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Abstract 

This papers attempts to conceptualize the residential mobility and spatial search process 

as a part of comprehensive Residential Mobility and Location Choice (REMLOC) model 

to be implemented within a microsimulation-based integrated modeling framework and 

presents empirical results of household mobility-decision models using Greater Toronto 

Area (GTA) retrospective survey data. In implementing mobility models, both discrete 

choice and hazard-based duration models are tested in order to aid time- and event-driven 

microsimulation respectively. Within discrete choice framework, binomial choice panel 

logit models are examined that include fixed effects, random intercept and random 

parameter models. On the other hand, parametric hazard duration models are investigated 

with various assumptions concerning the baseline distribution. In addition, the paper 

investigates frailty models that account for unobserved heterogeneity for both univariate 
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and multivariate hazard models. While the Random Parameter (RP) model performs 

better in identifying residential stressors that lead to mobility, the log-logistic Gaussian 

shared frailty model shows promising results in explaining termination of passive-state 

duration. The study reveals that most stressors that relate to life cycle events such as job 

change, birth of a child, increase/decrease in number of jobs etc. are significant in the RP 

Model. On the other hand, dwelling and neighbourhood characteristics are dominant in 

the continuous-time shared frailty model. The estimation results of both techniques give 

important behavioural insights and better understanding of residential mobility processes, 

which can be incorporated in the microsimulation-based integrated urban models.    

 

Keywords: mobility and search, binomial logit, random parameter, hazard model, frailty  

 

1. Introduction 

Since residential mobility and location choice is an important part of integrated land use 

and transportation models to understand relationships between transportation and land 

uses, it is necessary to explicitly model the “decision-making process” of relocation 

incorporating its underlying behaviour. This paper presents a comprehensive conceptual 

model of residential mobility and location choice (REMLOC) and identifies various 

decision components starting from the decision to become active in the housing market 

through spatial search of dwellings that ends up with bidding process to secure a new 

location. It also implements households’ mobility decision component by using two 

different techniques: discrete choice and hazard-based duration modeling. Understanding 

the mobility process is very important to identify behavioural responses due to changes 

within the households and their surroundings, which will provide tools to test various 

public policies and link with the residential location choice processes that has significant 

influence on the composition of neighbourhoods, travel patterns and commuting. One of 

the significant contributions of this paper is that it extends standard binomial choice 

models of residential mobility explicitly recognizing panel effects. With the retrospective 

survey data three different specifications, fixed effects, random intercept and random 

parameter models are investigated to incorporate unobserved heterogeneity due to panel 
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structure. To our knowledge, the empirical application of Random Parameter (RP) model 

in analyzing residential mobility in this paper is unique in literature. On the other hand, 

hazard-based duration models are examined to recognize dynamics of duration in taking 

mobility decisions. In other words, these models attempt to test likelihood of termination 

of passive-state duration depending upon the length of time spent from the beginning of 

the event (being active in the housing market) as well as other related covariates. 

 

The paper is organized as follows: the next section discusses a comprehensive residential 

mobility and spatial search process to be implemented within REMLOC. Section 3 

provides concepts and estimation procedures of the techniques applied to model 

residential mobility. Section 4 briefly describes the data used for the empirical 

application. Section 5 discusses results of both binary choice panel logit and hazard-

based duration models. Finally, Section 6 concludes with a summary of contribution of 

this study and future research directions. 

 

2. Conceptual framework: Mobility and Spatial Search 

Assuming a sequential decision making process (see discussions in Habib and Miller, 

2005, 2007) the Residential Mobility and Location Choice (REMLOC) Model consists of 

three interrelated components: Mobility decisions, Spatial search and Bidding process to 

secure alternative locations. In this section the conceptual framework of each of these 

modeling components are briefly discussed. 

 

The residential mobility component determines for each decision making unit (DMU) the 

decision to search for dwellings and the timing of mobility decisions. It is hypothesized 

that DMUs take these decisions for adjustments with housing needs based on stressors 

arising from changes in household composition and different life cycle events as well as 

surrounding environments (for recent literature reviews see Habib and Miller, 2007; 

Clark and Ledwith, 2005). Since DMUs could act differently in response to stressors (for 

example in case of job change one could either buy a new car to reduce burden of 

commuting or change dwelling), a stress management component is introduced to deal 
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with stress-release mechanism. Once a DMU take a decision to search, it enters into the 

spatial search process, which is a very complex process involving an array of decisions to 

make before the bidding for selected alternative dwellings to relocate. Figure 1 details a 

conceptual framework to model spatial search.   

 

At first, it is assumed that every DMU has a mental perception how to search. It has 

certain objectives. Either they are a “forced mover” due to occurrence of any major 

triggering event (such as in-migration, formation of new household through marriage or 

separation) or “choice movers” under a certain level of stress (for example, room-stress 

due to birth of a new child, commuting stress due to change in job etc). As such, DMUs 

know what they need (at least a crude estimate). This mental model would be tried to 

capture by “(Selection of) search strategies” component. That means the outputs of stress 

and stress-release mechanism will guide the formulation of strategies. In addition, socio-

economic characteristics might have impact on selecting strategies. 

 

Of course, there are arguments that DMUs might have some advance knowledge of the 

market through day-to-day activities like reading newspapers, driving through a 

neighborhood and seeing rental advertisements. These phenomena arguably also have 

impacts on selecting strategies. But they are not sufficient condition for considering a 

move and deliberately searching dwellings to improve existing utility of residential 

location. So this model would use this “past knowledge and experience” as one of the 

factors in shaping strategies, but the process will be dealt with a separate component 

(“passive information”) and placed within the “information channel” component. 

 

In reality, search strategies could be of numerous kinds. For simplicity, this conceptual 

model would preliminary focused on following strategies: 

� Anchor-based search (anchor at current job and/or residence),  

� Supply-driven search, area-based sequential search,  

� Area-based simultaneous search and  

� Learning-based search (see Huff, 1986; Pushkar, 1998). 
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The key outcome of the “strategy of search” component is that it will give a big sample 

of dwelling units that are available in the market in a given period of time for a particular 

DMU. However, a searcher, in reality, does not know this choice set. But, from the 

modeling perspective, inference on strategic choice has a great impact. Having sub-

sample of alternatives (even if it is big) from the citywide set (which will be exogenously 

determined) would be very helpful. However, the actor who is searching will not be given 

this information (only the model would know it). Rather, a filtered set of choice will be 

passed to the actor, which will be produced from the level of information it might gain 

through active or passive search (and also from social networks).      

 

As such, the “information channel” is very important part of search stage. In reality, 

information search activities can take a variety of forms: first, relying on Internet search 

(predominantly, for renters, thanks to IT technologies), attending open houses, searching 

commercial advertisements, contacting real estate agents, reviewing advertisement, 

calling developers etc. It would also include physically visiting a neighborhood to see 

“For Rent” or “For Sale” signs on poles or front yards. In addition, a DMU could be 

informed by friends, relatives, neighbors, colleagues and other “alters” of his/her social 

network. 

 

The information a searcher could gain from these channels would actually filter the “big 

choice set” (obtained from previous component) and would help creating “awareness 

space” (i.e. a set of dwelling units that an actor knows for certain they physically exist). 

For this set of dwellings a searcher can somehow assign “place utilities”. However, it is 

assumed that the DMU will not visit each of these dwellings, even may not extensively 

search more information on all of those that requires defining “search space” which is a 

sub-set of “awareness space”. The argument is that the filtered information might 

produce some useless options that do not match the “mental aspiration region” of a 

person seeking a dwelling. Mental aspiration regions reflect an upper-limit and lower-

limit that the DMU has in mind about the attributes of the dwelling (in terms of 

structural, neighborhood, even transport options). For example, some people seek to rent 
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only one-bedroom apartment, and some “captive transit riders” have a minimum and 

maximum walking distance from the residence in mind. To capture these limits, this 

“mental aspiration region” is proposed, which will further screen out the “choice set” 

while taking actual decisions during search. 

 

Until now, the searchers actually do not take any real decision other than collecting 

information and processing in response to mental simulations. The main decision 

components during search are: (a) Final screening of dwelling units from the “choice set” 

obtained from “search space” and matching with “mental aspiration region”, (b) Defining 

prospect set (a set of dwelling that would be physically visited (i.e. “vacancy visit”) to 

see and understand the value and utility of owning/renting), (c) Evaluation of selected 

dwellings in the prospect set (d) Defining bidding set after vacancy visit and evaluation. 

Once a DMU decides on alternative dwellings on which to bid, a bid formation, 

negotiation and acceptance/rejection process would take place within which both buyers 

and sellers interact.  

 

Although the entire REMLOC model as outlined in the Figure 1 considers a sequential 

process involving mobility, search, and bid, it is expected that once each component is 

individually modeled potential feedbacks could be introduced to make the model more 

realistic and behaviourally sound. It is expected that it will be possible to operationalize 

this conceptual model of relocation with two retrospective surveys, the Residential 

Mobility Survey (RMS II 1998) and Residential Search Survey (RSS 1998) conducted for 

the Greater Toronto Area, and some additional survey needed in the near future. 

However, this paper attempts only to model the first component of decision to search 

using RMS II 1998 data for a sample of 270 GTA households that contains housing 

career, employment history and household composition changes for a period of 1971-

1998. In the following section model structures of the mobility component are briefly 

discussed. 
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3. Model structures for empirical application 

For mobility, a DMU first decides whether to become active in the housing market at a 

given point of time or not. Two different modeling techniques are applied for the 

purpose: discrete choice methods and hazard-based duration models. 

 

3.1 Discrete choice models 

Within discrete choice framework, binomial logit panel data models are investigated with 

different assumptions on the heterogeneity structures that include Fixed Effects (FE), 

Random Intercept (RI) and Random Parameter (RP) models. 

 

The FE model specification is used to accommodate individual heterogeneity in the panel 

models by examining group specific effects: 

)()1( itiit xgyP βα ′+==  (1) 

where )1( =ityP  represents probability of binary choice of being active in the housing 

market and iα  denotes group specific effects. In this particular application, a group 

means a DMU that has sequence of choice occasions over time.  For a given set of DMUs 

),.....2,1( ni =  at different unit time periods (i.e. choice occasions, ),.....2,1( iTt =  the 

unconditional log-likelihood function is given by: 

∑ ∏
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where Λ  is the CDF of logistic distribution. The conditional log-likelihood can be 

obtained by conditioning the contribution of each group on the sum of the observed 

outcome, which can then be maximized with respect to the slope parameters without 

estimating fixed effects parameters (see Chamberlain, 1980). However, direct 

maximization of the log-likelihood function with all parameters is possible by brute force 

maximization taking advantage of the properties of the sparse second derivatives matrix 

(see Greene, 2001 for details).   
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While the parameter vector iβ  has a fixed component and a sub-vector that varies across 

groups in the FE models, it is constant across groups and periods for the Random 

Intercept (RI) models. But the later type has a time invariant component, which is the 

latent heterogeneity that enters into the model in the form of random effects:  

)()1( iitit xgyP ψβ +′==  (3) 

where iψ is the unobserved heterogeneity same in every period. 

 

On the other hand, in the Random Parameters (RP) model, all the parameters can vary 

randomly over individuals. The structure of the model is based on the conditional 

probability: 

Prob [ ] iitiiitit TtNixgxy ,.......1,,......,1),(1 , ==′== ββ  (4) 

The model is operationalized by writing: iii vz Γ+∆+= ββ  (5)  

where iz  is a set of M observed variables which do not vary over time and enter into the 

means of the random parameters. ∆  represents a coefficient matrix that forms the 

observation-specific term in the mean. And Σ  is the diagonal matrix of scale parameters 

(i.e. standard deviations). The random vector iv  induces the random variations in the 

reduced form parameters of the model. The unconditional likelihood function is given by 
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Since this likelihood function is a multivariate integral that cannot be evaluated in closed 

form, the parameters are estimated by simulation (See Train, 2003). The simulated log-

likelihood function is  
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The simulation is carried out over R draws on riv ,  through ri ,β . The maximum simulated 

likelihood estimator is obtained by maximizing equation (7) over the full set of structural 

parameters Φ . Eventually estimates of structural parameters and their asymptotic 

standard errors are generated from this simulated maximization procedure (see Greene, 

2004, and Train, 2003 for details).   
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In the RP Model it is needed to assume specific distributions for random parameters. In 

most applications such as Revelt and Train (1998), Mehndiratta (1996), and Ben-Akiva 

and Bolduc (1996) it has been specified to be normal or lognormal. On the other hand, 

Revelt and Train (2000), Hensher and Greene (2001), and Train (2001) have used 

triangular and uniform distributions. This paper assumes all random parameters to be 

normally distributed with zero mean and unknown variance. In practice, it is often found 

that some of the parameters are random while others are nonrandom. In such cases, 

nonrandom parameters in the model are implemented by constraining corresponding rows 

in ∆ and lower triangular matrix to be zero. Note that in the Random Intercept (RI) model 

only the constant term is assumed to be random while all other parameters are 

nonrandom. In other words, the RI model can be seen as the RP model in which only the 

constant term is random.   

 

3.2 Hazard-based duration models 

In addition to discrete choice models, this paper investigates continuous time hazard-

based duration models to analyze mobility decisions. Hazard-based duration model 

recognizes dynamics of duration since likelihood of termination of duration depends on 

the length of time spent from the beginning of an event. It has wide applications in the 

fields of engineering, medical sciences and labour force analysis and the basic principles 

are well discussed in Kalbfleisch and Prentice (2002), Lancaster (1990) and Hougaard 

(2000). For a housing market application, let T be a continuous, non-negative valued 

random variable representing time until active in the housing market of a Decision 

Making Unit (DMU). If the probability of a DMU leaving the passive-state within a short 

interval t∆  at or after t is )|( tTttTtP ≥∆+<≤  while the DMU is still passive in the 

market at t, then the hazard rate can be obtained simply dividing the probability by t∆  

that represents average probability of leaving the state per unit of time. Considering this 

average over very short intervals the hazard function )(tλ , which is the instantaneous rate 

of failure at t, is given by       

t

tTttTtP
t

t ∆
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=

→∆

)|(
lim)(

0
λ  (8) 
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This basic formulation of hazard function allows relating it with probability density 

function )(tf , cumulative distribution function )()( tTPtF ≤=  and survival function 

)(1)()( tFtTPtS −=≥= . Since the probability density function of T is  

dt
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dt
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Since we are interested in investigating factors affecting termination of duration this non-

parametric model is extended to incorporate explanatory variables (in the form of 

covariates) leading to semi-parametric and parametric models. Semi-parametric models 

assume hazard rate to be proportional and baseline hazard to be parametrically 

unspecified. The most popular proportional model exploits partial likelihood estimation 

techniques put forwarded by Cox (1972) and takes the following form: 

))(exp()(),( 0 txtxt λλ =  (10) 

where x(t) is the vector of observed covariates and )(0 tλ is the baseline hazard which is 

not parametrically specified. But parametric models assume a distribution for the baseline 

hazard and hence for the survival function. In many cases knowledge of the baseline 

hazard is unnecessary, for example, in comparing control and treatment groups for 

mortality due to a specific disease while applying a new drug. However, like many other 

instances tackled by event history researchers, in microsimulating urban systems, it is 

useful to have clear inference about )(0 tλ  since such a modeling framework requires 

identification of timing of entry and exit in the housing market, labour force and school 

etc. Although it is possible to retrieve baseline hazards in semi-parametric models (for 

details see Box-Steffensmeier and Jones, 2004, Kalbfleisch and Prentice, 2002 and 

Collett, 1994 among others) this study prefers parametric models since they provide 

direct inference on the duration dependence. In addition, this paper makes an accelerated 

failure time (AFT) assumption (i.e. the covariates directly rescale time), which can be 

expressed as a log-linear model: 
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σεβ +′= xT j)log(  (11) 

where jβ  are the coefficients of the time independent covariates x  and ε  is a stochastic 

error term with type-I extreme value distribution scaled by σ .  The hazard function of 

the AFT models is given by 

)()(

0 exp)exp(),( xx
txt

ββλλ −−=  (12) 

Here the effect of covariates is to alter the rate at which a person proceeds through time 

by either accelerating or decelerating the termination of duration. 

 

There are wide varieties of distributions that can be employed in the parametric models 

including exponential, Weibull, log-logistic, log-normal, gamma, generalized F, 

Gompertz, Makeham etc. (for detail discussion on each distribution see Lancaster, 1990; 

Kalbfleisch and Prentice, 2002; Deshpande and Purohit, 2006). This paper tested 

Weibull, log-logistic and exponential distributions. While the exponential distribution has 

the no-ageing phenomenon due to lack-of-memory property, the Weibull distribution is a 

generalization of exponential distribution that provides constant, strictly increasing (or 

decreasing) hazard functions. Hence the hazard rate for Weibull distribution can be 

expresses as  

1)()( −= ptpt ϕϕλ  (13) 

where ϕ is a positive scale parameter and p  is known as the shape parameter. When 

1>p , the hazard rate increases as t increases from 0 to ∝. In other words, there is a 

positive duration dependence (i.e. positive ageing, also called “snowballing effect”) 

which means that the longer the elapsed duration the unit is more likely to exit soon. On 

the other hand, if 10 << p  then the hazard decreases with time (i.e. negative ageing, also 

called “inertia effect”). In case of 1=p  it becomes exponential with mean ϕ/1  and if 

2=p  it becomes Rayleigh distribution for which hazard rate is a straight line passing 

through the origin with slope ϕ2 .  Hence, Weibull models can accommodate both 

increasing failure rate (IFR) and decreasing failure rate (DFR) probability distributions 

depending upon the free shape parameter p .  
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The paper also considers log-logistic distribution that permits non-monotonic hazard 

form in contrast to monotonic Weibull models. The hazard function of the log-logistic 

distribution can be written as  

))(1/()()( 1 pp ttpt ϕϕϕλ += −  (14) 

In this case, the hazard decreases monotonically from ∝ at the origin to zero provided 

that 1<p  and decreases monotonically from p  provided that 1=p  as t approaches to ∝. 

On the other hand, if 1>p , the hazard gets a non-monotonic shape increasing from 0 to a 

maximum of )/))1((( /1 ϕppt −= , and decreasing thereafter as t approaches to ∝.    

The parameters of the parametric hazard models are estimated using full information 

maximum likelihood estimation method (see Kalbfleisch and Prentice, 2002). Since our 

data is right Type-I censored, denoting iδ  as the censoring indicator (taking the value 0 if 

case i  is censored and the value 1 if case i  experienced the event), the likelihood 

function is given by  

( ) ( ) )],([],[)],([],[
1

ii

n

i

iiii

n

i

ii xtSxtxtSxtfL iii δδδ λ∏∏ == −
 (15) 

This univariate formulation is adequate for analyzing single-spell residential mobility 

(see an application in Vlist et al., 2001). However, this study is using retrospective data 

that has repeated events recorded for each DMU. Failure to account for this repeatability 

might violate independence assumption on the occurrence of events taken in single-spell 

models. Two general approaches are applied in such cases: variance-corrected approach 

and random effects/frailty approaches (for extensive review see Box-Steffensmeir, 2004 

and Hougaard, 2000).  While variance-corrected approach estimate a model and then fix 

up the variance to account for the fact that the observations are not independent (rather 

repeated and therefore correlated), the shared frailty models assumes a stochastic 

variation across the parameters that is shared (common) among individuals. This paper 

investigates shared frailty models with different assumptions on frailty distributions. If 

decision making unit (DMU) i  has multiple episodes j , the hazard rate for the j th 

episode of the i th DMU can be expressed as 

iijiijij vxtxtt )exp()()exp()()( 00 βλωψβλλ ′=′+′=  (16) 
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where )exp( iiv ωψ ′=  represents group-specific heterogeneity (i.e. shared frailty) that is 

distributed across groups (in this case DMUs with repeated episodes) according to some 

distribution function )( ivG . Consequently, the likelihood function is given by 

 ( ) )()],([],[
1

0
1

i

g

i

ijij

n

j

ijij vdGxtSxtL ij

i

∏ ∫ ∏
=

∞

=










=

δ
λ  (17) 

This likelihood function is maximized in order to obtain parameter estimates. The 

likelihood ratio test is used to assess the need for inclusion of the frailty component .iv  

 

For both single-episode and repeated events models goodness-of-fit statistics are obtained 

by estimating Rho-square, which is one minus the ratio of log-likelihood of the full 

model and null model (i.e. constant only model).     

  

4. Data preparation 

As discussed earlier this paper uses the RMS II retrospective survey data for a random 

sample of 270 GTA households. Detail description of the data can be found in Habib and 

Miller (2007). For the discrete choice models, 28 years of longitudinal data (for a period 

of 1971-1998) has been extracted from the database that contains yearly observations of 

whether decision making units are active in the market or not. It also contains 

information on employment history, household composition changes as well as socio-

economic characteristics of the households. Key residential stressors are identified for 

each observation year by comparing states between the consecutive years (for example, 

job increase/decrease, DMU size increase/decrease etc.). Indicators of lags and leads of 

these stressor events are also identified to test in the models. Additional explanatory 

variables are generated from census tabulations of the corresponding years. In total, 4097 

observations are used for modeling in which DMUs were active in the housing market at 

408 choice occasions in different years between 1971 and 1998. Note that the event 

“active” in the housing market includes actual moves as well as instances in which the 

DMU became ‘active’ in the market but did not end up moving. This ‘active but did not 

move’ information is unique in the literature and provides an unbiased database for 
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mobility model development.  That is, most data sets only include successful moves and 

so underestimate mobility participation rates. 

 

On the other hand, for continuous time hazard-based duration models the same dataset is 

selected where 270 households have 623 episodes (that represents passive-state duration 

of DMU) including censoring spells. The data is right-censored in the year of 1998. Note 

that these duration spells are the continuous time-period within which DMUs are in 

passive-state. The state terminates by the occurrence of the event decision-to-move that 

triggers actively searching the housing market for potential alternative dwellings. The 

average observed duration is 2.3 years with a minimum one year and maximum seven 

years. Covariates used for hazard models are also taken from the same sources, but only 

those that are constant or assumed to be constant for the entire duration of an episode. 

Time varying covariates are not tested in this paper. As such, year of birth of the DMU 

head, number of bedrooms and other structural attributes of the dwellings, and 

neighbourhood attributes are employed in the models.  It also tests whether the first spell 

since household formation as well as immigration affects termination of passive-state 

duration or not.   

   

5. Discussion of results 

5.1 Panel logit models 

Table 1 reports results of binomial panel logit models described in Section 3.1. Fixed 

effects (FE) model estimated through brute force maximization gives similar results as of 

the conditional FE model put forwarded by Chamberlain (1980) where fixed effects 

parameters are not estimated. In fact, conditional maximum likelihood estimation is 

carried out due to presence of incidental problem (i.e. if there is same choice throughout 

the observation period). The results shows that incidental problem is not acute for the 

sample used for this study and fixed effects models can be estimated using direct 

maximization (proposed by Greene, 2001) where all the group-specific effects are 

estimated along with coefficients of explanatory variables at the same time. However, 

Random Intercept (RI) model shows greater value of good-ness-of fit statistics (i.e. Rho-



 15

square) than that of FE models. In the RI model we have a time invariant constant term, 

which captures unobserved heterogeneity across decision making units (DMU). But the 

highest goodness-of-fit statistics is achieved in the Random Parameter (RP) Model that 

captures heterogeneity across the parameters. Hence this paper selected the RP model as 

the final model. Description of parameter estimates of the final RP model is given below. 

 

It is found that most of the hypothesized residential stressors (such as increase/decrease 

in number of jobs, birth of a child, job change, decrease in DMU size, retirements etc.) 

are found to be significant in explaining residential mobility. The fifth column of Table 1 

reports mean and standard deviation of the parameters estimated for the RP model. It can 

be seen that mostly dynamic variables are found to be random parameters whereas all of 

the static variables are nonrandom.   

 

Age of the household head (often used as a proxy variable to mark stages of life cycle, 

see Clark et al., 1986, Mulder, 1993, Vlist et al., 2001 among others) have significant 

effect on the decision to move. It shows that younger-head DMUs are more frequent 

movers than older heads. However, there is some variability of the effect as seen in the 

significant standard deviations. Another significant life-cycle event, birth of children also 

induces mobility. Similarly, job change increases the probability of moving where the 

mean of the parameter is 0.296 with a standard deviation of 0.76. This means that 

although change of job location on average significantly encourages a relocation decision 

in order to relieve commuting stress, this effect varies considerably across households, 

with certain DMUs preferring other stress-release mechanisms (possibly, such as buying 

a new car) and do not become active in the housing market in response to this stressor. 

 

While decrease in number of jobs in the DMU increases the probability of moving, a 

dummy variable reflecting retirements doubles this effect. Interestingly, these stressors 

are found to be non-random across the sample households. However, increase in jobs 

shows a very interesting behaviour having negative sign in the parameter value. Our prior 

hypothesis was that such an increase would increase the probability of becoming active in 
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the housing market. But the model result suggests an opposite effect. This could partly be 

explained by the results of the static variable number of jobs in the household, which is 

found to be nonrandom with a coefficient value of – 0.086. That means if there are more 

workers in the household, the probability of becoming active is lower, all else being 

equal. This presumably reflects inertia effects associated with having more job locations 

within which they have already been settled in terms of mode choice, commuting patterns 

and other short-term activity agendas. Therefore, an increase in jobs in a DMU actually 

brings a similar stationary effect that prevents considering a residential relocation. 

However, the parameter of this variable also exhibits a very high variability among the 

decision makers having a standard deviation of 1.254 compared to the mean of – 0.198. 

This suggests that in some cases an increase in jobs actually does increase the probability 

of moving.  

 

Duration at the current home is also found to be one of the significant determinants of 

mobility decision. The higher the duration in the current location, the lower the 

probability of moving. It proves the hypothesis of inertia that impedes relocation due to 

strong community linkages created by longer durations of living in a neighborhood. It is 

very much consistent with many other previous findings (such as McHugh et al., 1990). 

This study also tried to capture duration effects at different time scales using dummy 

variables (such as the first three years in the GTA, three to five years, more than five 

years, etc. as well as other alternative combinations), none of which provides expected 

impacts on mobility. Hence, in the final model, only total duration is retained, which is 

also found to be a random parameter. 

 

In many cross-sectional studies (as well as in some longitudinal mobility research), 

tenure was considered to be an important factor in explaining residential mobility. Often 

it was found that renters are more mobile than owners. Again, it was found that highly 

educated persons tend to have higher mobility rates compared to less educated workers. 

Similarly, household size, dwelling type, number of rooms, number of bedrooms, number 

of people per room etc. were found to be contributing factors for mobility (see Vlist et 
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al., 2001 for a recent review). But this research indicates that most of these static 

attributes of the dwelling as well as decision makers are not significant when dynamic 

variables are taken into account in the mobility model. 

 

It is also found that neither job-residence distance nor distance to CBD is significant in 

explaining mobility decisions. Rejection of distance to CBD could be explainable due to 

the GTA being a multi-centric metropolitan area (although the Toronto CBD is still a 

very important employment, shopping and cultural centre within the region). However, 

the study was expecting to see effects of job-residence distance or changes in average 

job-residence distance within the mobility decision, but these hypotheses were not 

confirmed. One possible reason for this unexpected result might be that the stressor “job 

change” already captures some of the effects of change in commuting distances.     

 

Although this research examined three years of lag and lead effects for each of the life 

cycle stressors, the only significant lag/lead effect found is a two-year lagged response to 

a decrease in DMU size. That is, if the DMU size decreases it take two years to have an 

impact on the mobility decision. In other words, the probability of moving increases two 

years after a DMU size decrease. This is a plausible response, since it may well take a 

household some time to decide to adjust its dwelling size and/or location in response to a 

change in household size.  

 

Regarding neighborhood dynamics, the model indicates that if a DMU lives in a stable 

community, represented by the fraction of non-movers (in the last five years) in the 

neighborhood, it is less likely to consider moving. On the other hand, the neighborhood 

labor force participation rate has a positive impact on household mobility. Both of these 

variables are found to be non-random. A large set of other neighbourhood attributes has 

also been examined (for example, average dwelling value, dwelling density, renter/owner 

ratio, percentage of immigrants etc.). None of those variables are found to be statistically 

significant. 
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Since housing supply data for a long period was not available for use in this study, it uses 

some housing market indicators such as change in mortgage rate, bank interest rate, etc. 

to include market dynamics in the model. Although this study finds both mortgage rate 

and bank interest rate to be significant, due to obvious correlation issues, only one of 

these two variables can be included in the final model. Since mortgage rates can vary for 

individual cases and RMS II does not provide any information of mortgage premiums, 

and equity or savings, the bank interest rate has retained in the final model. Note that this 

interest rate only differs across years, not for individual decision makers. Finally, it is 

found that changes in interest rate are negatively related with mobility decisions. The 

interpretation is that if interest rates increase, decision making units are less likely to be 

active in the market and vice versa. This key market indicator is found to be a random 

parameter with a statistically significant standard deviation.   

 

Most of the parameters included in the final model, including means and standard 

deviations, are statistically significant at the 95% confidence level or better. One or two 

estimates fall short of the corresponding t statistics value (1.64). However, they are 

retained in the model due to their importance as policy variables (such as change in 

interest rate) in an expectation that with larger sample the variables would be statistically 

significant. 

 

5.2 Hazard-based duration models  

The first set of hazard-based duration models is estimated assuming single-spell for each 

termination. That means, each episode at the passive-state in the market for a given DMU 

is assumed to be independent and considered as separate observation in the analysis. But 

given the fact that we have collected retrospective data that contains information on the 

housing career of each household, it is more appropriate to consider repeated events 

models. As discussed earlier although there are different ways of dealing with this 

phenomena we estimated shared frailty models where the frailty component accounts for 

unobserved heterogeneity that is common for the households that have multiple 

sequential episodes. The study also tested frailty models for the single-spell assumption 
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in which frailty only considers individual-level heterogeneity (not group-level as in 

shared frailty). Since with the retrospective data we are more interested on the group-

level unmeasured risk factors this paper only reports repeated events shared frailty 

models. Three different distribution assumptions are used for frailty in these models 

including gamma and inverse Gaussian (see Clayton, 1978 and Hougaard, 2000) and 

Gaussian distribution (see Greene, 2002). The goodness-of-fit measures for both basic 

single-spell models with different assumptions on baseline hazard and repeated events 

shared frailty models are tabulated in Table 2. As indicated by the goodness-of-fit 

measures, the log-logistic model with Gaussian frailty describes the termination 

probability best. While Table 3 presents coefficient estimates of all basic single-episode 

models, Table 4 shows some competitive shared frailty models. It can also be seen that 

most of the parameter estimates of the log-logistic Gaussian frailty model are statistically 

significant at the 95% confidence level in contrast to other candidate models. Since the 

log-logistic Gaussian frailty model is selected as the final model its results are detailed 

below. 

 

It is found that age of the DMU head (represented by the year of birth) has significant 

impact on the passive-state duration. Older DMU head stays passive in the housing 

market longer than younger heads.  Also, a DMU who has higher number of rooms in the 

dwelling unit it lives have longer duration. Similarly, DMUs living in the row houses 

have longer duration; possibly under income constraints they are less likely to become 

frequently active in the market. Tenure also affects duration; renters are more frequently 

active in the market than homeowners. Both higher dwelling density and single-detached 

housing density in the neighborhood increases duration of stay. However, impact of 

single-detached housing density is higher than that of all dwellings. This reflects that 

DMUs that secured housing in a single-detached dominated neighborhood are less likely 

to change their dwellings frequently. 

 

While increased share of non-movers in the neighborhood increases duration, share of 

immigrants in the neighborhood does the opposite. This means that DMUs living in a 
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stable neighborhood are less likely to consider moving, but those who live in an 

immigrant-dominated area are more prone to move. On the other hand, labour force 

participation rate in a neighborhood increases duration of being passive in the housing 

market. 

 

Distances to Toronto CBD also have impact on duration; people living close to the CBD 

are more frequently active in the market than people in suburban areas. It is intuitive that 

DMUs living in the suburbia have already obtained a stable location by purchasing 

dwellings. Both dummy variables indicating new household formation and new 

immigrants in GTA show positive impact on duration. That is, in the first spell since 

formation of household and immigration, DMUs tend to stay longer than other spells in 

general. However, DMUs forming new households have longer duration than that of 

immigrants. 

 

Finally, the value of ancillary parameter ( p ) greater than one suggests that the hazard 

initially increases to a certain point and decreases thereafter. The model also shows 

considerable variance of the distribution of the random effects (θ ), which is statistically 

significant when tested against a Chi-square distribution. That is, the null hypothesis 

( 0=θ ) is rejected for the log-logistic shared frailty model. 

 

5.3 Comparison between panel logit and hazard models 

It is not possible to directly compare these two modeling techniques examined to explain 

residential mobility. The focus of the discrete choice modeling was to see how 

households decide at each choice occasion to be active in the market. On the other hand, 

hazard-based duration models directly model termination of passive-state duration 

resulting the event of being active in the market. Although outcomes of the process 

modeled through these two techniques are the same, due to methodological differences 

and variable selection makes it hard to directly compare the results of both. In the panel 

data logit models, most of the variables selected mark dynamic changes at each unit time 

period (i.e. year). On the other hand, the variables that are constant (or assumed to be 
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constant) over the whole duration period are used for the continuous-time hazard models. 

Note that time-varying covariates are not tested in this paper. As such, mostly dwelling 

attributes and neighbourhood characteristics are found in the hazard models. However, 

common variables in both types of models show identical results in explaining mobility. 

For instance, younger-heads are more frequently active in the market than older-head 

households and higher labour force participation rates in the neighbourhood contribute 

larger duration meaning less prone to active in the market. On the other hand, the 

variables which are rejected in the panel logit models (such as tenure, dwelling density) 

are found significant in the hazard models. Perhaps, in the presence of dynamic variables 

these variables do not add explanatory power in the logit models. One interesting finding 

has been achieved through continuous-time hazard models is that the first spell of 

forming new households and also first spell after immigration lengthen duration of stay 

before considering a move to the next. This type of spell-specific characteristics 

presumably could only be incorporated in the continuous time hazard models.    

 

6. Conclusion 

The paper portrays a comprehensive conceptual framework to model residential mobility 

and spatial search, which will provide an excellent guideline to carry forward modeling 

residential location choice processes. It also presents empirical results of residential 

mobility models that applied two different techniques: discrete choice and hazard-based 

duration modeling. In general, both modeling techniques perform well and provide useful 

results in understanding residential mobility behaviour. Tests and comparison of different 

models within each technique also provide important guidelines to cope with 

methodological challenges while working with retrospective data. While Random 

Parameter (RP) model shows better performance in incorporating latent heterogeneity for 

discrete-time data, shared frailty models are found quite satisfying for continuous-time 

settings. In general, both final models show reasonable explanatory powers. Also, their 

parameter estimates are mostly statistically significant. 

 



 22

In the random parameter model, it is found that residential stressors mostly related to job 

and household composition dynamics are significant in explaining DMUs’ desire to 

change location at each point of time. Notable stressors are increase and decrease in the 

number of jobs, change of job location, retirement, birth of children and a two-year 

lagged effect for decrease in DMU size. On the other hand, mostly dwelling and 

neighbourhood characteristics are found significant in the continuous-time shared frailty 

models in the absence of stressors that vary with time. Hence, the next step of the 

research should be testing these models by incorporating time-varying covariates and to 

see how the model responds.  

 

The models presented in this paper significantly contribute to the residential mobility 

research, particularly in exploring methodologies to deal with panel effects when 

considering longitudinal data. In addition, it is expected that while the random parameter 

binomial logit model will support time-driven microsimulation of the mobility 

component in the Integrated Land Use, Transportation and Environment (ILUTE) project, 

the frailty model could be applied in case of event-driven microsimulation. 
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Table 1: Results of binomial panel logit models 
Fixed Effects 

Model 

(Uncond.) 

Fixed Effects 

Model (Cond.) 

Random 

Intercept 

Model 

Random 

Parameter 

Model Variables 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Age of head of decision 

making unit (DMU) 

-0.18797847 

(-9.619) 

-0.17533311 

(-9.398) 

-0.02612479 

(-12.250) 

-0.02918213* 

(-12.637) 

Birth of a child in the 

DMU 

0.37881621 

(1.574) 

0.34426617 

(1.510) 

0.31014448 

(3.546) 

0.32569854* 

(3.549) 

Lag of two years for 

decrease in DMU size 

0.08649466 

(0.422) 

0.07705735 

(0.398) 

0.12778979 

(1.711) 

0.13347559 

(1.779) 

Total duration in the 

dwelling 

0.18803664 

(7.325) 

0.17236233 

(7.058) 

-0.05156842 

(-13.015) 

-0.05392695* 

(-11.367) 

Change in job (any 

member in the DMU) 

0.51693548 

(3.090) 

0.46431397 

(2.959) 

0.43331847 

(8.691) 

0.29577452* 

(4.290) 

Increase in number of jobs 

in the DMU 

0.08196942 

(0.311) 

0.09177949 

(0.369) 

0.00124506 

(0.016) 

-0.19754624* 

(-1.690) 

Decrease in number of 

jobs in the DMU 

0.69989859 

(2.466) 

0.61070743 

(2.291) 

0.42730730 

(4.141) 

0.47358793 

(4.506) 

Dummy variable 

representing retirement 

0.57547997 

(0.730) 

0.53416598 

(0.763) 

0.46923746 

(1.560) 

0.44798726 

(1.471) 

Number of jobs in the 

DMU 

-0.10090589 

(-0.645) 

-0.12056292 

(-0.799) 

-0.07248508 

(-2.451) 

-0.08618640 

(-2.875) 

Ration of non-movers in 

the neighbourhood 

-0.45879471 

(-2.464) 

-0.40384605 

(-2.336) 

-0.08597773 

(-1.768) 

-0.10976852 

(-2.189) 

Labour force participation 

rate in the neighbourhood  

-0.00013483 

(-0.020) 

-0.00135888 

(-0.210) 

0.00472632 

(2.288) 

0.00410920 

(1.935) 

Change in bank interest 

rate 

-0.00475829 

(-0.175) 

-0.00031640 

(-0.012) 

-0.01258810 

(-1.227) 

-0.01312268* 

(-1.233) 

Constant --- --- 
-0.27726666 

(-1.745) 

-0.08359342 

(-0.503) 

Scale parameter for random parameter 

Constant   
0.00441068 

(0.114) 
--- 

Age of head of decision 

making unit (DMU) 
   

0.00209713 

(2.119) 

Birth of a child in the 

DMU 
   

0.21942446 

(1.509) 

Total duration in the 

dwelling 
   

0.04460868 

(8.839) 

Change in job (any 

member in the DMU) 
   

0.76225470 

(8.609) 

Increase in number of jobs 

in the DMU 
   

1.25401401 

(7.942) 

Change in bank interest 

rate 
   

0.03465269 

(1.976) 

Rho-square 0.047507 0.060672 0.05368 0.06396 

*Means for random parameters 
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Table 2: Goodness-of-fit measures of both single-episode and repeated 

events models with various distributional assumptions 

 

Single-episode models Log-likelihood  

Log-logistic -727.80549 

Weibull -748.56343 

Exponential -749.9647 

Repeated event models  

Log-logistic Gamma shared frailty -726.83519 

Log-logistic inverse-Gaussian shared frailty -726.8694 

Log-logistic Gaussian shared frailty -726.1688 

Weibull Gamma shared frailty -743.09058 

Weibull inverse-Gaussian shared frailty -744.05097 

Weibull Gaussian shared frailty -743.3892 
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Table 3: Parametric estimates of single-episode models 

 
Log-logistic Weibull Exponential 

Covariates Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Year of birth of the head of the 

DMU 

-0.04024524 

(-10.913) 

-0.04593684 

(-12.376) 

-0.04589226 

(-11.678) 

Number of rooms in the 

dwelling unit 

0.01847907 

(0.836) 

-0.00076771 

(-0.035) 

0.00031560 

(0.013) 

Dummy indicating row-house 

(1 if row-house, 0 otherwise) 

0.09777811 

(0.712) 

0.09710156 

(0.742) 

0.10607144 

(0.729) 

Dummy indicating renters (1 if 

renter, 0 otherwise) 

-0.03960180 

(-0.391) 

0.01796712 

(0.192) 

0.01556447 

(0.150) 

Dwelling density in the 

neighbourhood 

0.03531795 

(1.611) 

0.04377769 

(1.782) 

0.04729649 

(1.773) 

Single-detached dwelling 

density in the neighbourhood 

0.42565604 

(3.001) 

0.54647970 

(3.789) 

0.56450146 

(3.551) 

Ration of non-movers in the 

neighbourhood 

0.38250610 

(2.901) 

0.42709794 

(3.249) 

0.43989081 

(3.047) 

Ration of immigrants in the 

neighbourhood 

-0.05329624 

(-0.255) 

0.06092065 

(0.301) 

0.08448626 

(0.376) 

Labour force participation rate 

in the neighbourhood 

0.00631783 

(1.091) 

0.00673219 

(1.274) 

0.00689517 

(1.174) 

Euclidian Distance to Toronto 

Central Business District (CBD) 

0.00468092 

(1.908) 

0.00394264 

(1.730) 

0.00431935 

(1.710) 

Dummy indicating first spell 

after formation of HH 

0.08583378 

(0.655) 

0.06701696 

(0.569) 

0.07180846 

(0.547) 

Dummy indicating first spell 

after immigration 

0.02770642 

(0.228) 

0.03098085 

(0.283) 

0.03452785 

(0.283) 

Constant 2.36871246 

(4.817) 

3.07112720 

(6.964) 

3.01313741 

(6.148) 

Ancillary parameter 
p  1.503843 1.072135 1.00 (fixed) 

Log-likelihood -727.8055 -748.5634 -749.9647 
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Table 4: Parametric results of selected repeated events models with 

various assumptions on shared frailty 
Log-logistic 

Gaussian 

Frailty Model 

Weibull 

Gaussian 

Frailty 

Model 

Log-logistic 

Gamma 

Shared 

Frailty 

Model 

Weibull 

Gamma 

Shared 

Frailty 

Model 

Covariates 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Coefficient 

(t-statistics) 

Year of birth of the head of 

the DMU 

-0.04048032 

(-19.273) 

-0.0449556 

(-21.998) 

-0.0386733 

(-8.63) 

-0.0446419 

(-10.19) 

Number of rooms in the 

dwelling unit 

0.01747112 

(1.355) 

0.01005810 

(0.808) 

0.0225636 

(1.00) 

0.0121356 

(0.51) 

Dummy indicating row-

house (1 if row-house) 

0.13145958 

(1.635) 

0.12291582 

(1.652) 

0.1041151 

(0.75) 

0.1092205 

(0.78) 

Dummy indicating renters 

(1 if renter) 

-0.02673617 

(-0.480) 

-0.00277430 

(-0.054) 

-0.0426104 

(-0.42) 

-0.0098313 

(-0.10) 

Dwelling density in the 

neighbourhood 

0.03273352 

(2.502) 

0.04209297 

(2.981) 

0.0329598 

(1.23) 

0.039585 

(1.28) 

Single-detached dwelling 

density in neighbourhood 

0.42109540 

(4.891) 

0.50733926 

(6.012) 

0.413634 

(2.49) 

0.4807128 

(2.79) 

Ration of non-movers in 

the neighbourhood 

0.40935892 

(5.628) 

0.47885640 

(7.001) 

0.390927 

(3.33) 

0.4729032 

(3.79) 

Ration of immigrants in 

the neighbourhood 

-0.06555341 

(-0.592) 

-0.00551386 

(-0.052) 

-0.0702679 

(-0.36) 

-0.0321404 

(-0.15) 

Labour force participation 

rate in the neighbourhood 

0.00707778 

(2.173) 

0.00792558 

(2.715) 

0.0067158 

(1.27) 

0.0076733 

(1.43) 

Euclidian Distance to 

Toronto CBD 

0.00476633 

(3.225) 

0.00450069 

(3.236) 

0.0049392 

(1.85) 

0.0049255 

(1.8) 

Dummy indicating first 

spell after formation of HH 

0.08646772 

(1.203) 

0.06384892 

(0.981) 

0.0959405 

(0.75) 

0.0744047 

(0.6) 

Dummy indicating first 

spell after immigration 

0.04147438 

(0.604) 

0.05021355 

(0.826) 

0.0326187 

(0.27) 

0.0558481 

(0.46) 

Constant 2.33733191 

(8.233) 

2.86187217 

(11.433) 

2.212001 

(4.33) 

2.726221 

(5.49) 

Ancillary parameters 
p  1.58519 1.194026 1.57096924 1.219213 

θ  0.34463268 0.46280313 0.133638 0.3590112 

Log-likelihood -726.1688 -743.3892 -726.83519 -743.09058 
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Figure 1: Flow-chart of conceptual model of 

residential mobility and spatial search 


