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INTRODUCTION

The advent of new commitments by municipal, statkfaderal governments to construct and
operate roadways whose tolls may be set dynamibakybrought into sharp focus the need
for a computable theory of dynamic tolls. Moreovieiis clear from the policy debates that
surround the issue of dynamic tolls that pure enuocefficiency is not the sole or even the
most prominent objective of any dynamic toll medbeanthat will be implemented. Rather,

equity considerations as well as preferential tnesit for certain categories of commuters
must be addressed by such a mechanism. Accordivglintroduce in this paper the dynamic
efficient toll problem.

To study the dynamic efficient toll problem (DETR)is necessary to employ some form of
dynamic user equilibrium model. We elect the foratioh due to Friesz et al (2001) and
Friesz et al (2006) and its varieties analyzed by Bt al (2006) and others. The dynamic
DETP formulation will be constructed by direct aw} to the static efficient toll problem
formulation of Hearn et al (2002). This approachtite formulation of the DETP leads
directly to an the efficient toll pricing rule, proled appropriate necessary conditions that
recognize time shifts are employed. The necessarglittons are those derived by Friesz et al
(2004) for optimal control problems with state-degent time shifts.

The main focus of this paper is the formulation aotlition of the DETP. To this end, it will
turn out that we need to solve a dynamic systenmaopn (DSO) problem and a dynamic user
equilibrium (DUE) problem. Again using the DUE fautation reported in Frieset al.
(2001) and Friesz and Mookherjee (2006), we witivile the basis for the solution of the
DETP. Also we show how to easily extend the forriata to include the day-to-day
evolution of demand. Of course there are severgbwach a model may be formulated. The
dual-time scale formulation we shall emphasizedsel on our prior work on differential
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variational inequalities and equilibrium networksdg and follows the qualitative theory
conjectured (but not analyzed) by Friesal. (1996).

Central to the algorithmic study of the DETP instpiaper is the descent in Hilbert spaces to
the DSO problem. In the numerical approach, we eynph implicit fixed point scheme like
that in Friesz and Mookherjee (2006) for dealinghwiime shifts in differential variational
inequalities. In an example provided near the dritiie paper, we numerically study a small
network and determine its optimal dynamic tolls.

NOTATION AND MODEL FORMULATION

In this section we purposely repeat key portiontheftime-lagged DUE formulation given in

Friesz et al. (2001), because of its key role is thanuscript. The reader familiar with the
notation and time-shifted DUE model presented iegzret al. (2001) may skip this section of
the present paper.

Dynamic, Delay Operatorsand Constraints

The network of interest will form a directed grapfiN,A), whereN denotes the set of
nodes andA denotes the set of arcs; the respective cardemlif these sets afll| and|A.
An arbitrary pathpOP of the network is

p={a, 2t
where P is the set of all paths amj(p) is the number of arcs gb. We also lett, denote
the time at which flow exists an arc, whilg is the time of departure from the origin of the

same flow. The exit time functionf therefore obeys

te = Tal-p(td)
The relevant arc dynamics are
dxP(t) ,
Xz_t =g? ()-9P) opoOP, iDf2..m(p) 1)
xP(t)= x,fo OpOP, i0{1,2,...m(p)} )

where xf is the traffic volume of ar@ contributed by patlp, gf is flow exiting arca

and gef_l is flow entering ara, of path pOP. Also, gag Is the flow exiting the origin of

path p; by convention we call this the flow of path and use the symbolic nante = gag.
Furthermore



5 = 1ifalp
%P 7o ifa Op

so thatx,(t)= Y., x’(t) DaOA  is the total arc volume.
pOP

Arc unit delay isD,(x,) for each ar@dA. That is, arc delay depends on the number of

vehicles in front of a vehicle as it enters an @ftcourse total path traversal time is
m(p)

D,(t)= Z[T%p(t)—rﬁl (t)} =cP -t opop

i=1
It is expedient to introduce the following recuesirelationships that must hold in light of the
above development:

P = t+Dal[xal(t)] OpOP

P = ra]p_l(t)+Da]_[xa]_(r%p_l(t))} OpOP, i0{2,3,..m(p)}

from which we have the nested path delay operéitstproposed by Frieszt al. (1993):
m(p)

Dp(t,x)EZJaipCDai (t,x) OpOP,
where x = (xa]p: pOP,i0{1,2,...m(p)}
and
@, tx) = D, (x, 1)
@, tx) = D, (X, [t+P,))
Cbas(t,x) Das(xas(t+CDa1+CDa2))

o, (t,%) D, (X, (t+®, +-+®, )

- ou[1+50, ]

To ensure realistic behaviour, we employ asymmetity/late arrival penalties
Flt+D,(t,x)-t,]
wheret, is the desired arrival time and
t+D,(t,x)>t, = F({+D,(t,x)-t,)=x"(xt)>0
t+D,(t,x)<t,= F(t+D,(t,x)-t,) = x"(x,t)>0
t+D (t,X)=t, = F(t+D,(t,x)-t,)=0
while XU, x) > xE(t,x).

Let us further denote arc tolls by, for each aral] A. We assume that users pay any toll
imposed on an arc at the entrance of the arc. Ttreepath tollsy, for each pathpJP are



m(p) i-1
y,(t)= >3 pYs (t +ZCDa]_ (t, x)j OpOP,
i=1 j=1
where (Dao(t, X) = Q. If the tolls are paid when users exit arcs, ttienpath toll becomes
m(p)

Yolt)= 2.8, pYa (t+2¢baj (t,x)j OpOP.

We now combine the actual path delays and arriealafties to obtain theffective delay
operators
W (t,x) =D, (t,x) +F{t+D,(xt)-T,) OpOP (3)

According to the FIFO principle, the volume thas lemtered an arc up to timevill exit it by
time t+D, (x, (1) So that

Cp e (1D O (®) |
jog%—l(t)dt'jDai (%, (0)) g, (t)dt Dpd R D1, m( g, (4)
where gag(t) =h,(t). Differentiating both sides of (4) with respectttme t and using the

chain rule, we have
hy(t)=gP(t+D, (x, O)@+D, (x, ®)%,) OpOP (5)

af ()= 0P (t+D, (x, O)@+D, (x, ®)%) OpOP, i0[2m(p). ()

These areproper flow progression constraintderived in a fashion that makes them
completely consistent with any traffic model that respects #&O discipline These
constraints involve a state-dependent time I])gﬁgixaﬁ (t buf)make no explicit reference to

the exit time functions. These flow propagation stomints describe the expansion and
contraction of vehicle platoons; they were presgrig Holden (1989); Frieset al. (1995).
Astarita (1995, 1996) independently proposed flowppgation constraints that may be
readily placed in the above form.

The final constraints to consider are those of femmservation and non-negativity:

> [hdt=q, 0l j)ow ™
- thzo 06, j)oR (8)
9y 20 OpOP,infL,m(p)] ©)
xP =0 OpOP,iOfLm(p), (10)

whereW is the set of origin-destination pairB, is the set of paths connecting origin-
destination pair(i, j), t; >t,, andt, —t, defines the planning horizon. Furthermo@, is
the travel demand (a volume) for the perlqdfj. In what followsh will denote the vector

of all path flows,g the vector of all arc exit flows. Finally, we deedhe set of all feasible
exit flow vectors(h,g) by Q; that is



Q ={(h,9):(1).(2).(5).(6).(7).(8).(9), (10) aresatisfied . (11)

Dynamic User Equilibrium

Given the effective unit travel delay for path p, the infinite dimensional variational

inequality formulation for dynamic network user @dpium itself is: find (gD, hD)DQ such
that

<w(t,x(hﬂ,gﬂ)),(h—hﬂ)>:D;ngwp[t,x(hﬂ,gﬂ)]tbwp(o—hﬁ(t)]dtzo (12)

for all (h, g)DQ, whereW denotes the vector of effective path delay opesaterieszet al
(2001) show all solutions of (12) are dynamic usguilibrig. In particular the solutions of
(12) obey

Wt x(g",h)> 4, = ()= 0 (13)

ho(t)> 0= w [t x(g" )= 4 (14)
for pOPR, where; is the lower bound on achievable costs for anyraveler, given by
Uy = essinf{G)p(t, x):t D[to,tf ]}2 0
and
= min{/,lp ; pDFﬁ}zO.

We call a flow pattern satisfying (13) and (14pynamic user equilibriumThe behavior
described by (13) and (14) is readily recognizedbt a type of Cournot-Nash non-
cooperative equilibrium. It is important to noteaththese conditions do not describe a
stationary state, but rather a time varying flowtgra that is a Cournot-Nash equilibrium (or
user equilibrium) at each instant of time.

THE DYNAMIC EFFICIENT TOLL PROBLEM (DETP)

Hearn and Yildrim (2002) studied the efficient twilthe static setting with the traveling cost
which is linear in the traffic flow. The objectivaf the efficient toll is to make the user
equilibrium traffic flow equivalent to the systerptonum by appropriate congestion pricing.
To study the dynamic efficient toll problem (DETRYe introduce the notion of &nlled
effective delay operator

0, xY,) =D, (t, ) +F{t+D,(xt)-T,f+vy,() OpOP,

where y, denotes the toll for patip . Of course we have the relationship

2Although we have purposely suppressed the fundtmmelysis subtleties of the formulation, it shobklnoted

that (12) involves an inner product in a Hilberase, nameI)(L2 [O,T]) i .



Ot ¥o)= W, 1)+ v, (). (15
To make the toll meaningful, we enforce the effitiwll non-negative:
y,(t)20 DtO|t,.t, ), pOP.

Analysis of the System Optimum

The dynamic system optimum (DSO) is achieved byisgl

minJl—j >e™w (t,x)h(t)dt

pOP

subject to
dxP(t)
X;t =gP (1)-oP®) opoP, iOfLm(p) (16)
xPlto)=x>  opoP, iofm(p)]

P ()=0Pt+D, (x, ON@+D, (x, M%) OpOP, i0[m(p)] (17)
z '[o t=Q; D(L J)DW (18)
x=0 g=0 h=>0, (29)

where we have used the convention

g? =h,.

andr is the discount rate which must be defined acogrtlh the planning time horizon.
It will be convenient to employ the following shieaind for shifted variables:

9> =gP(t+D, (x, ) OpOP, i00,M(p)].
Penaltizing (17) we obtain

m(p),up : 2
p;Pe_nwp(t,x)hp(tFpDPE %[gﬁjt)—@ﬂt)(ﬂ D, (%, (t))x%)} dt, (20

where ,uaf) Is the penalty coefficient. Let us then define $keof feasible controls

PR o

E{(h g): zj h,(t)dt=Q, O, j)OW,h=0, 920}. (21)

Optimal control problem (20) and (21) is an ins&amf the time-shifted optimal control
problem analyzed in Friest al. (2001). We also employ the following notation fbetstate
vector and control vector, respectively:



x:(xai cpOP;,i D[],m(p)]j
g =(ga'?: pOP,; D[Lm(p)])-

The DSO Hamiltonian is

t ) /,la] p ' . ’
x4k = Te w600, 0+ 2 3 0P 08P 0w 0, 06, 0)%,)]

poP p
+22Ap( P 0)-920)).
pOP i=1
Let us introduce the vector
F(t,x,h,g,/i;,u):(Faip(t,x,h,g,/iiﬂ)i pOP,i D[O,m(p)]j,

Faop(t,x,h,g,A;u)=aHl(t'Xé:g’/‘;ﬂ) OpOP (22)

N——

where
p

oH, (t,x,h, g,A; 1)

aga?

if t D[to, D, (x(to))J

oH, (t,x,h, g,A; 1)

FP(txh gA;p) = agP
" (txh.g.A;u) 9 (23)

G
+{aHl(t,x,h,g,/l;,u)L | 1 J]
agaf’ 1+D, (, ()% 0
G

if tD[Da]_ (x(to)). tr + D, (X(tfm

OpOP, i0[1,m(p)]

and eacfsai () is a solution of the fixed point probleﬂ; ard_s t-D J We may
write (22) and (23) in detail as
oW _L(t,x
Faop(t,x,h,g,)l;y):e‘”[wp(t,x)+ of )hp}
P (24)

+u§[g£ (t)-a> 0@+ D, (x, (t))xal)} +P opop



ﬂaﬁl{ga]p (t)- @agl 1+ Dam(xaj+1 (t))"m )} _/]a? +A pﬂ

10k, (40)
PlaP)—gP ' : PP
Faip(t,x,h'g,/];lu): 'uaiﬂ{gai (t) ga]+1(t)(1+ Dai+1(xai+1(t))xai+1)} Aa1 +Aai+1 (25)
| uP{af,0)-aP o, 0 o)}
% (t)
0o, (xe)ht, +D, (X, )]
OpOP, ID[l,m(p)—l]
b
/161_ |
i 10D, (<))
Pt adiu)=1_p_[p[oP (1)-gPms D, (x. 1))
g | Ha 19a, )" Y4 SR UINY (26)
3
oo, (<)t +0, (., )]
OpOP, i=m(p).
Then a necessary condition f(b'ﬁ gS)D/\ to be the system optimum is
m(p)
0< zzpF_p(t,xS,hs,gS,)ls (g% -gP j O(h,g)OA (27)
pOP i=0
for each time instant[] [t SUpa]DAit + D }J together with the state dynamics (16) and
the following adjoint equations and boundary caondg
dA p.S s W S
ST Oy e O o) OpOP, i0[Lm(p)]
dt axef axf

Sl \_ -
APS()=0  opop, iofLm(p)],

where the superscrif® denotes a trajectory corresponding to a systemimapt.

Analysis of the User Equilibrium in the Presence of Tolls

However, a dynamic tolled user equilibrium mustybe
S[e{o b xv )y, @) -n Witz 0 fora (hg)oA, (28)
pop 0

where the state dynamics as well as all other stadecontrol constraints are identical to those
introduced above for DSO. In particular, the seffe#sible controls\ referred to in (28)



remains unchanged. We formulate an optimal comtrablent from the above dynamic user
equilibrium variational inequality problem; its @lgfive is

minJ, —Zj "o [t x(h), s ]h

pOP
with the same constraints introduced previouslypleviously done for the system optimum
problem, we penalize the flow propagation constnaio obtain the modified criterion

3= Y[ e, ) vy I )+ 1) et [gm() @£(t)(1+D;(x%(t»x%>T dt (29)

pOP pOP i=1

Then we have another standard form time-shiftedn@btcontrol problem, although it is
subtly but importantly different than that for DS@ particular, the Hamiltonian now
becomes

H,(t,x,h,g,4; 1) = Sero AR CAFANO, Zi {geH ’ (t)-aP @+, (x, (t))xaﬁ)}2
PP =1
+zp£(g£1(t)—g£(t)j

poP =L

An analysis of necessary conditions similar to tfat DSO is now possible. The key
difference is that the counterpart of (24) mustthe user equilibrium case be written as
follows:

G2t xh 9.4 u)= e"o,ftx(h) ¢ ]
. (30)
+ufl a0~ 6P 0+ D, (x, %) | +4? P

Ga]p(t,x, h,g,A; 1) = Faip(t,x, h,g,A; 1) OpOP, iO[L,m(p)]. (31)
Then a necessary condition f(ln5 gS)D/\ to be a dynamic user equilibrium (DUE) is

O<ZZGp(tx h’,g",A"; y{g%—g% j gOA (32)

pOP i=0
for each time instartO ft, SUF%]DAit +D, (t, )}, together with the state dynamics (16) and

the following adjoint equations and boundary cand:
,U
AT _ony _ .00 fux() vi]

dt P oxP

Aari)’U (tf ): 0 OpOP, iO[L,mp),

OpOP, i0O[L,m(p)]

3This may not be used for numerical computatiortsastatement depends on knowledge of the dynareic us
equilibrium being sought. However, it may be emplbyor qualitative analyses like those which follow
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where the superscrifd denotes a trajectory corresponding to a dynamec equilibrium in
the presence of tolls.

Characterizing Efficient Tolls

It is the purpose of efficient tolls to make thetesra J, and J, identical along solution
trajectories for which flow propagation and othenstraints are satisfied, for then the system
optimal total costs are identical to the tolledruggtimal total costs. Furthermore, the vectors
of path flows (departure rates) obey
h' (t)= hS(t). (33)

There are as well identical arc exit flows and toa= arc volumes. Therefore, along solution
trajectories

)Ip,S _ 0J,

aJ, _ ,pU
& =A )

PSPt T
With (34) in mind and upon comparing (27) and (3@3,find

e {Wp(t, xs)+Wh§} = e{o,[Lx()y¢]

p
= e‘”{ka(t, XV )+ yy (t)}
The only toll constraint is hon-negativity; hengeplying the projection after the expression
for ypU (t) Is derived with non-negativity relaxed will giva axact expression:

yo(t) = {Mhs} it D[to,tf ] (35)

oh, P
where [[]T is the elementary projection operator defined by
. vifv=0
M =1,
0 if v<O.
This result is completely analogous to that foeéitiently tolled static user equilibriufn

(34)

MULTIPLE TIME SCALES

We have investigated the within-day behavior ofdraatwork users so far. In this section we
describe a day-to-day adjust process that setg ttavel demand. Our perspective is very
simple: if today commuters experiences a levelarfgestion above a threshold representing

*We add the operat({E]T to (35) to ensure non-negativity of the toll. Iretborresponding static case, the

derivative will never be negative. However, in tihgnamic case, this depends on how the cost fundsion
defined. In practice, the derivative is hard tocoldte analytically, becauseis an implicit function ofh.
Nevertheless, our numerical experiences has shtwanthe derivative does fall below zero under ¢erta
circumstances.
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the budget or tolerance for congestion of the glpcommuter, travel demand will be less
tomorrow and more workers will elect to stay at leoftelecommute). To operationalize this
idea, we take the perspective of evolutionary gémery to describe the day-to-day demand
learning process in terms of theving averagef congestion and difference equations.

Let rDYE{l,Z,...,L} be one typical discrete day within the planningizen, and take the
length of each day to b&, while the continuous clock timewithin each day is presented by
tO[(r -1)a,m] for all 70{1,2,...L}. The entire planning horizon spahsconsecutive days.
As noted above, we assume the travel demand fdr éag changes based on the moving
average of congestion experienced over previous.dayfact we postulate that the travel
demandsQ; for day7 between a given OD pa('r, j)DW are determined by the following

system of difference equations:

2 ZI j(;: e (e, o
T+l — T _ o pDF)ij 1=0 — v -
Q7 =|Q -y AR Xip| 0rofiL-1 (36)
with boundary cc_)ndition _
Q=Q. (37)

where@ij 00, is the fixed travel demand for the OD péiirj)DW for the first day andy;

is the representative threshold. The operbt]iris shorthand fromna>{0,x]. The parameter
5 is related to the rate of change of inter-dayeraemand.

ALGORITHMSFOR SOLVING THE DETP

In this section, we provide the fixed point algonit for solving the DETP.

Thelmplicit Fixed Point Per spective

In calculation of the efficient toll, state-depentiéme shifts must and can be accommodated
using an implicit fixed point perspective, as inated for the dynamic user equilibrium by
Friesz and Mookherjee (2006). More specificallysuch an approach, one employs control
and state information from a previous iteratiorapproximate current time shifted functions.
This perspective may be summarized as follows:

Step 1. Articulate the current approximate statetuMmes) and controls (arc exit rates) by
spline or other curve fitting techniques as cordumifunctions of time.
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Step 2. Using the aforementioned continuous funstiof time, express time shifted
controls as pure functions of time, while leavingshifted controls as decision functions
to be updated within the current iteration.

Step 3. Update the states and controls, then reftept 2 and Step 3 until the control
controls converge to a suitable approximate satutio

Step 4. Using the converged solutions, computayimamic efficient toll by the equation
(35) derived in a previous section.

Descent in Hilbert Space

At each step 2 in the above numerical schemes,eed to solve the DSO problem, which is
an instance of optimal control problems. Among Hthms to solve an optimal control
problem, we will study descent method in Hilberbsp. To articulate what is meant by
descent in Hilbert space, it is much easier toystud abstract problem rather than the DSO
because of the notational complexity of the probl&m that end, let us consider an abstract
optimal control problem with mixed state-controhstraints involving state-dependent time
shifts from the point of view of infinite dimensiahmathematical programming:

mind = [\ F (x,u,up )t (38)

subject to O
x(u,uy,t) OA :{x:%: f (x,u,up,t), x(t,) = 0,G(x,u,u,,t) :O,XZO}D(Hl[tO,tf])n
where

u O UDO(L7t,,t, D"

Up = ult+D(x):(Ht,,t )" x0% - (L[tg,t, D"

for (Ht,t D" > (Lt b, )" > 0% = (LIt t D"

Foo (Ht t D" < (LML, t )M > 0% = (L[t t )"

G o (Hto,t, D" x(Lto, t, D" x 0% — (Lto,t, ™.

In the above(L[t,,t.])™ is them-fold product of the space of square integrablections
L°[t,,t;] and (H'[t,,t. ])" is then-fold product of the Sobolev spa¢tt,,t,] for the real
interval [t,,t.] 0O . In applying descent in Hilbert space to this peah it is convenient to

use quadratic-loss penalty functions and a logaiithbarrier function to create the
unconstrained program:

minJ, =J;sz(x,u,uD,t)dt+%J'tzf )3 (Gi(x,u,uD,t))Zdt+%J'tzf > min(0,x)?dt  (39)

where it is understood that denotes the operator
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X(u,up, 1) OA, = {x:%z f (x,u,up,t),x(0) = XO}D(Hl[tO,tf])”,

ands, and p, are penalty and barrier multipliers to be adjudteth iteration to iteration.

The resulting problem can be solved using a coatisuime steepest descent method. For the
penalized criterion (39), the algorithm can beestats following:

Step 0. Initialization. Pick u°(t) JU and setk =1.

Step 1. Finding state variables. Solve the state dynamics

dx 4 ke

- f , kl’ kl,t
o (x, U, us™, 1)
X(0) = X

and call the solutiorx(t ,) using curve fitting to create an approximationxtdt) when
necessary.

Step 2. Finding adjoint variables. Solve the adjoint dynamics

_% = [DXH(x,u"’l,u,';’l,A,t)]X:Xk
At,) = 0

where the Hamiltonian is given by

H (% u,uy,A,t) = F(x,u,uy,t) +%Z,oi min(0,x)? +%2/7i (G (X,u,up,t))? + A" f (x,u,up,t)

Call the solutionA“(t ) using curve fitting to create an approximation Aqt) when
necessary.

Step 3. Finding the gradient. Determine
0,9% =|0,H X u,ul™, A 0|k

Step 4. Updating the current control. For a suitably small step size
6,00},
determine
u“t(t) =u @t)-6,0,3"

Step 5. Stopping Test. For 00", , a preset tolerance, stop if
”uk+l _uk ”<£
and declare
ul] o~ uk+l
Otherwise sek =k + And go to Stepl.
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NUMERICAL EXAMPLE

In what follows, we consider a 3 arc, 3 node neknsitown in Figure 1. The arc labels and
arc delay functions for this network are summarirediable 1.

2

o—& ®

Figure 1. 3-arc 3-node traffic network.

Table 1. Arc labels and delay functions.
Arc name From node To nodeArc delay, D, (x,(t))

1 2 2+ix

4 10C *
1

a 2 1+—X,

? 3 15 ™
1

2 3+—X,

% 3 10C >

There are 2 paths connecting the single OD paméadrby nodes 1 and 3, namely:
Po={p.p}  m=faal  p={aal.

The controls (path flows and arc exit flows) andtet (path-specific arc traffic volumes)
associated with the network are presented in Table

Table2. Control and state variables.
Path Path flow  Arc exit flow

Traffic volume of arc
Py Py Py Py
P, h, ga. 9, Xor's o
P, h,, s O X ) X5

We consider a two-week toll planning in which eatdy is 24 hours, hencé& =24 and
L =14 (two weeks). We assume there is the initial traleehandQ = 15Qunits from node 1

(origin) to node 3 (destination). The threshold ti@vel cost isy = 2000@nd the inter-day

rate of change in travel demandsig=  .OWe also assume the discount rate as@he
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planning horizon is relatively short in this exampl'he desired arrival time for each day is
t, =12, and we employ the symmetric early/late arrivaiglgy

F[t+Dp(x,t)—tA]ZS[HDp(x,t)—tA]z.
Further, without any loss of generality, we take
xP()=0 iof,mp) pOP.
In what follows we forgo the detailed symbolic staent of this example, and, instead,
provide numerical results in graphical form.

Computation of Tollsby the DETP

To compute the tolls, we suggest a computatiorfaree for DETP. Recall that the decision
rule for the dynamic efficient toll is:

Vi (t):{—"’“"ﬁ(t'xs)

- hﬁ} oot t, .

Note that the partial derivative Gwp(t,xs) with respect to the path flow, is not zero, since
the state variable is an implicit function of the contrdi, as the relationship is expressed in

the state dynamics. Further we cannot calculatel¢neative directly due to the nested delay
operator appears iHJp(DI)]. However, from the numerical study of the dynamystem

optimum traffic assignment, it is known that thenttols are zero or singular. When the
departure rate is nonzero, it as well as the stitéagined from it are smooth and the delay

v [t,x°)

operator is differentiable, although the derivatwer does not exist at the time
p

moments where there are kinks in the controls. dérévative is numerically approximated

as:

oW, |t x{n", o) - Wltx(h+ 4, g)l- W, [t x(h o)
oh 5 '

P
In our calculation, we have used= .IDhe resulting tolls at pathg, and p, are presented

in Figures 2 and 3 for the first day. When, forlpat, we compare the effective path delays
(including tolls) with path flows (origin departumates) by plotting both for three days,
Figure 4 is obtained. This figure shows that departate peaks when the associated effective
path delay achieves a local minimum, thereby detnatirsg that a dynamic user equilibrium
has been found. Similar comparisons are made tbsga in Figure 5. The daily changes of

travel demand from the origin to destination acoaydo the difference equation (36) are
given in Figure 6. The step sif2 =1/k to assist the convergence.
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Figure 2. Dynamic Toll by DEPT for patlp, .
Dynamic Toll at Path 2
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Figure 4. Comparison of path flow and associated unit traests
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Path Flow vs. Travel Cost at Path 2
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Figure 5. Comparison of path flow and associated unit traests
for path p, .
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Figure 6. Daily changes of travel demand from the origind@d.)
to the destination (node 3)

CONCLUDING REMARKS

We have presented a mathematical formulation oDlE&P and have shown how it may be
directly solved using the notion of the implicikdéid point algorithm for a small illustrative
problem. Clearly, in-depth testing and comparisénth@se solution methods is required
before we measure the performance of the algorithienclose by commenting that analytical
DUE models— in our opinion— are far and away the best starting point for ssidif the
theoretical aspects of dynamic efficient tolls ahyghamic congestion pricing. In particular,
we have shown in this paper that an intuitive galmmation to a dynamic setting of the
efficient static toll rule is correct— something that could not be established in such a
definitive way with a simulation model.
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