
New Methods to Compute Dynamic Bid-Prices in Network Revenue Management

Huseyin Topaloglu, Sumit Kunnumkal
School of Operations Research and Industrial Engineering , Ithaca, NY 14853, USA

ht88@cornell.edu

Bid-prices form a powerful tool for constructing good policies for network revenue management problems.
The fundamental idea is to associate a bid-price with each flight leg, which captures the opportunity
cost of a unit of capacity. An itinerary request is accepted only when the revenue from the requested
itinerary exceeds the sum of the bid-prices of the flight legs in the requested itinerary; see Williamson
(1992), Talluri and van Ryzin (1998) and Talluri and van Ryzin (2004).

Bid-prices are traditionally computed by solving a deterministic linear program. However, this
linear program tends to be somewhat crude in the sense that it uses only the expected numbers of
the itinerary requests that are to arrive until the time of departure and does not incorporate the
probability distributions or temporal dynamics of the arrivals of the itinerary requests. In practice,
as the itinerary requests arrive over time, the deterministic linear program is periodically resolved to
artificially incorporate the temporal dynamics of the arrivals of the itinerary requests.

In this paper, we present two new methods for computing bid-prices. Both of these methods partially
incorporate the temporal dynamics of the arrivals of the itinerary requests. The fundamental idea is
to formulate the network revenue management problem as a dynamic program and to relax certain
constraints by associating Lagrange multipliers with them. As a result, the network revenue management
problem decomposes by the flight legs and we can concentrate on one flight leg at a time. The methods
that we present naturally yield upper bounds on the maximum expected revenue over the planning
horizon, remain applicable in the presence of cancellations, and provide a new and refined deterministic
linear program for the network revenue management problem.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly over
time. Whenever an itinerary request arrives, we have to decide whether to accept or reject it. An
accepted itinerary request generates a revenue and consumes the capacities on the relevant flight legs.
A rejected itinerary request simply leaves the system.

The problem takes place over the finite planning horizon T =
{
1, . . . , τ

}
and all flight legs depart

at time period τ +1. The set of flight legs is L and the set of itineraries is J . The capacity on flight leg
i is ci. If a request for itinerary j is accepted, then we generate a revenue of fj and consume aij units
of capacity on flight leg i. If flight leg i is not in itinerary j, then we have aij = 0. The probability
that a request for itinerary j arrives at time period t is pjt. For notational brevity, we assume that∑

j∈J pjt = 1. If there is a positive probability that no itinerary requests arrive at time period t, then
we can cover this case by defining a fictitious itinerary φ with fφ = 0 and pφt = 1−∑

j∈J pjt.

We let xit be the remaining capacity on flight leg i at time period t so that xt =
{
xit : i ∈ L}

gives
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the state of the system at time period t. We capture the decisions at time period t by yt =
{
yjt : j ∈ J }

,
where yjt takes value 1 if a request for itinerary j is accepted at time period t, and 0 otherwise. Letting
ei be the |L|-dimensional unit vector with a 1 in the element corresponding to i ∈ L, the optimal policy
can be found by computing the value functions

{
Vt(·) : t ∈ T }

through the optimality equation

Vt(xt) = max
∑

j∈J
pjt

[
fj yjt + Vt+1(xt − yjt

∑
i∈L aij ei)

]
(1)

subject to aij yjt ≤ xit for all i ∈ L, j ∈ J (2)

yjt ∈
{
0, 1

}
for all j ∈ J . (3)

Given the state variable xt, it is easy to see that the optimal decisions at time period t are given by
ŷt(xt) =

{
ŷjt(xt) : j ∈ J }

, where

ŷjt(xt) =

{
1 if fj + Vt+1(xt −

∑
i∈L aij ei) ≥ Vt+1(xt) and aij ≤ xit for all i ∈ L

0 otherwise.
(4)

2 Capacity-Based Lagrangian Relaxation

Associating the positive Lagrange multipliers λ =
{
λijt : i ∈ L, j ∈ J , t ∈ T }

with constraints (2), we
propose solving the optimality equation

V̂t(xt |λ) = max
yt∈{0,1}|J |





∑

j∈J
pjt

{[
fj −

∑

i∈L
aij λijt

]
yjt +

∑

i∈L
λijt xit + V̂t+1(xt − yjt

∑
i∈L aij ei |λ)

}


 ,

where we scale the Lagrange multipliers by
{
pjt : j ∈ J }

for notational brevity and use the argument
λ in the value functions to emphasize that the solution to the optimality equation above depends on
the Lagrange multipliers. The next proposition shows that there is a simple solution to this optimality
equation. In the next proposition and throughout the rest of the paper, we let rλ

it =
∑

j∈J pjt λijt +
. . . +

∑
j∈J pjτ λijτ with the boundary condition that rλ

i,τ+1 = 0.

Proposition 1 Letting [·]+ = max
{
0, ·}, we have

V̂t(xt |λ) =
∑

i∈L
rλ
it xit +

∑

j∈J
pjt

[
fj −

∑

i∈L
aij λijt −

∑

i∈L
aij rλ

i,t+1

]+

+ . . . +
∑

j∈J
pjτ

[
fj −

∑

i∈L
aij λijτ −

∑

i∈L
aij rλ

i,τ+1

]+
. (5)

The next proposition shows that we obtain an upper bound on the value function by using this
Lagrangian relaxation strategy.

Proposition 2 If the Lagrange multipliers are positive, then we have Vt(xt) ≤ V̂t(xt |λ).
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Since the initial leg capacities are given by c =
{
ci : i ∈ L}

, the maximum expected revenue over the
planning horizon is V1(c) and Proposition 2 implies that we can obtain the tightest possible upper bound
on V1(c) by solving the problem minλ≥0

{
V̂1(c |λ)

}
. It is clear from (5) that the objective function of

this problem is a convex function of λ.

An alternative method to find good policies for the network revenue management problem is to use
a deterministic linear program. Letting wj be the number of requests for itinerary j that we plan to
accept over the planning horizon, this linear program has the form

max
∑

j∈J
fj wj (6)

subject to
∑

j∈J
aij wj ≤ ci for all i ∈ L (7)

0 ≤ wj ≤
∑

t∈T
pjt for all j ∈ J ; (8)

see Talluri and van Ryzin (2004). There are two uses of problem (6)-(8). First, letting
{
µ̂i : i ∈ L}

be the optimal values of the dual variables associated constraints (7), we can use µ̂i as an estimate of
the opportunity cost of a unit of capacity on flight leg i. These opportunity costs are referred to as the
bid-prices in the network revenue management vocabulary and they are often used to decide whether to
accept or reject an itinerary request. The decision rule is that if the revenue from an itinerary request
exceeds the sum of the bid-prices of the flight legs in the requested itinerary, then we accept the itinerary
request subject to the capacity availability. Specifically, if we have

fj ≥
∑

i∈L
aij µ̂i (9)

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j. Second, one can show that the
optimal objective value of problem (6)-(8) provides an upper bound on the maximum expected revenue
over the planning horizon. The next proposition shows that we obtain a tighter upper bound by solving
the problem minλ≥0

{
V̂1(c |λ)

}
than by solving problem (6)-(8).

Proposition 3 If we use ζ̂ to denote the optimal objective value of problem (6)-(8), then we have
V1(c) ≤ minλ≥0

{
V̂1(c |λ)

} ≤ ζ̂.

Interestingly, the next proposition shows that solving the problem minλ≥0

{
V̂1(c |λ)

}
is equivalent

to solving a deterministic linear program similar to problem (6)-(8).

Proposition 4 The optimal objective value of the problem minλ≥0

{
V̂1(c |λ)

}
is the same as that of

max
∑

t∈T

∑

j∈J
fj wjt (10)

subject to
∑

∈J
pjt ai w1 + . . . +

∑

∈J
pjt ai w,t−1 + aij wjt ≤ pjt ci for all i ∈ L, j ∈ J , t ∈ T (11)

0 ≤ wjt ≤ pjt for all j ∈ J , t ∈ T . (12)
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Therefore, Propositions 3 and 4 show that one can formulate a deterministic linear program that yields
a tighter upper bound than does problem (6)-(8). Finally, we note that Talluri and van Ryzin (1998)
show the asymptotic optimality of the decision rule in (9) as the capacities on the flight legs and the
expected numbers of itinerary requests increase linearly with the same rate. It is possible to show that
the same asymptotic optimality result holds when one uses the optimal values of the dual variables
associated with constraints (11) in problem (10)-(12) as the bid-prices.

The Lagrangian relaxation strategy that we present in this section can easily be extended to network
revenue management problems with cancellations. We only present one representative result here. In
the next proposition, for notational brevity, we assume that the cancellations are not refunded. We also
assume that the cancellations of different reservations and at different time periods are independent.
Finally, we let Qjt be the probability that a reservation for itinerary j at time period t is retained until
the time of departure and bj be the penalty of not honoring a reservation for itinerary j.

Proposition 5 The optimal objective value of the problem

max
∑

t∈T

∑

j∈J
fj ujt −

∑

j∈J
bj vj (13)

subject to
∑

t∈T

∑

j∈J
aij Qjt ujt −

∑

j∈J
aij vj ≤ ci for all i ∈ L (14)

∑

t∈T
Qjt ujt − vj ≥ 0 for all j ∈ J (15)

0 ≤ ujt ≤ pjt for all j ∈ J , t ∈ T (16)

vj ≥ 0 for all j ∈ J (17)

provides an upper bound on the maximum expected revenue over the planning horizon.

3 Leg-Based Lagrangian Relaxation

We begin by introducing some new notation. We augment L by a fictitious flight leg ψ with infinite
capacity. We extend the decisions at time period t as yt =

{
yijt : i ∈ L∪ {ψ}, j ∈ J }

, where yijt takes
value 1 if we accept flight leg i when a request for itinerary j arrives at time period t, and 0 otherwise.
In this case, it is easy to see that the optimality equation

Vt(xt) = max
∑

j∈J
pjt

{
fj yψjt + Vt+1(xt −

∑

i∈L
yijt aij ei)

}
(18)

subject to aij yijt ≤ xit for all i ∈ L, j ∈ J (19)

yijt − yψjt = 0 for all i ∈ L, j ∈ J (20)

yijt ∈ {0, 1} for all i ∈ L ∪ {ψ}, j ∈ J (21)

is equivalent to the optimality equation in (1). Since the capacity on the fictitious flight leg is infinite,
we do not keep track of it in our state variable and the state variable in the dynamic program above is
still xt =

{
xit : i ∈ L}

. In the feasible solution set of problem (18)-(21), only constraints (20) link the
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different flight legs. This suggests associating the Lagrange multipliers α = {αijt : i ∈ L, j ∈ J , t ∈ T }
with these constraints and solving the dynamic program

Ṽt(xt |α) = max
∑

j∈J
pjt

{[
fj −

∑

i∈L
αijt

]
yψjt+

∑

i∈L
αijt yijt + Ṽt+1(xt −

∑

i∈L
yijt aij ei |α)

}
(22)

subject to (19), (21), (23)

where we again scale the Lagrange multipliers by
{
pjt : j ∈ J }

for notational clarity. Letting yit ={
yijt : j ∈ J }

, we define the set Yit(xit) =
{
yit ∈ {0, 1}|J | : aij yijt ≤ xit for all j ∈ J }

, in which case
constraints (19) and (21) can succinctly be written as yit ∈ Yit(xit) for all i ∈ L and yψt ∈ {0, 1}|L|. The
following proposition shows that the optimality equation in (22)-(23) decomposes by the flight legs.

Proposition 6 If
{
ϑit(· |α) : t ∈ T }

is the solution to the optimality equation

ϑit(xit |α) = max
yit∈Yit(xit)





∑

j∈J
pjt

{
αijt yijt + ϑi,t+1(xit − aij yijt |α)

}


 (24)

for all i ∈ L, then we have Ṽt(xt |α) =
∑τ

t′=t

∑
j∈J pjt′

[
fj −

∑
i∈L αijt′

]+ +
∑

i∈L ϑit(xit |α).

Therefore, we can efficiently solve the optimality equation in (22)-(23) by concentrating on one flight
leg at a time. Results similar to Propositions 2 and 3 can be established for the optimality equation in
(22)-(23). In particular, we have Vt(xt) ≤ Ṽt(xt |α) and V1(c) ≤ minα

{
Ṽ1(c |α)

} ≤ ζ̂. Consequently,
we can solve the problem minα

{
Ṽ1(c |α)

}
to obtain the tightest possible upper bound on V1(c).

4 Computational Experiments

In this section, we compare the performances of the two Lagrangian relaxation strategies presented in
Sections 2 and 3 with the performance of the bid-prices obtained by solving problem (6)-(8). When
applying the Lagrangian relaxation strategy in Section 2 in practice, given the state variable xt at time
period t, we solve the problem minλ≥0

{
V̂t(xt |λ)

}
to obtain the optimal solution λ̂(t, xt). In this case,

we make the decisions at time period t by replacing the value function Vt+1(·) in (4) with V̂t+1(· | λ̂(t, xt)).
We refer to this solution method as CP-R. We use a similar approach when applying the Lagrangian
relaxation strategy in Section 3 in practice. In particular, we solve the problem minα

{
Ṽt(xt |α)

}
to

compute the Lagrange multipliers at each time period. We refer to this solution method as LG-R.
Finally, when using problem (6)-(8) to compute bid-prices in practice, given the state variable xt at
time period t, we replace the right sides of constraints (7) with

{
xit : i ∈ I}

and the right sides
of constraints (8) with

{∑τ
t′=t pjt′ : j ∈ J }

, and solve this problem to obtain the optimal values{
µ̂i(t, xt) : i ∈ I}

of the dual variables associated with constraints (7). We use
{
µ̂i(t, xt) : i ∈ I}

as the
bid-prices in (9). We refer to this solution method as LR.

Table 1 summarizes our computational results. The first column in this table shows the character-
istics of the test problems. For the four-tuple (x1, x2, x3, x4) in this column, x1 represents the number
of flight legs, x2 represents the number of itineraries and x3 represents the ratio of the total expected
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Problem V̂1(c |λ∗) Ṽ1(c |α∗) ζ̂ V̂1(c |λ∗)
ζ̂

Ṽ1(c |α∗)
ζ̂

CP-R LG-R LP CP-R
LP

LG-R
LP

(6, 24, 1.0, 2) 5,864 5,538 5,966 98.29 92.83 5,460 5,471 5,456 100.07 100.27
(6, 24, 1.0, 4) 8,360 7,945 8,478 98.61 93.71 7,829 7,896 7,718 101.44 102.31
(6, 24, 1.0, 8) 13,383 12,878 13,501 99.13 95.39 12,695 12,871 12,248 103.65 105.09

(8, 40, 1.0, 2) 7,320 6,848 7,460 98.12 91.80 6,670 6,696 6,659 100.17 100.56
(8, 40, 1.0, 4) 10,521 9,908 10,691 98.41 92.68 9,566 9,654 9,362 102.18 103.12
(8, 40, 1.0, 8) 16,978 16,228 17,152 98.99 94.61 15,496 15,873 14,900 104.00 106.53

(6, 24, 1.2, 2) 5,231 4,984 5,339 97.98 93.35 4,860 4,889 4,833 100.56 101.16
(6, 24, 1.2, 4) 7,727 7,356 7,851 98.42 93.70 7,174 7,272 6,950 103.22 104.63
(6, 24, 1.2, 8) 12,750 12,255 12,874 99.04 95.19 11,855 12,227 11,164 106.19 109.52

(8, 40, 1.2, 2) 6,509 6,167 6,691 97.28 92.17 5,867 5,941 5,861 100.10 101.36
(8, 40, 1.2, 4) 9,702 9,175 9,921 97.79 92.48 8,681 8,875 8,410 103.22 105.53
(8, 40, 1.2, 8) 16,156 15,478 16,382 98.62 94.48 14,556 15,047 13,574 107.23 110.85

(6, 24, 1.6, 2) 4,367 4,150 4,483 97.41 92.57 4,014 4,060 3,994 100.50 101.65
(6, 24, 1.6, 4) 6,857 6,470 6,995 98.03 92.49 6,269 6,378 6,037 103.84 105.65
(6, 24, 1.6, 8) 11,880 11,343 12,018 98.85 94.38 10,818 11,268 10,093 107.18 111.64

(8, 40, 1.6, 2) 5,216 4,943 5,401 96.57 91.52 4,680 4,699 4,640 100.86 101.27
(8, 40, 1.6, 4) 8,406 7,905 8,632 97.38 91.58 7,312 7,482 7,032 103.98 106.40
(8, 40, 1.6, 8) 14,858 14,165 15,093 98.44 93.85 12,721 13,483 11,817 107.65 114.10

Table 1: Summary of computational results.

demand to the total available capacity. For each origin-destination pair, there is a high-fare and a low-
fare itinerary, and the high-fare itineraries are x4 times more expensive than the low-fare itineraries.
All of our test problems involve a hub-and-spoke network with one hub. Letting λ∗ and α∗ be the
optimal solutions to the problems minλ≥0

{
V̂1(c |λ)

}
and minα

{
Ṽ1(c |α)

}
, the second, third and fourth

columns show V̂1(c |λ∗), Ṽ1(c |α∗) and ζ̂. Finally, the seventh, eight and ninth columns show the ex-
pected revenues obtained over the planning horizon by CP-R, LG-R and LP. These expected revenues
are estimated through simulation.

The results indicate that the upper bounds obtained by LG-R are always tighter than the lower
bounds obtained by CP-R. The gap between the upper bounds obtained by LG-R and LP can be
as high as 8.5%. The expected revenues obtained by CP-R and LG-R are always better than the
ones obtained by LP. The performance of LG-R is always better than the performance of CP-R. The
performance gap between LG-R and LP can be as high as 14 %. The performance gap between LG-R
and LP seems to increase as the fare difference between the high-fare and low-fare itineraries increases
and as the gap between the total expected demand and the total available capacity increases.
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