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Abstract 

Path Flow Estimator (PFE) is a one-stage network observer proposed to estimate path 
flows and hence origin-destination (O-D) flows from traffic counts in a transportation 
network.  Although PFE does not require traffic counts to be collected on all network 
links when inferring unmeasured traffic conditions, it does require all available counts to 
be reasonably consistent.  This requirement is difficult to fulfill in practice due to errors 
inherited in data collection and processing.  The original PFE model handles this issue 
by relaxing the requirement of perfect replication of traffic counts through the 
specification of error bounds.  This method enhances the flexibility of PFE by allowing 
the incorporation of local knowledge, regarding the traffic conditions and the nature of 
traffic data, into the estimation process.  However, specifying appropriate error bounds 
for all observed links in real networks turns out to be a difficult and time-consuming 
task.  In addition, improper specification of the error bounds could lead to a biased 
estimation of total travel demand in the network.  This paper therefore proposes the 
norm approximation method capable of internally handling inconsistent traffic counts in 
PFE.  Specifically, three norm approximation criteria are adopted to formulate three Lp-
PFE models for estimating consistent path flows and O-D flows that minimize the 
deviation between the estimated and observed link flows. A partial linearization 
algorithm embedded with an iterative balancing scheme and a column generation 
procedure is developed to solve the three Lp-PFE models. In addition, the proposed Lp-
PFE models are illustrated with numerical examples and the characteristics of solutions 
obtained by these models are discussed. 
 

Keywords: Origin-destination estimation, path flow estimator, stochastic user 
equilibrium, norm approximation, partial linearization method. 
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1. INTRODUCTION 

Path Flow Estimator (PFE) originally developed by Bell and Shield (1995) is one of the 
efficient methods for estimating path flows (hence origin-destination (O-D) flows) from 
traffic counts.  The attractiveness of PFE lies on the fact that it is a single level 
mathematical program in which the interdependency between O-D demand and route 
choice behavior (congestion effect) is taken into account without the need to employ the 
bi-level mathematical program (one level estimates the O-D trip table while the other 
represents the behavioral responses of network users).  Network users are assumed to 
follow the stochastic user equilibrium (SUE) assumption, which allows the selection of 
non-equal travel time paths due to the imperfect knowledge of network travel times and 
yields unique path flow estimates.  Besides, PFE can perform the estimation using traffic 
counts collected only on a subset of network links.  Nevertheless, these available counts 
must be reasonably consistent or constitute a consistent system of linear constraints.  
This requirement is difficult to fulfill in practice due to the errors involved in data 
collection and processing.  If the system of linear constraints is inconsistent, there may 
not exist any feasible path flow solution that is able to reproduce all traffic counts 
exactly.  This is one source of the inconsistency problem while the other is caused by the 
capacity constraints used to restrict the estimated link flows on the unobserved links.  It 
is often observed that the total observed flows entering node is greater than the capacity 
of all exiting links combined or vice versa.  In such conditions, no feasible path flow 
solution is able to satisfy both observation and capacity constraints at the same time. 
 
The original PFE model handles the inconsistency problem by allowing user-specified 
error bounds (i.e., confidence interval) on the traffic counts.  A more reliable traffic 
count would constrain the estimated link flow within a smaller tolerance, while a less 
reliable traffic count would allow for a larger deviation.  This method enhances the 
flexibility of PFE by allowing the user (e.g., an experienced traffic engineer who is 
familiar with the network conditions) to incorporate local knowledge about the network 
conditions to the estimation process. However, specifying appropriate error bound for 
every single traffic count in a network of realistic size could be very laborious.  One 
could set a uniform error bound (e.g., a default value of 10% error) across all 
observations, but this setting might be too loose for the more reliable traffic counts and 
too tight for the less reliable traffic counts.  In addition, setting a uniform error bound 
could lead to biased estimates of the O-D demand.  Typically, the total travel demand of 
the study area is biased downward due to the minimization of the objective function 
used in the PFE model (Chootinan et al., 2005a). 
 
Although several preprocessing procedures (Van Zuylen and Branston, 1982; Kikuchi et 
al., 2000) have been proposed to remove the inconsistency problem among traffic counts 
prior to the O-D estimation process, it might be more appealing to let the mathematical 
program to handle this task by itself since the inconsistency of traffic counts is a natural 
part of the O-D estimation problem.  Jornsten and Wallace (1993) formulated an 
unconstrained stochastic program to simultaneously maximize the entropy objective 
function and to minimize the expected deviation between the observed and estimated 
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link flows.  The requirement of exact replication of the traffic counts was relaxed and 
explicitly incorporated into the entropy objective function as a penalty term.  Similarly, 
Sherali et al. (1994) proposed a linear PFE model in which two sets of non-negative 
artificial variables are included into the observation constraints to account for the 
positive and negative deviations of the link flow estimates from the traffic counts.  These 
artificial variables are concurrently minimized while solving for the deterministic user 
equilibrium (DUE) path flow pattern.  Instead of considering the deviations of link flow 
estimates directly, Van Aerde et al. (2003) incorporated the first-order necessary 
conditions of the generalized least squares (GLS) model into the maximum likelihood 
framework.  The first-order necessary conditions were included directly into the 
objective function as a penalty term to obtain an unconstrained maximum likelihood 
model, which determines the most likely trip table that produces link flow estimates with 
the least deviations (similar to least squares) from traffic counts. 
 
In this paper, we propose using the norm approximation method to internally handle the 
inconsistent traffic counts within the nonlinear PFE model proposed Bell and Shield 
(1995). Three deviation criteria (i.e., L∞ norm, L1 norm, and L2 norm) for approximating 
a solution of unsolvable (inconsistent) system of linear equations (i.e., constraint set) are 
considered in formulating three Lp-PFE models.  The organization of this paper is as 
follows. Section 2 provides the formulations of three Lp-PFE models. Section 3 
describes a solution procedure for solving the proposed Lp-PFE models. Section 4 
provides numerical results to demonstrate the applicability of the proposed models. 
Finally, concluding remarks are provided in Section 5. 
 

2. MODEL FORMULATIONS 

In this study, we propose a method to internally handle inconsistent traffic counts within 
the nonlinear PFE model proposed Bell and Shield (1995).  Due to measurement errors 
inherited in traffic counts, there may not exist a path flow solution that can reproduce all 
traffic counts exactly; however, if measurement errors are allowed in the estimation, a 
path flow solution may be found to match all traffic with different degrees of deviation 
between the estimated and observed link flows.  This path flow pattern is usually 
associated with some estimation errors given by: 

M       , ∈∀−= ∑∑ afv
rs k

rs
ka

rs
kaa δψ , (1) 

where 
M: Set of links with traffic counts; 

av : Observed flow on link a; 
rs

kf : Estimated flow on path k connecting origin r and destination s; 
rs
kaδ : Path-link indicator: 1 if link a is on path k between origin r and destination s, 

and 0 otherwise; 
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ψa: Error associated with the selected path flow pattern fails to satisfy the 
observed flow on link a. 

 
Intuitively, the best approximate path flow pattern is the solution that keeps such 
deviation as small as possible.  However, there are several ways to define the deviation 
Lp norm defined below. 

p

a

p
ap

/1

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

∈M

Ψ ψ . (2) 

In practice, three different norms (i.e., different p values) - namely the L∞, L1, and L2 
norms - are considered for evaluating the approximate solutions.  They constitute the 
criteria that aim to (i) minimize the maximum absolute error (p⇒∞), (ii) minimize the 
average absolute error (p=1), and (iii) minimize the average squared error (p=2), 
respectively.  The question as to which criterion should be adopted is not trivial and 
depends upon, for examples, the nature of errors causing the inconsistency problem, the 
required characteristic of the approximate solution, etc.  As discussed by Chvatal (1983), 
minimizing the L1 norm leads to the most robust approximate solution.  Here, the 
robustness is defined by the insensitivity to the outliers (e.g., flawed data).  Minimizing 
the L∞ norm, on the other hand, tends to minimize gross discrepancies between the 
observed and adjusted values (e.g., accommodate all the data points as much as 
possible), thus it is quite sensitive to the outliers (i.e., less robust).  Lastly, minimizing 
the L2 norm can be shown to be suitable for the applications in which the errors causing 
the inconsistency tend to be small and follow the normal distribution. Using the above 
norm approximations, we develop three modified Lp-PFE formulations to determine the 
stochastic user equilibrium (SUE) path flow pattern that minimizes the estimation errors.  
 

2.1 L∞ Approximation 
Let us consider the maximum absolute error defined below. 

{ aa
}ψψ

Mo Max
∈∀

= . (3) 

Since ψo is the maximum absolute error among all observations, the following condition 
must hold. 

M       ,oo ∈∀≤−≤− ∑∑ afv
rs k

rs
ka

rs
ka ψδψ . (4) 

A feasible path flow solution can be defined by two inequalities in Equation (4), which 
represents the lower and upper limits of the estimated link flow. One can view the 
maximum absolute error (ψo) as a flow on the virtual path, which traverses through all 
measured links.  It plays the role of setting the boundaries acceptable for the link flow 
estimates.  Since the virtual path does not really exist, intuitively it should not be used 
very often.  In addition, flow on the virtual path should be small, but large enough to 
ensure the existence of a feasible path flow solution.  Hence, the modified L∞-PFE 
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formulation is to search for a SUE path flow pattern that produces a link flow pattern 
within the maximum absolute error as follows. 
 

Minimize: oooo0
)1(ln1)1(ln1)( ψρψψ

θθ
+−+−+= ∑∑∑∫∞

rs k

rs
k

rs
k

a

x

aL ffdwwtZ a  (5a) 

subject to: 

 M       ,o ∈∀−≥ avx aa ψ , (5b) 

 M       ,o ∈∀+≤ avx aa ψ , (5c) 

 U   , ∈∀≤ aCx aa , (5d) 

 A   , ∈∀=∑∑ afx
rs k

rs
ka

rs
ka δ , (5e) 

 RS   , ∈∀= ∑
∈

rsfq
rsKk

rs
krs , (5f) 

 , (5g) RS,   , 0 ∈∈∀≥ rsKkf rs
rs

k

 0o ≥ψ , (5h) 

where 
U: Set of links without traffic counts; 
A: Set of links in the network, A = M∪U; 
RS: Set of O-D pairs; 
 Krs: Set of paths connecting O-D pair rs; 
θ: Dispersion parameter; 
ρo: Penalty cost; 

ax : Estimated flow on link a; 

aC : Capacity of link a; 
)(⋅at : Travel time function of link a; 

rsq : Estimated flow of O-D pair rs. 
 
The objective function (5a) of the modified L∞-PFE formulation is to minimize the travel 
costs and path entropies for both physical and virtual paths.  The entropy of the virtual 
path is treated in the same manner as those of the physical paths while the travel cost of 
the virtual path is treated as a penalty term.  The penalty cost (ρo) should be chosen 
judiciously such that the maximum deviation is minimized.  Equations (5b) and (5c) 
define the lower and upper limits of the estimated link flows, respectively.  These two 
constraints restrict the estimated link flows (derived from the physical path flow 
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estimates) to be within the boundaries defined by the traffic counts and the maximum 
absolute error (ψo).  For the unobserved links, the estimated link flows are constrained 
not to exceed their capacities defined by Eq. (5d). Equations (5e) and (5f) are 
definitional constraints to obtain link flows and O-D flows from the path flow solution. 
Equations (5g) and (5h) ensure the non-negativity of both physical and virtual path 
flows. 
 

The Lagrangian function of the modified L∞-PFE formulation and its first partial 

derivatives with respect to path-flow variables can be expressed as follows: 

  

)(                         

)(                         

)(),,,,(
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Ma rs k

rs
ka

rs
kaa

Ma rs k

rs
ka

rs
kaaL
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δ

ψδ

ψδll duf

, (6) 
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∂
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rs
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rs
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k

duxtf
f
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a
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a uL
lρψ

θψ
. (8) 

The optimality conditions lead to the analytical expressions of flows for both physical 
paths and virtual path as follows: 

  (9) RS,  ,))()((exp ∈∈∀⎟
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⎠

⎞
⎜
⎝

⎛
−+−= ∑

∈Ma
aa u ))((exp oo lρθψ , (10) 

where la, ua, and da are the dual variables of constraints (5b), (5c), and (5d), 
respectively.  The values of ua and da are restricted to be non-positive while the value of 
la must be nonnegative.  la and ua can be viewed as the corrections in link costs, which 
bring the estimated path flows into agreement with the observed link volumes.  da is 
related to link delay when the estimated link flow reaches its capacity. 
 

2.2 L1 Approximation 
In the L1 approximation, instead of using only one virtual path to absorb the residuals of 
all link flow estimates, there are as many virtual paths as the number of observed links.  
In other words, there is one virtual path for each observation.  Likewise, there is one cost 
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penalty for each estimation error (ρa), which reflects the reliability (confidence) of each 
observation. It should be noted that the L1 norm gives the mean absolute error (MAE) 
commonly used as a statistical measure to evaluate the closeness of link flow replication. 
Hence, the modified L1-PFE formulation is to search for a SUE path-flow pattern that 
produces a link flow pattern with the minimum MAE as follows. 
 

Minimiz ∑∑∑∑∑∫
∈∈

+−+−+=
MM

0
)1(ln1)1(ln1)(

1
a

aa
a

aa
rs k

rs
k

rs
k

a

x

aL ffdwwtZ a ψρψψ
θθ

(11a) 

subject to 

 M       , ∈∀−≥ avx aaa ψ , (11b) 

 M       , ∈∀+≤ avx aaa ψ , (11c) 

 U   , ∈∀≤ aCx aa , (11d) 

 A   , ∈∀=∑∑ afx
rs k

rs
ka

rs
ka δ , (11e) 

 RS   , ∈∀= ∑
∈

rsfq
rsKk

rs
krs , (11f) 

 , (11g) RS,   , 0 ∈∈∀≥ rsKkf rs
rs

k

 M       ,0a ∈∀≥ aψ . (11h) 

Following the same derivation as the modified L∞-PFE formulation above, the solution 
to the L1-PFE formulation is given by: 

 , (12) RS, ,))()((exp ∈∈∀⎟
⎠

⎞
⎜
⎝

⎛
+++−= ∑∑∑

∈∈∈

rsKkduxtf rs
Ua

rs
kaa

Ma

rs
kaaa

Aa

rs
kaaa

rs
k δδδθ l

 ( ) Mauaaaa ∈∀−+−=      ,)(exp lρθψ . (13) 

As can be seen above, the analytical expression of path-flow estimates of the L1-PFE 
formulation, Eq. (12), and of the L∞-norm formulation, Eq. (9), are exactly the same, 
although the analytical expressions of their virtual paths are different.  Besides the 
difference in the number of virtual paths, the single virtual path flow in the L∞-norm 
formulation is controlled by the magnitude of all dual variables for all observation 
constraints, while each virtual path flow in the L1-norm formulation is controlled by the 
magnitude of two dual variables of each observed link: the lower and upper limits (la 
and ua).  These dual variables represent the difficulty in replicating each observed link 
volume, reflecting the magnitude of flow on each virtual path (i.e., residual). 
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2.3 L2 Approximation 
Similar to the L1 approximation, the L2 norm is also a statistical measure known as the 
root mean squared error (RMSE). The modified L2-PFE formulation is to search for a 
SUE path flow pattern that produces a link flow pattern with the minimum RMSE as 
follows. 
 

Minimize ∑∑∑∑∑∫
∈∈

+−+−+=
M

2

M
0

)1(ln1)1(ln1)(
2

a
aa

a
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(14a) 

subject to 

 M       , ∈∀−≥ avx aaa ψ , (14b) 

 M       , ∈∀+≤ avx aaa ψ , (14c) 

 U   , ∈∀≤ aCx aa , (14d) 

 A   , ∈∀=∑∑ afx
rs k

rs
ka

rs
ka δ , (14e) 

 RS   , ∈∀= ∑
∈

rsfq
rsKk

rs
krs , (14f) 

 , (14g) RS,   , 0 ∈∈∀≥ rsKkf rs
rs

k

 M       ,0a ∈∀≥ aψ . (14h) 

 
The first partial derivatives of the Lagrangian function of the modified L2-PFE 
formulation with respect to path-flow variables can be expressed as follows: 

 0)(ln10 =−−−+⇒=
∂
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 02ln10 =+−+⇒=
∂
∂
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uL
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θψ
, (16) 

These optimality conditions lead to the analytical expressions of flows on the physical 
paths and the virtual paths as follows: 
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∈∈∈

rsKkduxtf rs
Ua

rs
kaa

Ma

rs
kaaa

Aa

rs
kaaa

rs
k δδδθ l



TRISTAN VI, 10-15 June 2007, Phuket Island, Thailand 
 

 9

 ( ) Mauaaaaa ∈∀−+−=      ,)2(exp lψρθψ . (18) 

Similarly, the analytical expression of path-flow estimates of the L2-PFE formulation, 
Eq. (17), is the same as those of the L1-PFE formulation, Eq. (12), and the L∞-norm 
formulation, Eq. (9).  In terms of the expression of the virtual paths in Eq. (18), it is 
quite different. In the L2-PFE formulation, ψa appears on both sides of the equation due 
to the quadratic penalty term in the objective function. However, it can be solved 
numerically in an iterative solution procedure to be discussed in the next section. 
 

3. SOLUTION PROCEDURE 

The modified Lp-PFE formulations presented above can be solved by the partial 
linearization method (Evans, 1976; Patriksson, 1994).  The method consists of two 
major steps: (i) a direction finding and (ii) a line search.  In the direction-finding step, 
certain part of the objective function is linearized.  The solution to the partial linearized 
subproblem defines a feasible direction.  The line search step determines how far the 
current solution should move in the feasible direction. These two steps are iterated until 
convergence is reached. A column generation is also implemented to avoid path 
enumeration for a general transportation network.  
 
Consider the modified Lp-PFE formulations presented in Section 2 without the 
definitional constraints in vector form as follows. 

 )()()(        Minimize fff
f

GPZ +=  (19a) 

subject to 

 , vf∆ ≥1 vf∆ ≤2 , Cf∆ ≤3 , and , (19b) 0f ≥

where f is a solution vector to the problem, , (i.e., flows on both 
physical and virtual paths); v is a vector of observed link volumes, C is a vector of link 
capacities; 0 is a vector of zeros; ∆

,...),....,(..., a
rs

kf ψ=f

1, ∆2, and ∆3 represent the coefficient matrices of the 
left-hand side of the constraint set; P(f) (i.e., travel cost and penalty terms) is the part of 
the objective function to be linearized while G(f) (i.e., entropy terms for both physical 
and virtual paths) is the remaining part of the objective function. 
 
Suppose at iteration n-1, a feasible path flow is given. P(f) is linearized, which amounts 
to assuming that the travel costs are fixed at their current values. The resulting 
subproblem defined the search direction is given by 

  (20a) )()(        Minimize 1 hhffh
GP Tn +∇ −

subject to:  
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 , vh∆ ≥1 vh∆ ≤2 , Ch∆ ≤3 , and , (20b) 0h ≥

where  is the derivative of P with respect to f evaluated at iteration n-1. This 
subproblem is a nonlinear program with linear inequality constraints and can be solved 
by the iterative balancing scheme used in the original PFE model for right angle cost 
functions (Bell and Shield, 1995; Bell et al., 1997). 

)( 1−∇ nP ff

 
Given the brief descriptions above, the solution procedure can be summarized into the 
following steps: 
 
Step 0 (Initialization): Generate an initial feasible path flow solution, f1. 
 Set . sradux rsaaaa ,,K,A,0 00000 ∀∅=∈∀==== l
 Set iteration counter: n = 1. 
 Determine the shortest path for all O-D pairs based on free-flow travel time: 

srk n
rs ,, ∀ . 

 Update path set: .,,KK 1 srk n
rs

n
rs

n
rs ∀∪= −  

 Solve the following partial linearized subproblem, (20a) and (20b), for 
: ,...),...,(..., a

rs
kh τ=h

)()0(        Minimize hhfh
GP T +∇  

subject to: , vh∆ ≥1 vh∆ ≤2 , Ch∆ ≤3 , and . 0h ≥
The above partial linearized subproblem is solved using the iterative balancing 
scheme (see Chootinan (2006) for details).  Besides the primal variables (h), the dual 
variables, (…, la, …, ua, …, da, …), are also available.  Set 

 a
n
aa

n
aa

n
a dduu === ,,ll

 Set f1 = h, and update link flows: ∑∑=
rs k

rs
ka

rs
k

n
a nfx δ)( . 

 
Step 1 (Column Generation):  
 Set iteration counter: n = n + 1. 

 Update link costs: ( ) A,~ 1111 ∈∀−−−= −−−− aduxtt n
a

n
a

n
a

n
aa

n
a l . 

 Determine the shortest path for all O-D pairs based on n
at

~ : srk n
rs ,, ∀ . 

 Update path set: .,,KK 1 srk n
rs

n
rs

n
rs ∀∪= −  

 

Step 2 (Direction Finding): Solve the following partial linearized subproblem for h, 
)()(        Minimize 1 hhffh

GP Tn +∇ −  

subject to: , vh∆ ≥1 vh∆ ≤2 , Ch∆ ≤3 , and . 0h ≥
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Step 3 (Line Search): Solve the following one-dimension optimization problem for an 
optimal step size (φ). 

))((     Minimize 11

]1,0[

−−

∈
−⋅+ nnZ fhf φ

φ
 

 
Step 4 (Solution Update): 
 Update path flows:  )( 11 −− −⋅+= nnn fhff φ

 Update link flows: ∑∑=
rs k

rs
ka

rs
k

n
a nfx δ)( . 

 
Step 5 If a convergence criterion (e.g., maximum change of the path-flow solution 
between two consecutive iterations is less than a predetermined threshold) is met, stop; 
otherwise, go to Step 1. 
 

4. NUMERICAL EXAMPLES 

4.1 Problem description 
To illustrate the application of the modified Lp-PFE formulations in handling 
inconsistency among traffic counts, a simple grid network is used to study the solution 
properties as well as the characteristics of the different Lp-PFE models.  The grid 
network depicted in Figure 1 consists of 9 nodes, 14 unidirectional links, and 9 O-D 
pairs.  Nodes 1, 2, and 4 are origin nodes while nodes 6, 8, and 9 are destination nodes 
(all shaded nodes in Figure 1).  For this network, there are a total of 33 paths, all of 
which will be included in the estimation.  
 

1 2 3

4

7

5

8

6

9

1

2 3 (108)

4

5 (495) 6 (82)

7 (236) 9 (285)

8 10 (390) 12

13 (296) 14

11 (70)
At node 5,
Inflow: 108+495+236 = 839
Outflow: 285+390+70 = 745

 
 

Figure 1 Grid network and observed link volumes 
 
The characteristics of the grid network at the link level are summarized in Table 1 (see 
also Yang et al. (2001b)).  For demonstration purpose, it is assumed that the true O-D 
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trip table is available as shown in Table 2.  In addition, this trip table is used to 
synthesize the observed traffic volumes according to the logit-based SUE model with a 
dispersion parameter of 1.50.  Since the first set of traffic counts reported in Table 1 is a 
direct result of the logit-based SUE model, they are consistent (i.e., satisfy the 
conservation of flows at all intermediate nodes).  To create inconsistency in traffic 
counts, it is assumed that the observed traffic volumes are independent Poisson variates 
with means and variances equal to the link volumes in Set 1.  The second set of traffic 
counts (also see Table 1) is one instance (sample) generated according to this 
assumption.  Observed traffic volumes are assumed available only on links 3, 5, 6, 7, 9, 
10, 11, and 13 (8 out of 14 links).  Links 6, 9, 10, 11, and 13 were selected to intercept 
the total demand from all origins to all destinations (see Yang et al. (1991), Yang and 
Zhou (1998), Yang et al. (2001a), Bierlaire (2002), Chen et al. (2005), and Chootinan et 
al. (2005a) for a discussion on selecting traffic counts to observe the total demand).  
Three additional links (links 3, 5 and 7) are included to create nodal-inconsistency at 
node 5 (see Figure 1).  
 

Table 1: Link characteristics of grid network and observed link volumes 

Node Link
From To

Capacity Free-flow 
travel time

SUE link flow 
(Set 1)

Observed link 
flow (Set 2)

1 1 2 280.00 2.00 124 -
2 1 4 290.00 1.50 137 -
3 1 5 280.00 3.00 109 108
4 2 3 280.00 1.00 77 -
5 2 5 600.00 1.00 467 495
6 3 6 300.00 2.00 77 82
7 4 5 500.00 2.00 212 236
8 4 7 400.00 1.00 295 -
9 5 6 500.00 1.50 303 285

10 5 8 700.00 1.00 400 390
11 5 9 250.00 2.00 85 70
12 6 9 300.00 1.00 50 -
13 7 8 350.00 1.00 295 296
14 8 9 220.00 1.00 165 -

  

Table 2: True O-D trip table of grid network 

From/To 6 8 9 
1 120 150 100 
2 130 200 90 
4 80 180 110 
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In this study, two statistical measures, root mean squared error (RMSE) and mean 
absolute error (MAE) defined below, are considered for assessing the accuracy of link 
flow estimates: 

 ∑
∈

−=
M

2)(
|M|

1RMSE
a

aa vx , (21) 

 ∑
∈

−=
M

||
|M|

1MAE
a

aa vx , (22) 

where |M| is the number of link observations (size of set M), xa and va are the estimated 
and observed flows on link a, respectively.  Further note that this study adopts the 
standard Bureau of Public Road (BPR) function as the link travel time function:  

 , (23) ))/(15.01( 4
aa

f
aa Cxtt ⋅+⋅=

where  is the free-flow travel time on link a. f
at

 

4.2 Setting of Experiments 
To examine how the original PFE model and the modified Lp-PFE models resolve the 
inconsistency problem of traffic counts, six experiments using the observed volumes in 
Set 2 are considered.  Experiments A, B, and C are designed to examine the effects of 
user-specified error bounds in the original PFE model.  Experiments D, E, and F are for 
the three proposed Lp-PFE models, which do not require the user-specified error bounds 
for the measured links. In experiment A, the user is assumed to know the exact errors for 
all measured links.  In other words, the user knows a set of consistent link volumes with 
the least deviation from the observed values.  Several criteria discussed earlier (e.g., L1 
norm or L2 norm) could be used to define such a deviation when preprocessing these 
inconsistent data.  The L1-norm criterion is used to determine the error bounds to obtain 
consistent link volumes for experiment A1 and the L2-norm criterion for experiment A2 
(see Table 3).  An optimal determination of a consistent set of link volumes (i.e., 
preprocessing method) involves solving a mathematical program that minimizes the 
deviation between observed and adjusted volumes subject to conservation of flows at 
intermediate nodes (Kikuchi et al., 2000).  It should be mentioned that the preprocessing 
method for PFE has to take the link capacity constraints (Equation 3) into account as 
well.  The reader may refer to Chootinan (2006) for the detailed descriptions of the 
preprocessing method employed in this study.   
 
In experiment B, the user is assumed to have a rough idea on the quality of traffic counts 
and uses the average error determined by the L2-norm criterion as the default error 
bound for all measured links (i.e., uniform error bound).  In fact, the minimum uniform 
error bound, which still results in a solvable system of equations, could be determined 
by the L∞-norm criterion.  The minimum uniform error bound used for this data set is 
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5.39 percent.  Experiment C examines the effect of mis-specified (i.e., unnecessarily 
large) error bound on the estimation results. 
 

Table 1 Consistent (preprocessed) observed link volumes for grid network 

L1-norm Criterion L2-norm Criterion 
Link Observation Consistent

flowa
Absolute 

Error % Error Consistent 
flowa

Absolute 
Error % Error

3 108 108.00 0.00 0.00 92.33 15.67 14.51
5 495 491.80 3.20 0.65 479.33 15.67 3.17
6 82 82.00 0.00 0.00 82.00 0.00 0.01
7 236 184.78 51.22 21.71 220.33 15.67 6.64
9 285 285.00 0.00 0.00 300.67 15.67 5.50

10 390 394.00 4.00 1.03 405.67 15.67 4.02
11 70 105.58 35.58 50.84 85.67 15.67 22.39
13 296 296.00 0.00 0.00 296.00 0.00 0.00

Average 9.28 Average 7.03
a - one pattern among many possibilities (non-unique) 
 
 

4.3 Handling Traffic Inconsistency with Different PFE Models 
Table 4 summarizes the estimation results of the experiments discussed in Section 4.2 by 
solving different PFE models.  Several numerical indices, for instance, two statistical 
measures (MAE and RMSE) of link-flow estimates, PFE objective value, and 
computational requirements, are provided for comparison purpose (see also Figure 2 for 
a graphical comparison of these measures).  Table 5 also provides the estimation of 
individual O-D demands and total demand for each of the six experiments.  With a 
proper setting of the error bounds, the original PFE model can perform the estimation 
quite well.  A well performance here is indicated by the ability to produce a close 
estimation of observed link volumes (quantified by MAE and RMSE) and the ability to 
capture the total demand of the network.  As expected, in experiment A1 when the error 
bounds were determined by the L1-norm criterion, the MAE of link-flow estimates is 
minimized (compared to all other cases being discussed later).  On the other hand, when 
the L2-norm criterion is used as in experiment A2, the RMSE of link-flow estimates is 
minimized instead.  In both experiments (A1 and A2), the total demand estimate do not 
deviate much from the true value (1,160 units) despite that the estimated demands of 
individual O-D pairs are quite different from the known values (see Table 5).  This 
characteristic (i.e., the under-determinate nature) is common for the O-D estimation 
problem when only traffic counts (even on all network links) are used. 
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Table 4 Estimation results for the grid network 

No. of Iterations Experiment Max. Err MAE RMSE PFE Obj. Norm Obj.a Penaltyb

Total Main (n) Avg. Inner (m)

A1    51.22 11.75 22.12 5,967.29 - - 1,207 9 134

A2    15.67 11.75 13.57 6,007.24 - - 480 10 48

B (Avg. error) 34.80 15.07 18.69 5,792.24 - - 500 10 50

C1 (5.39%)    29.38 14.55 16.85 5,873.17 - - 564 12 47

C2 (10.0%)    
    

   

49.50 23.60 27.22 5,577.17 - - 296 10 30

C3 (12.5%) 61.88 26.56 31.63 5,401.02 - - 210 10 21

D (L∞-norm) 15.67 15.67 15.67 5,828.77 2,370.43 150.10 4,467 15 298

E (L1-norm)    45.49 11.75 20.38 5,711.35 1,216.68 11.27 5,441 19 286

F (L2-norm)    21.60 13.73 14.84 5,820.61 604.11 0.27 110,428 474 233

a – virtual path entropy term in the modified Lp-PFE objective function 
b – penalty parameter, ρ 
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Experiment O-D 
Pair 

Ref. 
Demand A1    A2 B C1 

(5.39%) 
C2 

(10.0%) 
C3 

(12.5%) D (L∞) E (L1) F (L2) 

(1,6)           120.00 47.42 45.42 46.12 48.30 41.35 40.20 44.81 35.94 43.11
(1,8)           150.00 84.56 80.40 84.42 84.03 84.36 81.74 79.14 68.16 77.37
(1,9)           100.00 49.07 42.36 42.45 42.71 41.76 40.88 41.99 32.73 39.93
(2,6)           130.00 203.01 205.60 191.58 198.82 175.34 170.47 193.40 206.00 198.29
(2,8)           200.00 193.12 192.03 192.59 190.61 194.50 188.29 191.97 195.25 191.61
(2,9)           90.00 150.45 137.07 126.84 127.59 124.83 122.17 134.42 131.26 132.99
(4,6)           80.00 49.65 61.87 59.86 62.82 53.37 51.89 61.87 58.15 60.51
(4,8)           180.00 288.73 303.71 291.58 293.09 285.90 277.51 291.97 299.68 296.41
(4,9)           110.00 96.57 101.53 96.01 96.81 93.89 91.73 99.09 95.85 98.38
Total 1,160.00          1,162.58 1,170.00 1,131.44 1,144.78 1,095.30 1,064.87 1,138.67 1,123.01 1,138.60

16

Table 5 O-D trip tables estimated by different PFE models 
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Figure 2 Statistical measures of link-flow estimates by different PFE models 
 

In experiment B when the average error is specified for all measured link flows (i.e., 
uniform error bound), the performance of the original PFE model deteriorates as indicated 
by the increased value of both statistical measures (MAE and RMSE) – link-flow estimates 
are farther away from the observed values.  Experiment C examines the effects of 
specifying different uniform error bounds for all measured links.  As mentioned earlier, the 
smallest uniform error bound required to resolve the inconsistency of this data set is 5.39 
percent (experiment C1).  If a smaller error bound (e.g., <5.39%) is used, there is no 
feasible solution.  When the uniform error bound (in the original PFE model) is set larger 
than 5.39 percent (see experiments C2 – 10% and C3 – 12.5%), there could be several 
feasible (consistent) link-flow patterns within the specified error bounds.  The original PFE 
model will select a path-flow pattern that gives the lowest objective value despite that the 
solution has a higher MAE/RMSE value (a lower quality of link flow replication).  This is 
reasonable because neither MAE nor RMSE is a quantity to be minimized in the original 
PFE objective function.  This phenomenon, as discussed earlier, will lead to the 
underestimation of the total travel demand.  That is, if the error bounds are specified too 
loose, the original PFE model will select a solution with a lower objective value (i.e., lower 
travel cost and path entropy), thus a lower total demand.  From Table 4 (among the three C 
experiments), it is also observed that PFE is likely to find a solution faster (e.g., less 
iterations) when the error bounds are large. 
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When the modified Lp-PFE models are applied to this data set, they are expected to resolve 
the inconsistency problem differently according to the criterion incorporated into the 
model.  As expected, in experiment D, the L∞-norm model can minimize the maximum 
error among all observations, the L1-norm model can minimize the average error (MAE) as 
in experiment E, and the L2-norm model can minimize the root mean squared error (RMSE) 
as in experiment F.  However, by comparing the results of experiments F and A2, they are 
quite different (i.e., RMSE in case A2 is lower than that in case F) even though they are 
based on the same criterion for handling data inconsistency (L2-norm).  This is due to the 
difficulty in setting the cost penalty (ρ) in the modified Lp-PFE models.  Basically, the cost 
penalty in the L2-norm model could not be increased to the level at which the RMSE will be 
minimal without causing any numerical difficulty (i.e., ill-conditioned problem).  Based on 
the results of the grid network, this issue only occurs with the L2-norm model because of 
the quadratic cost function (penalty term) in the modified objective function.  This 
explanation is supported by the computation required to solve the L2-norm model, which is 
generally higher than those required by the other models.  Among the three proposed Lp-
PFE models and the original PFE model with uniform error bounds, the L2-PFE model 
however gives the lowest RMSE (14.84), which indicates that such a modification still 
inherits the property of L2-norm criterion in handling the inconsistent traffic counts. 
 
Another observation is that experiments A1 and E obtain the estimations with the lowest 
MAE (11.75).  In both experiments, the L1-norm criterion is used either for preprocessing 
inconsistent data or for modifying the PFE formulation.  However, the detailed solutions 
(e.g., individual link flow estimates) obtained from both experiments are different (see also 
other indices in Table 4).  This observation is due to the non-uniqueness property of the 
mathematical formulation (linear program) for preprocessing traffic counts (Kikuchi et al., 
2000).  In other words, the predetermined error bound provided in Table 3 is one solution 
among many possibilities.  In general, the modified Lp-PFE models require a higher 
computational time to internally resolve the inconsistency problem of traffic counts.  Figure 
3 compares the link volumes estimated by different models.  The data points along the 45° 
line represent an accurate estimate while the data points under (above) this line represent an 
underestimate (overestimate) of the observed link volume. 
 
As can be seen, most of the link-flow estimates obtained by the L1-norm model lie almost 
exactly on the 45-degree line with the exception of a few data points while those obtained 
by the L∞-norm and L2-norm models cluster around the 45° line.  When unnecessarily large 
uniform error bounds (12.5%) are used in the original PFE model, a majority of the 
estimated volumes (6 out of 8 data points) lie on the lower limit (-12.5%), which results in 
a lower PFE objective value.  The distributions of link-flow estimates obtained by the 
modified Lp-PFE models are consistent with the characteristics of different norms discussed 
earlier.  Namely, the L1-norm model aims to reproduce most of the data points by 
disregarding a few points, which are sometimes believed to be outliers.  On the other hand, 
the L∞-norm and L2-norm models distribute the amount of underestimated and 
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overestimated flows (i.e., the number of data points below and above the 45° line) such that 
the maximum error and the RMSE are respectively minimized. 
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Figure 3 Comparison of link-flow estimates. 

 

4.3 Effects of an Outlier in the Observed Link Volumes 
This section is provided to investigate the effects of an outlier in the observed link volumes 
on the performance of the modified Lp-PFE models.  The observed traffic volume on link 3 
is intentionally perturbed from 108 units to 208 units to create an outlier in the observed 
link volumes.  The estimations using the proposed Lp-PFE models are repeated on this 
perturbed data set in which a high inconsistency of traffic counts is expected.  Figures 4, 5, 
and 6 compare the link volumes using the original and perturbed data sets estimated by the 
L∞-norm, L1-norm, and L2-norm models, respectively.  Figures 4a, 5a, and 6a respectively 
show the scatter plots of the observed and estimated link volumes of both data sets for each 
of the three Lp-PFE models. Figures 4b, 5b, and 6b further show how each model adjusts 
the estimated link volumes by link types surrounding node 5 (e.g., entry links, exiting links, 
and other links). As can be seen, each model has to redistribute the link-volume estimates 
in order to minimize the corresponding objective value (e.g., Max. error, MAE, or RMSE) 
in the presence of an outlier in the observed traffic counts. However, such a re-distribution 
is more pronounced in the L∞-norm and L2-norm models, but not in the L1-norm model.  As 
can be seen in Figures 5a and 5b, a majority of the link volumes (exit links of node 5 and 
other links) estimated by the L1-norm model remains unchanged.  The perturbed data point 

 19



20 

is regarded as an outlier and does not significantly affect the overall estimation of the L1-
norm model.  As mentioned before, the L1-norm model is insensitive to outliers. On the 
other hand, both L∞-norm and L2-norm models have to adjust the estimated flows on all 
observed links to accommodate the outlier to minimize the maximum error and RMSE, 
respectively. It should also be noted that even with a proper re-estimation, the indices of 
link-flow deviation (e.g., Max. error, MAE, or RMSE) become higher in all cases due to a 
higher degree of data inconsistency as shown in the figures. 
 

5. CONCLUDING REMARKS 

In this study, the PFE model was reformulated to internally resolve the inconsistency 
problem of traffic counts.  Three different criteria for defining the estimation errors, namely 
the L∞ norm, L1 norm, and L2 norm, were considered and incorporated into the PFE model.  
A partial linearization algorithm embedded with an iterative balancing scheme and a 
column generation procedure was developed to solve the modified Lp-PFE models. 
Numerical results indicate that the modified Lp-PFE models are capable of estimating trip 
tables that better reproduce the observed traffic volumes.  The advantage of the modified 
Lp-PFE models is that they do not require a consistent (preprocessed) data or user-specified 
error bounds for each individual observation. However, it does require the users to specify 
penalty parameters to internally handle the inconsistent traffic counts in the estimation.  
Ideally, the cost penalty has to be set as high as possible to minimize the estimation error.  
However, due to numerical difficulty (i.e., ill-conditioned problem), this cost penalty could 
not always be set at the level at which the estimation error will be minimized especially 
when the L2-norm criterion is considered.  In spite of this difficulty and a higher 
computational cost, the proposed Lp-PFE models generally perform better in terms of 
replicating the observed link volumes and eliminating the bias of underestimating the total 
demand in the origin PFE model. 
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(a) Scatter plot of all observed links with and without an outlier 
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(b) Change of estimated and observed link flows with and without an outlier by link types 

Figure 4 Effect of an outlier on the link-flow estimates obtained by the L∞-PFE model 
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(a) Scatter plot of all observed links with and without an outlier 
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(b) Change of estimated and observed link flows with and without an outlier by link types 

Figure 5 Effect of an outlier on the link-flow estimates obtained by the L1-PFE model 
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(a) Scatter plot of all observed links with and without an outlier 
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(b) Change of estimated and observed link flows with and without an outlier by link types 

Figure 6 Effect of an outlier on the link-flow estimates obtained by the L2-PFE model 
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