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1 Introduction

For decades, blood rheology has been studied both theoretically and experimentally. In most
cases, blood has been modelled as a homogeneous fluid described by classical hydrodynamic
equations. An overview of recent numerical methods for modelling vascular flow on a large
scale can be found in Quarteroni (2002). We develop a framework for modelling vascular
blood flow using the vehicular traffic approach, and show the theoretical and computational
gains it yields. We compare this approach to the more complex and computationally intensive
Boltzmann-type equation models used by other blood rheology researchers (Dzwinel et al.,
2003, Sun and Munn, 2005, Mehrotra et al., 1985), and prove the potential for better leverage
of ultrasonography data. As a useful example, we investigate the red blood cells’ clustering
phenomena within the Payne-Whitham model.

We describe the flow of blood in a linear, although sufficiently wide, vessel. More precisely,
we consider the movement of numerous blood particles (e.g. red blood cells and white blood
cells), varying in size and shape, along such vessel. In a typical laminar flow, these particles
move along parallel lines following each other, although some mixing between them is also
allowed. There exist at least three approaches to the multi-lane vehicular traffic problem. The
first approach concerns microscopic and follow-the-leader approaches, modelling the actual
response of a single car to its predecessors. On the other hand, macroscopic (fluid dynam-
ics) approaches constitute a direct extension of the Payne-Whitham model for linear traffic
flow or, alternatively, otherwise employ classical hydrodynamics to traffic modelling. Kinetic
(Boltzmann-like) models present an intermediate step between the above two approaches, and
appears to be the most promising for our problem, although relatively complicated. The ki-
netic model description uses the distribution function in the system phase space rather than
a description of individual cars.
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We propose a kinetic framework for the blood rheology problem, which is inspired by vehicular
traffic models (Illner et al., 2002). In this framework, particles move along parallel lines
with their speed dependent on the density of the surrounding particles. Particles may also
switch between these lines, if the density conditions in the other line are more favorable (i.e.
density is lower). Their movement is then governed by Vlasov partial differential equation
(PDE). Vlasov-type kinetic models are capable of representing the various phases and phase
transitions observed in vehicular traffic flow by Kerner and Konhauser (1994), including free
flow, synchronized flow, synchronized equilibria, and congested flow. Our purpose is to show
that the same approach is extremely suitable for blood rheology, and is capable of reproducing
the phenomena observed in blood flow (Dzwinel et al., 2003). It is worth mentioning that
our traffic-inspired models, while significantly simplifying the problem treatment, seem to
outperform or be equivalent to most microscopic models proposed by Dzwinel et al. (2003),
Sun and Munn (2005), and others.

Our basic framework is as follows. Consider a linear blood vessel (e.g. artery) with obstacles
(cholesterol buildup) along its length (fig. 2). Using ultrasonography techniques, we can
measure the blood velocity v(x) as a function of position along the vessel. We consider a
stationary situation, which implies that the flow is constant along the vessel. Now, we make
the assumption that the blood flow is similar to the vehicular traffic continuous flow model.
More precisely, we assume that there exists an unambiguous “fundamental flow diagram” —
an explicit relationship between density and velocity of the flow — which itself depends on
certain physical parameters (for instance, the classical Whitham-Lighthill fundamental flow
diagram can be parameterized by the maximum throughput density ρmax).

If we apply our fundamental flow diagrams family, developed within our kinetic traffic flow
model, to the ultrasonographic measurements, we can deduce the diagram parameters as
functions of position along the vessel x. The parameters, in their turn, have direct dependence
on the vessel radius (in the classical Whitham-Lighthill diagram, ρmax may be a function of
radius R(x)). This procedure, therefore, allows us to deduce the R(x) vessel profile from the
velocity measurements, and detect the obstacles in the vessel in an automated fashion, which
is much more accurate than conventional observation techniques.

A more involved and even more accurate procedure is the following. We reject the assumption
of constant flow, but instead consider a time-dependent (due to cyclic heart pumping) flow in
the one-dimensional vessel using the Payne-Whitham model, equipped with the same funda-
mental flow diagram of the kinetic traffic model, and with a periodic source as a boundary
condition. In this case, we need to match the time-dependent velocity field to the results of the
Payne-Whitham simulation, and solve for the matching parameters (eventually, radius R(x)).

The problem we are concerned with may thus be divided into the following topics under
investigation (fig. 1).

A- Application of the Payne-Whitham single-lane traffic model to the arterial
blood flow, given the fundamental diagram. Given the fundamental flow dia-
grams family, developed within the kinetic traffic flow model, to the ultrasonographic
measurements, we address the problem of retrieving the vessel profile from the velocity
measurements, and detecting obstacles in the vessel.

B- Derivation of the fundamental flow diagram using the kinetic multi-lane traffic

Phuket Island, Thailand, June 10-15, 2007



TRISTAN VI: The Sixth Triennial Symposium on Transportation Analysis 3

model. In this problem, we deduce the fundamental flow diagram for a predefined set
of regime parameters by obtaining the distribution function fi as a solution to Vlasov
PDE.

C- Inverse problem of determination of physical blood characteristics from the
fundamental diagram derived empirically. We study the dependence of flow (and
the respective fundamental flow diagram) on the vessel internal geometry and parameters
such as blood viscosity.

D- Use of experimental (ultrasonographic) velocity/density measurements to de-
rive fundamental flow diagram.

E- Modelling of red blood cell clustering in blood vessels within the Payne-
Whitham framework. Cluster solutions have been observed in vehicular traffic; we
investigate the solutions to the Payne-Whitham model with a flow profile appropriate in
blood rheology, to reproduce the red blood cells’ clustering phenomena by appropriate
calibration of the flow profile.

F- Inverse problem of determination of obstacles’ profile in a stenosed artery.

Figure 1: Framework for applying vehicular traffic theory to blood rheology.

Figure 2: A typical linear vessel link con-
sidered (from Quarteroni, 2002)
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Figure 3: Fundamental flow diagram de-
rived using the (forward) procedure de-
scribed in section 4, Ca = 5.0, Cb =
7.0, Cσ = 1.5.
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2 Payne-Whitham single-lane model

In this section, we address problem A outlined above. According to the Payne-Whitham
model, non-equilibrium traffic on a long one-dimensional path may be described by
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the system of hyperbolic conservation laws with relaxation. Here v∗(ρ) is given by the “fun-
damental diagram”, ρ(t, x) is the traffic density at time t and location x, j(x, t) = ρv is the
traffic flow, and κ and τ are fluid parameters.

The core idea in our analysis of this problem is to use the first-order Godunov finite difference
scheme to model the flow numerically. In this scheme, the finite-difference solution on the
rectangular grid is given by
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Here, i and k are the spatial and temporal index respectively; δ and h̄ are the grid steps in
time and space respectively, and Ûk
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which can easily be expressed analytically.

Jin and Zhang (2002) showed the convergence of the Godunov finite difference scheme for
initial conditions inside the stability domain of the Payne-Whitham model. They also showed
that the numerical method would not yield convergent solutions for unstable initial conditions,
since the PW model, when it is unstable, is very sensitive to small changes in initial conditions.

Having developed the approach to modelling single-lane flow, using the appropriate fundamen-
tal flow diagram profile, we apply this approach to different initial conditions and investigate
the properties of the resulting blood flow.

3 Multi-lane model for the fundamental diagram derivation

In this section, we define the generalization of a kinetic model proposed for vehicular traffic
flow by Illner et al. (2003). We consider a linear blood vessel with a round cross-section, which
we divide into concentric tube regions with equal cross-section areas; these regions play the
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role of traffic lanes. By fi(t, x, v) we denote the particle distribution function at time t, at
location x along the vessel, and velocity v in the lane i, i = 1, 2, . . .. The governing Vlasov
equation has the form

∂tfi + v∂xfi + ∂v (B[fi]fi −D[fi]∂vfi) =
∑
l 6=i

pli[fl]fl − pil[fi]fi, (5)

where B[fi] is the “acceleration/deceleration” term, corresponding to ẍ = B[fi] for a given
particle, D[fi] is the diffusion coefficient, p[fi] is the “switching” rate,

pil[fi] = ji(t, x)Pil(ui, v), (6)

where Pil is the switching probability from lane i to l, ui = ji/ρi is the average lane speed.
The essence of the model lies in the assumptions regarding the functional forms of these terms.

For instance, we assume that the switching probability from lane i to lane l depends on the
velocity in lane i in the following way:

Pil(u, v) =


(

v−u
1−u

)δ
, v > u, l = i± 1,

0, v ≤ u
(7)

In our analysis, by obtaining the distribution function fi as a solution to (5), we deduce all
possible macroscopic quantities of interest, and deduce the fundamental flow diagram for the
predefined set of regime parameters. Our goal here is to determine common characteristics
and profiles in the fundamental flow diagrams in patients within similar age group, and with
similar pathological cardiovascular conditions.

4 Applications to blood flow modelling

We apply the traffic model described above to real ultrasonography data we collect from clinical
data on both humans and animals, and compare their modelling capabilities.

4.1 Dependence on flow parameters

An example of the application of the procedure described above including the numerical solu-
tion is shown in figure 3. In general, the numerical simulations lead to the following observa-
tions regarding the inverse problem of solving for parameters.

The fundamental diagram solution u(ρ) always exists, but may not be unique. Intervals of the
parameters Ca, Cb, Cσ that lead to unique fundamental diagrams may easily be established by
direct computation. Parameters Ca, Cb, Cσ may be estimated (backwards) from the fundamen-
tal flow diagram (in fact, just from its special points, e.g., from its maximum jmax). We derive
necessary and sufficient conditions for the maximum flow jmax(Ca, Cb, Cσ) to be invertible.
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4.2 Application to red blood cells clustering

We provide an application of the vehicular traffic theory to a topic that has recently received
attention in blood rheology circles — clustering of red blood cells. When the Payne-Whitham
model is unstable, Kerner and Konhauser (1994) observed cluster solutions in vehicular traffic.
Our goal is to investigate, both numerically and analytically, solutions to the Payne-Whitham
model with a specific flow profile, appropriate in blood rheology, to show the solution patterns
of the model when initial conditions are unstable, to replicate the clustering phenomena by
appropriate calibration of the flow profile.

We model the red blood cells’ clustering phenomena within the Payne-Whitham model in
the unstable regime. In the case of an obstacle on a one-dimensional path (e.g., a deformed
wall), the conditions on a certain interval of the line change, which effectively changes the
fundamental diagram for the interval. The solution for this problem is piecewise-continuous,
starting with an initial piecewise-continuous density profile as an initial condition. In our
study, we derive explicit analytical solutions for a number of initial flow profiles.

References

[1] Daganzo, C.F. 1994. The cell transmission model: network traffic. California PATH working paper.

[2] Dzwinel, W., K. Boryczko, D.A. Yuen. 1994. A discrete-particle model of blood dynamics in capillary
vessels. Journal of Colloid and Interface Science 258, 163-173.

[3] Dzwinel, W., K. Boryczko, D.A. Yuen. 2003. Dynamical clustering of red blood cells in capillary vessels.
Journal of Molecular Modelling 9, 16-33.

[4] Galstyan, A., K. Lerman. 2001. A stochastic model of platoon formation in traffic flow. Working paper, U.
of Southern California.

[5] Herrmann, M., B.S. Kerner. 1998. Local cluster effect in different traffic flow models. Physica A 255,
163198.

[6] Illner, R., A. Klar, T. Materne. 2002. Vlasov-Fokker-Planck models for multilane traffic flow. Working
paper, Canada.

[7] Jin, W.L., H.M. Zhang. 2003. The Formation and Structure of Vehicle Clusters in the Payne-Whitman
Traffic Flow Model. Transportation Research -B 37, 207-223.

[8] Kerner, B.S., P. Konhauser. 1994. Structure and parameters of clusters in traffic flow. Phys. Rev. E 50(1),
5483.

[9] Lighthill, M.J., G.B. Whitham. 1955. On kinematic waves. II. A theory of traffic flow on long crowded
roads. Proc. R. Soc. 229(1178), 317345.

[10] Mehrotra, R., G. Jayaraman, N. Padmanabhan. 1985. Pulsatile blood flow in a stenosed artery — a
theoretical model. Med. Biol. Eng. Comp. 23, 55-62.

[11] Quarteroni, A. 2002. Mathematical modelling of the cardiovascular system. Working paper, ICM, Vol. 3,
1-3.

[12] Sud, V.K., R.S. Srinivasan, J.B. Charles, M.W. Bungo. 1993. Mathematical modelling of the human
cardiovascular system in the presence of stenosis. Physics in Medicine and Biology 38, 369-378.

[13] Sun, C., L.L. Munn. 2005. Particulate nature of blood determines macroscopic rheology: A 2-D lattice
Boltzmann analysis. Biophysical Journal 88, 1635-45.

[14] Young, D.F., F.Y. Tsai. 1973. Flow characteristics in models of arterial stenosis I: steady flow. Journal of
Biomechanics 23, 513-527.

[15] Zhang, H.M. 2001. New Perspectives on Continuum Traffic Flow Models. Special Issue on Traffic Flow
Theory, Journal of Networks and Spatial Economics, 1, 9-33.

Phuket Island, Thailand, June 10-15, 2007


