
A column generation algorithm for a vehicle

routing problem with economies of scale and

additional constraints

Alberto Ceselli, Giovanni Righini∗, Matteo Salani†

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

Via Bramante 65, 26013 Crema, Italy
{ceselli,righini,salani}@dti.unimi.it

Abstract

We present an optimization algorithm developed for a provider of soft-
ware planning tools for distribution logistics companies. The algorithm
computes a daily plan for a heterogeneous fleet of vehicles, that can de-
part from different depots and must visit a set of customers for delivery
operations. Besides multiple capacities and time windows associated with
depots and customers, the problem also considers incompatibility con-
straints between goods, depots, vehicles and customers, maximum route
length and durations, upper limits on the number of consecutive driving
hours and compulsory drivers’ rest periods, the possibility to skip some
customers and to use express courier services instead of the given fleet to
fulfill some orders, the option of splitting up the orders, and the possibility
of “open” routes that do not terminate at depots. Moreover, the cost of
each vehicle route is computed through a system of fares, depending on
the locations visited by the vehicle, the distance traveled, the vehicle load
and the number of stops along the route.

We developed a column generation algorithm, where the pricing prob-
lem is a particular resource constrained elementary shortest path problem,
solved through a bounded bi-directional dynamic programming algorithm.
We describe how to encode the cost function and the complicating con-
straints by an appropriate use of resources and we present computational
results on real instances obtained from the software company.

∗Corresponding author: righini@dti.unimi.it
†Currently at: École Polytechnique Fédérale de Lausanne.

1

1 Introduction

The delivery and collection of goods at customers’ locations accounts for a
relevant part of the supply chain cost. Optimally planning the distribution of
goods is an effective way to obtain substantial savings.

In the last decades different optimization techniques have been widely ap-
plied to the exact optimization of vehicle routing problems: algorithms based on
branch-and-bound, branch-and-cut and branch-and-price have been proposed.
A detailed survey on such techniques can be found in the book [27], but this
is a still growing research area: recent methods like branch-and-cut-and-price
have advanced the state of the art [19] [20].

Exact optimization algorithms based on column generation exploit the Dantzig-
Wolfe decomposition of the flow formulation of the original problem into a mas-
ter problem and a pricing subproblem. The master problem is a partitioning
problem with binary variables, while the pricing subproblem is a constrained
elementary shortest path problem, which is iteratively solved to produce new
promising columns. We address the reader to the recent book [11] on column
generation for a review of such methods. Recent contributions have advanced
the knowledge on column generation, allowing to get rid of some drawbacks of
the method. In particular, dual space stabilization issues have been addressed
by Rousseau et al. [26] and Ben Amor et al. [1], dual space cutting planes and
constraint aggregation methods have been proposed by Ben Amor et al. [6] and
Elhallaoui [17] respectively.

Despite all these advances in real-world routing and scheduling applications,
several complicating constraints motivated practitioners and researchers to re-
sort to heuristics and meta-heuristics, trading optimality or approximation guar-
antees for efficiency and flexibility. For instance, Koskosidis [22] addressed the
vehicle routing and scheduling problem with soft time window constraints. An
exact optimization algorithm for the same problem has been recently presented
by Liberatore et al. [23]. Bianchessi and Righini [7] devised a complex and
variable neighborhood search algorithm for the vehicle routing with simultane-
ous pick-up and deliveries, recently attacked also by Dell’Amico et al. [10] with
exact optimization algorithms.

Within the difficulties issued by real-world problems it is worth to mention
split deliveries. In a classical vehicle routing problem the customer can be
served by at most one vehicle, while in the VRP with split deliveries (SDVRP)
this constraint is relaxed. In an optimal solution of a SDVRP some customers
requests can be split up and assigned to several vehicles. Such a relaxation allows
to model the case in which the customers demands are greater than the vehicles
capacity. The SDVRP has been considered by Dror [16], who also proposed a
branch-and-bound heuristic [15]. Some advances regarding the computational
complexity, a bound on the cost reduction, and an optimization-based heuristic
have been illustrated by Archetti et al. [2] [4] [3].

At the best of our knowledge, the characteristics presented above have never
been considered simultaneously by any exact optimization method for vehicle
routing problems. Heuristic methods, mainly based on local search, can be found

2

in [28], [21], and [13]. We also refer the reader to the reviews by Gendreau et
al. [8] [9].

In this work we consider a real world vehicle routing problem and we illus-
trate an optimization algorithm based on column generation and dynamic pro-
gramming. We show that the proposed approach is flexible enough to take into
account several complicating constraints and it is able to compute an optimal
solution or a near-optimal one with an a posteriori approximation guarantee.
In Section 2 we describe the routing problem and its model; in Section 3 we
describe how to treat the additional constraints in the dynamic programming
algorithm, in Section 4 we discuss some implementation issues and in Section 5
we present computational results.

2 Problem description

The constraints. The distribution network of our problem consists of two
types of locations: customer sites and depots. The position of each location
is known and defined by a five-levels hierarchical code: nation (e.g. Italy),
zone (e.g. North, Center, South), region (e.g. Piedmont, Tuscany), district
(e.g. Milan, Florence) and ZIP code. Each location can be defined at any level
of detail in the hierarchy: for instance, for some locations only the region is
specified, whereas for other locations all data are.

The distance between each pair of locations, in terms of both kilometers and
traveling time, is known as well. Due to different road types and average traffic
conditions, distance in time and in space may not be proportional.

For both location types we are given a set of time windows in which loading
and unloading operations can take place and the service time needed to perform
them.

For each customer site we are also given the set of orders that must be
delivered and the maximum allowed number of visits to the site for each day.

Each order is made of several items; each item consists of goods, organized
in pallets; three coefficients describe the characteristics of each item, namely
weight, volume and value. Orders can be split but items cannot. Therefore
this problem falls in between the single-source vehicle routing problem and the
split delivery vehicle routing problem. The problem instances we were given,
contained up to 100 orders, 374 items and 137 available vehicles.

Therefore the attempt to solve the problem as a single-source VRP with as
many vertices as the items would be impractical.

The daily duty of each vehicle of the fleet can be composed of many routes,
each starting at the same depot.

The vehicles have several characteristics: a maximum weight, volume, value
and number of pallets that the vehicle can load; a maximum daily duty length
(in terms of both time and distance); a maximum length for each route (in terms
of both time and distance); a limit on the number of allowed stops along the
route. By stop we mean a visit to a customer to execute a delivery operation.

3

Constraints are imposed on the time needed for loading items at the depot
and unloading them at the customers; the time is computed as a weighted sum
of the number of pallets, weight, volume and value of the goods. Therefore the
departure time of a vehicle from the depot depends on the amount of carried
goods.

Each item may not be available in all the depots. Moreover, each vehicle can
be incompatible with a given set of items, representing for instance hazardous or
fragile goods, and with some locations. Because many vehicles share the same
characteristics, we found useful to group identical vehicles into vehicle sets of a
given type.

The computation of route schedules is particularly involved: each vehicle
spends time in traveling from a location to another, by waiting to access the
locations and by loading and unloading goods. There are strict rules for the
rest periods: each driver has to rest for 45 minutes every 270 minutes driving.
This rest period can be split into shorter breaks: the waiting time and load-
ing/unloading time count as a break only if they amount to at least 15 minutes
without interruption.

Further incompatibilities exist between items and between items and loca-
tions. It is common practice that some goods are not transported with some
others on the same vehicle, for instance food and detergents, although the ve-
hicle itself is allowed to transport both types of goods.

In a feasible plan each order must be delivered, but the planner has the option
of paying an express courier for distributing some of the items. This option has
to be used as an exception, because the costs of the courier are higher than
those of the available vehicles. However in some cases it may happen that small
amounts of goods should be delivered to customers far away from the depot and
isolated from other customers, so that no economies of scale are possible. In
these exceptional cases it may be cheaper to send the items via express courier.

A complete plan is computed with daily frequency.

The cost function. A cost is associated with each vehicle route, and it is
computed through a non trivial system of fares. There are six different types of
fares depending on the following six characteristics of the route:

1. the total number of pallets carried,

2. the total weight,

3. the total volume,

4. the total value,

5. the overall traveled distance,

6. the number of stops.

In order to model economies of scale, each fare is defined by ranges. Each range
is described by a lower limit, an upper limit, a fixed cost and a unitary cost;

4

for each route and for each of the former five characteristics, a range is active
whenever the value of the characteristic for that route falls between the lower
and the upper limit. The fixed cost and the unit cost of the active range define
the fare for that route for for that characteristic. The fares on the number of
stops are treated in a slightly different way: a given number of stops are free
and a given unit cost is added only for each exceeding stop.

Finally, each fare is only applied to a given subset of locations: a whole
nation, a zone, a region, a district or a single ZIP area. Whenever two (or
more) fares related to the same characteristic match the same location, the less
specific fares are disregarded. This complicated cost structure implies that each
location can have a different set of fares, and a different cost for a route can
be computed by considering the fare of each visited location. For each location
along the route the six fares related to the six characteristics listed above are
added up, yielding the cost of the route for that location. The overall cost of
the route is the maximum among the costs corresponding to the locations along
the route.

In Figure 1 we report a simplified example of such a hierarchical fare system.
Italy is split in three zones: North, Center and South. Piedmont and Lombardy
are two regions in the North; Turin (TO) and Cremona (CR) districts belong to
Piedmont and Lombardy respectively. The ZIP code 26013 correspond to the
city of Crema in Cremona district. Seven fares are represented between brackets;
each of them has a corresponding characteristic (stops, weight or value), a range
(indicated between square brackets), fixed (F) and unit (U) costs in Euro. We
consider a vehicle carrying an overall weight of 8 units, whose value is 5000.
It performs 2 stops along its route: the first one in Crema and the second one
in Rivoli, a town of the Turin district. The national fare on the number of
stops does not apply, since its range starts from 3. The vehicle visits Crema,
its carried weight (that is 8) falls in the range of the ZIP fare ([0..10]), and
the less specific fare for Lombardy is disregarded. At the same time its carried
value (that is 5000) falls in the range of the regional fare ([0..20000]); the value
fare related to Milan is disregarded, since the vehicle does not stop in Milan
district. Considering the first visited location, the route would cost 100 + 30 · 8
EUR for the weight plus 5000 · 0.2 EUR for the value, that is 1340 EUR overall.
The vehicle also stops in Rivoli: the Turin weight fare does not apply, since it
starts from 25; considering the second visited location the route cost would be
150 + 10 · 8 EUR due to the region weight fare, that is 230 EUR.

The final cost of the route is the maximum of these two values, that is 1340
EUR (the cost for the first location).

To summarize, the actual cost related to a location j can be obtained by
visiting the tree represented in Figure 1 from the leaf representing location j up
to the root, and stopping as soon as a matching range (if any) is found. This is
like defining a stepwise linear cost function ϕj for each location j, which maps
the six characteristic values described above to the cost of the route; the final
cost function is obtained as the maximum of the ϕj functions related to the
visited locations.

5

Figure 1: Example of the fare system

3 A column generation algorithm

Let P be the set of vehicle types, V be the set of locations, D be the set of
depots; for each location v ∈ V let Qv be the corresponding set of items and let
Q =

⋃
v∈V Qv be the whole set of items to be delivered. We model our problem

as a set covering problem (SCP), in which each column encodes a feasible vehicle
duty, defined as a sequence of routes for that vehicle:

minimize
∑
p∈P

∑
k∈Ωp

ckzk (1)

s.t.
∑
p∈P

∑
k∈Ωp

xk
qzk ≥ 1 ∀q ∈ Q (2)

∑
k∈Ωp

zk ≤ np ∀p ∈ P (3)∑
p∈P

∑
k∈Ωp

sk
vzk ≤ mv ∀v ∈ V (4)

zk ∈ {0, 1} ∀p ∈ P,∀k ∈ Ωp (5)

In this model Ωp is the set of feasible duties that can be assigned to a vehicle of
type p in one day. Each coefficient xk

q is 1 if item q is delivered along a route in
duty k, 0 otherwise: covering constraints (2) impose that each item is delivered.
Each term np represents the maximum number of vehicles of type p available
per day: constraints (3) replace convexity constraints, by limiting the number
of duties assigned to vehicles of the same type. Each term mv represents the
maximum number of visits allowed to location v during the same day, and each
term sk

v represents the number of visits to location v performed during duty k:
constraints (4) ensure that the number of routes entering each location does not
exceed the maximum allowed number of daily visits. The remaining constraints
are encoded in the construction of the sets Ωp of feasible duties.

For each duty k ∈ Ωp the variable zk takes value 1 if duty k is selected, 0

6

otherwise. The cost ck of each duty k is computed through the system of fares
described in the previous section, and the objective (1) is to select a feasible
subset of duties in order to minimize the overall operating costs.

The pricing problem. The set covering model may contain a number of
variables which grows combinatorially with the size of the instance. In order
to compute a valid lower bound, we have recourse to column generation. For a
detailed treatment of column generation applied to vehicle routing problems we
refer the reader to the recent book edited by Desaulniers et al. [11].

In particular we relax integrality conditions and we consider a restricted
set covering problem (RSCP). Initially it includes only |Q| columns, one for
each item q, with a coefficient 1 in the corresponding covering constraint, and 0
elsewhere. The cost of these columns is known in advance and it corresponds to
the fare of the express courier which is known. The presence of these columns
ensure that a feasible solution always exists for the RSCP independently of the
columns generated dynamically.

At each column generation iteration the linear relaxation of the RSCP is
solved and we search for new columns with negative reduced cost. The reduced
cost of each column k ∈ Ωp can be computed as:

c̄k = ck −
∑
q∈Q

πqx
k
q − δp −

∑
v∈V

γvsk
v

where πq is the non-negative dual variable associated to the q-th constraint of
the set (2), δp is the non-positive dual variable associated to the p-th constraint
of the set (3) and γv is the non-positive dual variable associated to the v-th
constraint of the set (4).

Hence, instead of explicitly computing the reduced cost of all the variables
in the problem, we solve several pricing problems, one for each p ∈ P and for
each d ∈ D, in order to identify one or more negative reduced cost columns;
this corresponds to search for feasible duties with negative reduced cost for each
vehicle type and for each starting depot. If columns with negative reduced
cost are found, they are inserted into the RSCP and the process is iterated;
otherwise, the optimal fractional solution of the linear relaxation of the RSCP
is also an optimal solution of the linear relaxation of the SCP.

3.1 A pricing algorithm

The pricing problem is a special case of the resource constrained elementary
shortest path problem (RCESPP) formulated on a graph having one vertex for
each item, non-negative costs on the arcs, non-positive prizes on the vertices
(given by the πq dual variables) and non-negative penalties for entering each
location (given by the γv dual variables). We also set γσ = γτ = 0.

Both orders and locations correspond to subsets of items, and therefore to
subsets of vertices of the graph. In Section 4 we describe how to exploit this
relation to design smart aggregation schemes.

7

The RCESPP is known to be strongly NP-hard [14]. The most commonly
used technique to solve the RCESPP to optimality is dynamic programming,
relying upon the seminal work by Desrochers and Soumis [12], in which a re-
laxation of the pricing algorithm is solved, where cycles are allowed. Recently
Righini and Salani [24] proposed dynamic programming algorithms in which the
pricing problem is solved exactly, without allowing for cycles.

In this work we adapted the bounded bi-directional dynamic programming
(BBDP) algorithm proposed by Righini and Salani, to solve our pricing prob-
lem to optimality, encoding all the constraints through suitable resources. The
BBDP algorithm generates separately forward and backward partial paths from
and to the depot as labels of a dynamic programming algorithm. The extension
of forward and backward paths is defined in such a way that one half of the
vehicle routes in one duty is performed forward and one half backward; fur-
thermore, if the number of routes is odd, half of the stops in the central route
are visited forward and half backward. The BBDP algorithm keeps a list of
non-dominated labels, grouped for each order, and iteratively extends labels re-
taining only the Pareto-optimal ones according to a dominance criterion. Each
time a certain number of labels is created, the algorithm builds complete paths
by joining compatible forward and backward partial paths.

Hereafter we describe how we have encoded the constraints by means of
resources, while in the next subsections we detail how the extension and joining
steps are performed.

When considering vehicle type p and depot d we discard items which are
either unavailable at depot d or incompatible with vehicle type p. We represent
each item as a vertex i ∈ I; two more vertices σ and τ represent the depot where
the vehicle duty starts and ends. We assign to each vertex i a set of states,
representing routes from the starting vertex σ to vertex i. Each state includes
a resource consumption vector R, whose components represent the quantity of
each resource used along the corresponding route. In our case, this resource
vector has the following components:

• traveled distance (l)

• number of stops (b)

• number of loaded pallets (p)

• weight of loaded items (w)

• volume of loaded items (v)

• value of loaded items (c)

Moreover, in each state we keep track of the time spent in driving (tl) and
resting (tb) along the route.

Owing to the contribution of the πq dual variables to the route cost, our
graph may contain negative cost cycles. In order to generate elementary paths
only, as proposed by Beasley and Christofides [5] we attach to labels a set V ,

8

representing the visited locations, a set S of delivered items and a set Σ of items
which are incompatible with the delivered ones.

Each state has an associated cost C, depending on traversed arcs and visited
locations, and a prize ζ depending on the πq and γv dual variables associated
with the visited locations; an optimal solution corresponds to the state asso-
ciated with vertex τ with minimum value of C − ζ. Hence in our algorithm
each state is represented by a label of the form (S, Σ, V, R, tl, tb, C, ζ, i); the ini-
tial state representing an empty vehicle at the depot is encoded with a label
(∅, ∅, ∅, [0 . . . 0], 0.0, 0.0, 0.0, 0.0, σ).

Extension. Our algorithm repeatedly extends each label to generate new la-
bels. In particular, the extension of a label (S, Σ, V, R, tl, tb, C, ζ, i) corresponds
to appending an additional arc (i, j) to a path from σ to i, obtaining a path
from σ to j. The extended label has the form (S′,Σ′, V ′, R′, t′l, t′b, C ′, ζ ′, j).

We remark that vertices i and j correspond to specific items, and therefore
to specific amounts of goods delivered.

Hence, we indicate extensions from a vertex i to a vertex j corresponding
to items in the same location as internal extensions. On the opposite, we
indicate extensions from a vertex i to a vertex j corresponding to items in
different locations as external extensions. Therefore, each path is built by many
extension blocks, each composed by an external extension and a sequence of
internal extensions.

The sequence of internal extensions in each block defines a set Θ ⊆ Q of
delivered items, and this set is included in the encoding of the state. In order to
avoid exploring many symmetric solutions, we define a partial order, in which
each item corresponding to a vertex i in location l precedes items corresponding
to each vertex j > i in the same location, and we do not allow internal extensions
from any vertex j to any vertex i with i < j.

The actual consumption of resources can be computed only when the whole
extension block is performed. In fact, as described below, its value depends
both on the location of the customer identified during the external extension
and on the set Θ of items delivered during the sequence of internal extensions.

Let (i, j) be the arc appended during the external extension of the block.
With an abuse of notation, we indicate as lij (resp. tij) both the distance
(resp. travelling time) between locations i and j and the distance between the
locations corresponding to vertices i and j. The traveled distance is updated as
R′(l) = R(l)+lij , and the number of stops is increased by one: R′(b) = R(b)+1.

Then we represent the consumption implied by each item q ∈ Θ as a vector
ρq with the following four components:

• number of unloaded pallets (p)

• weight of unloaded items (w)

• volume of unloaded items (v)

• value of unloaded items (c).

9

We update the route resource consumption as follows: R′(α) = R(α)+
∑

q∈Θ ρq(α),
for each of the four characteristics α ∈ {p, w, v, c}.

The computation of the rest time and driving time is more involved: first, we
have to take into account work rules, that impose to take one break 45 minutes
long after each uninterrupted driving period of 270 minutes. Drivers are allowed
to take breaks at any point along the route. Hence, while moving from i to j, the
number of breaks to be made is given by b = max{b(tl + tij)/270c − btb/45c, 0}
and the arrival time at vertex j is tl + tb + tij + b · 45. Because each location j
has a time window starting at aj , in case of early arrival the vehicle has to wait
until the starting time of the time window and then the arrival time is set to
aj .

Finally, let u(Θ) be the time spent for unloading operations: the unloading
time per pallet and per unit of weight, volume and value is given; hence u(Θ)
can be directly computed from input data. According to the work rules, if
δ + u(Θ) ≥ 15 the waiting and unloading time counts as rest time, otherwise it
counts as driving time.

Therefore the time resources are updated as follows: if δ + u(Θ) ≥ 15, then
t′l = tl + tij and t′b = t′b + b · 45 + δ + u(Θ); otherwise t′l = t′l + tij + δ + u(Θ)
and t′b = t′b + b · 45. We remark that, according to these rules, a driver may
accumulate resting time by anticipating a break, but he can not delay a break.
However anticipating breaks when it is not needed is always a suboptimal choice.

Finally, it is never convenient to serve a same location in more than one
round, since coming back only implies additional resource consumption. Let v
be the location corresponding to vertex j: we set V ′ = V ∪{v} and S′ = S ∪Θ;
moreover we include in Σ′ the items in Σ∪Qv and any item which is incompatible
with an item in Θ. We also set Θ = ∅. The prize ζ ′ of the new label is computed
as ζ ′ = ζ +

∑
q∈Θ πq + (γi + γj)/2. Instead, the cost C ′ is computed from the

set of visited locations V ′ through the system of fares described in Section 2.

Feasibility. Each vehicle has a limited capacity, which is separately given
in terms of maximum number of loadable pallets, weight, volume and value.
Each subset of items Θ yielding a state in which these limits are violated is
not considered during the internal extensions. Then, if the closing time fj of a
location is exceeded, that is t′l + t′b > fj , the corresponding label is discarded.
Moreover, a maximum travel distance, time duration and number of stops are
imposed to each route: whenever one or more components of the R′ vector
exceed these limits, the corresponding label is not created. In order to avoid
cycles, we do not consider any location j ∈ S during extension.

Finally, since each vehicle has to come back to the depot, if R′(l)+ljτ exceeds
the maximum travel distance or t′l + t′b + tjτ exceeds the maximum travel time,
we discard the new label. If a given vehicle is allowed to perform open routes,
this is taken into account by setting ljτ = 0 for all vertices j for that vehicle.

Furthermore, exploiting an idea of Feillet et al. [18] we include in Σ′ the
set of items placed in any location e such that R′(l) + lje + leτ exceeds the
maximum travel distance or t′l + t′b + tje + teτ exceeds the maximum travel time

10

(Σ′ = Σ′ ⋃ Qe).

Dominance. The effectiveness of the dynamic programming algorithm heav-
ily depends on the number of states generated. Hence it is essential to fathom
feasible states which cannot lead to the optimal path. To this purpose suitable
dominance tests are always performed when states are extended, so that the
algorithm records only non-dominated states.

After each internal extension the we perform a simplified dominance test: let
Θ′ and Θ′′ be two item sets associated with vertex i during internal extensions
of the same label. A state in which Θ′ is delivered dominates a state in which
Θ′′ is delivered only if

∑
q∈Θ′ ρq ≤

∑
q∈Θ′′ ρq and

∑
q∈Θ′ πq ≥

∑
q∈Θ′′ πq.

Instead, after each extension block, the actual resource consumption is known,
and the set Θ is empty; therefore we perform the following complete dominance
test. Let ς ′ = (S′,Σ′, V ′, R′, t′d, t′b, C ′, ζ ′, i) and ς ′′ = (S′′,Σ′′, V ′′, R′′, t′′d, t′′b, C ′′, ζ ′′, i)
be the labels of two states associated with vertex i. State ς ′ dominates ς ′′ only
if

V ′ ⊆ V ′′ (6)
S′ ∪ Σ′ ⊆ S′′ ∪ Σ′′ (7)
R′ ≤ R′′ (8)

t′d ≤ t′′d (9)

t′d + t′b ≤ t′′d + t′′b (10)
C ′ + ζ ′ ≤ C ′′ + ζ ′′ (11)

Furthermore, at least one among the inequalities and the inclusions has to be
strict.

In particular, if conditions (9) and (10) are satisfied, this means that state
ς ′ corresponds to a route in which the driver has spent less time in driving and
it has taken less time to perform the same route as in state ς ′′; moreover, one
can easily check that no more breaks have to be made after ς ′ than after ς ′′. In
fact, suppose t′b ≤ t′′b (and δ = t′′b− t′b), then R′(t)+ δ = t′l + t′b +(t′′b− t′b) =
t′l + t′′b ≤ t′′l + t′′b = R′′(t); in other words, the driver in state ς ′ can rest as
much as the driver in state ς ′′, and still it takes less time to perform the route.
Moreover, this condition is less strict than imposing t′b ≥ t′′b, and therefore may
yield tighter dominance.

We remark that although the computation of the cost function is very in-
volved, when the above conditions are satisfied inequality (11) still guarantees
that no better state can be obtained by extending ς ′′ instead of ς ′. In fact, as
described in Section 2, the set of fares related to a location j defines a stepwise
linear cost function ϕj(R); therefore, the cost of the first state is computed
as f ′(R) = maxj∈V ′{φj(R)} and the cost of the second state is computed as
f ′′(R) = maxj∈V ′′{φj(R)}. Since V ′ ⊆ V ′′, f ′(R) ≤ f ′′(R) for each R.

11

Bidirectional Dynamic Programming. The combination of bi-directional
search with resource-based bounding allows to solve larger instances (or the
same instances in less time) than mono-directional dynamic programming; de-
tailed experimental results are reported in [25]. Instead of starting with just
one initial state, we create two initial states (∅, ∅, ∅, [0 . . . 0], 0.0, 0.0, 0.0, σ) and
(∅, ∅, ∅, [0 . . . 0], 0.0, 0.0, 0.0, τ), marked ‘forward’ and ‘backward’ respectively.

Each forward state is extended as described before, generating further for-
ward states. The extension of backward states follows symmetrical rules; it
differs only in the computation of the rest time and the driving time: first,
we swap the aj and bj values in the computation of the waiting time and
in the feasibility test. Moreover, let ς ′ = (S′,Σ′, V ′, R′, t′d, t′b, C ′, ζ ′, i) and
ς ′′ = (S′′,Σ′′, V ′′, R′′, t′′d, t′′b, C ′′, ζ ′′, i) be the labels of two backward states as-
sociated with vertex i, such that t′d ≤ t′′d and t′d + t′b ≤ t′′d + t′′b. According
to the dominance criteria, ς ′ may dominate ς ′′. However, extending both states
backward it may happen that the driving time between two breaks in the ex-
tended ς ′ state exceeds the limit of 270 minutes, while it does not when ς ′′ is
extended. This may happen even if t′b > t′′b. Hence, in the dominance test
between backward states, we tighten condition (10) as follows:

t′d + t′b + 45 ≤ t′′d + t′′b.

When no more forward or backward feasible non-dominated states can be
generated, complete paths are obtained by joining forward and backward labels.
A forward label ς ′ = (S′,Σ′, V ′, R′, t′l, t′b, C ′, ζ ′, i) and a backward label ς ′′ =
(S′′,Σ′′, V ′′, R′′, t′′l, t′′b, C ′′, ζ ′′, j) can be joined to yield a complete route only
if V ′ ∩V ′′ = ∅ and (S′ ∪Σ′)∩ (S′′ ∪Σ′′) = ∅, that is no location is visited twice,
no item is delivered twice and no pairs of incompatible items are transported
together; moreover, the resource consumption R on the whole route is computed
as R(α) = R′(α)+R′′(α) for each α ∈ {b, p, w, v, c} and R(l) = R′(l)+R′′(l)+lij .
Setting b = max{b(t′l + tij)/270c−bt′b/45c, 0}, the overall time spent in driving
is tl = t′l + tij + t′′l and the overall resting time is tb = t′b +45 · b+ t′′b. In order
the join to be feasible each component of R, and the driving and overall time
must not exceed the resource consumption upper bound.

Let R̄(b) be the maximum number of stops allowed during a route. We
discard forward and backward states in which respectively more than dR̄(b)/2e
and more than bR̄(b)/2c stops are performed, since every feasible route can be
obtained by combining the remaining states. When R̄(b) is odd, we allow more
stops in forward states, since backward dominance criteria are weaker (they are
given by tighter sufficient conditions).

The prize of the route is ζ ′ + ζ ′′ and the cost of the route is computed
considering the vector R and the set of locations V ′ ∪ V ′′.

Handling multiple routes per duty. In the general setting, each vehicle
may perform many routes in the same duty, provided it comes back to the depot
for loading operations. We take into account multiple routes by introducing the
following resource in the resource vector of each label:

12

• overall traveled distance (L)

• overall elapsed time (T)

• number of completed routes (N).

which are reset to 0 in the initial states.
Coming back to the depot in a forward state from vertex i is represented by

an extension to the vertex τ . In this case, the new resources are updated as

• R(L) = R(L) + R(l)

• R(T) = R(T) + td + tb + 45 ·max{b(td + tiτ)/270c − btb/45c, 0}

• R(N) = R(N) + 1

• V = ∅

• Σ = ∅

and all the other components are set to 0. Coming back to the depot in a
backward state is represented by a similar extension to vertex σ, and R(T) =
R(T) + td + tb + 45 ·max{b(td + tτi)/270c − btb/45c, 0}.

If the number of allowed routes in each duty is limited to N̄ , we allow at
most dN̄/2e routes in both forward and backward states; when N̄ is odd, we
limit the number of stops in the last route to dR̄(b)/2e and bR̄(b)/2c in forward
and backward states respectively.

Implementation issues. Since the cost computation is repeated for each
label, in a preprocessing step we create a list of non-dominated fares for each
location, where a fare is non-dominated if no more specific fare for the same
characteristic covers its entire range. Then, the cost computation can be im-
plemented by scanning the list of each visited location, and summing up the
contributions of all the fares whose range matches. In Figure 2 we report the
list of fares corresponding to the example in Section 2.

The list of labels at each vertex is kept lexicographically ordered. Given
two distinct labels ς ′ and ς ′′, we say ς ′ < ς ′′ if ς ′ precedes ς ′′ according to this
lexicographical order, ς ′ > ς ′′ otherwise. In particular, the following resources
are considered, from the most significant to the least significant one: N , b, tl+tb,
tl, R(l), R(p), R(w), R(v), R(c). When a new label ς ′ is created at vertex i, we
scan the corresponding list: for any label ς ′′ < ς ′ we check if ς ′′ dominates ς ′;
as soon as a label ς ′′ is found, which does not precede ς ′ in the lexicographical
order, ς ′ is inserted into the list before ς ′′; finally, for any label ς ′′ > ς ′ we check
if ς ′ dominates ς ′′.

Instead of combining forward and backward paths only when no more labels
are created, we try to build complete paths each time the number of forward
and backward labels reaches a multiple of a constant value (which we fixed to
5000, according to preliminary experiments). This allows us to identify negative
reduced cost columns before the pricing algorithm is completed. In principle,

13

Figure 2: List of fares for different locations

each pair of forward and backward labels have to be checked during these com-
bining rounds. However, as described in [25] we use the reduced cost of the best
column found so far as a bound, to avoid checking each pair of labels.

Instead of exactly solving the pricing problem at each column generation
iteration, we try to obtain approximate solutions by relaxing the domination
criteria. In particular, we replace conditions (6) and (7) as follows. We define
two measures of quality of a partial path: η1 = C−ζ

|V | , that is the reduced cost
per visited location, and η2 = C

R(p) , that is the cost per loaded pallet. The
first measure tries to identify partial paths that may yield negative reduced
cost columns, while the second one reflects a characteristic of routes which are
considered appealing in the currently implemented plan. When two labels ς ′

and ς ′′ are considered, ς ′ can dominate ς ′′ only if

α · η′1 + (1− α) · η′2 ≤ α · η′′1 + (1− α) · η′′2 (12)

with α ∈ [0..1]. Setting α = 0.1 produced best results in our case.
Finally, we do not solve the pricing problem for each vehicle type p and each

depot d at each column generation iteration: if a particular call to the pricing
algorithm does not produce columns with negative reduced cost are found, the
corresponding pair (p,d) is marked tabu, and no pricing algorithm is called for
(p,d) for a certain number of iterations. According to preliminary computational
results, we set such value to 5.

4 The optimization algorithm

Our column generation algorithm works in three distinct phases: the first phase
is a heuristic column generation with no order splitting, the second phase allows
splitting some of the orders and the third phase allows complete splitting. Since
there are rather tight computational time limits to compute a plan, the user

14

is allowed to stop the planner at any moment, retaining the best incumbent
solution.

First phase. The first phase aims at producing feasible solutions quickly.
For this purpose we only generate columns corresponding to duties in which no
order is split. This is done by solving the pricing problem on a graph in which
vertices corresponding to items in the same order are contracted to a single
vertex. Let Oi be the set of items corresponding to order i: each macro-item i
created in this way has a delivery prize

∑
q∈Oi

πq and a resource consumption∑
q∈Oi

ρq. Incompatibilities between each item and particular locations, vehicles
or other items are extended to the whole order. Since all the items of the same
order are placed in the same location, no further adjustment is required.

When this column generation phase is over, we run a primal heuristic to
compute an integer heuristic solution for the whole problem. This heuristic
consists in solving to optimality the RSCP with binary-valued variables. To
this extent we used a general purpose solver. As discussed in Section 5, on the
real instances provided by the software company this first phase typically took
a few seconds and the solutions found were a few percentage points far from
optimality. Furthermore, they have the important property of being simple to
implement for the drivers, because they do not imply order splitting.

Second phase. In the second phase we allow orders to be split into single
items, but to reduce the computational effort we merge small items at the same
location in larger ones. This is done as before by solving the pricing problem
on a contracted graph. The merging threshold is a user-defined parameter:
from our experiments we found that setting the threshold equal to 20% of the
capacity of the smallest vehicle of the fleet was a good and robust choice. Since
each column generated in the first phase still represents a feasible duty, we keep
all of them for a warm start of the second phase. When also the second column
generation phase is over, we run the general purpose solver on the binary RSCP
again, generating a new feasible solution.

Third phase Finally, we generate columns allowing for full order splitting,
using all the columns generated during the first two phases as a warm start and
we run the primal heuristic once again at the end of the optimization.

Primal heuristics. Given a fractional RSCP solution, we run a simple
greedy heuristic in order to identify good integer solutions. First, we fix the value
of all the zk variables to 0 and set ϑ = Q; then we iteratively compute a pseudo-
cost c̃k for each variable k in the RSCP, select the column k∗ = argmin{c̃k}, fix
variable zk∗

to 1 and set ϑ = ϑ \ Qk, where Qk is the set of uncovered items
which are covered by column k; we stop as soon as a feasible integer solution is
found, or c̃k∗

is +∞. Each feasible integer solution, which is found to improve
the primal bound, is kept as the new incumbent solution. We experimented
three policies for defining the pseudo-costs c̃k:

•

c̃k =

{
ck

|ϑ∩Qk| if |ϑ ∩Qk| > 0

+∞ otherwise

15

•

c̃k =

{
−z̄k if |ϑ ∩Qk| > 0
+∞ otherwise

where z̃k is the value of variable zk in the last fractional RSCP solution.

•

c̃k =

{
(1− z̃k) · ck

|ϑ∩Qk| if |ϑ ∩Qk| > 0

+∞ otherwise

This heuristic is run once for each definition policy of the c̃k pseudo-costs, after
each column generation iteration in all the three phases.

5 Computational results

The optimization module has been developed in ANSI C. We used the open-
source general purpose solver GLPK for solving both the LP subproblems and
the binary RSCP instances arising in the primal heuristics. The following tests
were run on a Linux workstation equipped with a Pentium IV 1.6 GHz CPU
and a 512 MB RAM. Our optimization module was compiled using gcc 4.1 with
full optimizations. We imposed a time limit of 4 hours to each test.

In our experimental campaign we rebuilt the application scenario as follows.
We considered a dataset provided by the software company, composed by 23
instances. These involve the delivery of a number of order ranging from 1 to
100, with up to 461 items, and are extracted on a geographical basis, by consid-
ering deliveries on the same district, province, region and so on. In particular,
instances in our dataset refer to the Italian city of Bologna and the surrounding
region Emilia–Romagna; they represent typical daily tasks for the planner.

In Table 1 we report our computational results. The table is composed by
4 horizontal blocks: in the first one we report the geographical data of each
instance, that is the number of districts (D) and the number of locations (L)
involved. Each of the subsequent block correspond to a phase of the optimization
algorithm; for each phase we report the size of the instance in terms of number
of orders (# Orders), number of merged item blocks (# item blocks) or number
of items (# Items). Then we indicate the value of the best integer solution
obtained during the phase (UB), the computing time in seconds (Time) and the
number of columns generated (cols). In columns labeled ‘Quality’, we report
the percentage gap (UB − LB)/LB as a measure of the quality of the solution
obtained; a value LB is obtained at each column generation iteration from the
RMP optimum and the reduced costs of the generated columns. We remark
that during the first two phases we consider an aggregated problem, and in
some instance heuristic pricing is performed; therefore LB may not be a valid
lower bound.

Instead, when the exact pricing algorithm has been invoked during the third
phase, we obtained a valid lower bound on the whole instance. In this case we

16

report such lower bound in column ‘LB(3)’, otherwise the column is marked
with a dash.

By looking at the results for the third phase of the algorithm, it is evident
that even instances with 50 items may be hard to solve: we could provide good
lower bounds only on a small set of instances. Nevertheless, on the smaller
instances (up to 10 orders) our algorithm found an optimal or near-optimal so-
lution already during the first phase. The second phase yielded an improvement
in the upper bound of four instances (I13, I16, I17, I21); in some case the im-
provement was substantial. This phase was useful also for correcting the quality
estimation. No improving solution was found during the third phase.

6 Conclusions

We presented an optimization algorithm based on column generation developed
for a provider of software planning tools for distribution logistics companies.
The algorithm computes a daily plan for a real world vehicle routing problem
where an heterogeneous fleet of vehicles, that can depart from different depots,
must visit a set of customers for delivery operations. Several operational diffi-
culties that arise in real world application have been addressed such as: multiple
capacities, time windows associated with depots and customers, incompatibil-
ity constraints between goods, depots, vehicles and customers, maximum route
length and durations, upper limits on the number of consecutive driving hours
and compulsory drivers’ rest periods, the possibility to skip some customers and
to use express courier services instead of the given fleet to fulfill some orders,
the option of splitting up the orders, and the possibility of “open” routes that
do not terminate at depots.

We encoded those operational constraints and the cost function by an appro-
priate use of resources of a constrained shortest path problem, that we solved
with a bi-directional dynamic programming algorithm. We presented computa-
tional results on real instances obtained from the software company. The high
number of resources, the possibility of delivering subsets of the items in each
order and the involved fare system described in section 2 make the solution of
the pricing subproblem time consuming. However, by considering whole orders,
item blocks and full splitting in different phases, our algorithm is able to provide
good primal solutions in a reasonable amount of time for instances involving up
to 100 orders and 461 items.

Although many features and constraints of the problem were specified dur-
ing the development of the algorithm, the method proved robust enough to cope
with all the additional requirements introduced. Our industrial partners embed-
ded an ANSI C implementation of the algorithm in a decision support system
for an italian transportation company, which operates at a national level; the
system is currently in “roll-out” phase.

References

[1] H. Ben Amor. Stabilization de l’Algorithme de Génération de Colonnes.
PhD thesis, École Polytechnique de Montréal, 2002.

17

[2] C. Archetti, R. Mansini, and M.G. Speranza. Complexity and reducibility
of the skip delivery problem. Transportation Science, 39(2):182–187, 2005.

[3] C. Archetti, M.W.P. Savelsbergh, and M.G. Speranza. An optimization-
based heuristic for the split delivery vehicle routing problem. Technical
report, Department of Quantitative Methods, University of Brescia, 2006.

[4] C. Archetti, M.W.P. Savelsbergh, and M.G. Speranza. Worst-case anal-
ysis for split delivery vehicle routing problems. Transportation Science,
40(2):226–234, 2006.

[5] J.E. Beasley and N. Christofides. An algorithm for the resource constrained
shortest path problem. Networks, 19:379–394, 1989.

[6] Hatem Ben Amor, Jacques Desrosiers, and Jose Manuel Valerio de Car-
valho. Dual-Optimal Inequalities for Stabilized Column Generation. Oper-
ations Research, 54(3):454–463, 2006.

[7] N. Bianchessi and G. Righini. Heuristic algorithms for the vehicle routing
problem with simultaneous pick-up and delivery. Computers & Operations
Research, 34(2):578–594, February 2007.

[8] O. Braeysy and M. Gendreau. Vehicle routing problem with time windows,
part i: Route construction and local search algorithms. Transportation
Science, 39(1):104–118, 2005.

[9] O. Braeysy and M. Gendreau. Vehicle routing problem with time windows,
part ii: Metaheuristics. Transportation Science, 39(1):104–118, 2005.

[10] M. Dell’Amico, G. Righini, and M. Salani. A branch-and-price approach to
the vehicle routing problem with simultaneous distribution and collection.
Transportation Science, 40(2):235–247, 2006.

[11] G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors. Column
Generation. GERAD 25th Anniversary Series. Springer, 2005.

[12] G. Desrochers and F. Soumis. A generalized permanent labelling algorithm
for the shortest path problem with time windows. INFOR, 26:191–212,
1988.

[13] Rodolfo Dondo and Jaime Cerdà. A reactive milp approach to the mul-
tidepot heterogeneous fleet vehicle routing problem with time windows.
International Transactions in Operational Research, 13(5):441–459, 2006.

[14] M. Dror. Note on the complexity of the shortest path models for column
generation in vrptw. Operations Research, 42:977–978, 1994.

[15] M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries.
Discrete and Applied Mathematics, 50:239–254, 1994.

18

[16] M. Dror and P. Trudeau. Savings by split delivery routing. Transportation
Science, 23:141–145, 1989.

[17] Issmail Elhallaoui, Guy Desaulniers, Abdelmoutalib Metrane, and Fran-
cois Soumis. Bi-dynamic constraint aggregation and subproblem reduction.
Computers & Operations Research, In Press, Corrected Proof:–.

[18] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm
for the elementary shortest path with resource constraints: application to
some vehicle routing problems. Networks, 44(3):216–229, 2004.

[19] R. Fukasawa, J. Lysgaard, M.P. de Aragao, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle
routing problem. Mathematical Programming, 106(3):491–511, May 2006.

[20] A. Hadjar, O. Marcotte, and F. Soumis. A branch-and-cut algorithm for the
multiple depot vehicle scheduling problem. Operations Research, 54:130–
149, 2006.

[21] T. Ibaraki, M. Kubo, T. Masuda, T. Uno, and M. Yagiura. Effective lo-
cal search algorithms for the vehicle routing problem with general time
windows. Transportation Science, 39(2):206–232, 2005.

[22] Y. A. Koskosidis, W. B. Powell, and M. M. Solomon. An optimization-
based heuristic for vehicle routing and scheduling with soft time window
constraints. Transportation science, 26:69–85, 1992.

[23] F. Liberatore, G. Righini, and M. Salani. A pricing algorithm for the vehicle
routing problem with soft time windows. Technical Report 100, Note del
Polo, Universitá degli studi di Milano, 2006.

[24] G. Righini and M. Salani. New dynamic programming algorithms for the
resource constrained shortest path problem. Technical Report 69, Universit
degli Studi di Milano, 2005. submitted to Networks.

[25] G. Righini and M. Salani. Symmetry helps: Bounded bi-directional dy-
namic programming for the elementary shortest path problem with resource
constraints. Discrete Optimization, 3(3):255–273, September 2006.

[26] L.M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization
for column generation. Technical Report PO2003-39-X, CRT - Centre de
recherche sur les transports, 2003.

[27] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics (SIAM), 2002.

[28] Victor Yepes and Josep Medina. Economic heuristic optimization for
heterogeneous fleet vrphestw. Journal of Transportation Engineering,
132(4):303–311, 2006.

19

F
ir

st
P
h
a
se

S
e
c
o
n
d

P
h
a
se

T
h
ir

d
P
h
a
se

in
st

.
D

L
#

O
rd

e
rs

U
B
(1

)
Q

u
a
li
ty

T
im

e
(s

)
c
o
ls

#
It

e
m

b
lo

ck
s

U
B
(2

)
Q

u
a
li
ty

T
im

e
(s

)
c
o
ls

#
It

e
m

s
U

B
(3

)
L
B
(3

)
T

im
e
(s

)
c
o
ls

I1
1

1
1

2
7
0
.0

0
0
.0

%
0
.0

5
1
0

1
2
7
0
.0

0
0
.0

%
0
.0

4
3

2
2
7
0
.0

0
2
7
0
.0

0
0
.0

4
1
9

I2
1

1
2

1
1
0
.0

0
0
.0

%
0
.0

3
1
3

1
1
1
0
.0

0
0
.0

%
0
.0

3
1
5

5
1
1
0
.0

0
1
1
0
.0

0
0
.0

5
8
0

I3
1

2
2

1
6
0
.0

0
0
.0

%
0
.0

3
1
4

3
1
6
0
.0

0
0
.0

%
0
.0

4
3
9

3
1
6
0
.0

0
1
6
0
.0

0
0
.0

4
4
9

I4
1

4
8

3
0
6
.0

0
0
.0

%
1
.8

5
1
6
4
4

8
3
0
6
.0

0
0
.0

%
2
.3

7
2
5
6
6

2
9

3
0
6
.0

0
-

9
0
3
8
.5

7
1
2
3
6
6

I5
1

3
1
0

4
6
0
.0

0
0
.0

%
1
.2

4
6
4
2

6
4
6
0
.0

0
0
.0

%
0
.5

6
9
3
2

2
6

4
6
0
.0

0
4
6
0
.0

0
2
8
3
2
.8

1
1
0
4
4
1

I6
2
0

8
1
0

7
3
0
.0

0
0
.0

%
0
.2

6
5
7

1
5

7
3
0
.0

0
0
.0

%
0
.2

5
9
2

2
9

7
3
0
.0

0
7
3
0
.0

0
1
.4

9
3
4
5

I7
1

6
1
0

2
8
0
.0

0
0
.0

%
0
.3

0
2
6
4

2
1

2
8
0
.0

0
2
.4

%
3
5
.2

9
2
6
0
6

2
5

2
8
0
.0

0
2
7
2
.4

6
7
3
4
3
.3

5
5
2
4
8

I8
1

3
1
0

6
2
1
.0

0
2
.8

%
1
.4

1
4
9
2

3
5

6
2
1
.0

0
1
.2

%
1
2
8
0
9
.0

3
6
0
8
8

5
4

6
2
1
.0

0
-

9
0
4
2
.0

3
1
5
0
5
4

I9
1

4
1
1

4
8
0
.0

0
1
7
.2

%
2
0
5
.6

4
4
9
0
4

2
3

4
8
0
.0

0
8
.9

%
1
1
6
4
7
.5

6
7
8
8
3

3
3

4
8
0
.0

0
-

1
3
0
0
1
.0

0
6
5
2
5

I1
0

1
1

1
1

8
1
3
.0

0
1
1
.2

%
8
.7

1
7
8
5

2
6

8
1
3
.0

0
2
.3

%
1
1
4
9
2
.9

0
1
7
2
1

3
1

8
1
3
.0

0
-

1
1
9
0
7
.7

2
1
7
9
5

I1
1

1
8

1
8

1
7
1
6
.0

0
2
0
.7

%
0
.2

7
1
1
7

2
9

1
7
1
6
.0

0
2
3
.1

%
2
3
.6

4
3
9
8

5
6

1
7
1
6
.0

0
1
2
2
9
.0

5
1
2
0
9
3
.1

0
3
6
8
8

I1
2

2
0

1
3

2
0

7
9
2
2
2
.0

0
0
.0

%
6
.1

3
1
8
2
1

5
2

7
9
2
2
2
.0

0
0
.2

%
1
1
9
9
4
.8

7
7
2
5
1

9
0

7
9
2
2
2
.0

0
7
9
0
0
5
.1

0
1
1
5
9
2
.6

0
9
5
2
9

I1
3

2
0

1
6

3
0

2
2
1
3
.0

0
0
.0

%
7
.4

2
7
4
3

3
7

2
1
8
9
.0

0
0
.0

%
6
.5

7
1
4
5
1

9
2

2
1
8
9
.0

0
-

8
9
9
7
.2

8
6
7
9
7

I1
4

1
8

3
0

1
0
0
8
.0

0
1
2
.1

%
8
9
9
5
.7

8
8
9
1
9

7
0

1
0
0
8
.0

0
6
.9

%
1
1
6
2
5
.4

2
2
2
8
1
6

8
9

1
0
0
8
.0

0
-

1
3
0
0
1
.0

0
1
9
6
6
8

I1
5

2
0

2
0

4
0

1
1
1
3
0
.0

0
1
.9

%
1
0
7
6
.4

3
3
5
3
3

8
1

1
1
1
3
0
.0

0
7
.3

%
1
1
2
4
1
.2

8
1
2
6
6
1

1
2
9

1
1
1
3
0
.0

0
-

1
1
1
2
0
.0

0
2
5
6
3
2

I1
6

1
7

5
0

8
3
9
.0

0
9
.9

%
1
3
0
0
1
.0

0
1
5
3
4
6

3
3

3
3
8
.0

0
7
.0

%
1
1
7
2
3
.9

5
1
1
3
5
8

1
5
8

3
3
8
.0

0
-

9
3
9
.7

6
6
5
5
8

I1
7

2
0

3
0

5
0

3
6
9
4
5
3
.2

0
0
.0

%
9
0
.1

1
3
9
7

9
2

3
6
9
4
4
6
.0

0
0
.0

%
1
1
4
7
0
.3

9
5
7
6

1
6
4

3
6
9
4
4
6
.0

0
-

1
3
0
0
1
.0

0
3
9
9

I1
8

2
0

3
4

6
0

2
2
1
7
3
9
.0

7
0
.1

%
1
1
0
6
.8

1
4
6
6
4

1
3
2

2
2
1
7
3
9
.0

7
0
.0

%
1
3
0
0
1
.0

1
2
0
9
3
2

2
5
5

2
2
1
7
3
9
.0

7
-

9
2
5
5
.8

2
2
3
7
7
8

I1
9

2
0

2
9

7
0

9
9
4
6
.0

1
1
.8

%
1
1
1
2
6
.2

0
8
2
4
8

9
5

9
9
4
6
.0

1
0
.1

%
1
3
0
0
1
.0

1
1
5
5
9
8

2
1
4

9
9
4
6
.0

1
-

9
1
9
0
.5

7
2
0
7
2
7

I2
0

2
0

3
8
0

1
1
3
6
3
5
.0

1
0
.7

%
9
2
5
8
.5

5
2
4
9
1
8

1
3
3

1
1
3
6
3
5
.0

1
7
.1

%
2
6
2
8
.9

3
2
4
6
5
0

3
4
3

1
1
3
6
3
5
.0

1
-

-
-

I2
1

2
0

3
3

9
0

1
4
3
7
5
0
.0

1
7
8
.6

%
1
3
3
8
.7

4
9
4
3
8

1
6
0

1
1
0
9
4
1
.9

7
2
7
.5

%
5
2
7
3
.3

3
3
3
0
0
2

3
4
7

1
1
0
9
4
1
.9

7
-

-
-

I2
2

2
0

4
7

1
0
0

6
5
5
7
5
3
.0

1
0
.1

%
1
1
3
7
7
.4

9
6
8
0
1

1
7
4

6
5
5
7
5
3
.0

1
0
.1

%
1
1
0
4
7
.7

8
2
1
9
8
4

3
7
4

6
5
5
7
5
3
.0

1
-

-
-

I2
3

1
7

1
0
0

3
1
4
2
4
9
.0

0
3
.2

%
1
1
4
7
0
.3

5
9
9
5
0

3
2
3

3
1
4
2
4
9
.0

0
8
6
.0

%
2
0
2
.8

8
1
4
1
7

4
6
1

3
1
4
2
4
9
.0

0
-

-
-

T
ab

le
1:

C
om

pu
ta

ti
on

al
re

su
lt

s
on

a
da

ta
se

t
of

re
al

in
st

an
ce

s.

20

