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INTRODUCTION 

The advent of new commitments by municipal, state and federal governments to construct and 
operate roadways whose tolls may be set dynamically has brought into sharp focus the need 
for a computable theory of dynamic tolls. Moreover, it is clear from the policy debates that 
surround the issue of dynamic tolls that pure economic efficiency is not the sole or even the 
most prominent objective of any dynamic toll mechanism that will be implemented. Rather, 
equity considerations as well as preferential treatment for certain categories of commuters 
must be addressed by such a mechanism. Accordingly, we introduce in this paper the dynamic 
efficient toll problem. 
 
To study the dynamic efficient toll problem (DETP), it is necessary to employ some form of 
dynamic user equilibrium model. We elect the formulation due to Friesz et al (2001) and 
Friesz et al (2006) and its varieties analyzed by Ban et al (2006) and others. The dynamic 
DETP formulation will be constructed by direct analogy to the static efficient toll problem 
formulation of Hearn et al (2002). This approach to the formulation of the DETP leads 
directly to an the efficient toll pricing rule, provided appropriate necessary conditions that 
recognize time shifts are employed. The necessary conditions are those derived by Friesz et al 
(2004) for optimal control problems with state-dependent time shifts. 
 
The main focus of this paper is the formulation and solution of the DETP. To this end, it will 
turn out that we need to solve a dynamic system optimum (DSO) problem and a dynamic user 
equilibrium (DUE) problem. Again using the DUE formulation reported in Friesz et al. 
(2001) and Friesz and Mookherjee (2006), we will provide the basis for the solution of the 
DETP. Also we show how to easily extend the formulation to include the day-to-day 
evolution of demand. Of course there are several ways such a model may be formulated. The 
dual-time scale formulation we shall emphasize is based on our prior work on differential 
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variational inequalities and equilibrium network design and follows the qualitative theory 
conjectured (but not analyzed) by Friesz et al. (1996). 
 
Central to the algorithmic study of the DETP in this paper is the descent in Hilbert spaces to 
the DSO problem. In the numerical approach, we employ an implicit fixed point scheme like 
that in Friesz and Mookherjee (2006) for dealing with time shifts in differential variational 
inequalities. In an example provided near the end of this paper, we numerically study a small 
network and determine its optimal dynamic tolls. 
 
 

NOTATION AND MODEL FORMULATION 

In this section we purposely repeat key portions of the time-lagged DUE formulation given in   
Friesz et al. (2001), because of its key role in this manuscript. The reader familiar with the 
notation and time-shifted DUE model presented in Friesz et al. (2001) may skip this section of 
the present paper. 

Dynamic, Delay Operators and Constraints 

The network of interest will form a directed graph ( )ANG , , where N  denotes the set of 

nodes and A  denotes the set of arcs; the respective cardinalities of these sets are N  and A . 

An arbitrary path Pp∈  of the network is 

( ){ }pmi aaaap ,...,,...,, 21≡ , 

where P  is the set of all paths and ( )pm  is the number of arcs of p . We also let et  denote 

the time at which flow exists an arc, while dt  is the time of departure from the origin of the 

same flow. The exit time function p
iaτ  therefore obeys 

( )diae tpt τ=  

The relevant arc dynamics are 

 
( )

( ) ( ) ( ){ }pmiPptpgtpg
dt

tpdx

iaia
ia

1,2,...,,=
1

∈∈∀−
−

 (1) 

 ( ) ( ){ }pmiPppxtpx
iaia 1,2,...,,=
,0

∈∈∀  (2) 

where px
ia  is the traffic volume of arc ia  contributed by path p , pg

ia  is flow exiting arc ia  

and pg
ia 1−

 is flow entering arc ia  of path Pp∈ . Also, pga0
 is the flow exiting the origin of 

path p ; by convention we call this the flow of path p  and use the symbolic name pgh ap 0
= . 

Furthermore   
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



∉
∈

pa

pa
p

i

i

ia  if 0

 if 1
=δ   

so that ( ) ( ) Aatxtx p
aap

Pp
a ∈∀∑

∈

δ=  is the total arc volume. 

 
Arc unit delay is ( )aa xD  for each arc Aa∈ . That is, arc delay depends on the number of 

vehicles in front of a vehicle as it enters an arc. Of course total path traversal time is 

  ( )
( )

( ) ( )
( )

( ) PpttptptptD
pmaiaia

pm

i
p ∈∀−



 −

−∑ τττ ==
1

1=

 

It is expedient to introduce the following recursive relationships that must hold in light of the 
above development: 

  
[ ]

( ){ }pmiPptpxDtptp

PptxDttp

iaiaiaiaia

aaa

2,3,...,,))(()(=)(

)(=)(

11

111

∈∈∀



+

∈∀+

−−
τττ

τ
 

from which we have the nested path delay operators first proposed by Friesz et al. (1993): 

  ,),(),(
)(

1=

PpxtpxtD
iaia

pm

i
p ∈∀Φ≡ ∑δ  

where ( ){ }pmiPppxx
ia 1,2,...,,:(= ∈∈   

and  

  

.=

))((=),(

))((=),(

))((=),(

))((=),(

1

1=

11

21333

1222

111
























Φ+

Φ++Φ+Φ

Φ+Φ+Φ

Φ+Φ

Φ

∑
−

−

ja

i

j
iaia

iaaiaiaia

aaaaa

aaaa

aaa

txD

txDxt

txDxt

txDxt

txDxt

L

M  

To ensure realistic behaviour, we employ asymmetric early/late arrival penalties 

  ( )[ ]Ap txtDtF −+ ,  

where At  is the desired arrival time and 

  

0=)),((=),(

0>),(=)),((<),(

0>),(=)),((>),(

ApAp

E
ApAp

L
ApAp

txtDtFtxtDt

txtxtDtFtxtDt

txtxtDtFtxtDt

−+⇒+
−+⇒+
−+⇒+

χ
χ

 

while  ),(>),( xtxt EL χχ . 

 
Let us further denote arc tolls by ay  for each arc Aa∈ . We assume that users pay any toll 

imposed on an arc at the entrance of the arc. Then the path tolls py  for each path Pp∈  are 
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  ( ) Ppxttypty
ja

i

j
iaia

pm

i
p ∈∀










Φ+∑∑

−

),(=
1

1=

)(

1=

δ , 

where 0=),(
0

xtaΦ . If the tolls are paid when users exit arcs, then the path toll becomes 

  ( ) Ppxttypty
ja

i

j
iaia

pm

i
p ∈∀










Φ+∑∑ ),(=

1=

)(

1=

δ . 

We now combine the actual path delays and arrival penalties to obtain the effective delay 
operators 
  ( ) PpTtxDtFxtDxt Appp ∈∀−++Ψ ),(),(=),(  (3) 

According to the FIFO principle, the volume that has entered an arc up to time t will exit it by 
time  ( )( )

i ia at D x t+  so that 

  ( ) ( ) [ ]
10

( ( ))
= , 1, ( )

( (0))

t a ai i
a ai iDa ai i

t D x tp pg t dt g t dt p P i m p
x−

+
∀ ∈ ∈∫ ∫ , (4) 

where )(=)(
0

thtpg pa . Differentiating both sides of (4) with respect to time t  and using the 

chain rule, we have 

 ( ) Ppxtx'DtxDtpgth aaaaaap ∈∀++ )))(()))(1(((=
111111

&  (5) 

  ( ) [ ])(2,,)))(()))(1(((=
1

pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ∈∈∀++

−
& . (6) 

These are proper flow progression constraints derived in a fashion that makes them 
completely consistent with any traffic model that respects the FIFO discipline. These 
constraints involve a state-dependent time lag ))(( txD

iaia  but make no explicit reference to 

the exit time functions. These flow propagation constraints describe the expansion and 
contraction of vehicle platoons; they were presented by Holden (1989); Friesz et al. (1995). 
Astarita (1995, 1996) independently proposed flow propagation constraints that may be 
readily placed in the above form. 
 
The final constraints to consider are those of flow conservation and non-negativity: 

  ( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=)(
0

 (7) 

  ( ) ijp Pjih ∈∀≥ ,0  (8) 

  [ ])(1,,0 pmiPppg
ia ∈∈∀≥  (9) 

  [ ])(1,,0 pmiPppx
ia ∈∈∀≥ , (10) 

where W  is the set of origin-destination pairs, ijP  is the set of paths connecting origin-

destination pair ( )ji, , 0> tt f , and 0tt f −  defines the planning horizon. Furthermore, ijQ  is 

the travel demand (a volume) for the period [ ]ftt .0 . In what follows h  will denote the vector 

of all path flows, g  the vector of all arc exit flows. Finally, we denote the set of all feasible 

exit flow vectors ( )gh,  by Ω ; that is 
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  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }satisfied are10,9,8,7,6,5,2,1:,gh≡Ω . (11) 

Dynamic User Equilibrium 

Given the effective unit travel delay pΨ  for path ,p  the infinite dimensional variational 

inequality formulation for dynamic network user equilibrium itself is: find ( ) Ω∈∗∗ hg ,  such 

that 
 

  ( )( ) ( ) ( )[ ] ( ) ( )[ ] 0,,=,,,
0

≥−⋅Ψ−Ψ ∗∗∗

∈

∗∗∗
∫∑ dtththghxt
t

hhghxt ppp
f

t
Pp

 (12) 

for all ( ) Ω∈gh, , where Ψ  denotes the vector of effective path delay operators. Friesz et al. 

(2001) show all solutions of (12) are dynamic user equilibria2. In particular the solutions of 
(12) obey 
  ( )( ) ( ) 0=>,, thhgxt pijp

∗∗∗ ⇒Ψ µ  (13) 

 
  ( ) ( )( ) ijpp hgxtth µ=,,0> ∗∗∗ Ψ⇒  (14) 

for ijPp∈  where ijµ  is the lower bound on achievable costs for any ij -traveler, given by 

  ( ) [ ]{ } 0,:,inf= 0 ≥∈Θ fpp tttxtessµ  

and 
  { } 0:min= ≥∈ ijpij Ppµµ . 

 
We call a flow pattern satisfying (13) and (14) a dynamic user equilibrium. The behavior 
described by (13) and (14) is readily recognized to be a type of Cournot-Nash non-
cooperative equilibrium. It is important to note that these conditions do not describe a 
stationary state, but rather a time varying flow pattern that is a Cournot-Nash equilibrium (or 
user equilibrium) at each instant of time. 

THE DYNAMIC EFFICIENT TOLL PROBLEM (DETP) 

Hearn and Yildrim (2002) studied the efficient toll in the static setting with the traveling cost 
which is linear in the traffic flow. The objective of the efficient toll is to make the user 
equilibrium traffic flow equivalent to the system optimum by appropriate congestion pricing. 
To study the dynamic efficient toll problem (DETP), we introduce the notion of a tolled 
effective delay operator: 
  { } ( ) PptyTtxDtFxtDyxt pApppp ∈∀+−++Θ ),(),(=),,( , 

where py  denotes the toll for path p . Of course we have the relationship 

                                                 
2Although we have purposely suppressed the functional analysis subtleties of the formulation, it should be noted 

that (12) involves an inner product in a Hilbert space, namely [ ]( )P
TL 0,2 . 
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  ( ) ( ) ( )tyxtyxt pppp +ΨΘ ,=,, . (15) 

To make the toll meaningful, we enforce the efficient toll non-negative: 
 ( ) [ ] Pptttty fp ∈∈∀≥ ,,0 0 . 

Analysis of the System Optimum 

The dynamic system optimum (DSO) is achieved by solving 

  ( ) ( ) dtthxte
t

J pp
rt

Pp

f

t
,=min

0
1 Ψ−

∈
∑∫  

subject to 

  
( )

( ) ( ) ( )[ ]pmiPptpgtpg
dt

tpdx

iaia
ia

,1,=
1

∈∈∀−
−

 (16) 

 

( ) ( )[ ]pmiPppxtpx
iaia ,1,=
,00 ∈∈∀  

 

  ( ) [ ])(1,,)))(()))(1(((=
1

pmiPpxtx'DtxDtpgtpg
iaiaiaiaiaiaia ∈∈∀++

−
&  (17) 

 

  ( ) ( ) WjiQdtth
t

ijp
f

t
ijPp

∈∀∫∑
∈

,=
0

 (18) 

 
  000 ≥≥≥ hgx , (19) 

where we have used the convention  

  pa hpg =
0

. 

and r is the discount rate which must be defined according to the planning time horizon. 
It will be convenient to employ the following shorthand for shifted variables: 

  )](0,,)))((( pmiPptxDtpgpg
iaiaiaia ∈∈∀+≡ . 

Penaltizing (17) we obtain  

  ( ) ( )
( )

( ) ( ) dtxtx'Dtpgtpg

p

thxte
t

J
iaiaiaiaia

ia
pm

iPp
pp

rt

Pp

f

t




















 +−+Ψ

−
∈

−

∈
∑∑∑∫

2

1
1=0

1 )))(((1
2

,= &
µ

, (20) 

where p
iaµ  is the penalty coefficient. Let us then define the set of feasible controls 

  ( ) ( ) ( )












≥≥∈∀≡Λ ∫∑
∈

00,,,=:,
0

ghWjiQdtth
t

gh ijp
f

t
ijPp

 . (21) 

Optimal control problem (20) and (21) is an instance of the time-shifted optimal control 
problem analyzed in Friesz et al. (2001). We also employ the following notation for the state 
vector and control vector, respectively:  
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  ( )[ ]





 ∈∈ pmiPppxx

ia ,1,:=  

  ( )[ ]





 ∈∈ pmiPppgg

ia ,1,:= . 

The DSO Hamiltonian is  

 
( ) ( ) ( )

( )
( )

( )
( ) ( ) .

)))(()(1(
2

,;,,,,

1
1=

2

1
1=

1







 −+







 +−+Ψ≡

−
∈

−
∈

−

∈

∑∑

∑∑∑

tpgtpgp

xtx'Dtpgtpg

p

thxteghxtH

iaiaia

pm

iPp

iaiaiaiaia
ia

pm

iPp
pp

rt

Pp

λ

µ
µλ &

 

Let us introduce the vector  

  ( ) ( ) ( )[ ]





 ∈∈ pmiPpghxtpFghxtF

ia ,0,:;,,,,=;,,,, µλµλ , 

where  ( ) ( )
Pp

h

ghxtH
ghxtpF

p
a ∈∀

∂
∂ µλµλ ;,,,,

=;,,,, 1

0
 (22) 

 

  
( )

( )

( )( )

( )

( )

( )

( )( ) ( )( )
[ ]

1

0 0

1

1

0

, , , , ;

if ,

, , , , ;

, , , , ; =

, , , , ; 1

1 ( ( ))

if ,

, 1, ( )

ai

ai

aa ii

a a aa i i ii sai

a f a fi i

H t x h g

pg

t t D x t

H t x h g

pp gF t x h g

H t x h g

p 'D x t xg
t

t D x t t D x t

p P i m p

λ µ

λ µ

λ µ

λ µ

∂

 ∂

  ∈  


∂

 ∂


   ∂   +    
 +∂    



  ∈ +  

∀ ∈ ∈

&

 (23) 

 
and each ( )ts

ia  is a solution of the fixed point problem ( ) ( )( )[ ]sxDtsts
iaia −=arg=  . We may 

write (22) and (23) in detail as 

  
( ) ( ) ( )

( ) Pppxtx'Dtpgtpgp

h
h

xt
xteghxtpF

aaaaaaa

p
p

p
p

rt
a

∈∀+



 +−+













∂
Ψ∂

+Ψ−

1111101

0

)))(()(1(

,
,=;,,,,

λµ

µλ

&

 (24) 
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( )

( )
( )( )[ ]

( )

( )
( )

( )( ) ( )( )[ ]
[ ]1)(1,,

,if

)))(()(1(

)))(()(1(

,if

)))(()(1(

=;,,,,

0

1

111111

00

111111

−∈∈∀





















+∈














 +−−

+−






 +−

∈

+−






 +−

−

++++++

++++++

pmiPp

txDttxDt

t
xtx'Dtpgtpgp

ppxtx'Dtpgtpgp

txDtt

ppxtx'Dtpgtpgp

ghxtpF

fiafia

ias
iaiaiaiaiaia

iaiaiaiaiaiaiaia

ia

iaiaiaiaiaiaiaia

ia

&

&

&

µ

λλµ

λλµ

µλ
 (25) 

( )

( )( )[ ]

( )
( )

( )( ) ( )( )[ ]
.)(=,

,if

)))(()(1(

,if

=;,,,,

0

1

00

pmiPp

txDttxDt

t
xtx'Dtpgtpgpp

txDtt

p

ghxtpF

fiafia

ias
iaiaiaiaiaiaia

ia

ia

ia

∈∀


















+∈














 +−−−

∈
−

−
&µλ

λ

µλ
(26) 

Then a necessary condition for ( ) Λ∈SS gh ,  to be the system optimum is  

  
( )

( ) ( ) Λ∈∀





 −≤ ∑∑

∈

ghpSgpgghxtpF
iaia

SSSS

ia

pm

iPp

,;,,,,0
0=

µλ  (27) 

for each time instant ( )( ){ }[ ]fiafia txDttt +∈∈ sup A0, , together with the state dynamics (16) and 

the following adjoint equations and boundary conditions  

  
( ) [ ])(1,,

,
==

,
1 pmiPp

px

xt
e

px

H

dt

Spd

ia

S
prt

ia

S
ia

∈∈∀
∂

Ψ∂

∂

∂− −
λ

 

  ( ) [ ])(1,,0=, pmiPptSp
fia ∈∈∀λ , 

where the superscript S  denotes a trajectory corresponding to a system optimum. 

Analysis of the User Equilibrium in the Presence of Tolls 

However, a dynamic tolled user equilibrium must obey 

  ( )[ ]{ } ( ) ( )[ ] ( ) Λ∈≥−Θ−

∈
∫∑ ghdtththyhxte
t U

pp
U
p

U
p

rtf

t
Pp

,allfor0,,
0

, (28) 

where the state dynamics as well as all other state and control constraints are identical to those 
introduced above for DSO. In particular, the set of feasible controls Λ  referred to in (28) 
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remains unchanged. We formulate an optimal control problem3 from the above dynamic user 
equilibrium variational inequality problem; its objective is 

  ( )[ ] ( )dtthyhxte
t

J p
U
p

U
p

rtf

t
Pp

,,=min
0

2 Θ−

∈
∫∑  

with the same constraints introduced previously. As previously done for the system optimum 
problem, we penalize the flow propagation constraints to obtain the modified criterion 

 ( )[ ] ( )
( )

( ) dtxtx'Dtpgtpg

p

thyhxte
t

J
iaiaiaiaia

ia
pm

iPp
p

U
p

U
p

rtf

t
Pp 




















 +−+Θ

−
∈

−

∈
∑∑∫∑

2

1
1=0

2 )))(()(1(
2

,,= &
µ

(29) 

Then we have another standard form time-shifted optimal control problem, although it is 
subtly but importantly different than that for DSO. In particular, the Hamiltonian now 
becomes 

( ) ( )[ ] ( )
( )

( )
( )

( ) ( )





 −+







 +−+Θ≡

−
∈

−
∈

−

∈

∑∑

∑∑∑

tpgtpgp

xtx'Dtpgtpg

p

thyhxteghxtH

iaiaia

pm

iPp

iaiaiaiaia
ia

pm

iPp
p

U
p

U
p

rt

Pp

1
1=

2

1
1=

2 )))(()(1(
2

,,;,,,,

λ

µ
µλ &

 
An analysis of necessary conditions similar to that for DSO is now possible. The key 
difference is that the counterpart of (24) must in the user equilibrium case be written as 
follows: 

  
( ) ( )[ ]

( ) Pppxtx'Dtpgtpgp

yhxteghxtpG

aaaaaaa

U
p

U
p

rt
a

∈∀+



 +−+

Θ−

1111101

0

)))(()(1(

,,=;,,,,

λµ

µλ

&

 (30) 

 

  ( ) ( ) [ ])(1,,;,,,,=;,,,, pmiPpghxtpFghxtpG
iaia ∈∈∀µλµλ . (31) 

Then a necessary condition for ( ) Λ∈SS gh ,  to be a dynamic user equilibrium (DUE) is  

  
( )

( ) Λ∈





 −≤ ∑∑

∈

gpUgpgghxtpG
iaia

UUUU

ia

pm

iPp

µλ ;,,,,0
0=

 (32) 

for each time instant ( )( ){ }[ ]fiafia txDttt +∈∈ sup A0, , together with the state dynamics (16) and 

the following adjoint equations and boundary conditions: 

  
( )[ ] [ ])(1,,

,,
==

,
2 pmiPp

px

yhxt
e

px

H

dt

Upd

ia

U
p

U
prt

ia

U
ia ∈∈∀

∂

Θ∂

∂

∂− −
λ

 

  ( ) [ ])(1,,0=, pmiPptUp
fia ∈∈∀λ  , 

                                                 
3This may not be used for numerical computation as its statement depends on knowledge of the dynamic user 
equilibrium being sought. However, it may be employed for qualitative analyses like those which follow. 
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where the superscript U  denotes a trajectory corresponding to a dynamic user equilibrium in 
the presence of tolls. 

Characterizing Efficient Tolls 

It is the purpose of efficient tolls to make the criteria 1J  and 2J  identical along solution 

trajectories for which flow propagation and other constraints are satisfied, for then the system 
optimal total costs are identical to the tolled user optimal total costs. Furthermore, the vectors 
of path flows (departure rates) obey  
  ( ) ( )thth SU = . (33) 

There are as well identical arc exit flows and identical arc volumes. Therefore, along solution 
trajectories 

  Up
Upx

J
Spx

JSp
a

aa

a
,=

,
=

,
=,

1

1

2

1

1

1
λλ

∂

∂

∂

∂
. (34) 

With (34) in mind and upon comparing (27) and (32), we find 

  
( ) ( ) ( )[ ]{ }

( ) ( ){ }.,=

,,=
,

,

tyxte

yhxteh
h

xt
xte

U
p

U
p

rt

U
p

U
p

rtS
p

p

S
pS

p
rt

+Ψ

Θ












∂
Ψ∂

+Ψ

−

−−

 

The only toll constraint is non-negativity; hence applying the projection after the expression 

for ( )ty U
p  is derived with non-negativity relaxed will give an exact expression: 

  ( ) ( ) [ ]f
S
p

p

S
pU

p ttth
h

xt
ty ,

,
= 0∈∀













∂
Ψ∂

+

, (35) 

where [ ]+⋅  is the elementary projection operator defined by 

 [ ]




<
≥

=+

.0 if0

0 if

v

vv
v  

This result is completely analogous to that for an efficiently tolled static user equilibrium4. 
 

MULTIPLE TIME SCALES 

We have investigated the within-day behavior of road network users so far. In this section we 
describe a day-to-day adjust process that sets daily travel demand. Our perspective is very 
simple: if today commuters experiences a level of congestion above a threshold representing 

                                                 
4 We add the operator [ ]+⋅ to (35) to ensure non-negativity of the toll. In the corresponding static case, the 

derivative will never be negative. However, in the dynamic case, this depends on how the cost function is 
defined. In practice, the derivative is hard to calculate analytically, because x is an implicit function of h. 
Nevertheless, our numerical experiences has shown that the derivative does fall below zero under certain 
circumstances. 
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the budget or tolerance for congestion of the typical commuter, travel demand will be less 
tomorrow and more workers will elect to stay at home (telecommute). To operationalize this 
idea, we take the perspective of evolutionary game theory to describe the day-to-day demand 
learning process in terms of the moving average of congestion and difference equations. 
 
Let { }L1,2,...,≡ϒ∈τ  be one typical discrete day within the planning horizon, and take the 

length of each day to be ∆ , while the continuous clock time t  within each day is presented by 
( )[ ]∆∆−∈ ττ ,1t  for all { }L1,2,...,∈τ . The entire planning horizon spans L  consecutive days. 

As noted above, we assume the travel demand for each day changes based on the moving 
average of congestion experienced over previous days. In fact we postulate that the travel 
demands τ

ijQ  for day τ  between a given OD pair ( ) Wji ∈,  are determined by the following 

system of difference equations: 

  

( ) ( )[ ]
[ ]1,1

,,

=

11

0=1 −∈∀













































−
∆⋅⋅

Ψ

−

+
∗∗∆⋅+

∆⋅

−

∈+
∫∑∑

L
P

dtghxt

sQQ ij

ij

p

j

j
jijPp

ijijij τχ
τ

τ

τττ  (36) 

with boundary condition 

  ijij QQ
~

=1 , (37) 

where +ℜ∈ijQ
~

 is the fixed travel demand for the OD pair ( ) Wji ∈,  for the first day and ijχ  

is the representative threshold. The operator [ ]+x  is shorthand from [ ]x0,max . The parameter 
τ
ijs  is related to the rate of change of inter-day travel demand. 

 

ALGORITHMS FOR SOLVING THE DETP 

In this section, we provide the fixed point algorithm for solving the DETP. 

The Implicit Fixed Point Perspective 

In calculation of the efficient toll, state-dependent time shifts must and can be accommodated 
using an implicit fixed point perspective, as innovated for the dynamic user equilibrium by 
Friesz and Mookherjee (2006). More specifically, in such an approach, one employs control 
and state information from a previous iteration to approximate current time shifted functions. 
This perspective may be summarized as follows: 
  

Step 1. Articulate the current approximate states (volumes) and controls (arc exit rates) by 
spline or other curve fitting techniques as continuous functions of time. 
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Step 2. Using the aforementioned continuous functions of time, express time shifted 
controls as pure functions of time, while leaving unshifted controls as decision functions 
to be updated within the current iteration. 

 
Step 3. Update the states and controls, then repeat Step 2 and Step 3 until the control 
controls converge to a suitable approximate solution.  
 
Step 4. Using the converged solutions, compute the dynamic efficient toll by the equation 
(35) derived in a previous section. 

Descent in Hilbert Space 

At each step 2 in the above numerical schemes, we need to solve the DSO problem, which is 
an instance of optimal control problems. Among algorithms to solve an optimal control 
problem, we will study descent method in Hilbert space. To articulate what is meant by 
descent in Hilbert space, it is much easier to study an abstract problem rather than the DSO 
because of the notational complexity of the problem. To that end, let us consider an abstract 
optimal control problem with mixed state-control constraints involving state-dependent time 
shifts from the point of view of infinite dimensional mathematical programming: 

  dttuuxF
t

J D
f

t
),,,(=min

0
∫  (38) 

subject to  

 n
fDDD ttHxtuuxGtxtuuxf

dt

dx
xtuux ]),[(00,=),,,(0,=)(),,,,(=:=),,( 0

1
0 ∈







 ≥Λ∈  

where  

  

.]),[(]),[(]),[(:

]),[(]),[(]),[(:

]),[(]),[(]),[(:

]),[(]),[(:))((

]),[(

0
212

0
2

0
1

0
212

0
2

0
1

0
212

0
2

0
1

0
21

0
1

0
2

m
f

m
f

n
f

m
f

m
f

n
f

m
f

m
f

n
f

m
f

n
fD

m
f

ttLttLttHG

ttLttLttHF

ttLttLttHf

ttLttHxDtuu

ttLUu

→ℜ××

→ℜ××

→ℜ××

→ℜ×+≡

⊆∈

+

+

+

+

 

 
In the above, m

fttL ]),[( 0
2  is the m-fold product of the space of square integrable functions 

],[ 0
2

fttL  and n
fttH ]),[( 0

1  is the n -fold product of the Sobolev space ],[ 0
1

fttH  for the real 

interval 1
0 ],[ +ℜ⊂ftt . In applying descent in Hilbert space to this problem, it is convenient to 

use quadratic-loss penalty functions and a logarithmic barrier function to create the 
unconstrained program: 
 

  dtx
t

dttuuxG
t

dttuuxF
t

J ii
i

f

tDii
i

f

tD
f

t

2

0

2

00
1 )(0,min

2

1
)),,,((

2

1
),,,(=min ρη ∑∫∑∫∫ ++  (39) 

where it is understood that x  denotes the operator  
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  ,]),[(=(0)),,,,(=:=),,( 0
1

01
n

fDD ttHxxtuuxf
dt

dx
xtuux ∈







Λ∈  

and iη  and iρ  are penalty and barrier multipliers to be adjusted from iteration to iteration.  

 
The resulting problem can be solved using a continuous time steepest descent method. For the 
penalized criterion (39), the algorithm can be stated as following: 
 
Step 0. Initialization. Pick Utu ∈)(0  and set 1=k . 

 
Step 1. Finding state variables. Solve the state dynamics  

  

0

11

=(0)

),,,(=

xx

tuuxf
dt

dx k
D

k −−

 

and call the solution )(txk , using curve fitting to create an approximation to )(txk  when 

necessary. 
 
Step 2. Finding adjoint variables. Solve the adjoint dynamics  

  
[ ]
0=)(

),,,,(= =
11

f

kxx
k
D

k
x

t

tuuxH
dt

d

λ

λλ −−∇−
 

where the Hamiltonian is given by  

 ),,,()),,,((
2

1
)(0,min

2

1
),,,(=),,,,( 22 tuuxftuuxGxtuuxFtuuxH D

T
Dii

i
ii

i
DD ληρλ +++ ∑∑  

Call the solution )(tkλ , using curve fitting to create an approximation to )(tkλ  when 

necessary. 
 
Step 3. Finding the gradient. Determine  
  [ ] kuu

kk
D

k
u

k
u tuuxHJ =

1 ),,,,( λ−∇≡∇  

 
Step 4. Updating the current control. For a suitably small step size  
  1

++ℜ∈kθ  

determine  
  k

uk
kk Jtutu ∇−+ θ)(=)(1  

 
Step 5. Stopping Test. For 1

++ℜ∈ε , a preset tolerance, stop if  

  ε||<|| 1 kk uu −+  

and declare  
  1+∗ ≈ kuu  
Otherwise set 1= +kk  and go to Step1. 
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NUMERICAL EXAMPLE 

In what follows, we consider a 3 arc, 3 node network shown in Figure 1. The arc labels and 
arc delay functions for this network are summarized in Table 1. 
 

 
Figure 1. 3-arc 3-node traffic network. 

 
 

 
Table 1. Arc labels and delay functions. 

Arc name From node To node Arc delay, ( )( )txD aa  

1a  1 2 
1100

1
2 ax+  

2a  2 3 
2150

1
1 ax+  

3a  2 3 
3100

1
3 ax+  

 
 
There are 2 paths connecting the single OD pair formed by nodes 1 and 3, namely: 
  { } { } { }3122112113 ,=,,=,,= aapaapppP . 

 
The controls (path flows and arc exit flows) and states (path-specific arc traffic volumes) 
associated with the network are presented in Table 2. 
 

Table 2.  Control and state variables. 
Path Path flow Arc exit flow Traffic volume of arc 

1p  
1ph  1

2

1

1
, p

a
p
a gg  1

2

1

1
, p

a
p
a xx  

2p  
2ph  2

3

2

1
, p

a
p
a gg  2

3

2

1
, p

a
p
a xx  

 
 
We consider a two-week toll planning in which each day is 24 hours, hence, 24=∆  and 

14=L  (two weeks). We assume there is the initial travel demand 150=
~
Q  units from node 1 

(origin) to node 3 (destination). The threshold for travel cost is 20000=χ  and the inter-day 

rate of change in travel demand is 0.7=13s . We also assume the discount rate 0=r as the 
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planning horizon is relatively short in this example. The desired arrival time for each day is 
12=At , and we employ the symmetric early/late arrival penalty 

  ( )[ ] ( )[ ]2,5=, ApAp ttxDtttxDtF −+−+ . 

Further, without any loss of generality, we take 

  ( ) ( )[ ] Pppmipx
ia ∈∈∀ ,1,0=0 . 

In what follows we forgo the detailed symbolic statement of this example, and, instead, 
provide numerical results in graphical form. 

Computation of Tolls by the DETP 

To compute the tolls, we suggest a computational scheme for DETP. Recall that the decision 
rule for the dynamic efficient toll is: 

  ( ) ( ) [ ]f
S
p

p

S
pU

p ttth
h

xt
ty ,

,
= 0∈∀













∂
Ψ∂

+

. 

 
Note that the partial derivative of ( )S

p xt,Ψ  with respect to the path flow ph  is not zero, since 

the state variable x  is an implicit function of the control ph  as the relationship is expressed in 

the state dynamics. Further we cannot calculate the derivative directly due to the nested delay 
operator appears in ( )⋅⋅Ψ ,p . However, from the numerical study of the dynamic system 

optimum traffic assignment, it is known that the controls are zero or singular. When the 
departure rate is nonzero, it as well as the states obtained from it are smooth and the delay 

operator is differentiable, although the derivative 
( )

p

S
p

h

xt

∂
Ψ∂ ,

 does not exist at the time 

moments where there are kinks in the controls. The derivative is numerically approximated 
as:  

  
( )[ ] ( )[ ] ( )[ ]

δ
δ ghxtghxt

h

ghxt pp

p

p ,,,,,, Ψ−+Ψ
≅

∂
Ψ∂ ∗∗

. 

In our calculation, we have used 10=δ . The resulting tolls at paths 1p  and 2p  are presented 

in Figures 2 and 3 for the first day. When, for path ,1p  we compare the effective path delays 

(including tolls) with path flows (origin departure rates) by plotting both for three days, 
Figure 4 is obtained. This figure shows that departure rate peaks when the associated effective 
path delay achieves a local minimum, thereby demonstrating that a dynamic user equilibrium 
has been found. Similar comparisons are made for paths 2p  in Figure 5. The daily changes of 

travel demand from the origin to destination according to the difference equation (36) are 
given in Figure 6.  The step size kk /1=θ  to assist the convergence. 
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Dynamic Toll at Path 1
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Figure 2. Dynamic Toll by DEPT for path 1p . 

 

Dynamic Toll at Path 2
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Figure 3. Dynamic Toll by DEPT for path 2p . 

 
 

Path Flow vs. Travel Cost at Path 1
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Figure 4. Comparison of path flow and associated unit travel costs  
for path 1p . 
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Path Flow vs. Travel Cost at Path 2
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Figure 5. Comparison of path flow and associated unit travel costs  
for path 2p . 

 

Daily Travel Demand Fluctuation
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Figure 6. Daily changes of travel demand from the origin (node 1) 

 to the destination (node 3) 
 

CONCLUDING REMARKS 

We have presented a mathematical formulation of the DETP and have shown how it may be 
directly solved using the notion of the implicit fixed point algorithm for a small illustrative 
problem. Clearly, in-depth testing and comparison of these solution methods is required 
before we measure the performance of the algorithm. We close by commenting that analytical 
DUE models ― in our opinion ― are far and away the best starting point for studies of the 
theoretical aspects of dynamic efficient tolls and dynamic congestion pricing. In particular, 
we have shown in this paper that an intuitive generalization to a dynamic setting of the 
efficient static toll rule is correct ― something that could not be established in such a 
definitive way with a simulation model. 
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