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1 Introduction
Traditionally, companies and business processes in transportation and supply chain logistics have
focused on their own resources and ability to improve performance. However recently, when faced
with pressures to operate more efficiently, companies are realizing that suppliers, consumers and
even competitors can be potential collaborative logistics partners. The system wide collaboration
perspective provides opportunities for increased profitability that are impossible to achieve with
an internal focus only. Various technological advancements, such as the Internet providing the
connectivity and infrastructure necessary to easily share large volumes of data, are fuelling the
trend towards collaboration among different companies. In sea cargo transportation, since 1990
when Sea-Land and Maersk introduced the alliance system and began sharing capacity on ships in
the Atlantic and Pacific oceans, mergers have become increasingly common. Since owning a ship
involves large capital investment (usually millions of US dollars) and the cost of idling a ship runs in
tens of thousands of dollars per day, carriers collaborate and form alliances to share infrastructural
setup and capital costs.

In this paper, we study large scale transportation networks that operate as an alliance among
carriers. Our study is motivated by the service network design problem in the liner shipping
industry. Liner shipping mainly involves carrying cargo stored in containers on regularly scheduled
service routes. Liner services involve high fixed costs and administrative overhead because they
promise to depart on a predetermined schedule regardless of whether the ship is full. The number of
ships required for a given liner service route is determined principally by the frequency required on
the service route. For example, a weekly liner service between New York and Hamburg may require
four ships to maintain the necessary frequency. In the liner shipping network design problem we
are given a set of carriers and a set of ports. Each carrier has a fleet of ships and a set of cargo to be
delivered. Delivering a unit of the cargo earns a given revenue. To form an alliance, carriers bring
their fleets into a pool and operate them together. The service network is designed by creating the
ship routes, i.e. the sequence of port visits by the given fleet. Ships move in cycles, referred to as
service routes from one port to another following the same port rotation for the entire planning
horizon. Further, carriers decide which cargo to accept or reject for servicing and which path(s) to
use to deliver the selected cargo. The cargo is allowed to travel on ships on multiple service routes
before reaching its final destination. A port where cargo is transferred from one ship to another,
for further transportation, is referred to as a transshipment port. Once a set of service routes is
decided, members of the alliance assign their ships for operating the chosen routes and allocate
each ship’s capacity among the alliance members.

Alliance formation among carriers poses various challenges. In an alliance, carriers work in
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collaboration with each other, however each carrier’s individual goal remains to be the maximization
of his own benefit. Hence, for forming sustainable alliances, the task is not only to design an efficient
service network but also to provide algorithms to share the benefits and costs of an alliance in such
a way that all carriers are motivated to collaborate. In this setting, sharing benefits and costs
generally translates into exchanging capacity on ships among the carriers. One way to regulate
capacity exchanges among the carriers is to assign suitable capacity exchange costs so that the
carrier who owns the capacity on a ship is motivated to sell the capacity to a carrier who can utilize
it to deliver cargo.

Problems where a number of players interact, with varying degree of collaboration and self mo-
tives, appear not only in transportation networks but in a wider variety of seemingly unrelated fields
such as internet routing, auctions, telecommunications, etc. The mathematical tools and insights
most appropriate to understand these problems are obtained by uniting concepts of mathematical
economics and game theory with that of algorithm design. The notion in cooperative game theory
that is most relevant to us is that of “mechanism design”. The traditional mechanism design prob-
lem concerns a set of players N = {1, 2, . . . , n} who collaboratively choose an outcome õ from a set
O of possible outcomes. Each player k has a preference relation for different outcomes õ in the set
O, denoted by vk(õ), to quantify his valuation of outcome õ. The goal is to design an algorithm
that chooses an outcome, õ ∈ O and an n-tuple of side payments {s1, · · · , sn} such that the total
payment, xk, to player k is xk = vk(õ) + sk. The total payment is what each individual player
aims to optimize. Intuitively, a mechanism solves a given problem by providing side payments to
players to assure that the required output occurs, when players choose their strategies so as to max-
imize their own selfish profits. Mechanism design has been used successfully to develop algorithms
for inter-connected collection of computers such as on the internet. For a detailed discussion of
mechanism design we refer the reader to [2].

Network design problems, with minimum requirements for service frequency, are common in
the transportation industry. In this paper we address various challenges offered by a generic carrier
alliance and provide mechanisms to make it sustainable. To keep the discussion general, we refer
to the fleet of ships as assets and the set of carriers as players. As players form alliances by pooling
their assets and integrating their networks, a large scale optimization problem can be solved to
obtain the best centralized service network. We develop a mathematical model that can be used
to solve large instances of the network design problem. Our model successfully incorporates many
emerging trends for example the minimum frequency constraint and transshipments.

Individual players working in an alliance cannot be assumed to accept the network designed
by the centralized optimization algorithm but follow their own self-interests. The split of benefits
and costs, to satisfy all the members of an alliance, is an intriguing research topic and very little is
available in literature on the systematic study of alliances in transportation networks. We design
allocation mechanism to distribute the benefits and costs among the members of an alliance. To
help the overall alliance achieve its maximum potential revenue, we provide incentives to the players
to pursue the solution suggested by the centralized optimization model. The benefits obtained from
the collaborative routes directly are often not enough to motivate individual players to behave in
the best interest of the alliance. We provide side payments, via the capacity exchange cost, to the
players so that they are motivated to “play along”. Next, we present a formal definition of our
problem.
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2 Problem Definition
Let V denote the set of nodes in the network and N = {1, 2 . . . n} denote the set of players. We
assume that all assets are identical with T units of capacity and for a player k ∈ N , Nk represents
the number of assets in his fleet. For a player k, each demand is characterized by its origin (o)-
destination (d) pair, the maximum demand that can arise, D(o,d,k), and the revenue obtained by
satisfying one unit of demand, R(o,d,k). (o, d, k) is used to identify a demand from o to d for player
k and the demand set of player k is identified by Θk. In an alliance formed by pooling assets
N =

∑
k

Nk and consolidating demand Θ = ∪kΘk, the players face following problems:

1. Together they need to design their service network. For this, they need to design a set of
service routes (say C = {C1, · · · , Cr}) to operate utilizing their assets. Also, they need to
decide a set of cargo (say Θ ⊂ Θ) to deliver and the paths to use to deliver the selected cargo.

2. The members of an alliance need to decide how to realize the service routes in C. For example,
they need to decide the number of assets that each player should assign to the service routes
in C.

3. Each player k needs to compute the valuation, vk, of the solution, given by (C, Θ), depending
on the cost incurred by him and the revenue generated by delivering his demands.

4. For a given (C, Θ), since the valuation vk alone is not enough to guarantee the satisfaction
of player k, the alliance needs to decide an n-tuple of side payments, {s1, · · · , sn}, for its
members such that the total payment, xk = vk + sk, to player k is optimal for him.

3 Solution Strategy
Before providing the details, we first present an outline of our solution strategy. The goal of an
individual player is to design a service network which maximizes his profit. However, since he is
working in collaboration with other players, a network that generates maximum overall revenue for
all players is selected. Clearly, such a network can be obtained by replacing the individual players
with one large player, with a fleet equal to the combined fleet of individual players and a demand
structure equal to the combined demand of all players. We refer to the collaborative solution by
opt(N ) = (C,Θ). Section 3.1 describes in detail the optimization problem to obtain opt(N ). In
Section 3.2, the valuation of solution opt(N ) is calculated for each player by calculating the revenue
generated by him and the costs incurred by him. The valuation obtained from solution opt(N ) is
not guaranteed to provide enough motivation for a player to act according to the schedule opt(N ).
To provide this guarantee side payments are provided to the players. Side payments are made by
a player for utilizing capacity on an asset to the owner of the asset via capacity exchange costs.
Computation of side payments using inverse optimization techniques is presented in Section 3.3.
Next, we provide the details of our solution strategy.

3.1 Network Design
The set of service routes determine which paths can be designed to deliver the cargo. The cargo
delivered, and the paths chosen to deliver the cargo, determines the revenue that can be generated
and hence determines the profitability of the service network. Thus, these two problems are highly
inter-dependent and it is important that they be studied in an integrated framework. For a set of
players and a network G = (V,E), we now present a mixed integer programming model, CP , to
determine an optimal set of service routes to operate, set of cargo to deliver and paths to deliver
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the selected cargo, simultaneously. Let C denote the set of all feasible service routes. For C ∈ C,
LC denotes the number of assets required to maintain the minimum required frequency on C and
CostC denotes the cost of operating route C. CP has two sets of variables: binary variables xC for
C ∈ C to denote if route C is operated and non-negative continuous variables f (o,d,k)

e to represent
the flow of cargo from origin o to destination d due to player k on edge e.

(CP ) : r(opt(N )) = max
∑

(o,d,k)∈Θ

f
(o,d,k)
(d,o) R(o,d,k) −

∑
C∈C

CostCxC (1)

subject to
∑

e∈InEdges(v)

f (o,d,k)
e −

∑
e∈OutEdges(v)

f (o,d,k)
e ≤ 0∀v ∈ V,∀(o, d, k) ∈ Θ(2)

∑
(o,d,k)∈Θ

f (o,d,k)
e −

∑
{C∈C:e∈C}

TxC ≤ 0 ∀e ∈ E (3)

f
(o,d,k)
(d,o) ≤ D(o,d,k) ∀(o, d, k) ∈ Θ(4)∑

C∈C
LCxC ≤ N (5)

xC ∈ {0, 1} ∀C ∈ C and f (o,d,k)
e ≥ 0 ∀e ∈ E,∀(o, d, k) ∈ Θ. (6)

In the above formulation, the objective function (1) maximizes the net profit by subtracting the
sum of operating costs from the revenue generated. Constraint (2) is a flow balance constraint
at every vertex of the network. Constraints (3) and (4) are capacity constraints on the edges.
Constraint (5) requires that we do not use more assets than we have available.

In earlier research [1], we studied CP in detail and showed that the problem is NP-hard. Further
we developed and computationally tested various heuristic and LP based algorithms to solve the
problem. Let opt(N ) = (C,Θ) denote an optimal solution to the above problem, where C is the
set of optimal service routes to be operated by the combined fleet and Θ is the subset of demand
that is delivered. Let f denote the optimal flow on edges.

3.2 Valuation of the Schedule
For a player, the valuation of solution opt(N ) is determined by calculating the revenue generated by
him and the costs incurred by him. The revenue generated by a player k is calculated by summing
over the revenue generated by satisfying demand (o, d, k) such that (o, d, k) ∈ Θ ∩ Θk. Similarly,
each player pays for maintaining and operating his assets on the collaborative routes. To compute
the costs incurred, a player first needs to know the assignment of his assets to the selected routes.
Let, ykCj represents the number of assets player k assigns to route Cj and ukCj represents the utility
he obtains by assigning a unit of asset on route Cj . The problem of optimally assigning assets, for
all the players, to the set of selected service routes reduces to the following generalized assignment
problem:

(AAP ) : max
∑
k,Cj

ukCjy
k
Cj (7)

∑
k

ykCj = LCj ∀Cj ∈ C;
∑
Cj

ykCj ≤ N
k ∀k ∈ N ; ykCj int. (8)

The utility function, u, can be determined heuristically in many different ways. We solve the
asset assignment problem, AAP , exactly and heuristically and report the effect of different asset
assignment algorithms and different utility functions on the overall mechanism.
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Once the assignment problem is solved, we can calculate the valuation of solution opt(N) for
player k, that is:

vk(opt(N )) =
∑

(o,d,k)∈Θk

R(o,d,k)f − Cost of operating routes. (9)

3.3 Computation of Side Payments
We model the selfish behavior of players by assuming that given the collaborative network the
players solve their cargo routing problems individually. Given an assignment of assets, it is in the
best interest of the collaboration that the players make their cargo routing decisions as in f̄ . Note
that f̄ requires players to share capacity on the assets. We facilitate this by allowing a player to
charge other players for using his assets on an edge e whenever he has an asset assigned to edge e.
The rest of the times he will need to pay other players for using capacity on edge e. We refer to this
payment as the capacity exchange cost on edge e and denote it by coste. Note that the capacity
exchange costs provide the side payments to the players, in addition to the valuation (9) obtained
by them. Given an assignment of routes in C among agents, let γke be the fraction of times agent
k has an asset on edge e. We calculate γke by a heuristic algorithm. Then we propose the following
mathematical formulation for modelling an individual player k’s behavior in the alliance:

(SCP k) :

max
∑

(o,d,k)∈Θk

f
(o,d,k)
(d,o) R(o,d,k) +

∑
e∈Ev

( ∑
(o,d,k)/∈Θk

γke f
(o,d,k)
e −

∑
(o,d)∈Θk

(1 −γke )f (o,d,k)
e

)
coste (10)

subject to
∑

e∈InEdges(v)

f (o,d,k)
e −

∑
e∈OutEdges(v)

f (o,d,k)
e ≤ 0 ∀v ∈ V,∀(o, d, k) ∈ Θ(11)

∑
(o,d,k)∈Θ

f (o,d,k)
e ≤ Cape ∀e ∈ E (12)

f
(o,d,k)
(d,o) ≤ D(o,d,k) ∀(o, d, k) ∈ Θ (13)

f (o,d,k)
e ≥ 0 ∀e ∈ E,∀(o, d, k) ∈ Θ.(14)

Note that this is a conservative model since we allow an individual player to modify other
player’s flow also. In practice, an individual can only make decisions regarding his own flow. Thus
the maximum revenue that player k can obtain will always be less than the optimal value of SCP k.
Assignment of Prices to Network Legs For the single player problem SCP k we wish to identify
cost such that the collaborative solution, f is an optimal decision for the player also. Next, we
make use of inverse optimization techniques to compute the cost structure that achieves this goal.
Let πk = {π(o,d,i),k

v : π(o,d,i),k
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ Θ} , λk = {λke : λke ≥ 0 ∀e ∈ E} and

ωk = {ω(o,d,i),k : ω(o,d,i),k ≥ 0 ∀(o, d, i) ∈ Θ} denote the dual variables associated with constraints
(11), (12) and (13) respectively. Note the use of super-script k to denote that the dual is considered
for player k. Below we present the dual of SCP k for player k in a compact form:

(DSCP k) : min
∑
e∈E

Capeλ
k
e +

∑
(o,d,i)∈Θ

ω(o,d,i),kD(o,d,i) (15)

subject to α∆k − γkcost ≥ 0. (16)

One form of the linear programming optimality conditions states that primal solution f and dual
solution (πk, λk, ωk) are optimal for their respective problems if f is feasible for SCP k, (πk, λk, ωk)
is feasible for DSCP k, and together they satisfy the complementary slackness conditions.
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Our aim is to determine a cost vector cost such that the flow f as given by opt(N ) is optimal
for all individual agent problems i.e. SCP k, ∀k ∈ N . From above, f is an optimal solution for
every SCP k if for every DSCP k there exists a dual feasible solution (πk, λk, ωk) that satisfies the
primal-dual complementary slackness conditions. This gives us the following characterization of the
inverse optimization problem to determine the cost vector such that the dual variables and the dual
constraints satisfy the complementary slackness conditions, with respect to the primal solution f :

(INV P ) : α∆k − γkcost ≥ 0 for 1 ≤ k ≤ n. (17)

To sum up, the inverse problem is a feasibility problem to identify cost. If cost is a feasible
solution to INV P , the overall payoff to an agent k can be written as:

xk = vk(opt(N )) + sk (18)

where the vector of side payments {s1, s2, · · · , sn} is calculated by,

sk =
∑
e∈E

( ∑
(o,d,i)/∈Θk

γke f
(o,d,i)
e −

∑
(o,d,i)∈Θk

(1− γke )f (o,d,i)
e

)
coste. (19)

Note that the vector of payoffs to agents {x1, x2, · · · , xn} is such that
∑
k∈N

xk = r(opt(N )). This

is easy to see since once a feasible solution is found for INV P , the flow in the network is the same
as the flow of optimal solution opt(N ). Also note that the vector of side payments {s1, s2, · · · , sn}
is such that

∑
k∈N

sk = 0. Theorem 1 guarantees that such a cost vector can always be found.

Theorem 1. The inverse problem INV P is feasible.

To prohibit players from colluding to form sub-coalitions, we in fact want to have a cost vector
such that for any subset S ⊂ N , f is an optimal solution for the corresponding problem SCPS .
However, there are exponential number of such subsets and including an inverse problem corre-
sponding to each of them in INV P will cause INV P to become exponential in size. Theorem 2
shows that it is sufficient to consider only single player problems in INV P to determine a suitable
cost vector.

Theorem 2. Given an allocation of routes in C among players in N , the inverse problem in
(INV P ) identifies a cost vector such that f is optimal for any subset S ⊂ N of players.

It is reasonable to assume that an individual player would seek higher payoff in the alliance
as compared to the revenue that he can generate on his own. To this end, we have enhanced our
model by adding the following set of limited rationality constraints in INV P :

1. opt({k}) ≥ xk for each k ∈ N .

2. opt({k, i}) ≥ xk + xi for k, i ∈ N .

where, opt(S) for S ⊂ N is the maximum revenue that the players in set S can obtain, when
working on their own.
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4 Computational Experiments

Next, we present results of our computational experiments. The focus of our computations is to
study the performance of the mechanism designed in this paper in the context of liner shipping. We
test the performance of our mechanism by comparing the payoff allocation made by our mechanism
to the standard game theoretic concepts such as the core. The notion of core is one of the most
prominent and widely accepted notion of “fair” allocation of costs and benefits in cooperative
game theory and it is similar to the idea of Nash equilibrium in non-cooperative game theory. An
allocation of benefits is said to be in the core if the sum of the payoffs over all players is their
maximum attainable profit (budget balance property) and no subset of players can collude and
obtain a better payoff for its members (stability property). Mathematically, a payoff vector x is
said to be in the core if: ∑

i∈N
xi = opt(N) (20)∑

i∈S
xi ≥ opt(S) ∀S ⊂ N. (21)

For an allocation in the core, the grand coalition is perceived as fair and is not threatened by
its sub-coalitions. A payoff allocation in the core represents a very strong type of stability and
provides a fair allocation.

We performed our computations on instances involving up to 10 ports with up to 27 demand
triplets and 50 ships. The data generation is explained in the next section. All of our algorithms
are implemented in C++ in an Unix environment. We also made extensive use of the callable
libraries in CPLEX 9.0. All computational experiments were performed on a Sun280R system with
UltraSparc-III processor. Results are reported on 50 randomly generated instances in each test
class.

4.1 Data Generation

We performed our experiments on the data simulating real life data from the liner shipping industry.
We assume that all ships are identical with 4000 TEU (twenty foot equivalent unit) of capacity.
Sailing distance between ports are chosen randomly from [2, 30] or [14, 42] to simulate intra-region
and inter-region distance, in days, between ports in Asia and North America. Origin-destination
pairs are chosen randomly from the pairs of ports. Demands are randomly generated from [0.1,
1.0] fraction of the capacity of the ship. Finally, revenue generated by satisfying a unit demand is
chosen to be in direct proportion of the distance between the origin port and the destination port
of the demand. Different classes of random instances are generated to test the robustness of the
algorithm. Classes are characterized by specifying the number of ports (P ), the number of ships
(S) and the number of demand triplets (D). For example an instance with 6 ports, 30 ships and
18 demand triplets is represented as P6S30D18. We consider networks with up to 10 ports and
fleet sizes with upto 80 ships. This data generation scheme is same as used by [1]. Please refer to
[1] for further details and justification of various parameters regarding data generation.

We consider alliances with two, three and four carriers. Each demand and ship is assigned to
one of the carriers with equal probability, unless specified otherwise.
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4.2 Effect of Ship Assignment and Rationality Constraints

Recall that the problem of assigning ships of different carriers on the service routes is formulated as
(AAP ) in Section 3.2. This problem is NP-hard. However, in our case since the number of selected
service routes are between 3 and 10 (depending on the problem size), an explicit enumeration
scheme can also be used to determine the exact assignment of ships to the service routes. Next,
we study how the mechanism is effected by different assignment of ships on the service routes. We
obtain different assignment by considering different algorithms to solve (AAP ). In particular, we
consider an exact assignment, a greedy assignment and a random assignment of the ships. We also
consider two different utility functions (u in the objective function of (AAP )) - 1. the utility of
assigning a ship to a service route for a carrier is taken proportional to the sum of his flow on the
edges of the service route (denoted by f) and 2. the utility of assigning a ship to a service route for
a carrier is taken to be proportional to the sum of his profit generated from his flow on the edges
of the service route (denoted by f.R).

We also study the effect of enhancing the inverse problem (INV P ) by adding rationality con-
straints. As mentioned at the end of Section 3.3, rationality constraint for a subset S of carriers
states that carriers in S seek higher payoff in an alliance as compared to the payoff they can generate
on their own. We divide the rationality constraints into different sets, depending on the number
of carriers considered. For example, two carrier rationality constraints is the set of rationality
constraints for all subsets with two carriers and is denoted by {2}. To study the effect of ratio-
nality constraints we introduce one set of rationality constraints at a time to the inverse problem
INV P . Inverse program together with all the single carrier rationality constraints is denoted as
INV P + {1} and inverse program together with all the single carrier and two carrier rationality
constraints is denoted as INV P + {1} + {2}. Recall that INV P is a feasibility problem and the
payoff allocation made by our algorithms is always budget balance. Thus for a three carrier alliance
if INV P + {1}+ {2} is feasible than it means that a cost structure that yields payoff allocation in
the core can be identified.

Table 1 reports the effect of different assignment of ships on the service routes and the effect of
rationality constraints on the solution quality for 3 carrier alliances and different test classes. In
this table, we use {0} to denote that INV P is solved, {1} to denote that INV P + {1} is solved
and {1} + {2} to denote that INV P + {1} + {2} is solved. The first column denotes different
problem classes. It indicates the total number of ports, ships and demand pairs considered. Each
demand and ship is assigned to one of the three carriers with equal probability. The next three
columns report the number of instances (out of 50) for which an allocation in the core is found
when the AAP is solved exactly and the utility function is taken to be proportional to the flow
times the revenue. The second column reports this number when the inverse problem INV P is
solved. The third, and fourth column report these numbers when the inverse problem (INV P ) is
solved together with all single carrier rationality constraints and (INV P ) is solved with all single
and two carrier rationality constraints, respectively. The next three triplet of columns report the
corresponding numbers when AAP is solved exactly, greedily and randomly, respectively. In these
cases the utility function is taken to be proportional to the flow.

Different assignment algorithms and utility functions result in different number of ships being
assigned by a carrier to each of the selected service routes. This in turn influences a carrier’s
valuation (9) of the optimal solution and the way the optimal solution is realized by the alliance.
Note that the inverse problem computes the cost structure for a given assignment of ships to the
service routes. Table 1 suggests that the number of cases for which the mechanism successfully
finds a cost structure does not depend significantly on the assignment of ships to the service routes.
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If we consider all the rationality constraints, even for a random assignment of ships to the service
routes, in most of the instances the mechanism finds a cost structure that yields an allocation in
the core.

From Theorem 1, the inverse program INV P is feasible. We found in our computational study
that inverse problem together with single carrier rationality constraints is also feasible in all the
instances. However, in some cases a feasible solution for INV P + {1} + {2} could not be found.
Note that for three carrier alliances a solution to INV P+{1}+{2} means that a cost structure that
yields payoffs in the core can be identified. For INV P and INV P + {1} we report if the feasible
solution provided by CPLEX is in the core. For these cases there might be alternate solutions and
some might provide an allocation in the core (for example, instances in which we find an allocation
in the core by considering INV P + {1}+ {2} but not when we consider INV P or INV P + {1}).

Table (1) suggests that a feasible solution to (INV P ) in 10-25% of the instances directly yields
an allocation in the core. As the inverse problem is constrained by adding single carrier rationality
constraints in 25-45% of the instances the feasible solution yields an allocation in the core. Further
INV P + {1}+ {2} is feasible in 70-95% of the cases, depending on the test class. Thus in 70-95%
of the cases our mechanism provides an allocation in the core. Recall that it is not necessary that
an instance will have a non-empty core.

4.3 Analysis of Different Test Classes

We analyze different test classes in Table 2. We consider alliances with three carriers. Ships and
demand pairs are distributed uniformly among the carriers. We solve the ship assignment problem
exactly and the utility of assigning a ship to a service route for a carrier is taken proportional to
the sum of his flow times the revenue on the edges of the service route. First column in Table 2
denotes different problem classes. For each test class, the second column reports the average CPU
time taken (averaged over 50 instances) in minutes to solve a problem instance. This includes the
time to solve the service design problem for all the subsets of carriers and the time taken to solve
the inverse problem. The third column represents the number of instances, out of a total of 50
random instances generated for each test class, for which an allocation in the core exists. To test
if the core of a problem is non-empty, a linear program consisting of all the core inequalities is
constructed and its feasibility is tested. The next three columns report the average percentage of
unsatisfied demand to the total demand, the average number of un-utilized ships and the average
utilization of capacity on the edges of the network respectively, for the instances with a non-empty
core. The next three columns report same statistics for the cases with empty core.

The second column in Table 2 suggests that as the problem size (number of ports, ships or
demand pairs) increases the time taken to solve the problem increases. Also, more than 95% of the
time reported here is taken in solving the network design problem for various subset of carriers.
The increase in time taken to solve the network design problem with the increase in problem size
is similar to the trend reported in [1].

Note that among the test classes with 6 ports, P6S30D6 has the highest number of instances
with an empty core. A closer look at Table 2 reveals that this test class has the highest number of
un-used ships and the lowest percentage of unsatisfied demand. Also instances in this class have
lower utilization of capacity on the edges of the network. More specifically, these networks have over
capacity. We constructed an additional class of instances namely P10S50D10. These instances also
have over-capacity and show similar behavior as that of instances in the P6S30D6 class. Specifically,
many instances in test class P10S50D10 also have empty core. This leads us to the conclusion that
instances with over-capacity are more likely to have an empty core. The primary motivation for
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Table 2: Analysis of test classes.
Test Time # Non Non-empty core Empty core
Class -empty %Unmet Unused %Utilizi %Unmet Unused %Utiliz

core demand ships -ation demand ships -ation
P6S18D6 1.92 48 21.9 0.5 0.70 41.6 1 0.59
P6S18D9 3.08 49 36.93 0.25 0.82 45.07 0 0.96
P6S30D6 5.75 36 3.61 2.22 0.64 0.25 3.29 0.56
P6S30D9 8.60 46 11.60 0.76 0.77 5.30 0.75 0.72

P10S30D18 98.01 50 43.83 0.04 0.83 N/A N/A N/A
P10S30D27 181.46 50 58.91 0 0.86 N/A N/A N/A
P10S50D18 306.12 50 16.90 0.45 0.88 N/A N/A N/A
P10S50D27 514.61 50 28.19 0 0.91 N/A N/A N/A
P10S50D10 48.70 35 0.52 4.39 0.60 0.63 6.43 0.65

carriers to collaborate in liner shipping is that they do not have enough ships to maintain weekly
frequency on the routes. For instances other than in P6S30D6 and P10S50D10 test class, since
carriers and subset of carriers have few ships (as compared to the available demand), in most of
the cases the grand alliance offers the best possibility for maintaining the required frequency on
the service routes and thus most of the instances have non-empty core. Instances in P6S30D6 and
P10S50D10 test classes, are however more likely to have profitable sub-coalitions. Our experiments
yield that subsets of carriers that have good synergy in the origin- destination port of their demand
triplets are more likely to form sub-coalitions. In general, if sub-coalitions have higher synergies (as
compared to the grand alliance) then it is less likely that the grand alliance will be formed. Also
there are fewer incentives for carriers to get into the organizational and managerial complexities of
big alliances.

For 6 port instances with 18 ships, the percentage of unsatisfied demand is quite high. Further
the average un-satisfied demand for the instances with empty core is even higher than the average
un-satisfied demand for the instances with non-empty core. Thus instances with small fleet size in
which carriers find synergies among themselves to satisfy higher demand are more likely to have a
stable grand alliance. Also we note from Table 2 that as the size of the network increases from 6 to
10 ports all the instances in all the test classes (except P10S50D10) have non-empty core. Instances
with 10 ports that have very high demand as compared to the available fleet (un-satisfied demand
is 40-60% of the total demand) are very likely to form stable grand alliance. In these instances,
as there is a shortage of ships, only the grand alliance provides a global optimal schedule for the
available fleet. Table 2 reflects that in fact the grand alliance schedules almost all the ships in the
fleet and provides very high utilization of capacity (85-95%) on the operated routes.

Note that from Table 1 and Table2, if the core of a problem instance is non-empty, our mech-
anism succeeds in finding an allocation in the core in almost all (95-100%) of the instances, when
the inverse problem is considered with all the subset rationality constraints.

4.4 Size and Number of Carriers

Next, we study the effect of number of carriers in an alliance. Table 3 reports results for alliances
with two, three and four carriers. The first column represents the test class. To generate instances
with i-carriers the number of demand pairs and ships are distributed uniformly randomly among
i carriers. Thus, Table 3 reports results for alliances among carriers with similar characteristics.
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Table 3: Analysis of the size of an alliance.
Test 2-Carriers 3-Carriers 4-Carriers
Class core % improvement core % improvement core % improvement

P6S18D6 50 63.04 48 275.45 46 717.40
P6S18D9 50 40.73 36 167.60 37 475.61
P6S30D6 50 17.11 36 50.58 29 117.87
P6S30D9 50 20.12 46 66.17 43 115.64

P10S30D18 50 26.91 50 61.05 50 99.65
P10S30D27 50 19.68 50 53.42 48 88.13
P10S50D18 50 14.24 50 31.38 48 72.11
P10S50D27 50 15.94 50 32.36 49 69.45

The second and the third column report results for alliances with two carriers. The second column
reports the number of instances (out of 50) for which an allocation in the core exists. The third
column reports the average (average taken over 50 instances) percentage improvement in the total
revenue generated by the alliance as compared to sum of the revenue generated by individual carriers
working independently. The next two twins of columns report similar statistics for alliances with
three and four carriers, respectively. For a particular instance, the percentage improvement in the
revenue generated as a result of the alliance is computed as:

opt(N)−
∑
i∈N

opt({i})∑
i∈N

opt({i})
.

Table 3 suggests that as the number of carriers increases in an alliance, the alliance tends to
become more un-stable in the sense that the number of instances with a non-empty core decreases.
Note that as the number of carriers increases the number of constraints that need to be satisfied to
obtain an allocation in the core increases exponentially. Higher the number of constraints higher
the chances that the constraints will conflict with each other and thus higher the chances that the
core will be empty. With higher number of carriers in an alliance it is more likely that some subset
of carriers will have better synergies for an alliance than the grand alliance. Qualitatively, as the
number of carriers increase in an alliance the organizational complexity of the alliance increases
and the decision making process becomes time consuming. One of the most successful alliances
among liner carriers have been the Maersk-Sealand alliance which consists of only two carriers [3].
Some of the bigger alliances have organized and re-organized themselves a number of times within
a short span of time. For example, the Global Alliance which was formed in 1995 among four
carriers (APL, OOCL, MOL and Nedlloyd) reorganized in 1998 to form the New World Alliance
(NOL/APL, MOL, HMM) after the merger of APL and NOL in 1997.

The third, fifth and the seventh column of Table 3 clearly shows that alliances can generate
higher revenues as compared to the carriers operating on their own. For a particular instance, i.e.
for a given set of ports, fleet size and demand pairs, as we increase the number of carriers (that
is distribute the fleet and demand pairs among a larger number of carriers), the revenue that an
individual carrier can generate reduces. However, the optimal solution of the grand alliance remains
the same, independent of the number of carriers in the alliance. Thus, as reflected by Table 3 the
the percentage increase in the revenue generated as a result of the alliance increases as the number
of carriers increases.
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4.5 Role and Contribution of Carriers in an Alliance

We study how participants with complementary and similar roles influence an alliance. Specifically,
we study the alliance between a ship owner and a group of shippers. That is one player has all the
ships and the other players have all the demand. First, we study instances (drawn from different
test classes P6S18D6 - P10S50D27) with one ship owner and one shipper. This is a perfect situation
for collaboration and all these instances have a non-empty core. Further, in all such instances our
mechanism provides a cost structure such that the resulting payoffs to both the participants is in
the core, when the inverse problem is solved with all the subset rationality constraints. Thus a
stable alliance can be formed in all these instances. Next, we study problem instances with three
shippers and a single ship owner. Depending on the problem instance (P6S30D9 etc) we found that
the core is non-empty in 90%- 100% of the cases. Among the instances with non-empty core, in
95%-100% of the instances our mechanism provides a cost structure such that the resulting payoff
to the participants is in the core. Comparing one ship owner and one shipper case with the one ship
owner and three shippers case we conclude that in the latter case, shippers give rise to competition
and instability in the grand alliance.

An interesting observation is that for P6S30D6 problem instances for one ship owner and three
shippers case, 98% of the instances have non-empty core. Whereas, for this test class when the ships
and demand pairs are distributed uniformly among four carriers only 58% of the instances have
non-empty core (Table 3). For the P6S30D6 class the number of ships are enough to satisfy most
of the demand, thus even if there are three competing shippers the alliance is stable. As the ship
owner has sufficient number of ships, he has an incentive to collaborate with as many shippers as
possible to increase his revenue. Similarly, though the shippers compete for capacity on the ships,
in the case when the system has over-capacity they can all form a sustainable alliance with the
ship owner. However this is not the case when ships and demand pairs are uniformly distributed
among four carriers as many subset of carriers find synergies to form sub-coalitions. In general, for
other test classes also, instances with ships and demand pairs distributed among one ship owner
and three shippers are more likely to have a non-empty core as compared to four equi-sized carriers.
This is simply because in the former scenario the players have higher degree of complementarity in
their role. Carriers have used conferences and alliances to fix price and moderate the buying power
of shippers. As a result of our experiments we conclude that it is a good strategy for shippers also
to form alliances and consolidate cargo before negotiating with the carriers and ship operators.
This practice is observed in the industry as giant shippers and freight-forwarders consolidate the
cargo of small shippers.

5 Conclusions

In this paper we addressed various problems posed by alliance formation among carriers in trans-
portation networks. We designed allocation mechanism for an alliance to share the benefits of
the alliance in such a way that all the members are motivated to act in the best interest of the
alliance. Since the revenue generated by the collaborative solution alone is not enough to guarantee
the satisfaction of an individual carrier, the mechanism provides side payments to the carriers to
motivate them to “play along” in the alliance. Considering our preliminary results, we believe that
the suggested solution approach has the potential to help carriers form sustainable alliances.

In particular for liner shipping alliances, our experiments suggest that across all test classes, in
most (more than 95%) of the instances that have non-empty core our mechanism successfully finds a
cost structure such that the resulting payoff to the carriers is in the core, when the inverse problem
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is solved with all the rationality constraints. Assignment of ships to the service routes influences
the cost incurred by a carrier (thus his payoff) and the ownership of capacity on the edges by the
carriers. However our results indicate that independent of the assignment of ships to the service
routes in most of the cases our mechanism successfully finds a cost structure such that the overall
payoff to the carriers is in the core. Analysis of different test classes suggests that the core is empty
for a very high number of instances (more than 72%) drawn from the classes in which carriers have
sufficient number of ships to satisfy the available demand. Further our experiments yield that, as
the number of carriers increase in an alliance, the percentage improvement in the total revenue
generated by the alliance as compared to the sum of the revenue generated by individual carrier
independently increases. However, it becomes harder to find a solution in the core as the number of
constraints to obtain a core allocation increase exponentially with the number of carriers. Further
we conclude that carriers who have complementarity in their roles, for example ship owners and
freight forwarders, are more likely to form stable alliances. Note that many other factors (such
as compatibility in mission, strategy, governance, culture, organization and management etc of
different partners of an alliance) also contribute significantly to the success of an alliance.

In this paper we considered alliance formation among 3-4 carriers. For these alliances we con-
sidered all subset rationality constraints to find an allocation in the core. In many transportation
and other logistics problems it is necessary to consider alliances with higher number of participants.
Also in liner shipping, smaller alliances are collaborating to from even bigger alliances, for exam-
ple Grand Alliance and The New World Alliance laid down foundations for cooperation in 2006.
However considering all rationality constraints becomes prohibitively expensive as the number of
carriers increase in an alliance. To extend the mechanism developed in this paper for alliances
with higher number of participants, subset rationality constraints need to be added in the inverse
problem in a constraint generation setting.

This paper provides a basic framework for the research that can be used for designing allocation
mechanism for various network design problems. The research integrates tools from optimization,
economics and mathematics to study the selfish behavior of individual players in an alliance thus
providing advances in interdisciplinary work.
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