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1 Introduction

The importance of routing and shortest path problems in the study of transportation networks is well-known.
For instance, these are used to describe user behavior, to find equilibrium states of large-scale networks, and
to evaluate the impact of network improvements and broader transportation policies. Thus, the development
of efficient, behaviorally realistic algorithms is of paramount interest. Although research in this area dates
back over a half-century, continued refinements are being made to account for the specific nature of congested
transportation systems.

In particular, researchers have realized that accounting for the fundamentally uncertain day-to-day
nature of transportation networks is crucial for correctly modeling travelers’ preferences. This operational
uncertainty can be traced to a number of phenomena, both on the demand side (such as daily fluctuations in
travel patterns), as well as the supply side (such as capacity reductions due to adverse weather or incidents).
In turn, the presence of stochasticity affects user behavior in multiple ways. If the travel time (or cost)
along a route cannot be predicted absolutely, the assumption that travelers choose the least-cost path is ill-
defined. Indeed, it may not even be enough to simply say that travelers choose the path with least average
cost; rather, depending on the trip type and the traveler’s attitudes, one might expect some degree of risk
aversion or other, more complicated preferences regarding trip costs. Additionally, uncertain conditions
require assumptions to be made about the information or beliefs that travelers have regarding network
conditions. The advent of real-time traffic information provision makes this question especially relevant, as
travelers can change their chosen path en route in response to new information, a phenomenon known as
recourse.

Within this context, Boyles [2006] developed an algorithm for one specific type of information and cost
dependency structure, but a number of alternate structure exist as well. Thus, the intent of this paper
is to develop additional algorithms that simultaneously account for general nonlinear user preferences and
recourse decisions in the presence of various assumptions on cost structure and information. To simplify
the presentation, we will assume that users are only concerned with travel time, although extending these
algorithms to account for any additive, nonnegative travel attributes is straightforward. These travel times
are both dynamic and stochastic, and exhibit limited forms of dependency.

That link travel times are dependent is natural, although introducing this mathematically leads to
additional complications. To simplify, we consider three specific types of dependence and develop a shortest
path algorithm for each, using the nomenclature from Waller and Ziliaskopoulos [2002].

1. Spatial dependence implies that the probability distribution for any arc is completely determined by
the state of the preceding arc, as with a Markov process. Thus, the cost distribution differs according
to what the previous arc was, and the experienced cost on it. This can be extended to account for
multiple-step history dependence, although this is not undertaken here to keep the notation simple.



2. Temporal dependence implies that the cost of any arc is known with complete certainty once its tail
node is reached. That is, upon reaching a node, the traveler realizes the costs of all outgoing arcs, and
chooses among them accordingly. This structure might represent, for instance, a variable message sign
indicating the current state of nearby arcs.

3. Temporal-spatial dependence implies both of the above; namely, that upon reaching a node, travelers
learn the cost of all outgoing arcs. This knowledge then provides additional information about arcs
one step further downstream.

In Section 2, we discuss previous research efforts related to this topic, before presenting our modeling
approach in earnest in Section 3. This is followed by algorithms for each of the three types of dependency in
Section 4. When applying these algorithms in cyclic networks that exhibit non-first-in-first-out (non-FIFQO)
arc cost structures, a technical issue arises; this is addressed in Section 5. Finally, Section 6 concludes the
paper and summarizes the key contributions.

2 Literature Review

As mentioned in the previous section, the primary contribution of this work is to account for both nonlinear
traveler preferences and recourse decisions in a single algorithmic framework, in the presence of certain types
of arc cost dependency.

Nonlinear preferences essentially seek to quantify how travelers value reliability, or specific risk attitudes
regarding travel time. Reliability has been modeled in a number of different ways. For instance, Sivakumar
and Batta [1994] solve a shortest path problem that constrains the variance of the solution, while Sen et al.
[2001] use a multiobjective routing approach when arc costs are normally distributed. Robust formulations,
such as that in Yu and Yang [1998] or Montemanni and Gambardella [2004], solve a minimax shortest path
problem when arc costs are only known to lie within a given interval, with no further information on their
distribution. Fan et al. [2005], on the other hand, find a routing policy that minimizes the probability of
arriving at the destination later than a specified arrival time. Another approach involving a desired arrival
time is found in Gao [2005], where a weighted sum of expected arrival time before and after this target is
minimized.

Other authors develop models incorporating non-linear preferences. Loui [1983] and Eiger et al. [1985]
develop procedures for linear and exponential utility functions which allow an efficient dynamic programming-
like solution, while Murthy and Sarkar [1996] present an algorithm for decreasing quadratic utility functions.
Gabriel and Bernstein [2000] provide a heuristic method for finding the non-additive shortest path, and
Tsaggouris and Zaroliagis [2004] present such an algorithm for monotone and convex disutility functions.

However, these models assume that disutility increases with travel time. This may not always be
true; for instance, arriving much earlier than expected might cause the traveler to feel as though time
has been wasted, as departure could have been postponed while still allowing on-time arrival. Indeed,
Redmond and Mokhtarian [2001] indicate that a limited amount of commuting time may actually have
positive utility: commuters find value in time spent alone while traveling, to transition between the work
and home environments. In such cases, an extremely short commute is in fact less desirable than one of
moderate length.

Other researchers have studied shortest path problems that allow users to update their path choice
en route in response to learning information about network conditions. Waller and Ziliaskopoulos [2002]
present an algorithm for networks with limited temporal and spatial dependency, and Provan [2003] devel-
ops a Dijkstra-like procedure for a more general dependency structure with nonnegative arc costs. Gao and
Chabini [2006] also present algorithms for general dependency. This case is more difficult; in fact, Poly-
chronopoulos and Tsitsiklis [1996] and Provan [2003] show that this problem is NP-complete. When arc
costs are independent, however, Miller-Hooks [2001] develops a polynomial algorithm for online routing in
stochastic, time-dependent networks.

Although considerable literature exists concerning the value of travel time reliability, and concerning
recourse decisions, relatively little work combines the two into a more general treatment of uncertainty in



routing problems. Gao [2005] presents a heuristic to find a policy with minimum variance, and an exact
algorithm for minimizing the weighted sum of three linear penalties for expected travel time and expected
arrival before and after a target arrival time. Boyles [2006] provides an algorithm to find optimal online
routing policies with piecewise polynomial disutility functions, but only for one particular cost structure
(limited spatial dependence). The intent of this paper is to provide similar algorithms for additional types
of arc dependency.

3 Model Development

Table 1 lists the notation used in this paper, which we define in this section. Let G = (N, A,II) be a
probabilistic directed network with finite node and arc sets N and A of cardinality n and m, respectively.
IT is a set of probability distributions for arc costs, described below in greater detail. Let the origin and
destination nodes be denoted O and D, respectively. Assume that a directed path from each node to D
exists. For each arc a = (a1,a2) € A there is an associated finite set of S(a,t) integer travel times, which

2 cs(a’t)}. Let M be the highest travel time

depend on the current time ¢; denote this set C + = {c}l’t, Cats+ 1 Cat
among all arcs. For each node i, the forward star F'S(i) and the reverse star RS(4) respectively denote the
set of incoming and outgoing arcs, and I'~1(i) represents the set of predecessor nodes.

The form of the arc cost probability distributions II varies according to the dependency structure as
mentioned in Section 1; however, they can all be described by an expression of the form p(b, s, ¢, ), which
indicates the probability that arc b is in state s at time t. 0 indicates any information relevant to the particular
dependency structure of the problem. For the case of spatial dependency, the state r of the predecessor arc a
is needed to specify the probability distributions; thus § = (a,r) and the probabilities for arc b are given by
p(b, s,t,a,7). For temporal dependency, the costs of all outgoing arcs are known once the traveler arrives at
the tail node, but the costs of arcs are assumed to be independent; effectively, there is no useful information
(0 = @) and p(b, s,t) suffices to describe arc cost probabilities. Finally, as temporal-spatial dependency
incorporates elements of both structures, the information is again given by # = (a,r) and the probabilities
by p(b, s,t,a,7), but these describe arcs that are two steps downstream, rather than the adjacent arc (one
step downstream) which is known with certainty once its tail node is reached.

The general approach for all of these cases is modeled on the classical label correcting all-to-one shortest
path algorithm (see, for instance, Ahuja et al. [1993]). One begins at the destination, where trip length, and
thus trip disutility, is known with absolute certainty. Then, by proceeding backwards through the network,
one can inductively determine strategies and expected disutilities until these are known for all nodes.

The same fundamental formula is used in order to perform these calculations regardless of the dependency
structure. Specifically, one needs to know how to calculate the expected disutility that results from choosing
to travel on a particular arc, assuming that all relevant information is known downstream. This is done by
storing a number of labels. In particular, the dynamic and dependent nature of the network requires that
separate labels be stored at each node 7, at each possible arrival time at that node ¢, and for each possible
information set 6 for that node at that time. These form a node-time-information combination or NTIC
¢ = (i,t,0), which are the fundamental points at which the traveler makes decisions. Further, for each
NTIC, a label needs to be stored representing the expected disutility. However, to calculate this disutility,
more information is needed.

If the polynomial disutility function is of degree d (for now assume it only has one piece), the expected
disutility can be calculated if one knows the first d moments of total travel time X:

d
> ax
=0

To accomplish this, we can store d labels at each NTIC, one for each of the necessary moments. Now,
consider the general case when the traveler is at a specific NTIC (4,t,6), and needs to calculate the expected
disutility obtained by choosing a particular arc b = (i,q). The total travel time can be divided into three
parts: the time elapsed since departing (¢); the time incurred when traveling on arc b (denote this by C);

d

=> a;E[X"]

=0

E[P(X)] = E




Table 1: Notation used in this paper.
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the coefficient on the term 2% for the j-th segment of P

cost of arc a in state s at time ¢

number of arcs

number of nodes

probability that arc b is in state s at time ¢ according to infor-
mation 6.

probability that realization w occurs when policy 7 is used
index for arc states

current time

set of arcs

the intervals defining each segment of P

set of possible costs for arc a at time ¢

a random variable indicating the cost of the next arc
destination node

the set of outgoing arcs from node 4

label for n-th moment of remaining travel time from node ¢ at
time ¢, given information 6 and arrival during interval A;
largest possible arc cost in the network

set of nodes

origin node

the piecewise polynomial disutility function

random variable for travel time remaining after the next node
the set of incoming arcs at node

the number of possible states of arc a at time ¢

the set of possible arrival times at node i

latest possible arrival time

random variable indicating total travel time

the travel time associated with realization w

a node-time-information combination

routing policy for spatial dependency, a function from ® to A
current information, depending on dependency structure
probability of arriving during interval A; when at node 7 at
time ¢ with information 6.

a particular realization of the network

the set of predecessor nodes for node i

the set of all node-time-information combinations

a constant such that P(x) is increasing for x > =

the set of all network realizations

null arc used to assign probabilities when a trip begins




and the remaining travel time R between the head node of b and the destination. For spatial dependency, C'
and R are both random variables; for temporal and temporal-spatial dependency, R is random but C' is not.
For all of these cases, the binomial theorem allows us to express expected disutility as the sum of specific
moments which can then be stored as labels:

S(bﬂf) n k

Elt+C+R)" =Y > Z ( ) ( ) p(b, s, t,0)(CL )" Ft* = B[R,

s=1 k=0k'=0

where ¢ is the information attained after traveling on arc b ((b, s) for spatial and temporal-spatial dependency,
@& for temporal). Also note that for temporal dependency, the state of b is known exactly, so p(b, s,t,0) is
zero for all states except for the one revealed. Since we assume that E[R*] is known for all downstream
NTICs, this formula is enough to calculate all of the travel time moments at 7, and therefore to calculate
the expected disutility obtained from choosing arc b.

When the piecewise disutility function consists of multiple segments, additional labels are needed to
store the probability that one arrives during each segment, and the travel time moments are replaced by
conditional moments for each of these. If we let p; represent the probability of arriving during time interval
A;, and again assume that all labels for downstream nodes have already been calculated, the extended set
of formulas needed to calculate the labels at a particular node are

S
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The dependency structure affects the manner in which the optimal routing policy is defined. For spatial
dependence, a policy necessarily prescribes an arc that the traveler should take whenever such a choice is
available; in this context, a routing policy 7 is a function mapping ® to A; that is, prescribing an arc choice
for each fundamental decision point in the problem. Thus, for this case, the difficult issue is efficiently
determining these arc choices in such a way that the expected travel disutility is minimal.

The issue is slightly different for the temporal and temporal-spatial dependency cases, because the cost
of all outgoing arcs are known with exact certainty. Thus, if the moments of remaining travel time for
all downstream nodes are known, one can easily calculate the moments of remaining travel time from the
current node for each possible arc choice, and the best arc can be chosen. Thus, learning the costs of
downstream arcs a priori obviates the need to develop and store a pre-defined routing policy. Rather, the
routing policy is developed on the fly based on the revealed arc costs and the travel time moments which
were calculated ahead of time. Again following the style of an all-to-one shortest path algorithm, one begins
at the destination (where the remaining travel time moments are trivially known), and proceeds backwards
through the network, inductively calculating the travel time moments at all other nodes and times, but
without setting path pointers.

However, naive calculation leads to an exponential number of steps in the worst case. To circumvent this,
Waller and Ziliaskopoulos [2002] develop a procedure that allows efficient calculation of expected remaining
travel time. To see why this is needed, consider a node which has three outgoing arcs leading to nodes a, b,
and ¢, each of which can exist in one of two states (¢p; and ¢;,) with equal probability, as shown in Figure 1.
Since this is temporal dependency, the traveler has just learned the costs of these three arcs, and must
choose one of them accordingly. Let o}, indicate the strategy of choosing arc a when it has a "high’ cost,
and P(of,) the corresponding expected disutility (which is assumed known); the same notation is adopted



Figure 1: Each of the three arcs will have one of two possible costs.

for all possible choices of arc and state. Since there are 23 = 8 possible combinations of states for the three
arcs, one might conclude that there are eight possible costs, as seen in the probability matrix

1/8 min{P(Jgi%P(Uzz‘)»P(Ufn)
1/8 | min{P(c},), P(o},;), P(of,)
1/8 min{P(UZi)7P(g?o)7P(giCLi)
1/8 min{P(UgLi)’P(albo)’P(alco)
1/8 min{P(U;}o%P(U?Li)’P(Uzi)
1/8 | min{P(af,), P(o};), P(o7,)
1/8 | min{P(cf,), P(o7,), P(07,;)
1/8 | min{P(of,), P(o7,), P(o7,) |

However, regardless of the values of these disutilities, there are at most six unique values that can occur in
this matrix: P(0f,),P(0?},),P(0%,),P(0f),P(cl), and P(of,). Thus, when these are realized, this matrix may
be reduced to six elements while preserving all relevant information by adding the probabilities of rows that
are combined. In general, this process reduces the number of possible scenarios from exponential (O(S™))
to polynomial(O(Sn)). This is important for developing an efficient algorithm which must calculate the
expected value by summing the product of the probability of each scenario with its corresponding disutility.

4 Algorithms

Based on the above discussion, we now present three algorithms (SD-MEDR, TD-MEDR, and TSD-MEDR)
to solve the online routing problem with nonlinear disutility functions for the spatial, temporal, and temporal-
spatial dependency cases, respectively. The procedure REDUCE called by TD-MEDR and TSD-MEDR is
listed as Algorithm 4. The SEARCH(a,b) function called by REDUCE performs a search on vector a for
value b and returns its location (if found), and the first available location otherwise. The correctness of
these algorithms should be apparent from the previous section; the reader desiring greater rigor is referred
to Boyles [2006] which contains a detailed proof of correctness for SD-MEDR (named MPPR-MC in that
work). Similar proofs for TD-MEDR and TSD-MEDR are omitted here for reasons of brevity.

As mentioned above, SD-MEDR calculates conditional expected disutility labels for each NTIC, while
TD-MEDR and TSD-MEDR operate by calculating a single expected disutility value for each node and arrival
time. To find this single value for the latter, each possible combination of outgoing arc states is examined
and REDUCEd to produce a polynomial-sized vector of choices and resulting disutilities, depending on the
realized arc states. The expectation over these probabilities is then taken to calculate the expected disutility.

Boyles [2006] demonstrates that SD-MEDR has complexity O(N Mn?*mD?5?) in acyclic networks, where
N, M, n, m, D, and S are the number of segments in the disutility function, the greatest arc cost, the number



of nodes, the number of arcs, the largest degree of any segment of the disutility function, and the maximum
number of states an arc can exist in, thus showing that this algorithm has pseudopolynomial complexity.

For TD-MEDR, additional time is needed at each iteration to combine and REDUCE the probability
matrices. As discussed in the previous section, the size of this matrix after considering k successor nodes
is bounded by kS. At worst, when considering each successor node, a matrix of this size is combined with
S additional states for the new arc, leading to n.S? operations of REDUCE. An implementation of REDUCE
as described in Waller and Ziliaskopoulos [2002] can perform this step in O(nS?log(nS)). Thus, the overall
complexity of TD-MEDR is O(N Mn3mD?5%log(nS)).

A similar argument for TSD-MEDR yields a complexity of O(N Mn*mD?S53log(nsS)) for that algorithm
in acyclic networks.

Algorithm 1 SD-MEDR

1: {Initialization}

2: for all a,s,t, j,n such that a € RS(D), s € S(a), t € T(d), j€{l,...,N},ne{l,...,d;} do

L(D,t,a,s,j,n) <0
L(D,t,a,s,j,0) «— 1
if t € Aj then

p(D,t,a,ng) —1
else

p(D,t,a,s,5) <0
end if
10: end for
11: for all 4,t,a,s,j,n such that i € N — D, t € T(j), a € RS(i), s€ S(a), j € {1,...,N}, ne {1,...,d;}

do

12: L(i,t,a,s8,j,n) — o0
13: end for
14: SEL « {i:i e T7Y(D)}
15: {Iteration}
16: while SEL # @ do
17:  Select i € SEL and set SEL «— SEL — i
18:  for all ¢, a, s,b such that (i,t,a,s) € &, b= (i,q) € FS(i) do
19: forall je{1,...,N},ne{1,...,d;} do

© P NPT Rw

20: po(ist,a,s,5) — Yo p(b, ' t,a,8)p(q,t + ¢k b, 8", )
. . S(b,t n (b, /7t+35a »5) ; —
o bfitasin) = SIS (3) st + dub ) e +
Cfl,s’ba 8/7j7k)
292: end for

23:  end for
. N d n n . N\n—k . .
240 Py(ist,a,8) < 35501 D 00 2p=o (k) a;ipy(i,t,a,8, )t " Ly(i,t, a,s, 7, k)

25 if Py(i,t,a,s) < P(i,t,a,s) then
26: forall je{1,...,N},ne{1,...,d;} do

27: L(i,t,a,s,5,n) «— Ly(i,t,a,s,7,n)
28: pliyt,a,s,7) — pp(i,t,a,s,j)

29: P(i,t,a,8) «— Py(i,t,a,s)

30: m(i,t,a,8) «— b

31: SEL «— SELUh:heTl (i)

32: end for

33:  end if

34: end while




Algorithm 2 TD-MEDR

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:

29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

for all ¢,j,n such that t € T'(d), j € {1,...,N},ne {1,...,d;} do

L(D,t,j,n) <0
L(D’t7]’0) — 1
if t € A; then
p(D,t,j) — 1
else
p(D,t,j) <0
end if

: end for

for all 4,t,j,n such that ie N — D, t e T(j),j€{1,..., N}, ne{l,...,d;} do
L(i,t,j,n) «— oo
end for
SEL «— {i:ieT"YD)}
while SEL # @ do
Select i € SEL and set SEL «— SEL —i
p < [oc]
v [1]
for allt € T(i) do
for all b such that b = (i,q) € FS(i) do
tempp — (2]
tempy — [@]
r«1
for s =1 to S(b,t) do
for I =1 to |u| do
tempv, — v,p(b, s,t)
for all j € {1,...,N},ne{l,...,d;} do
pr(ist,§) < pla,t +cf 5. 5)

L, n n . e .
Ly(ist, 5, k) — 3 k-0 (k) i Pt +cs ) (cs)" T Lig, t + cs, 5, k)
end for
N d s (1 kT (i g s
Pr — Zj:l Zn:(} Zk:() (k.) ajipr(la t7.7>t Lr(lv t7]7 k)

temppi, — min{ P, 1}
r—r+1
end for
end for
[¢, v] = REDUCE(tempu, tempv)
end for
tempP = 1"
if tempP < P(i,t) then
P(i,t) « tempP
SEL «— SELUh:heT (i)
end if
end for
end while




Algorithm 3 TSD-MEDR

1: for all a,s,t,j,n such that a € RS(D), s € S(a),t€T(d), j€{l,...,N},ne{l,...,d;} do
L(D,t,a,s,j,n) <0
L(D,t,a,s,j,0) «— 1
if t € A; then
p(D’taaa Saj) —1
else
p(D,t,a,s,5) —0
end if
end for
for all 4,t,a,s,j,n such that i € N — D, t € T(j), a € RS(i), s€ S(a), j € {1,...,.N}, ne {1,...,d;}
do
11: L(i,t,a,8,j,n) < o0
12: end for
13: SEL — {i:ie YD)}
14: while SEL # @ do
15: Select s € SEL and set SEL «— SEL — i
16: for all t € T(i),a € RS(3),s € S(a,t) do
170y [o0]
18: v« [1]
19: for all b= (i,q) € FS(i) do
20: tempp — [&]
]

© P TP

—
<

21: tempr — [&
22: r«—1
23: for s =1 to S(b,t) do
24: for I =1 to |u| do
25: tempv,. — vp(b, s t,a,s)
26: forall je{1,...,N},ne{1,...,d;} do
o prlista s, ) = S0 p(b, s t,a,s)p(g,t + b, )
. . S(b,t 1\ pb,s ttcg o.a.9) . _
* Lrlitassigin) = N Fio (k> e U ) [N L A O
Co500s 85, )
29: end for
. N d n . N . _
30: Pr(ist,a,s) «— 3512 oo >reo (k‘) ajipp(i,t,a, s, j)t" " FLy(i,t, a, s, j, k)
31: tempp, «— min{ Py, u;}
32: r—rnr+1
33: end for
34: end for
35: [, v] = REDUCE(tempu, tempv)
| 2]

36: tempP =Y 7 prvi

37 end for

38: if tempP < P(i,t,a,s) then
39: P(i,t,a,s) «— tempP

40: SEL — SELU{h:a= (h,i)}
41:  end if

42: end for

43: end while




Algorithm 4 {;, v} = REDUCE(temppu, tempr)
Require: A vector of disutilities tempu and a vector of probabilities tempv.

Ly (2]

2: V< [@]

3: for k =1 to |tempp| do
4:  h = SEARCH(u, temppy,)
5. pp, = tempuy

6: vp = nup + tempry

7: end for

1 with probability 0.9
2 with probability 0.1

1011£(2, 3 has cost 1
0if (2, 3) has cost 2

Figure 2: Infinite cycling in an online shortest path.

5 Cyclic Networks with Non-FIFO arcs

The presence of cycles can cause difficulties in online algorithms: for instance, in online shortest path
problems, one cannot rule out paths that include cycles if there are arcs which have non-FIFO travel times,
that is, when a traveler can arrive earlier by leaving an arc later. For instance, the optimal policy for the
network in Figure 2, based on Waller and Ziliaskopoulos [2002], contains the possibility of cycling arbitrarily
many times. In this graph, after observing the state of arc (2, 3) the state of (3, 4) is known. When arriving
at node 3, if arc (2, 3) had cost 1, the traveler knows that the cost of arc (3, 4) is very high; thus, the optimal
strategy is to travel back to node 1, hoping that after another traversal, the state of (3, 4) will be lower.
However, at the second traversal, there is still no guarantee that (3, 4) will have low cost; and the cycle
could be traversed a third time, and so on. Thus, there is no upper bound on the maximum number of cycles
that will be present in the optimal solution, although the probability of a large number of traversals of a
cycle is small. Although non-FIFO arcs may not be common in transportation networks, one example where
such behavior might appear is at a toll or customs plaza when a new service lane opens. If lane changing
is restricted, newly arriving travelers using this new lane can overtake earlier-arriving vehicles that are still
waiting in a long queue.

Both Waller and Ziliaskopoulos [2002] and Boyles [2006] develop probabilistic bounds to allow one to
find an approximately optimal solution in finite time, even if the optimal routing policy involves inifinitely
many cycles. The bound in Waller and Ziliaskopoulos [2002] is based on the error arising from only applying
through a finite number of passes of the scan eligible list SEL, while the bound in Boyles [2006] is based
on constraining trips to arrive before a certain time, and bounding the error resulting from this additional
constraint. The latter is more flexible, since it can be applied regardless of the particular polynomial disutility
function chosen; in fact, for a linear disutility function (for which this problem reduces to the online shortest
path problem of Waller and Ziliaskopoulos [2002]), the two bounds are asymptotically equivalent. In this
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section, the bound from Boyles [2006] is briefly restated in terms of the broader dependency structures
introduced in this paper.

To derive this bound, we assume that the disutility function P is strictly increasing when arrival times
are sufficiently large (let = denote some time for which x; > z2 > Z = P(x1) > P(z2)). Now, we are
interested in the error that is induced by constraining all trips to finish before some pre-announced time
T, which ensures a finite set of NTICs and, therefore, a finite running time for the algorithm. To assist
with this, we define a network realization w to be a subset of NTICs representing a particular path from the
origin to the destination, with {2 the set of all network realizations and p,, . the proability that the path a
particular network realization w represents occurs when routing policy 7 is followed.

This constraint forces a slight change in the definition of routing policies for the temporal and temporal-
spatial dependent cases. Previously, there was no pre-determined policy, and arc choices were made in real
time as these costs were made known. However, this constraint may require overriding this default behavior,
as trips longer than T are strictly prohibited. One way to accomplish this is to set any disutility labels
corresponding to a time greater than T to infinity. Alternately, one may prescribe a policy like that for
spatial dependence for selected NTIC’s to ensure arrival before T

Since the destination can be reached from any node in at most Mn time, and since P is increasing for
x > Z, if all arcs are FIFO, clearly =+ Mn is an upper bound on arrival time. For non-FIFO arcs, the case
is not as simple, as the example in Figure 2 demonstrated. We start by deriving a bound on the probability
that the total travel time X is greater than any time 7 > =+ Mn.

Lemma 1. For 7 > Z+ Mn, the probability that the traveler completes a trip after time T when following
an optimal (unconstrained) policy ™ is at most P(2 + Mn)/P(r).

Proof: Consider a policy in which the traveler deterministically moves from the origin to any node that is
part of a cycle, traverses this cycle repeatedly until the current time is greater than =, and then any acyclic
path is followed to the destination. Thus the traveler arrives at the destination no later than = + Mmn;
therefore, the disutility from this policy is at most P(Z+ Mn), which forms an upper bound on the disutility
for the optimal policy. Thus

Y o P() < D punP(X¥) <Y puaP(X¥) < P(E+ Mn)

w: XY >T w: Xw>T weN
P(E+ Mn
S < FESMR g
P(r)
w: XY >T

The next step is to bound the error created by forcing trips to end by a given time 7" > = 4+ Mn. To
do this, modify the optimal policy for all NTICs whose time component is greater than T — Mn so that the
traveler will deterministically arrive before T'. Again, the disutility from this modified policy forms an upper
bound on the disutility of the optimal policy.

Theorem 1. For T > =+ Mn, the difference between the disutility of an optimal policy, and that of an

P(T) 1} .

optimal policy which guarantees arrival before T, is at most P(Z 4+ Mn) [m —

Proof: Consider the constrained policy 71 described above. Since it is identical to the optimal unconstrained
policy for network realizations in which the travel time is less than T'— Mmn, all of the difference between
the expected disutilities of these two policies is derived from trips ending after this time:

P(rr) = P(x*) < Y pun[P(T)— P(X¥)] < > Pux [P(T) = P(X*)]
w:X>T—Mn w:Xwe[T—Mn,T)|

the latter because P(T) — P(X¥) < 0 for X“ > T. Continuing,

P(nr) — P(1*) < > Do [P(T) — P(X¥)] <
w:Xve[T—Mn,T]
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by Lemma 1 and because P(T' — Mn) < P(X%). Rearranging the last result, and knowing that the
expected disutility of the optimal constrained policy 7% is no greater than P(mr), we also have P(E +

Mn) | pr By — 1] ®

Using ’'Hopital’s Rule, one can show that this last bound approaches zero as T' — co. Although this last
result gives the error induced by adding the time constraint as a function of 7', in practice it is more useful to
find T as a function of the maximum allowable error or tolerance €. Solving the last bound for T" analytically
is difficult (and, in fact, impossible in general if P has degree five or greater), although numerical solution is

possible. However, the asymptotic properties of the inverse function T'(¢) can be studied.
Lemma 2. T(e) is O (Mn)*™*1/e) as M,n — oo and e — 0.

Proof: Define ¢(T") to be the maximum possible error associated with restricting trips to end before T' (that
is, the bound from Theorem 1. Expanding the polynomials P and rearranging yields

AN, d(N) (Td(N)il(Mn) — Td(N)72(MTl)2 + Td(N)ig(Mn)B -+ ) + -

«(T) = P(E+ Mn) ana) (T — Mn)@) ¢ ..

which is the product of three terms, which are O((Mn)4(N)), O(MnT*™N)=1) and O((T*(N))~1), respec-
tively; so e(T) is O((Mn)?™N)+1/T). Therefore T is O((Mn)*N)+1/e). W

It bears repeating that the bounds in this section are only needed if the network is both acyclic and
non-FIFO. In typical transportation networks, the latter property is almost never present in a macroscopic
sense; in such cases, these bounds need not be used.

6 Conclusion

Accounting for the impacts of uncertain day-to-day network conditions is important for modeling route
choice, performing traffic assignment, and other common transportation problems. Uncertainty manifests
itself in multiple ways — in particular, it results in nonlinear “risk-averse” behavior, and allows the possibility
of online response to travel information receieved en route. Most previous research focuses on only one of
these aspects at a time; past work that considers both simultaneously only accounts for one specific type of
arc cost dependency (spatial dependence). This paper contributes similar, pseudopolynomial algorithms for
temporal and temporal-spatial dependency, in line with the structure established in Waller and Ziliaskopoulos
[2002].

Although these algorithms can account for a wide range of user preferences (any piecewise polynomial
disutility function), the question of which disutility functions are most applicable to particular trip and
user types is still open. For instance, one would imagine that travelers embarking on a shopping trip, a
home-to-work commute, and a delivery drop-off have distinctly different attitudes regarding uncertain travel
times. Both numerical analysis and econometric techniques need to be applied to yield satisfactory answers
to this question. Additionally, the task of describing dependent probability distributions for every link in
a network is tedious and difficult. While loop detectors can provide such data for freeway links, estimating
travel time distributions on arterials is somewhat harder, and automated estimation procedures are needed
to make these algorithms practical for deployment.
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