The 
objective function value of the optimal solution to the relaxed problem obtained from 
CPLEX is the lower bound to the original problem. 

kc

 
Twenty computational experiments are conducted to examine the performance of the 
proposed approximation algorithm that is coded in C++ and executed in a Pentium IV 
1.7GHz PC with 256MB RAM. The processing time of a hold is randomly generated from 
a uniform distribution of . As observed in Table 2, the gaps between solutions 
obtained from the proposed Approximation Algorithm (AA) and lower bounds are all small 
(for example the maximum gap among the twenty instances is 11.18%, the minimum gap is 
1.59%, and the average gap is 7.08%), and all the computational time of these twenty 
instances is within one second. Therefore, the proposed approximation algorithm is 
concluded to be effective and efficient in solving the proposed QCSNIP. 

(30,300)U
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Table 2 The results of computational experiments 
Experiment 

No 
Size 

(holds×cranes) 
Lower Bound AA Gap a (%) 

1 16×3 953 990 3.88  
2 16×4 754 766 1.59  
3 17×3 960 1044 8.75  
4 17×4 667 714 7.05  
5 18×3 964 1024 6.22  
6 18×4 723 795 9.96  
7 19×3 906 941 3.86  
8 19×4 861 933 8.36  
9 20×3 915 998 9.07  

10 20×4 686 727 5.98  
11 21×3 1134 1181 4.14  
12 21×4 850 937 10.24  
13 22×3 1453 1487 2.34  
14 22×4 1011 1116 10.39  
15 23×3 1312 1441 9.83  
16 23×4 984 1080 9.76  
17 24×3 1372 1476 7.58  
18 24×4 1216 1352 11.18  
19 25×3 1484 1532 3.23  
20 25×4 1113 1204 8.18  

a Gap = (solution obtained from the proposed AA - lower bound)×100/lower bound 
 
6. Conclusions 

The contributions of this paper to the literature are that it has provided a mixed integer 
programming model for the proposed QCSNIP, proved that the QCSNIP is NP-complete 
and proposed an approximation algorithm to obtain near optimal solutions for the QCSNIP. 
In addition, worst case of the proposed approximation algorithm has been analyzed and 
computational experiments have been performed to examine the proposed approximation 
algorithm. The results showed that the proposed approximation algorithm has been 
effective and efficient in solving the QCSNIP. 
 
In this paper, factors such as the travel time of a quay crane between two holds and the 
handling priority of every hold were not taken into account. The incorporation of these 
factors into the QCSNIP can be a topic for future research. 
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