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For over 10 years we have been developing a series of models for optimizing locomotives

for a major freight railroad in the U.S. using the principles of approximate dynamic pro-

gramming. The projects span operational planning to strategic planning which generally

impose very different expectations in terms of the level of realism. In this talk, we review

how these projects unfolded and the surprising level of detail that was required to produce

implementable results, even for a strategic system.

The foundation of our solution strategy is approximate dynamic programming, which

combines the flexibility of simulation with the intelligence of optimization. In our prior

work, we have focused on the power of ADP to handle uncertainty, overcoming classical

computational problems associated with techniques such as Markov decision processes or

stochastic programming. What is easy to overlook is that ADP is basically intelligent simu-

lation, and as such it is able to handle an extremely high level of detail (effectively, anything

a simulation model can handle). Surprisingly, ADP has also enabled us to use Cplex to solve

integer programs that arise in locomotive optimization that have been thought to be solvable

only with heuristics.

In this talk, we discuss the limitations of classical optimization models of fleet manage-

ment, focusing not as much on the issue of uncertainty but rather on the importance of

capturing realistic operational details. We describe how the ADP paradigm makes it much

easier to capture these details, without losing the important features of optimization.

1 Literature review

There is an extensive literature on optimization models for rail operations. These range from

single commodity models for managing generic fleets of containers (White & Bomberault

(1969), Gorenstein et al. (1971), White (1972), and Herren (1977), to multicommodity models

for handling multiple equipment types with substitution (Dejax & Crainic (1987), Cordeau

et al. (1998), Crainic & Rousseau (1988), Crainic & Laporte (1997), Powell et al. (1995),

Haghani (1989), Joborn (2001), Lingaya et al. (2002) and Joborn et al. (2004)).

Many of these models are particularly well suited for managing fleets of containers (box
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cars, trailers, intermodal containers). A separate literature has evolved around the more

complex problem of managing locomotives. This problem has been modeled almost exclu-

sively as a large-scale integer programming problem (see Cordeau et al. (1998) for a review

of the literature as of 1998). The complicating issue with locomotives is that it takes more

than one locomotive to pull a train, and the minimum number of locomotives needed to pull

a train is typically fractional (for example, a particular train may need 2.2 locomotives).

Such problems are much harder than the “one resource, one task” problems that arise in

container management problems.

There has been significant recent interest in models for locomotive optimization. Ziarati

et al. (1999) describes the use of modern branch and cut integer programming algorithms

for the locomotive problem. Cordeau et al. (2000) and Cordeau et al. (2001) apply Benders

decomposition to handle the simultaneous optimization of locomotives and cars. Ahuja et al.

(2005) presents a neighborhood search heuristic for a strategic planning model for locomotives

which takes into consideration the cost of breaking up sets of locomotives (“consist busting”).

2 Modeling issues in locomotive operations

A very common piece of notation in the transportation modeling literature is

xk
tij = The flow of resources of type k leaving node i at time t going to

node j.

This notation is at the foundation of virtually any multicommodity flow model. Any model

of locomotive operations would use this notation to capture the presence of different types

of locomotives. Locomotives differ both in horsepower, which affects their speed, and their

“adhesion” (or tractive effort)which affects their ability to get a train moving from a stand-

still. High-adhesion, high-powered locomotives can move the most freight. The importance

of horsepower versus adhesion depends on the grade for a particular train.

When assigning locomotives to trains, the first issue that has to be considered is how

much power is needed to pull the train. A train might require 2.2 horsepower per ton.

A train weighing 9,000 tons (gross weight, including the weight of the cars), requiring 2.2
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horsepower per ton would require enough locomotives to provide 19,800 horsepower. This

horsepower can be provided by a mixture of locomotives with anywhere between 3,000 to

over 4,000 horsepower. Of course, we have to use an integer number of locomotives, and

we can mix and match to produce the right amount of power. Seven 3,000 horsepower

locomotives produce 21,000 horsepower, or we could use four 3,000 horsepower units with

two 4,000 horsepower units for a total of 20,000 horsepower. As a result, this is a fairly

challenging integer programming problem.

If we simply had to schedule a fleet of locomotives taking into consideration the mix of

horsepower and integrality requirements, this by itself would be a fairly hard integer pro-

gramming problem. We also have to consider the fact that if we group multiple locomotives

to pull a single train (this group of locomotives is called a consist), there is a cost if we

have to separate one or more locomotives from the consist. This introduces a significant

complication, over and above the challenge of finding an integer number of heterogeneous

locomotives to move a train. This complexity motivated the design of the neighborhood

search heuristic reported in Ahuja et al. (2005).

Our work has identified a number of other issues which have proven to be important not

just for operational models (these tend to be more complex since the results have to capture

enough realism for implementation), but also for strategic planning models. These details

include:

• Leader locomotives. Each train must have one, and sometimes two, locomotives that

are qualified to be the first locomotive in a consist. A train might require two locomo-

tives if the train has to go out and back, and if it is not possible to turn the locomotives

around.

• Shop routing. At any point in time, roughly five to seven percent of a locomotive fleet

needs to be routed to a shop location for required maintenance.

• Late trains. Most North American railroads have to deal with a level of variation in

train arrival times that can be significant.

• New trains and cancellations. New trains may be added at the last minute (coal
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trains and grain trains are particularly notorious for last minute requests) or canceled

(perhaps due to insufficient traffic).

• Random equipment failures. On any day, a fraction of locomotives may fail, requiring

that these be pulled to a shop location, adding to the weight of the train.

• Foreign power. In the U.S., there are two major western railroads and two major

eastern railroads. It is common for locomotives from one railroad to pull a train into

the yard belonging to another railroad. It is not always the case that the locomotives

immediately return.

• Locomotive patterns. Railroads like to have repeatable patterns whenever possible.

These patterns tend to be of the form “locomotives arriving to a hard on train A

should be put on outbound train B.” These patterns arise

Shop routing is particularly difficult. A locomotive can still pull a train while it is being

routed to shop, but while we are routing a locomotive toward its shop location, we have to

try to minimize how often consists are broken. Shop routing can not be solved independently

of the original problem.

In strategic planning applications, it is also important to take into account the random

additions and cancellations, as well as delays. If an extra train moves out of a yard 20

percent of the time (to various destinations), then we cannot pretend that we know exactly

when, and to where, these additional trains will move.

3 A modeling and algorithmic strategy using ADP

We can handle all of the complexities of these operations using the framework of approxi-

mate dynamic programming. We present a model that captures all of these complexities by

modeling locomotives as heterogeneous resources (that is, each locomotive is characterized

by a vector of attributes), rather than using multicommodity flow notation. We handle the

complex physics using a transition function (commonly used in simulation) rather than sys-

tems of linear equations. If St is the state of our system (the status of all locomotives and
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trains), xt is our vector of decisions (for example, the assignment of individual locomotives

to trains, decisions to hold locomotives or trains, and the decisions to move foreign power

to another railroad), and Wt is a vector of exogenous information (train delays, locomotive

failures, new trains and train cancellations), then we model the transition function using

St+1 = SM(St, xt, Wt+1).

Transition functions are relatively easy to code and can capture virtually unlimited com-

plexity. There is no limit in the complexity of the state variable (for example, modeling a

high level of detail in locomotives and trains).

The hard part is learning how to make decisions that optimize at a point in time, as well

as over time. A myopic policy would consist of solving

xt = arg max
xt∈Xt

C(St, xt) (1)

where Xt captures all the constraints at time t, and C(St, xt) captures all the contributions

from decisions made at time t (such as the benefit of moving a train, the cost of assigning

certain types of locomotives to certain types of trains, consist-breaking costs, and costs

associated with getting power to their shop on time). Equation (1) represents a myopic

decision function. It can optimize at a point in time (although the problem is still a fairly

difficult integer program), but not over time. We can approximately optimize over time using

the following strategy. Recognizing that St is the information we need to make a decision

(the “pre-decision state variable”), we next define the post-decision state variable Sx
t which

is the state at time t immediately after we make a decision. We then break the transition

function into two steps:

Sx
t = SM,x(St, xt) (2)

St+1 = SM(Sx
t , Wt+1). (3)

We then define V̄t(S
x
t ) as the (approximate) value of being in state Sx

t . We then make
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decisions using

xt = arg max
xt∈Xt

(
C(St, xt) + V̄t(S

x
t )

)
. (4)

where Sx
t is a deterministic function of xt. If V̄t(S

x
t ) is appropriately defined, equation (4)

is no more difficult to solve than (1). We have found that (4) can be solved optimally using

Cplex, despite being a fairly large-scale integer program.

ADP solves the problem by stepping through time, using value function approximations

to capture the effect of decisions now on the future. Equations (2) and (3) handle the

evolution of the system over time. As a result, we approximately solve the problem over

time. What was surprising even to us is that by stepping through time, we no longer had to

use heuristics to solve the integer programming problem at a point in time. We could handle

all of the issues listed above, including consist-breaking, leader locomotives, and routing

power to shop, by solving the resulting integer program using Cplex. The research challenge

is finding the best value function approximation V̄ to optimize decisions over time.

4 Conclusions

We believe this research calls into question the use of classical multicommodity flow models

for managing locomotives, since they lack the realism needed to capture actual operations,

even for strategic planning purposes such as fleet sizing. Our finding is that approximate

dynamic programming combines optimization and simulation, making it possible to handle a

virtually unlimited level of detail, while also enabling the ability to provide optimal solutions

at a point in time. We gain the ability both to handle a high degree of complexity, as well as

the ability to solve a problem at a point in time t to optimality using a commercial solver.

The only tradeoff is that we can only approximately optimize over time.
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