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Abstract

In the last decades, the increase of traffic and the limited capacity of urban networks,
led to the development of algorithms for traffic management and route guidance. GPS
technology can be used for fleet monitoring in urban or suburban areas and may pro-
vide useful information concerning the movement of all vehicles. Current route guidance
systems are simple from an algorithmic point of view, since they compute shortest paths
to the destination, but they have to deal with very large networks. For this reason, a
decentralized approach, in which each vehicle independently calculates its own route, is
desirable. Usually, the main drawback of this approach is the possibility that too many
vehicles choose the same route, thus causing oversaturation phenomena. Hence, to allow
path diversification, we propose a decentralized algorithm in which each vehicle computes
its own satisfactory route on the basis of (i) its specific settings and (ii) traffic information
provided by a reference station based on other vehicles forecasted routes.
Keywords: Shortest path, Intelligent Transportation Systems, Route Guidance.

1 Introduction

In the last decades, the increase of traffic and the limited capacity of urban networks, led
to the development of algorithms for traffic management and route guidance. Studies show
that an individual “blind” choice of routes leads to travel times that are between 6% and
19% longer than necessary [5]. Hence, the focus is on developing Intelligent Transportation
Systems that are capable of better managing existing capacity and encouraging more efficient
vehicle routing over time and space.

Many vehicles are equipped with route guidance systems (from now on, RG systems).
They guide the driver from the origin to the destination by visual and acoustic indicators and
allow to effectively exploit the network. In order to compute their routes, RG systems need
digital maps, the current position obtained by Global Position Systems (GPS), and possibly
up-to-date traffic data.

Unfortunately, many simulations predict that the benefits that can be obtained by using
RG systems can be lost once the number of equipped vehicles exceeds a certain threshold.
In fact, if the embedded algorithms minimize individual routes, the RG systems may cause
congestion by suggesting the same path to too many drivers. Thus, RG systems must take
into account the overall road usage to improve traffic management, avoiding oversaturation
phenomena [1]. This can be realized by providing the RG systems with multiple path routing
embedded algorithms in order to split vehicles over several paths ([13], [12], [11]). Different
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approaches have been proposed to deal with multiple path routing. Rilett and Van Aerde [9]
suggest adding individual random error terms to the road travel times by a central controller,
in order to lead each vehicle to choose different paths. Lee [6] computes k shortest paths
every ten minutes and then distributes vehicles over them every two minutes, considering the
current travel times on these paths.

Two other approaches consist in computing the system optimum and the user equilibrium.
When the interest is in minimizing the total travel time, the system optimum is computed.
Unfortunately, this policy may be penalizing for some vehicles since it may suggest unaccept-
able long paths, in order to route most vehicles on shorter paths. In fact, the main drawback
of this approach is that some vehicles may be unsatisfied and discouraged in using the RG
system. Möhring et al. [4] propose a constrained system optimum approach, where each
driver is routed along a path that is not too far from its normal length, being the normal
length of a path an appropriate measure in terms of time or distance.

The user equilibrium approach minimizes the individual journey time, routing vehicles
along paths, such that no vehicle can run a quicker path through the network by unilaterally
changing its choice [2].

The relation between the two approaches was investigated by Roughgarden and Tardos
[10], who show that the user equilibrium approach often proposes solutions far from the
minimization of the total optimum travel time of the system.

Here, we consider a hierarchical structure with two different levels: a high level, where
a reference station collects all information related to the traffic on the network and a local
level, represented by a set of vehicles connected to the reference station. Each connected
vehicle is provided with an Intelligent Traveler Information System (ITIS), a next generation
information device, capable of providing route guidance and/or traffic advice both pre-trip
and while en-route [1]. An ITIS can store and process information and take into account users
preferences.

We adopt a decentralized approach able to take decision based on partial information
when dealing with large amount of data. We propose a multiple path routing algorithm, in
which each vehicle computes its own route on the basis of (i) its specific settings reflecting
user’s preferences and (ii) traffic information provided by the reference station. Our aim is
to propose a solution that constitutes a good tradeoff between single users satisfaction and
global utilization of the network.

Regarding users satisfaction, reaching a destination by a fixed time horizon through a low
risk route might be more important than driving on the shortest path. For this reason we
introduce the concept of robust path, i.e. a route that offers alternative satisfactory paths.

The paper is organized as follows. In Section 2, we define the problem and its features and
in Section 3 we describe the proposed decentralized approach and the multiple path routing
algorithm based on the setting of two parameters for each user. The concept of robust path
and an algorithm for computing it are presented in Section 4. Finally, in Section 5, where
we briefly report on preliminary computational results and in Section 6 some conclusions are
drawn.

2 Problem Definition

We are given a urban network G and a set of vehicles U , equipped with an ITIS, that have
to drive in the network G. The urban traffic network can be represented by a directed graph
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G = (N, A), with two attributes on each arc a ∈ A: (i) the capacity ca > 0, in terms of
vehicles per time unit; (ii) a function ta that denotes the arc travel time depending on the
traffic on this arc xa. The most commonly used function for arc travel times is the one used
by the U.S. Bureau of Public Roads:

ta(xa) = t0a

(
1 + γ

(
xa

ca

)β
)

where t0a > 0 is the travel time of link a in the uncongested network and γ > 0, β > 0 and
ca > 0 are parameters to be set like suggested in [8].

The generic vehicle u ∈ U is associated with an origin ou and a destination du, where
ou, du ∈ N . We want to allow each vehicle to find its own satisfactory path to the destination
so that oversaturation phenomena are avoided. A path is satisfactory if it is close enough to
the shortest path. Obviously, the definition of “closeness” is not formal and strictly depends
on the user’s preferences. As we will see in the next section, to satisfy customers, each vehicle
computes indeed a shortest path on an individually perturbed network.

3 A decentralized solution approach

Multiple path routing algorithms should split vehicles over several paths according to each
driver preferences, otherwise one may be discouraged in using the RG system. Here, we
propose a decentralized approach in which each vehicle u computes its shortest path from the
origin ou to the destination du on the basis of global and individual parameters. The global
parameters are given by the reference station and are equivalent for all vehicles that have the
same origin and destination. These are the subnetwork Gu and the travel time tmin

a for each
link a: Gu contains the nodes and links of G involved in all candidate paths from ou to du;
the value tmin

a represents a lower bound on the travel time of link a, based on the current
traffic flow in the network.

The individual parameters perturb the data of the network involved in the computation
of a shortest path and regard:

• how to estimate an upper bound on the travel time of each link;

• how to balance the information regarding upper bounds and globally estimated travel
times of each link.

We next describe how the two individual parameters are calculated and used for the
shortest path computation.

3.1 Potential flow distribution methods

The potential flow represents all users that have not calculated and communicated their
individual route yet, but have already requested information on the traffic network, specifying
their origin o and destination d. These vehicles will soon contribute to the traffic flow of the
network and therefore an estimate of their effect is desirable. Specifically, we consider the
potential flow effects, by computing an upper bound on the travel time of each link of the
network that may be involved in the candidate (o-d) paths. This upper bound is also used to
individually alter links travel times as described in Section 3.2.
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Figure 1: Potential flow computation.

Each user can choose among three different methods to perturb the network, characterized
by different distributions of the estimated potential flow. The first individual parameter can
be set by selecting one of the following potential flow distribution methods:

• Potential flow in the sectors subnetwork. We divide the subnetwork Gu in different grid
sectors. The sectors are sized so that a fixed number of nodes belongs to the same
sector. Each vehicle u contributes to the potential flow in the subset of sectors Su in
the rectangular area containing its origin and its destination, as represented in Figure
1(a). Hence, the travel time of each link in G is opportunely increased by considering
the potential flow in every sector.

• Potential flow on the shortest path. Each vehicle u contributes to increase the travel
time of the links of the shortest path from its origin to its destination, computed on the
basis of the lower bounds on the travel times (see Figure 1(b)).

• Potential flow on the neighborhood of the shortest path. Each vehicle u contributes to
the potential flow on the links insisting on the nodes of the shortest path from its origin
to its destination, computed using lower bounds on the travel times (see Figure 1(c)).

Hence, the setting of the first parameter leads to different distributions of the potential
flow on the network. Each distribution corresponds to different methods for evaluating the
upper bound on the travel time of each link a, tmax

a .

3.2 Travel Time Computation

Here, we address how to take into account both the reference station information regarding
the lower bound on the travel time of each link, and the related upper bound individually
computed.

Precisely, each link a of the network is characterized by two values tmin
a and tmax

a , that
respectively represent a lower bound and upper bound on the travel time of a. We propose
for each vehicle u the use of a convex combination of the two bounds, with an individual
parameter αu ∈ [0, 1]. So, in order to compute its most satisfactory path, each vehicle u,
assumes that the travel time on link a is:

ta = αutmin
a + (1− αu)tmax

a .

The parameter αu represents the user’s preferences in considering an optimistic (value of αu

close to 1) or pessimistic (value of αu close to 0) estimate of the travel time. A very simple
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Figure 2: Example of path diversification.

example is depicted in Figure 2, where for each link a, tmin
a and tmax

a are reported, and the
choice of different values for αu leads to paths diversification.

In conclusion, as we will see in the next section, setting the individual parameters al-
lows each vehicle to find its own satisfactory path to the destination so that oversaturation
phenomena are avoided.

4 Robust Routes

Each user, besides choosing his individual parameters, may request a robust route, i.e. a
route that offers alternative satisfactory paths for any link in case of an unexpected event. An
alternative path is satisfactory if it allows the user to reach the destination in a fixed amount
of time (e.g. in order to catch a flight).

In the following we formally define a (o− d) robust path by relating it to the length of a
shortest (o− d) path P ∗, in an individually perturbed network.

Definition 4.1 An (o − d) path P is a k-robust path, with k ≥ 1, if for each link (i, j) ∈ P
there exist an alternative (o− d) path Pij, such that:

1. Pij coincides with P from o up to i and (i, j) 6∈ Pij and

2. its length `(Pij) ≤ k · `(P ∗).

A user requires the route corresponding to the shortest k-robust path for a chosen k.
Obviously, a k-robust path may not exist for all k ≥ 1 values. In the following we propose

an algorithm, based on A∗ algorithm, which determines a shortest k-robust path if it exists.
The application of A∗ is based on the possibility of giving an estimate e on the value of an
optimal solution. It is known that while, in general, A∗ is a heuristic algorithm, if the estimate
e is a lower bound then it finds an optimal solution ([7]) (for a minimization problem).

Let us remind that A∗ algorithm works as follows. Suppose we are given a network G, a
node o and we want to find a shortest path from o to a node d representing some kind of final
state for our search. Each arc (i, j) of G has length t(i, j) and we denote by d(i, j) the length
of a shortest path from a node i to a node j.

The application of A∗ is based on the possibility, for each node j of G, of giving an estimate
f(j) on the length of the best path through node i connecting o to d. Hereafter we describe
the simplest version of A∗ that considers consistent estimates ([3] and [7]). At each step,
the algorithm chooses the most “promising” node (i.e. the one for which f(j) is the smallest)
among all the nodes which have not been yet expanded and expand it finding all its successors.
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Of course, the first node we expand is node o. The process goes on, expanding at each step
the node with the smallest value of f , until d becomes the most promising node.

Roughly speaking, our algorithm first determines the length of the shortest path `(P ∗)
in order to compare it to the candidate alternative routes. Then it proceeds similarly to A∗

([3]), by expanding at each step the most promising node j (Step 4 in the algorithm described
hereafter), after checking whether it may belong to a k-robust path (Step 5).

Here is a formal description of Algorithm kR. In the algorithm description we use the
following notation.

• t(i, j) denotes the length of arc (i, j).

• w(i, j) denotes the length of arc (i, j) if it can belong to a k−robust (o− d) path. This
value is ∞ if the arc (i, j) can not belong to a k−robust (o− d) path.

• dt(j) represents the minimum distance from o to j along a k-robust (o− d) path, com-
puted considering the t−weights.

• dw(j) represents the minimum distance from o to j along a k-robust (o − d) path,
computed considering the w−weights.

• O(h) is the set of expanded nodes at iteration h.

• D(h) denotes the set of unexpanded nodes, at iteration h..

• Succ(O)(h) denotes the set of nodes in D(h) which have a predecessor in the set O(h).

• RobP (i, d, (i, j)) is a boolean function that returns TRUE only if there exist a k−robust
(o− d) path involving node i and not including arc (i, j).

• pred(j) indicates the node preceding node j in a k−robust (o− d) path.

Algorithm kR

Input: a network G(N,A) weighted on arcs with weights t(i, j), evaluated with individual
parameters, an origin o ∈ N , a destination d ∈ N , an integer k;

Inizialization: h = 0; ∀j ∈ N, dt(j) ← ∞; dt(o) = dw(o) ← 0; pred(o) ← o O(h) ← {o},
D(h) ← N \ {o}, ∀(i, j) ∈ A w(i, j) ← t(i, j);

MainProcedure(h) :

1. Let Succ(O)(h) = {j ∈ D(h) : (i, j) ∈ A and i ∈ O(h)};
2. ∀ j ∈ Succ(O(h)), pred(j) ← arg mini∈O(h) dw(i) + w(i, j) and dw(j) ←

dw(pred(j)) + w(pred(j), j);

3. if (∀j ∈ Succ(O(h)), dw(j) = ∞)
then STOP, a robust (o− d) path does not exist;

4. let j′ = arg minj∈Succ(O(h)){dw(j)};
t(pred(j′), j′) ←∞;
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5. if (RobP (pred(j′), d, (pred(j′), j′)) = TRUE
then

O(h) ← O(h) ∪ {j′};
t(pred(j′), j′) ← w(pred(j′), j′);
h ← h + 1;
if (j′ = d)
then RETURN the robust (o− d) path identified by the pred vector
else repeat MainProcedure(h);

else
t(pred(j′), j′) ← w(pred(j′), j′);
w(pred(j′), j′) ←∞;
pred(j′) ← NULL;
repeat MainProcedure(h)

5 Computational Results

In this section we shortly describe our computational experience. Tests were performed on ran-
domly generated instances considering different network topologies (characterized by density
of nodes, connectivity, and distribution of the capacity on the links) with different flow values.
More precisely, we have considered graphs with a number of nodes varying in [331, 526] and
arcs in the range [2520, 7904]. There are three link types depending on the capacity: small,
medium and large. The connectivity of the graph decreases from the central area to the outer
part.

The flow value on each arc a is randomly generated in interval [1, ca/2]. In Table 1 the
characteristics of the instances and the related results are reported. All tests consider one
origin-destination pair (o − d). Columns 1 − 2 refer to the number of nodes and arc of the
considered graph, while column 3 indicates the potential flow considered. The value PF1
corresponds to a potential flow value of 100 between o and d, while PF2 includes PF1 plus
a flow value of 70 between three origin-destination pairs close to the (o − d) shortest path
in the uncongested network. Finally, PF3 includes PF2 plus a flow value of 70 between
two randomly picked origin-destination pairs. Columns 4− 7 report the relevant results. In
particular, the computation time expressed in seconds is in column 4; in column 5 the number
of different paths obtained by combining 5 different αu values (α ∈ {0, 0.25, 0.5, 0.75, 1}) with
the three potential flow evaluation methods is reported; columns 6− 7 indicate the minimum
and maximum percentage difference1 between each pair of computed different (o− d) paths.

The preliminary results show that vehicles are indeed routed on different paths, even
though path diversification is limited with respect to all tested possible combinations of the
two parameters. In fact the number of different paths varies between 3 and 6 and the total
number of parameter setting combinations is 15. This is not necessarily a negative result,
since an excessive path diversification might route some users on unacceptable long paths.

A deeper analysis of the results shows that given a fixed alpha value the number of different
paths found is 2 or 3 out of 3 (corresponding to the 3 parameter values regarding potential
flow distribution method). On the other hand, given a potential flow distribution method, the

1Given two (o−d) paths P1 and P2 a measure of their difference is computed by determining the number of
different arcs in P1 and P2, i.e. the cardinality of the symmetric difference between the arcs of the two paths,
divided by the total number of arcs.
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n m potential flow type t different paths min % difference max % difference
331 3370 PF1 1 5 18 90
331 3370 PF2 1 4 10 95
331 3370 PF3 1 3 10 100
318 3079 PF1 1 3 100 100
318 3079 PF2 1 4 20 100
318 3079 PF3 1 4 67 100
307 2087 PF1 2 3 90 90
307 2087 PF2 2 6 20 100
307 2087 PF3 2 6 67 80
281 2520 PF1 3 4 15 85
281 2520 PF2 3 4 37 50
281 2520 PF3 3 4 20 62
355 4000 PF1 3 4 50 67
355 4000 PF2 3 6 36 66
355 4000 PF3 3 6 33 83
505 7512 PF1 3 4 80 90
505 7512 PF2 3 3 95 95
505 7512 PF3 3 4 32 100
526 7904 PF1 3 4 35 83
526 7904 PF2 3 4 45 75
526 7904 PF3 3 4 33 45
498 7348 PF1 3 5 40 56
498 7348 PF2 3 6 50 52
498 7348 PF3 3 5 46 50
518 7836 PF1 3 3 50 100
518 7836 PF2 3 3 71 100
518 7836 PF3 3 4 38 100
474 6521 PF1 3 3 20 100
474 6521 PF2 3 4 95 100
474 6521 PF3 3 4 46 95

Table 1: Computational Results
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number of different paths found is at most 3 out of 5. Therefore the potential flow distribution
method seems to be more effective in finding multiple paths.

Finally, observe that the results strictly depend on the specific instance. Hence, more
tests are required in order to clearly point out the effectiveness of the proposed multiple path
routing strategy, in terms of relation with network topology and/or potential flow value and
distribution.

6 Conclusions

In this work we proposed a decentralized multiple path routing algorithm for the route-
guidance problem. We described a simple approach able to find a good tradeoff between
single users satisfaction and global utilization of the network. We are at a preliminary stage
of our study, however the first computational results are encouraging. Further experiments
will deal with a more accurate study of the effectiveness of parameters settings with respect
to network topology and flow distribution and with the additional option of requesting a
satisfactory and robust path.
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