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Abstract

In this paper we consider the recovery of an airline schedule after an unforeseen event, commonly

called disruption, that makes the planned schedule unfeasible. In particular we consider the aircraft

recovery problem for a heterogeneous fleet of aircrafts, made of regular and reserve planes, where the

maintenance constraints are explicitly taken into account and different maintenance constraints can

be imposed. The aim is to find the optimal combination of routes within a given makespan for each

plane in order to recover to the initial schedule, given the initial schedule and the disrupted state of

the planes.

We propose a column generation scheme based on a multicommodity network flow model, where

each commodity represents a plane, a dynamic programming algorithm to build the underlying

networks and a dynamic programming algorithm to solve the pricing problem. This project arises

from a collaboration between EPFL and APM Technologies1, which is a small company selling IT

solutions to airlines. We provide some computational results on real world instances obtained from

a medium size airline, Thomas Cook Airlines2, one of APM’s main customers.

1 Introduction

Air travels are nowadays more and more frequent mode of transportation for business, leisure, and
tourism. The market of airlines is no longer protected both in Europe as in US and airlines have the
possibility to decide their routes as well as their fares. It is crucial for them to manage their operations
in a smart way in order to lead the market and to optimize their profits and services.

Airlines need to coordinate a relevant number of resources to provide their service to the customers.
Strategical and operational decisions are taken to provide a reasonable expected revenue for the company:
routes must be planned in terms of location and arrival/departure time, aircrafts have to be affected to
routes respecting all the safety regulations and technical constraints, crews must operate the aircrafts
within the contractual specifications traded with the unions of workers.

From a computational point of view airline scheduling is one of the most challenging decisional
problems. It has been attacked in the last decades by algorithms based on operations research techniques.
Regardless of the relevant advances of the last years the problem is usually decomposed into stages. The
reasons are that airlines usually are organized in departments in which decisions on flights, planes and
crews are taken separately, with different publication deadlines and different required knowledge on
the problem. Moreover it is commonly believed that the entire scheduling problem is computationally
intractable.

First objective is the route choice, where the airline decides on the legs to be flown, which is typically
done 6 to 12 months in advance. Next step is the fleet assignment, where fleets of planes are assigned
to legs. The tail assignment then builds routes satisfying all technical constraints as maintenances for
individual planes, which is done from 1 to 6 months in advance. Next step is to compute crew pairings
that satisfy all union of workers’ requirements. This is done between 1 and 2 months before the day
of operations, as is the crew roistering, where individual crews are assigned to a pairing with respect
to their working history and other union constraints. Finally, usually up to the day before the day of
operations, the passenger routing is done in order to determine the passenger’s connections.

Unfortunaltely, on the day of operations, it is very unlikely that the optimized schedule obtained by
the airline scheduling will actually be carried out as planned: most of the time, so called disruptions

1http://www.apmtechnologies.com
2http://www.thomascook.com
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make the planed schedule collapse as, for example, bad weather, unpredicted technical maintenances or
propagated delays. Thus, when disruptions make the schedule unfeasible, aircraft, crew and passengers
have to be reaccommodated.

In the European airline punctuality report 1st quarter 2006, the AEA (Association of European
Airlines) reports that 22.6% of the European flights were delayed by more than 15 minutes and that the
yearly average is increasing. It is interesting to notice that weather conditions delayed flights up to 3.6%
only, while the propagation of the delays of late planes affects the whole schedule up to 15.1%.

The delay costs for airlines is estimated between 840 and 1.200 million Euros in 2002 by EuroControl
Association (Cook et al., 2004) and the delay cost per minute is estimated to be around 72 Euros (cfr.
pp. 99–100).

In the Challenges to Growth report released by EuroControl (Challenges to growth 2004 Report, 2004)
we can also find four scenario based forecasts on the air traffic demand for the next years. An estimation
on the increase of the demand for flights lies between 2.5% and 4.3%, yearly based, for the next 20 years.
With the highest growth scenario annual demand will have increased to 21 million flights, a growth by
a factor 2.5 compared to 2003. However, despite 60% potential capacity increase of the airport network,
only twice the volume of 2003 traffic can be accommodated, and 17.6% of demand (i.e. 3.7 million flights
per year) cannot take place. This is expected to have a significant impact on airport operations: more
than 60 airports will be congested, and the top-20 airports will be saturated at least 8-10 hours per day.
Given this forecast on the increase of air traffic and airport congestion it is obvious that a disruption in
the airline schedule would have a deeper operational and economic consequence because of the cascade
effect on other scheduled flights. Thus it is crucial for airlines, in order to provide their service, to adopt
more and more effective recovery strategies.

Actually, schedule recovery decisions are taken at the Operations Control Center (OCC) with the aim
of finding a set of feasible operations that rebuild the planned schedule as soon as possible. Moreover
OCC operators are required to provide quickly reliable decisions without ensuring the total recover of
the planned schedule in case of emergency situations. Because of the real-time nature of the problem,
recovery decisions are taken relying on their knowledge and experience. OCC operators will certainly
benefit from the use of a decision support system based on a recovery algorithm able to provide several
recovery alternatives.

This project arises from a collaboration between EPFL and APM Technologies. APM Technologies
is a small company based in Geneva that develops IT solutions for airlines.

We will first give in Section 2 an overview on the state of the art. In Section 3, we will introduce
the column generation based algorithm we used to solve the airline recovery problem. We give a more
exact problem description in Section 3.1, Section 3.2 describes the recovery network used to solve the
pricing problem whereas Section 3.3 details the column generation approach. Finally, Section 4 gives
some computational results.

2 Literature Survey

Schedule recovery schemes, in opposition to deterministic or robust scheduling, usually use a deterministic
schedule and an irregular event as an input an try to recover the now unfeasible schedule at lowest cost.
This is an a posteriori approach to cope with irregularities, in the sense that decisions are made when the
actual schedule is already unfeasible. Some also refer to this problem as the day of operations problem.
When only planes are involved in the recovery scheme, we refer to the problem as the Airplane Recovery

Problem (ARP). This category was developed in the last 10 years mainly, as the more the airline network
develops, the more (proportionally) irregularities will occur: for each 1% increase in airpport traffic it is
estimated that there will be a corresponding 5% increase in delays (Schaefer et al., 2005).

As a motivation for our work we can refer to Shavell (2000), who studies the economical impact of
schedule disruptions on airline companies.

For general surveys on airline scheduling in the recovery perspective, we refer to (Kohl et al., 2004)
and to (von Aarburg and Buchard, 2005), who give an overview of the literature on airline scheduling
and discuss different approaches to cope with irregular events, going from re-optimization to online
algorithms.

Wei et al. (1997) introduce a recovery method for crew management based on a multi-commodity
integer network flow and also develop a heuristic branch-and-bound search algorithm. The originality of
this work lies in the business-like criteria the built solution has to meet: the recovered solution has to
be as close to the actual schedule as possible, i.e. there is an upper bound on the number of modified
pairings, the number of impacted flights etc.
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In his thesis, Sojkovic (1998) introduces three approaches to solve the Day of Operation Scheduling

problem (DAYOPS ). The first method consists of regenerating a new flight schedule without changing the
rest of the schedule. The Second approach allows modifications of aircraft itineraries, crew rotations and
the planned schedule. Optimization is done separately for aircrafts, pilots and flight attendants. The last
approach is based on the Benders decomposition to separate the initial integral multi-commodity flow
formulation and solves the resulting problems using the Dantzig-Wolfe formulation by branch-and-bound.

Yu et al. (2003) introduce a decision aid algorithm (CALEB) they tested on data of Continental
Airlines. They tested their algorithm on probably the worst day ever for aviation, namely the 11th of
September 2001. They show impressive results on how fast the return to normal schedule is achieved
when such a severe disruption happens. The estimated savings for the 9/11 is up to $29, 289, 000, almost
half of it coming from the avoided flight cancellations.

Rosenberger, Schaefer, Golldsman, Johnson, Kleywegt and Nemhauser (2003) present a stochastic
model to model the uncertainty that occurs in the schedule. The stochastic model is a discrete event
semi-Markov process. The authors restricted only to independent random events, not taking into account
that a severe climatic perturbation could extend on several airports, for example.

Kohl et al. (2004) give a survey of the previous work on airline scheduling and schedule recovery
approaches. They also develop a crew solver and describe a prototype of a multiple resource decision
support system (Descartes project), which includes independent algorithms to solve the plane recovery,
the crew recovery and the passenger recovery problems. The tests were run on data where small irreg-
ularities in a database of 4000 events were generated randomly, at most 10% of the flights were delayed
from 15 to 120 minutes.

Rosenberger, Johnson and Nemhauser worked on different aspects of the airline scheduling problem,
mainly in automated recovery policies. One of these projects (Rosenberger, Johnson and Nemhauser,
2003) is based on the aircraft rerouting problem when a schedule has to be recovered. They develop a
model that reschedules legs and reroutes aircrafts in order to minimize the rerouting and cancellation
costs. They also develop a heuristic to choose which aircraft to reroute, and discuss a model that
minimizes the crew and passenger disruption.

Teodorvić and Gubernić (1984) were the pioneers of the ARP. In their paper, given that one or more
aircrafts are unavailable, the objective is to minimize the total delay of the passengers by flight re-timing
and aircraft swappings. The algorithm is based on a Branch-and-bound framework where the relaxation
is a network flow with side constraints. At that time they only considered a small example of 8 flights.

The work of Teodorvić and Stojković (1990) is a direct extension of the previous work. The authors
considered both aircraft shortage and airport curfews and they tried to minimize the number of canceled
flights, with a secondary objective of minimization being the total passenger delay if the number of
cancellations is equal. A heuristic based on dynamic programming has been proposed to solve the
problem. No experiments are reported.

Several articles published by S. Yan are related to the same underlying model which is a time-line
network in which flights are represented by edges. The network has position arcs corresponding to
potential shortage of an aircraft. The possibility of flight re-timing is modeled by several arc copies. In
Yan and Lin (1997) only a small instance of 39 flights is solved. In Yan and Tu (1997) the authors solved
bigger instances, up to 273 flights, within a small optimality gap and below 30 minutes of computation.
Papers, Yan and Yang (1996) and Yan and Young (1996) are strictly related to the previous ones.

Jarrah et al. (1993) used two separate approaches to the ARP: cancellation and re-timing. The
data is modeled with a time-line network and three methods are reported: The successive shortest path
method for cancellations, and two network flow models for cancellations and re-timings. The possibility
of swapping aircrafts is taken into account. Instances with three airports with considerable air traffic are
presented with several disruption scenarios.

In Argüello et al. (1997) and Argüello et al. (2001) the authors used a time-band model to solve
the ARP. In the first article the authors proposed a fast heuristic based on randomized neighborhood
search. The second article presents an optimization based heuristic based on an integral minimum cost
flow on the time-band network. Furthermore, the method proved to be effective for some medium-sized
instances up to 162 flights serviced by 27 aircrafts.

An extension to the network model of Argüello et al. (1997) has been presented by Thengvall et al.
(2000). The authors presented a model in which they penalize in the objective function the deviation
from the original schedule and they allow human planners to specify preferences related to the recovery
operations. Computational results are presented for a daily schedule recovery of two homogeneous fleets
of 16 and 27 aircrafts. Disruption scenarios have been simulated grounding one, two or three planes.

The literature lacks of contributions in which the maintenance operations are considered as variable.
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In Stojković et al. (2002) the authors considered the maintenance constraints and provided a real time
algorithm that doesn’t affect any routing decision. Only Sriram and Hagani (2003) considered mainte-
nance and routing decisions together but aircraft maintenance checks can be performed only during the
night. In an unpublished report, Clarke (1997) enforces the satisfaction of maintenance requirements
within a given time slot but, in the computational experience, all the flights were constrained to be
operated either on time or with 30 minutes delay or canceled, restricting drastically the choice set of the
algorithm and thus the overall complexity of the problem.

3 A Column Generation based Algorithm for the Recovery Prob-

lem

3.1 The Airplane Recovery Problem

We will focus on the airplane recovery problem (ARP), which restricts to the technical part of the
schedule (in opposition to the human part), i.e. to the plane routes and the maintenances. The aim is
to find a way to get back to the initial schedule by delaying or canceling flights or to reassign them to
other planes (plane swappings), given a planned schedule and its disrupted state. The objectives are to
both minimize costs (in terms of delay and cancellation costs) and makespan. The makespan is the time
needed to recover the initial schedule and we will thus refer to it as the recovery period from now on.

It is a common approach, for multi-objective optimization, to fix a threshold on an objective and
to optimize the other. We will thus solve ARP by optimizing the recovery costs given a fixed recovery
period and solve the problem iteratively. This decision has been motivated by practitioners: it is usually
appreciated to have several recovery scenarios based on different recovery periods.

We introduce the ARP with a small example. In Figure 1 we have a schedule S for planes p1 and
p2. At time 0905, when p1 lands in AMS, it comes up to knowledge that an unplanned maintenance
has to be performed on p1 because of problems incurred during the landing phase. It is known that this
maintenance will take 2 hours and we are now in a situation of disruption because the schedule S cannot
be performed as planned (p1 cannot take off to MIL at 1000, it will be ready for take off at 1105). Thus
we have an ARP where the initial state for p1 is represented by the tuple [AMS,1105], the initial state for
p2 is [AMS,0930] and, given that we want to recover the disrupted situation by the evening (T = 1800),
we have two final states [BCN,1800] and [GVA,1800].

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F6 AMS BCN 1120 1430

Figure 1: The original schedule for two planes

In this small example a possible recovery plan is to swap the affectation of flights F2, F3 and F4 to
plane p2 and of flight F6 to plane p1 with the recovery schedule of Figure 2.

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905 (1105)
F6 AMS BCN 1120 1430

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Figure 2: A recovered schedule for two planes
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The complexity of considering simultaneously the Fleet Assignment Problem and the Plane Routing
Problem with explicit consideration of technical complicating constraints (maintenances) makes the
problem even harder to slolve than usual ARP, which is already NP-hard. Nonetheless their combined
solution is taking more and more interest in applications as pointed out in some recent AGIFORS
conferences, see Challenges to growth 2004 Report (2004) and Scheidereit (2006). Maintenances are very
important for safety and are thus subject to very complex rules. The usual way to deal with these
constraints is to elaborate easier and more restrictive rules that ensure all constraints are satisfied. A
common rule is to enforce maintenance after a given number of flown hours or after a certain number of
take offs and landings. In a more general sense, we will consider that there are some resources that are
consumed along the time and that are renewed by the maintenances.

The solution of the ARP requires to reassign aircrafts to flights in order to minimize the recovery
costs obeying the operational constraints on the maintenances. Each scheduled flight has either to be
served by an aircraft or canceled. The cost of a recovery plan is determined considering the costs related
to cancellations, delays, aircraft swappings and maintenances. The original schedule should be recovered
within a given horizon such that the maintenance requirements and aircraft type at the end of the
recovery period are compatible with the originally planned schedule.

To model the maintenance requirements for an heterogeneous fleet we need to define a set of resources
for each aircraft. Each resource is consumed during the operations and renewed during the maintenances.
An upper bound on each resource consumption is used to trigger the need for a maintenance.

In the next paragraph we introduce the network we use to compute a feasible link between an initial
state and a final state. Each plane has its own network given its initial state and the set of final states
that are compatible with it. We call this link the recovery scheme for the plane.

3.2 The Recovery Network

We introduce an extension of the time-space network model inspired by Argüello et al. (2001) that
includes the plane maintenances and we will describe a generation and a preprocessing algorithm to
control the size of the network in terms of nodes and arcs. We will provide some parameters that are
close to the scheduler’s feelings which will be exploited in the generation phase. Note that we have an
independent recovery network associated to every plane p ∈ P.

In the time-space network, a point corresponds to a unique state given by it’s time and space at-
tributes. In our case, we represent time vertically and space horizontally. The space axis represents the
discretized airport’s locations and the time axis is continuous. Then a schedule of a plane in a time-space
network is a set of nodes corresponding to the take-off times at corresponding airports, that are linked
by so called flight arcs. Figure 3 illustrates the schedule of the plane given in Figure 1.

GVA AMS MIL BCN

0830

1000

1200

1415

1445

Figure 3: Schedule of plane p1 in Figure 1 in a time-location network model

The node is located at the take off time and the flight arcs include the grounding time at destination
airport until the plane is ready for the next taking off. In this way we avoid grounding arcs, i.e. vertical
arcs. For this reason, instead of creating one node at the landing time at, for example, [AMS, 0905] and
one at take-off time at [AMS,1000] that we would have to link by a grounding arc, we directly link [GVA,
0830] to [AMS, 1000] without any loss of generality.
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Given an initial schedule for a plane and a disruption, the aim of the recovery network is to consider
all possible ways to modify the plane’s schedule in order to get back to the initial schedule at the end
of a given time period which we call the recovery period. This is represented by a set of expected (thus
known) final states for each plane. For this reasons we will introduce different types of nodes and arcs
in order to keep tractability of the information in the recovery network.

Since the initial state of every plane is known, we introduce a (unique) source node corresponding to
the location and first availability time of the plane. The initial state records the information about the
resource consumption associated with the plane.

The recovery period length, T , is iteratively fixed and we know where the planes must be at T . We
create a sink node at every time-space location where the plane is candidate to proceed with the initial
schedule after T . Since we do not restrict every plane to recover it’s initial schedule, we might allow
plane swappings. Sink nodes are also used to model resource requirements at the end of the recovery
period. Given that the remaining part of the schedule after time T is fixed, it is known how much of the
resources will be consumed before the next maintenance operation. Thus in the sink nodes we store the
amount of the resource potential needed to operate the remaining schedule.

Intermediate nodes are time-locations where the plane is ready to take off after having (potentially)
performed a flight. The particularity of a node is that it is only a transition state the plane can visit.
Each node is labeled with the earliest departure time (edt) of a flight at that location.

Thus we have three type of nodes: sources, sinks and nodes and four arc types: flight, maintenance,
termination, and maintenance termination.

A flight arc is the same as the flight arcs of a schedule: it contains the flight time and the grounding
time. Note that, as we might have some waiting time at the departure airport, the flight arc also
includes this supplementary grounding time. A maintenance arc is similar to a flight arc, except that we
perform a maintenance before proceeding the flight. Flight and maintenance arcs can leave from both a
source or a node, but must end at a node, i.e. they cannot end at a sink. Termination arcs link nodes
(including eventually the source) to sinks. A termination arc is never associated to a flight but only
to eventual grounding time. A maintenance termination arc could be needed to accomplish with the
resource potential required at the sink node.

Figure 4 shows how the different nodes and arcs are represented.

Source

Node

Sink

Flight Arc

Maintenance Arc

Termination Arc

Maintenance

Termination Arc

Figure 4: Characterization of the different nodes and arcs

We have attributes linked to arcs. Namely, the flight they correspond to, the flight time, the flight
cost, the scheduled departure and landing times and the cancellation cost. For a maintenance arc, we
store in addition the maintenance duration and cost.

We also associate a cost to every arc type as follows:

• flight arcs: cost = cF + cD, the flight cost plus the delay cost,

• maintenance arcs: cost = cF + cM + cD, the sum of the flight cost, the maintenance cost and the
delay cost,

• termination arcs: cost = 0,

• maintenance termination: cost = cM, the maintenance cost.
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The delay cost cD is associated to a delayed departure. Usually, the cost of a delay is measured
linearly with a time unit delay cost which is estimated around 72 Euros per minute.

Finally arcs encode the resource consumption incurred when traversing them. Maintenance arcs are
particular: resource are renewed, that is they are set at their maximal potential, when maintenance arcs
are traversed but at an additional cost in terms of maintenance and delay.

Recovery Network Generation The generation of every plane’s recovery network assumes as given
all the following information:

• the set of planes P,

• the set of airports A,

• the set of flights Fp that can be flown by plane p ∈ P,

• the set of activity slots Oa for airport a ∈ A,

• the set of maintenance slots Ma for airport a ∈ A,

• the delay cost per time unit cd
unit

,

• the initial state n0
p of plane p ∈ P (time-location and initial resource consumption),

• the expected final states nfinal
p coverable by plane p ∈ P (time-location and resource potential),

The set of planes P and the initial state n0
p for each plane are used to model plane disruptions such

as unavailability or plane delay or eventual reserve planes. Moreover unpredicted aircraft maintenance
can be modeled using the resource potential in the initial state. The activity slots oa ∈ Oa are used
to model airport closure disruptions. Maintenance slots are used to model the time windows and the
locations in which maintenance can take place.

Algorithm 1 shows the dynamical structure of the generation algorithm, thus the networks’ expo-
nential behavior with respect to the size of the flight sets Fp. The way nodes and arcs are created is
described in the Table 1.

Algorithm 1 Recovery Network Generation

Require: Set P of planes, set Fp of coverable flights, initial states n0
p and set Nfinal

p of final states ∀p ∈ P

1: for p ∈ P do

2: INITIALIZATION: Create source node [a0, t0], set Np = {[a0, t0]}

3: while | Np |> 0 do

4: Select node [a, t] ∈ Np

5: for f ∈ Fp where a is the departure of f do

6: if FeasibleForFlightArc([a, t], f) then

7: n = CreateFlightArc([a, t], f)

8: set Np ← Np ∪ n

9: end if

10: if FeasibleForMaintArc([a, t], f) then

11: n = CreateMaintenance([a, t], f)

12: set Np ← Np ∪ n

13: end if

14: end for

15: for nfinal
p ∈ Nfinal

p where a is the airport of nfinal
p do

16: if FeasibleForTermArc([a, t], nfinal
p ) then

17: CreateTermArc([a, t], nfinal
p )

18: end if

19: if FeasibleForMaintTermArc([a, t], nfinal
p ) then

20: CreateMaintTermArc([a, t], nfinal
p )

21: end if

22: end for

23: Set (Np ← Np \ [a, t])

24: Sort Np by increasing time
25: end while

26: end for
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Tables 2 and 3 give an overview of the different constraints that must be satisfied in each function
(parametrized constraints are labeled by (P)).

CreateFlight([a, t], f) Given depart node [a, t], computes the destination node n =

[a ′, t ′] and the flight arc [a, t]; [a ′, t ′], where a ′ is destination
airport, and t ′ is the earliest departure time at airport a ′. To
compute this, first compute edtf, the earliest departure time
for the flight f according to the activity slots and the scheduled
departure time sdtf, then t ′ = edtf + df + minTurnTimea ′ .

CreateMaintenanceArc([a, t], f) Similar to CreateFlight([a, t], f), it computes the mainte-
nance time and the cost of the maintenance arc.

CreateTermArc([a, t], nfinal
p ) Given depart node [a, t], it creates the termination arc

([a, t];nfinal
p ).

CreateMaintTermArc([a, t], nfinal
p ) Given depart node [a, t], it creates the maintenance termina-

tion arc ([a, t];nfinal
p ). By convention, the first available main-

tenance slot is used.

Table 1: Functions used is Algorithm 1

FeasibleForFlightArc([a, t], f) The flight arc can only be created if flight is actually departing
from airport a and if feasible departure and landing times are
available at airports a and a ′. The following constraints are
checked:

• ∃ oa ∈ Oa such that max{sdtf, t} ≤ endoa

• ∃ oa ′ ∈ Oa ′ , edt ∈ oa such that edt + df ∈ oa ′

• delay ≤ τ

• edtf − t ≤ ψ

where τ and ψ are representing the maximal delay bound and
the maximal waiting bound respectively.

FeasibleForMaintArc([a, t], f) The maintenance arc can only be created if there is a mainte-
nance slot available at airport a. tM is the starting time of the
maintenance if feasible, i.e. if we find a feasible departure time
for take-off in a and landing in a ′. The following constraints
are checked:

• ∃ ma ∈Ma such that t ≤ endma

• ∃ oa ∈ Oa such that max{sdtf, t
M + dm} ≤ endoa

• ∃ oa ′ ∈ Oa ′ , edt ∈ oa such that edt + df ∈ oa ′

• delay ≤ τ, where τ

• edtf − t− dm ≤ ψ

where τ and ψ are the same as defined in
FeasibleForFlightArc([a, t], f).

Table 2: Feasibility functions for flight and maintenance arcs used is Algorithm 1

We introduce another example, a disruption in the schedule of Figure 1 for plane p1. We assume that
it cannot take-off before 0900 at GVA because of an unplanned maintenance. We thus create a source
at [GVA,0900] and apply Algorithm 1, with Fp being the set of flights Fp = {F1, F2, F3, F4}, [GVA, 1630]
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FeasibleForTermArc([a, t], nfinal
p ) A termination arc can be created between [a, t] and the

sink node nfinal
p if the airports are matching and if the

expected time is not yet reached. A parameter Ω is used
to bound the grounding time needed to reach the sink
from [a, t].

• t ≤ expTime(nfinal
p )

• t− expTime(nfinal
p ) ≤ Ω

where Ω is the grounding time bound

FeasibleForMaintTermArc([a, t], nfinal
p ) Similarly a maintenance termination arc can be created

between [a, t] and the sink node nfinal
p if there is a main-

tenance slot available.

• ∃ ma ∈Ma such that t ≤ endma

• t ≤ expTime(nfinal
p )

• t− expTime(nfinal
p ) ≤ Ω

where Ω is the grounding time bound defined in
FeasibleForTermArc([a, t], nfinal

p )

Table 3: Feasibility functions for termination and maintenance termination arcs used is Algorithm 1

the unique sink. Airports are all in an activity slot and there is only one maintenance slot in GVA, with
maintenance duration dm = 1h. The recovery network obtained is shown in Figure 5.

GVA AMS MIL BCN

0900

1030

1230

1445

1515

1130

1545

1630

F1

F1

F2

F2

F3

F3

F4

F4

1300

Figure 5: Recovery network of plane 1 of Figure 1 with initial state at [GVA, 0900].

Given the recovery network, we have three possible ways to recover the schedule: either we perform
the initially scheduled flights but with a delay of one hour on each. We might also perform a maintenance
before flight F1 and then fly all the flights, delaying this way all the flights by two hours. Finally, we can
stay at GVA to go directly to the sink an thus cancel all the flights. Note also that there is no maintenance
termination arc from [GVA,1545] as there is no time to perform maintenance before reaching the sink.

Recovery Network Preprocessing Algorithm 1 introduced previously behaves exponentially with
the number of flights. We propose to check feasibility with respect to resource consumption in order to
reduce the size of the network. Moreover we compute upper and lower bounds on individual resource
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consumption. We take, as an example, the resource related to the number of flown hours since last
maintenance. In a feasible schedule for a plane we cannot perform more than a given amount of fly hours
between two consecutive maintenances.

We can compute a lower and upper bound on the resource consumption using an unconstrained
shortest and longest path algorithm, respectively. Given an upper limit H to the flown hours and the
corresponding lower bound hmin it is possible to erase an arc from the network if hmin + df > H where
df is the duration of the flight f.

Since it is unlikely to be optimal to perform a maintenance, i.e. reset the resource consumption
to zero, when the consumed resource is low, we introduce a parameter α that represents the minimal
resource consumption before maintenance. This additional parameter allows us to exploit the upper
bound on the resource consumption computed so far: when the hmax < αH, all the maintenance arcs
leaving the node are removed from the network.

We compute also a shortest path with respect to the resource consumption hsink

min
from a sink to every

node, which corresponds to the minimal consumption needed to reach the sink. Thus, if hsink

min
+hmin > H,

there is no feasible path from the source to the sink going through this node. We maintain a list of
reachable sinks for every node. If this list is empty at a node because of resource consumption we remove
the node as well as all its ingoing and outgoing arcs.

Finally we remove all nodes (except the source) that have no predecessor and all nodes (except the
sinks) that have no successor, as they are not leading to any feasible recovery scheme for plane p.

3.3 Applying Column Generation to the Recovery Problem

Given the recovery network for each aircraft the recovery plan turns out to be an integer minimum cost
flow through the aircraft’s network with elementarity constraints on the covered flights. A flight arc with
positive flow is then considered in the recovery solution. Single-plane recovery plans must be combined
together to obtain a minimum cost recovery plan for the set of scheduled flights such that each flight is
either serviced by exactly one plane or canceled.

Let F be the set of flights, P the set of planes, S the set of expected final states, and Ω the set
of all possible single-plane recovery plans. We can model the ARP as a set partitioning problem with
additional constraints (MP) as follows:

min zMP =
∑

r∈Ω

crxr +
∑

f∈F

cfyf (1)

∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (2)

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (3)

∑

r∈Ω

bp
r xr ≤ 1 ∀p ∈ P (4)

xr ∈ {0, 1} ∀r ∈ Ω (5)

yf ∈ {0, 1} ∀f ∈ F (6)

Each recovery plan r has a cost cr and is associated with a binary variable xr that equals one if the
recovery plan is taken into the solution, 0 otherwise. A recovery plan is described by the binary constants
bf

r, b
s
r and bp

r . Those constants take value one if the plan r covers the flight f, ends with the expected
final state s and is serviced by plane p, respectively. A binary variable yf is associated with each flight
and it equals one if the flight f is canceled with cancellation cost cf. Constraints (2) ensure that each
flight is either serviced or canceled. The feasibility of the already planned schedule at the end of the
recovery period is ensured by constraints (3). Constraints (4) ensure that an aircraft can be assigned at
most to one recovery plan. (5) and (6) enforce the integrality constraints on the variables.

Since the dimension of the set Ω is exponential in the dimension of the problem, we consider a
smaller set of recovery plans, Ω ′ and we solve the linear relaxation of the so obtained restricted problem
(LRMP). We then recourse to column generation either to prove the optimality of the linear problem
or to generate new profitable recovery plans to enter the formulation. If the optimal solution of the
restricted master problem is not integral we recourse to an enumeration tree where, at each node, we
take branching decision on the flight arcs.
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Given the optimal solution of the linear restricted master problem, z∗LRMP, the column generation
algorithm needs to solve a pricing problem to compute the recovery plan r with minimum reduced cost
for each aircraft p. The reduced cost is computed considering the dual variable λf associated with each
flight f, the dual variable related to the final states ηs and the non-positive dual variable µp of the plane
p as follows:

c̃p
r = cp

r −
∑

f∈F

bf
rλf −

∑

s∈S

bs
rηs − µp ∀p ∈ P

If a column with c̃p
r < 0 exists it is added to the LRMP otherwise the LP optimality is proved. A

pricing problem needs to be solved for each aircraft on its own recovery network, i.e. we need to solve a
Resource Constrained Elementary Shortest Path Problem (RCESPP) on the recovery network for each
plane. Thus in the reminder we will omit index p.

The dual variables λf and ηs can be taken into account in the recovery network by adding them to
the flight and termination arcs, respectively, as follows:

• flight arcs: cost = cF + cD − λf

• maintenance arcs: cost = cF + cM + cD − λf

• termination arcs: cost = −ηs

• maintenance termination: cost = cM − ηs

Thus possibly leading to negative cost arcs. Variable µp is a constant and it is not considered when
solving the pricing problem.

Resource Constrained Elementary Shortest Path Problem By updating the arc costs as de-
scribed above, solving the pricing problem resumes to solve a resource constrained elementary shortest
path problem (RCESPP) in each recovery network. The optimal column is the one having least reduced
cost of the | P | columns obtained (one for each plane). Indeed, the cost of the shortest path will be the
reduced cost. Moreover, resource consumption assures feasibility according to maintenance requirements,
whereas elementarity is set on flights, ensuring one flight is covered at most once by a feasible column.

To solve the RCSPP for each recovery network, we use the algorithm proposed by Righini and Salani
(2006). The idea of the algorithm is to create labels associated to nodes, which hold a feasible partial
path to reach the node. If several labels are active at the same node, it is possible to eliminate some
labels that are dominated, i.e. that we know that they cannot lead to the optimal path. In our case, one
label at node i is given by the vector (R,C, i), where R is the vector of remaining resources before next
maintenance at this stage of the partial path and C its cost. We say that label (R ′, C ′, i) is dominated
by label (R,C, i) at node i if and only if:

• Rk ≤ R ′

k, ∀k,

• C ≤ C ′,

• at least one of these equalities is strict.

If a label is not eliminated by domination, it will be extended through all feasible arcs (i, j) to a new
label at node j. The optimal solution is the label with lowest cost at the sinks.

Flight legs are duplicated on the recovery network to optimize delays thus the elementarity of the
recovery scheme is not ensured by cost minimization. To enforce elementarity, we use the idea introduced
by Beasley and Christofides (1989), by adding a dummy resource vector L, where Lf is one if flight f is
covered, and 0 otherwise. Thus, an arc (i, j) corresponding to a flight that was already covered by the
partial path (L, R, C, i) will not be feasible for label extension. The disadvantage is that the domination
rules must be extended by adding following rule for (L, R, C, i) to dominate (L ′, R ′, C ′, i):

• Lf ≤ L ′

f, ∀f ∈ F

For more details on RCESPP, we refer to the Decremental State Space Relaxation (DSSR) technique
that has been recently introduced by Righini and Salani (2005).
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4 Computational Results

The data used in the instances comes from Thomas Cook Airlines (TC), one of APM’s major customer.
TC is a medium size airline relying on a heterogeneous fleet of 30 aircrafts and operating around 500
flights a week. We used the original schedules of may 2006 and derived several disruption scenario classes
as described below:

• Size of the fleet (both homogeneous and heterogeneous): 5 and 10 aircrafts;

• Width of the recovery period: 1 to 7 days;

The size of the flight set to be served derives directly from the above two dimensions and in our instances
varies from 40 to almost 250 flights.

As we were only given the original schedule without any information about disruptions, we first solved
the original problem without any disruption to check we actually get the original, thus optimal, schedule.
We then generated manually some disruptions as follows:

• delaying a plane: availability of plane is later than expected;

• grounding a plane: the plane is never available during the whole recovery period;

• close airport: activity slots of an airport do not cover the whole recovery period;

• force maintenance: initial resource consumption is set too high not to perform a maintenance.

We will present the results in details for the original schedules and some small disruptions, i.e. plane
delays, in a qualitative way in order to get a feeling of the solvable instances. We then present the results
of a generated set of instances derived from an original schedule. We will also discuss the impact of the
parameters on the solution quality and finally present the added value of considering maintenances when
solving the recovery scheme on some selected instances.

4.1 Implementation Issues

The algorithm has been implemented in C++ exploiting BCP, an open source framework implementing
a Branch&Cut&Price algorithm, provided by the Computational Infrastructure for Operations Research
(COIN-OR) project (http://www.coin-or.org). Test were run on a computer with a 2GHz processor
and 2GB memory.

As discussed in Section 3.3, a pricing subproblem must be solved for each plane of the fleet to prove
LP optimality. It is a common practice in column generation algorithms to solve the pricing problem
heuristically in the earlier iterations of the CG process in order to produce quickly negative reduced cost
columns and then to prove LP optimality by solving each pricing problem to optimality. We obtained
three pricing heuristics as follows: we relaxed the domination criteria introduced in the previous section
while keeping the elementarity constraint for the produced paths, we bounded the number of active labels
for each node, and we combined the two relaxations to obtain a fast pricing heuristic. Moreover, we
added to the master problem all the new columns with negative reduced cost we found in the heuristic
phase to accelerate the convergence of the column generation, useless columns are then removed from
the LP by reduced cost fixing.

Following the approach of Argüello et al. (2001), we used time and resource discretization in order
to control the size of the networks and the number of labels generated by the RCESPP. For the time
discretization, we merged all nodes at same location within a time window, whose width is given as
a parameter, into one single node. In order not to discard any feasible solution, we kept a time label
corresponding to the earliest time the node is reached. This time is then used to determine whether a
flight arc should be created or not. Notice that by doing so, we might overestimate the true delay cost,
but when extending the labels during the RCESPP, we can update the cost as exact arrival time is then
known. This parameter has been introduced for practical reasons: a high value for time discretization
reduces drastically computing time and gives to the planner a qualitative feedback on the recoverability
of the schedule.

The same principle is used for resource consumption, but extended with a logarithmic discretization
scale. Indeed, it is unlikely to be optimal to perform a maintenance on a plane that has low resource
consumption, i.e. that has still potential for flights. For this reason, it is more important to distinguish
more precisely the resource consumption close to the full potential rather than on low level. This
procedure is used in order to make resource consumption less restrictive for small consumptions in the
domination criteria of labels in RECESPP.
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At the time we are writing this contribution, we produced an optimization based heuristic where we
solve the root node to optimality with the column generation algorithm we described above, which gives
a valid lower bound, and then we find an integer solution by branching on columns without generating
any more columns.

4.2 Recovery schemes

Solvable Instances We extracted initial schedules from TC’s schedule of mai 2006 and simulated some
disruptions using delays or forced groundings. The name of the instance is related to its size: xD_yAC,
where x is the number of days considered in the recovery period and y is the number of aircrafts.

Table 4 shows the size of the instances we are able to solve and the needed computation time. We used
only slightly disrupted instances and as the data did not provide any information about maintenances,
we simply supposed no maintenance was needed. We see that the small disruption introduced in instance
2D_5AC_1del is recoverable within 2 days. For this reason, instances with same disruption but considering
more days or more planes will have the same recovery decisions, namely cancel two flights, and delay
another four by the same amount.

Moreover, notice that for small disruptions, i.e. when schedule can be carried out almost as scheduled
initially, the algorithm solves the problem within a second on the root node. Only bigger instances
required branching, which drastically increases the computation time, as shown by the two last instances.
We also mention here that with the set of parameters we used to solve the instances, instance 7D_16AC

failed because of too high memory consumption. The results presented for this instance were obtained
with more restrictive parameters on delay and on inactivity time.

Instance 2D_5AC 2D_5AC_1del 2D_10AC 2D_10AC_1del 2D_10AC_2del

# planes 5 5 10 10 10
# flights 38 38 75 75 75

# delayed planes 0 1 0 1 2
# cancelled flts 0 2 0 2 2
# delayed flts 0 4 0 4 5

total delay [min] 0 969 0 969 989
max delay [min] 0 370 0 370 370

cost 380(*) 21175(*) 750(*) 21545(*) 21745(*)
tree size 1 1 1 1 1

run time [s] < 0.1 < 0.1 0.7 0.7 1.0

Instance 3D_10AC 4D_10AC 5D_5AC 5D_10AC 7D_16AC

# planes 10 10 5 10 16
# flights 113 147 93 184 242

# delayed planes 0 0 0 0 0
# cancelled flts 0 0 0 0 0
# delayed flts 0 0 0 0 11

total delay [min] 0 0 0 0 310
max delay [min] 0 0 0 0 45

cost 1130(*) 1470(*) 930(*) 1840(*) 5600
tree size 1 1 1 5 2033

run time [s] 3.0 6.5 1.0 29.1 3603

Table 4: Results for some instances, costs followed by (*) are proven to be optimal

Generating Disruptions We tested the behavior of the algorithm on 12 different disrupted instances
obtained from an instance with 10 planes and 36 flights during one day. The instance is a hub and spoke
situation where all the planes start and end at Denver. Disruption scenarios consider either delayed
planes only, grounded planes only, a mix of delayed and grounded planes or airport closure(s).

The instances Den_3x100 and Den_1x300 simulate a closure of the hub airport, i.e. Denver. In the
first instance, Denver airport is closed during three periods of 100 minutes, with a gap of 100 minutes
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between each closure. The second instance simulates a longer closure of 300 minutes in a row. We also
tried to simulate a storm affecting several local airports. In instance Den_Storm1, four airports are closed
for 300 minutes, and is instance Den_Storm2, the same airports are closed 500 minutes.

Table 5 shows the results of the algorithm applied to the different instances. The first two lines report
the number of delayed and grounded planes, respectively. The third line reports on the number of flights
directly involved by the disruption without any forecast on the propagation of the disruption to other
flights, thus it represents the minimum number of flights on which the planner must take a recovery
decision.

Instance Den2del Den2grd Den4del Den4grd Den2del2grd Den6del Den6grd

# delayed planes 2 0 4 0 2 6 0
# grounded planes 0 2 0 4 2 0 6
# affected flights 1 4 3 8 5 5 16
# cancelled flts 0 2 0 8 4 0 16
# delayed flts 1 4 7 2 7 13 2

total delay 10 920 230 380 490 640 380
max delayed flight 10 275 85 200 200 100 200

cost 36100(*) 83200(*) 38300(*) 163800(*) 84900(*) 42400(*) 251800(*)
tree size 1 1 1 1 1 41 1
run time 0.7 0.5 0.6 0.3 0.5 1.6 0.2

Instance Den3del3grd Den_3x100 Den_1x300 Den_Storm1 Den_Storm2

# delayed planes 3 0 0 0 0
# grounded planes 3 0 0 0 0
# affected flights 9 11 7 3 6
# cancelled flts 6 0 4 0 0
# delayed flts 12 11 11 6 6

total delay 950 675 2560 350 1550
max delayed flight 200 90 385 140 340

cost 127500(*) 42750(*) 125600(*) 39500(*) 51500(*)
tree size 1 1 35 1 3
run time 0.4 0.3 0.8 0.5 0.5

Table 5: Results for different disruption scenarios. Affected flights is the number of flights affected
directly by the disruption without any propagation.

For the plane disruptions, the general behavior shows that a grounded plane incurs more often flight
cancellations than a plane delay, which follows intuition. The mixture of both delays and groundings
combines the two effects, inducing both delays and groundings. This is a direct consequence of the
network’s density, meaning that if there are not enough available planes, there is no time to reschedule
the flights later.

In general, we see that the bigger the number of directly affected flights, the higher the delay or
cancellation rates, except for the two Denver closure scenarios. Even though instance Den_3x100 has
more affected flights, the solution is better than for Den_1x300. The explanation is that the closure is
splitted and covers more take offs and landings at Denver, but the slots between closures allow planes
to leave and start rotations from Denver to then land and take off at airports that are not affected by
Denver’s closure. This is not possible before the whole 300 minutes closure are over in Den_1x300. We
see from Table 5 that the closure of the hub airport has, as expected, dramatic impact due to delay
propagation. Surprisingly, for the storm instances, all the flights could be covered but only by inducing
huge delays.

These different instances allowed us to derive some informations about the algorithm’s behavior
against increasingly severe disruptions. Unfortunately, at the time being, we are not able to provide a
direct measure of the quality of the solutions against any benchmark, neither through a human planner
or another optimization algorithm.
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Parameter’s influence We do not provide detailed results about the influence of the presented pa-
rameters. Although they influence a lot on the computation time, their impact on the solution depends
strongly on the instance itself. We tested several instances with different disruption types. The delay and
maximum waiting time bounds are drastically decreasing computation time. The quality of the solution
is not affected as long as the bounds are higher than a certain threshold corresponding to the highest
delay of all the planes at the beginning of the recovery period for the delay bound, and to the maximal
grounding time between two flights for the maximal waiting time.

One sensitive parameter is the estimated delay cost per minute. This parameter controls the delay
limit before deciding to cancel a flight. The lower the delay cost, the more the algorithm tries to cover
all the flights regardless of the produced delay. On the other way, if delay cost is high, the recovery plan
will avoid as much as possible delays, canceling more flights if necessary. Since our approach does not
consider repositioning flights, a single cancellation rarely occurs alone.

Finally, we used a parameter that allows to brake a plane’s rotation inducing a cost, or disallow plane
swappings. If this parameter is set to disallow rotation breaks, then either the whole rotation is canceled
or kept. In the data provided by the airline the rotations are usually formed by a succession of two to
three flights. It is worth to mention that the cost of a solution where rotation are enforced is an upper
bound for the solution with possible swappings when the rotation breaking cost equals zero. For high
breaking costs the solution will tend to stay close to the initial solution, meaning that avoiding a flight
cancellation is not worth many plane swappings.

Influence of maintenance scheduling To show the added value of optimizing maintenances we
considered two instances of 36 and 147 flights, respectively. For an illustration, we consider the first
small instance with 10 planes and 36 flights. The situation is a hub and spoke network where all the
planes start and end at Denver. For this reason, we allow maintenance only at Denver, at any time in
the recovery period. One plane, with ID P42, has a high resource consumption at the beginning of the
recovery scheme (88%).

Without allowing any maintenance, plane P42 performs only the smallest rotation, and is then
grounded for the rest of the period. By doing so the solution has 2 delayed flights and total delay
of 450 minutes.

A common approach is then what we called dummy maintenance algorithm where maintenances are
fitted only when nearly all the resource are consumed. To do so, we simply fix the minimal resource
consumption ratio to a high value, in the experiment we fixed it at 90%. The solution given by this
algorithm is however better than the previous one. This solution still has two delayed flights, but the
total delay is reduced to only 30 minutes, which is a huge saving compared to the 450 minutes if no
maintenance is possible.

Finally, our algorithm allows forecasting of maintenances and place them with more flexibility. By
setting the minimum consumption ratio to 0, P42 has now the possibility to perform maintenance at the
beginning of the recovery period and by doing so, no flight is delayed at all.

The presented instance is made up artificially to show the behavior of the algorithm. We thus
generated an instance derived from the instance 4D_10AC with 10 planes and 147 flights. We allowed
maintenances at half of the airports and generated the initial resource consumption randomly around
60% of its maximal value. Solution summary is shown in Table 6.

Instance No maintenance Dummy maintenance Maintenance optimization
# cancelled flts 57 2 0
# delayed flts 9 2 2

total delay [min] 546 61 79
max delay [min] 191 34 50

cost 339195 13310(*) 5760(*)
tree size 5 1 1

run time [s] 8.8 30.5 47.0

Table 6: Results for maintenance optimization

If we do not allow maintenance at all, we have a massive flight cancellation: 57 flights are canceled.
There are also 9 delayed flights with total delay of 546 minutes and a solution cost of $338’913. This is
the extreme case, although no planner would recur to this solution.
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With the dummy algorithm, the solution performs better, canceling two flights and delaying two
others by a total time of 61 minutes. The solution cost reduces to $13’310.

Finally, our algorithm manages to cover all the flights, delaying only two flights by a total of 79
minutes and a cost of $5’760. Note that the solution has higher delay than the previous one, which is
acceptable since no flights where canceled. Maintenances are thus accommodated smartly within the
recovery scheme to obtain an overall better solution.

We see from this example that considering maintenances is not only necessary in order to ensure
feasibility of the recovery scheme, but the more freedom given to the maintenance scheduling, the better
the solution will be, saving, in our case, more than 50% of the solution cost.

5 Conclusions and Future work

In this paper we presented an airline schedule recovery algorithm based on column generation. The
proposed algorithm arose from a collaboration, financed by the swiss government within the fund for
technology transfer (CTI), between EPFL and APM Technologies. We considered the aircraft recovery
problem and we proposed an algorithm where aircraft technical constraints (maintenances) are fulfilled
and their placement within the aircraft schedule optimized. We detailed a column generation scheme
based on a multicommodity network flow model, where each commodity represents a plane, a dynamic
programming algorithm to build the underlying networks and a dynamic programming algorithm to solve
the pricing problem.

Since this is an ongoing project, several issues should be refined and extended. In particular:

• the proposed algorithm must be validated against a wider set of instances, even though real-world
cases are more difficult to obtain and to analyze, in particular when the set of disruptions must be
collected during the day of operations.

• although almost all the instances where solved at the root node, a branching scheme, thus a full
Branch&Price algorithm, is needed to obtain a proven optimal solution.

• from a modeling point of view, the proposed algorithm does not consider all the possibilities a
human planner does. We intend to add to the network generation algorithm the possibility to
include positioning flights.

The authors would like to acknowledge Alberto De Min and Viet Dang, from APM Technologies, for
their support.
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tion on Networks.

Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for
the elementary shortest path problem with resource constraints, Discrete Optimization 3(3): 255–
273.

Rosenberger, J., Johnson, E. and Nemhauser, G. (2003). Rerouting aircraft for airline recovery, Trans-

portation Science 37(4): 408–421.

Rosenberger, J., Schaefer, A., Golldsman, D., Johnson, E., Kleywegt, A. and Nemhauser, G. (2003). A
stochastic model of airline operations, Transportation science 36(4).

Schaefer, A., Johnson, E., Kleywegt, A. and Nemhauser, G. (2005). Airline crew scheduling under
uncertainty, Transportation Science 39(3): 340–348.

Scheidereit, H. C. (2006). The costs of delays & cancellations, m2p consulting, AGIFORS Operations
Conference.

Shavell, Z. A. (2000). The effects of schedule disruptions on the economics of airline operations, Technical

report, The MITRE Corporation.

Sojkovic, G. (1998). Gestion des Avions et des Equipages durant le Jour d’Opration, PhD thesis, Universit
de Montral.

Sriram, C. and Hagani, A. (2003). An optimization model for aircraft maintenance scheduling and
re-assignment, Transportation Research Part A 37: 29–48.
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