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Abstract— This paper establishes a user-equilibrium dynamic
traffic assignment (DTA) model where users make adaptive
routing decisions, denoted as routing policies, in a stoclstic
time-dependent network. A routing policy is defined as a
decision rule which specifies what node to take next out of the
current node based the current time and online information,
essentially a mapping from network states to decisions on né
nodes. A general definition of routing policy is given to allev
for a wide variety of information accessibility situations, thus
excluding the usually simplified assumptions such as eitheamo
information or full information. In the proposed DTA model,

a routing policy is treated as an element of a traveler's rou¢
choice set. The key advantage of this approach is that online
information is embedded in a traveler’s route choice alterratives

and, thus, systematic methods can be designed independerft o

online information formats. A generalization of Wardrop’s First
Principle is used as the equilibrium condition: each user fdows
a routing policy with minimum perceived disutility at his/h er
departure time and no user can unilaterally change routing
policies to improve his/her perceived disutility. A gener&
framework is provided and the equilibrium model is formulated
as a fixed point problem with three components: the routing
policy generation module, the routing policy choice model ad
the policy-based dynamic network loader. An MSA (method of
successive averages) heuristic is designed. Computatidriasts
are carried out in a hypothetical network, where a random
incident is the source of stochasticity. The heuristic corerges
satisfactorily in the test network under the proposed test
settings. The adaptiveness in the routing policy based mote
leads to shorter expected travel times at equilibrium compeed
to DTA models where users make non-adaptive routing choices
As a byproduct, travel time reliability is also enhanced. The
value of online information is an increasing function of the
incident probability. Travel time savings are high when matket
penetrations are low. However, the function of travel time aving
against market penetration is not monotonic. This suggestthat
in a traveler information system or route guidance system,
the information penetration needs to be chosen carefully to
maximize benefits.

|I. INTRODUCTION

Stochasticity in transportation systems is both intuljive

is available about the incident and the traveler adapts to
it by taking an alternative route, he/she can save travel
time compared to the non-adaptive case. The adaptiveness
also ensures that the travel time is not prohibitively high
in incident scenarios, and thus provides a more reliable
travel time. The problem of optimal adaptive routing demisi
making for individual travelers has been studied by various
researchers [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
[12] [13] [14] [15] [16] [17] [18] [19], and a complete
literature review can be found in Gao and Chabini [9]. A
general conclusion from the above studies is that in a flow-
independent stochastic time-dependent (STD) network, an
individual user’s expected travel time from being adaptive
(in one way or another, depending on the problems studied
specifically) is always no higher than that from being non-
adaptive, i.e. following a simple path.

After understanding how an individual traveler makes
adaptive routing decisions, another research questioridwou
be: what will be the network-level impact if many travelers
make adaptive routing decisions? The interaction between
supply and adaptive demand in a stochastic dynamic network
needs to be captured to answer the question. This intenactio
in a deterministic network (with possible perception esror
from the demand side) is captured by a conventional dynamic
traffic assignment (DTA) model. This paper establishes a
user-equilibrium traffic assignment model where users make
adaptive routing decisions in a general stochastic time-
dependent network with online information.

A routing policy is defined as a decision rule which
specifies what node to take next out of the current node
based the current time and online information, essentally
mapping from network states to decisions on next nodes. The
critical difference between a routing policy and a path ires
the way adaptive behavior is modeled: a routing policy can
manifest itself as various paths depending on the underlyin
stochastic process that drives a traffic network, while & pat

prevalent and experimentally shown. Travelers’ routing d&g fixed regardless of random disturbances to the network and

cisions in a stochastic network with online information isavailable online information. The adaptive DTA model has
conceivably different from those in a deterministic networ e tgjlowing distinctive features to contribute to thetstaf

It is generally believed that adaptive routing will savevtia

time and enhance travel time reliability. For example, in a
network with random incidents, if one does not adapt to an
incident scenario, he/she could be stuck in the incideft lin
for a very long time. However, if adequate online informatio
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the art:

« Users’ choice sets are composed of routing policies,
rather than simple paths. The definition of routing policy
is general and can handle a wide range of informa-
tion accessibility situations, and thus avoids the usual
simplified assumptions such as no information or full
information.

o Link travel times are random variables with time-
dependent distributions. A joint distribution of all ran-
dom variables is used such that both link-wise and time-



wise stochastic dependencies of link travel times ars the number of trips between origjnand destinatiom for
modeled. departure time for ther*" support point. The random supply

o The equilibrium is in terms of distribution of link travel can be represented through the random occurrence, duration
times, flow and other traffic quantities of interest, andind severity of an incident or any other random supply
generalizes the conventional equilibrium concept. factors:S = {S', S2, ..., S%}. Note that the same probability

There is quite limited study of equilibrium dynamic trafficp- is associated with the outputs computed fr6f D". In
assignment models in the literature, where adaptive rgutirihe remaining of the paper, whenever a support point has
decisions are an integral part of a user’s behavior moded. Superscriptr, its associated probability is,, otherwise
Hamdouch et al. [20] proposed a strategic model for dynamigdicated. The output is an equilibrium distribution of flow
traffic assignment, as an extension to the static modeleiudidependent link travel times' = {C7, ,,V{j, k} € A, Vt,r =
by Marcotte et al. [21]. The model assumes that travel delays2, -, 12}, whereA is the set of links of the traffic network,
happen only at nodes, when the arc that a traveler wants a8d the corresponding routing policy splifs = {f},},
access has reached its rigid capacity. Randomness in travélere {j,d} is an OD pair,t is the departure time, and
time comes from the fact that the position of any travelef is the index of policies. Note that the distributions of all
in the vertical queue at a node is random, while link costeelevant traffic random variables are discrete. The frannewo
are not random in terms of day-to-day fluctuations. Ukkusuif! general does not restrict the link travel time distribatto
et al. [22] proposed an equilibrium static assignment mod&e continuous or discrete. However, conceivably it is easie
where link travel times are independent static random vario work with a discrete distribution, based on which a rogin
ables, and users learn the actual realizations of outgaikg | Policy is defined, and also it is not clear how to do network
when reaching a node. A sequential Logit model is employd@ading with continuously distributed demand/supplysian
to do the loading. interesting future research question to work with contimio

The paper is organized as follows. In Section Il, a conceglistributions.
tual framework for the policy-based stochastic DTA model is There are three major components of the stochastic DTA
introduced with a fixed-point formulation. Three comporsentmodel: the users’ routing policy choice model, denoted’as
of the DTA model are presented in detail: users’ routinghe policy-based dynamic network loading model, denoted as
choice model, policy-based dynamic network loading modél. and the optimal routing policy algorithm, denoted(@s

and routing policy generation module. The equilibrium con- - -
" . , . . i i Stoch
dition based on a generalized Wardrop’s principle is pregdos @;llﬁﬁgnamm @mz&

next and a method of successive average (MSA) solution
algorithm is described. In Section I1ll, computational $est
are set up to study the behavior of the proposed model
and to compare it with models that do not model adaptive
routing choices. Throughout the paper, a symbol with a
~ over it is a random variable, while the same symbol
without the~ is one specific value of the random variable. A
“support point” is defined as a distinct value that a discrete
random variable can take or a distinct vector of values
that a discrete random vector can take, depending on the ElsmlbkljJtlonsRofL{nkLrar/@
context. Thus a probability mass function (PMF) of a random Lo o P PR

variable(vector) is a combination of support points and the
associated probabilities. Fig. 1. A Conceptual Framework of Stochastic Dynamic Tra#&sign-
ment Model
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Il. A FRAMEWORK FOR THEPOLICY-BASED
STOCHASTIC DTA MODEL A. Users’ Routing Policy Choice Model

We present a framework for the policy-based stochastic The users’ routing policy choice model takes as input a set
dynamic traffic assignment model to give a big picture on thef routing policiesG = {u1, 2, ..., p4, ...} generated by the
input, output, model components’ interaction, and data,flovoptimal routing policy algorithm, and a joint distributiaf
as shown in Figure 1. The input to the overall DTA model idink travel timesC = {O %07 = 1,..., 1} generated by the
the stochastic dynamic dematiand supplyS represented policy-based dynamic network Ioadmg model. The method
by a joint discrete distribution witlR support points, each of generating the choice set will be discussed in Sectidn II-
of which has a probabilitp,.,» = 1, ..., R. The demand is Based on the relevant attributes of candidate routing jeslic
assumed to be inelastic, i.e. the demand distribution islfixesuch as expected OD travel time and travel time standard
In a discrete time representation, any realization of ramdodeviation, a logit choice model corrected for the overlagpi
demand is given as a matrix of time-dependent numbers of different routing policies (Gao [7]) outputs policy sgli
O-D trips during all time intervalsD = {D', D?,.... D®},  f among the routing policies for each OD pair and each
where D" is the demand matrix for the*” support point. departure time.

D" = {D},,,t =0,1,2,..,VOD paifj,d}}, where D7, f=U(G,0)



We keep the “large sample” assumption and assume polisyatic and deterministic, i.e. the travel time of ligk k) at
splits are equal to corresponding policy choice probagdit any timet > K — 1 is equal toCj; x—1.
Note that we use “splits” rather than “flows” here: policy P is the probabilistic description of link travel times. Let
splits are deterministic, while policy flows could be stogha P = {v;,vs,...,vg} be the set of support points of the
tic, if the demand is stochastic. Policy splits will be traesd  link travel time distribution. Therth support point has a
into policy flows in the network loading model. The notionprobability p,., and Zlepr =1.C%,, is the travel time
of policy flow can be understood as a generalization of paibn link (j, k) at timet for the rth support point.
flow. Since a routing policy will manifest itself as a specific We assume the traveler knoves priori the probabilis-
path for a given realization of link travel times, a policyio tic description P of the network. The traveler can make
will become a path flow for each support point of link traveldecisions only at nodes. The decision is what nade
times. Thus a policy flow can be viewed as a set of pattake next, based on theurrent statex = {j,¢, 1}, where
flows, each with some probability. j is the current node t is the current time and I is the
current information Current information/ is defined as
a set of available realized link travel times at the current
The demand is then loaded onto the network accordingme and current node that are useful for making inferences

the policy flow splits, by the policy-based dynamic networkghout future link travel times. It represents the travsler’
loading model. The stochastic demand and supply play thaihowledge about the network conditions. This knowledge
roles in the loading process. For each support point of th&uld be dependent on time, location of the traveler, mode
random demand and/or supply, the network loading modek transportation, etc. Current informatidrtherefore should
outputs a single realization of the link travel time distib pe regarded ag(j,¢), but we usually usd only since I
tion. The loading is deterministic, given a support point ofs always associated with a state wherend ¢ are well
demand and/or supply, and thus any existing network loadingefined. An ideal case is when travelers have perfect online
method can potentially be extended to carry out the policynformation, where all link travel time realizations up teet
based loading (Gao [7]). Therefore through the loadingurrent time are available, but generally the informatisn i
we obtain the PMF of link travel times from the PMF of|ocal, e.g. one learns the travel time realization of some
demand/supply. Note that although the input demand/suppipwnstream links when he/she passes a Variable Message
support points are distinct from each other, the output linkjgn (VMS). One can be in many different states traveling
travel time realizations are not necessarily distinct.sTisi i the stochastic time-dependent network, and we have the
why the word “realization” is used here, rather than suppofbllowing definition.
point. Nevertheless, the PMF of link travel times is still pefinition 2.1 (Routing Policy)A routing policy yu(z) is
expressed through the realizations with the corresponding 3 mapping from network states to decisions (next nodes
probabilities. specifically).

_ _ This definition indicates that the routing decision in a

C=L(fD,S9) stochastic time-dependent network is far from being aset
priori. Rather, it is closely related to the network condi-

i ) ) ] _tions, and this notion is critical in any ATIS application.
The routing policy generation algorithm then takes as inpugpe generic optimality condition for optimal routing pajic

the link travel time distribution and produces an optimalqhjlems and an operational algorithm for the perfect @nlin
routing policy for each destination, which again will be dse jhtormation variant can be found in Gao and Chabini 9],

to generate the choice set for the users’ policy choice modglhere an optimal routing policy is defined as a routing policy

B. Policy-Based Dynamic Network Loading Model

C. Optimal Routing Policy Algorithm

i = 0(C) that minimizes the expected travel time from any initial
state to a given destination. Other optimization critesiagh

G=GUpu as reliability and expected schedule delay are discussed in
Gao [7].

The two equations can be combined as

G =G(C). D. Policy-Based Equilibrium

What follows is a summary of optimal routing policy '_I'hethree cqmponents inte_ractwith each (_)'_[hef\r, and a fixed-
problems described in Gao and Chabini [9]. L6t = pomt formulation of the polu;y-based equilibrium can be
(N, A, T, P) be astochastic time-dependent network N derived based on the interaction.
is the set of nodes and is the set of links. The number
of nodes and links are denoted respectivelyds= n and C=1L (U (G (C,) ,C‘) . D, S‘) (1)
|A| = m. The network has a single destination netld” is
the set of time period$§0, 1, ..., K — 1}. Travel time on each  The equilibrium can be described by the following gen-
link (4,%) during each time period is a random variable eralized Wadrop’s First Principle: a traffic network is in
C“jk,t with finite number of discrete, positive and integralpolicy-based stochastic dynamic equilibrium, if each user
support points. Beyond time peridd — 1, travel times are follows the routing policy with minimum perceived disutyfi



at his/her departure time, and no user can unilaterallygéan I Base | Path | Online Path| Policy

routing policies to improve his/her perceived disutility. of demand/supply] No | Yes Yes Yes
The idea of the solution algorithm is to find a solution to Online

the fixed point problem (Equation 1) by an iterative process ||_information No | No Yes Yes

on policy splits. At each iteration, the policy splits are grf}i"nn;a(':hoice No | No No Ves

updated by combining the results from the current iteration

and previous iterations. Since no proof of convergence is TABLE |

available at this moment, the method is heuristic for the DTA FOUR EQUILIBRIUM MODELS

problem. The algorithm is presented as follows:

Policy-Based Stochastic DTA Heuristic

Step 0 (Initialization) which specify respectively whether distributions of rando
0.1: N = maximal number of iterations; demand/supply are considered, whether online information
0.2: MSA counteri =1 is utilized in routing decision making, and whether online
0.3:Cp = free flow link travel timesy =1,...., R information is utilized optimally by applying the optimal
0.4: Policy choice set ) = {paths} routing policy algorithm developed in Gao and Chabini [9].
0.5: Policy splitsfgy = 0 We elaborate on the models one by one.

Step 1(Main Loop) The first model is the base equilibrium model. It is an

1.1: Generate an optimal routing poligy = O (é(i—l)) as_signment model ina determin_istic_: network wi_th determin-
istic demand. It ignores stochastic disturbances in sypply

1.2: Choice set updai€(;) = G(;—1) U {u:} assumes no incidents at all in a network. On the other hand,

1.3: Users’ choice modef’ = U (G, C(;—1) the demand is set at its expected value, if any stochasiitity
1.4: MSA updatef(;) = (1 — a) f—1) + af’, demand exists. This corresponds to the case where users have
wherea = 1/i no idea about the incident at all and just follow their hahiitu

15 Loader(:“(i) - (f(i),D, g) paths in a normal network. After the equilibrium path flows

are obtained, they are loaded onto the true network with
stochastic demand and supply, and the resulting measures of
effectiveness are calculated.
The second model is the path based model with equi-
librium in distribution. In this model, the distributionsf o
A reasonable value for the maximum number of iterationboth demand and supply are known and are used in the
will be obtained by running the heuristic for a sufficientlyassignment. We seek equilibrium in the distribution of link
large number of iterations and observing the convergentrvel times. Users are assumed to take paths with minimum
property. Experimental results on this topic will be presen expected travel time. We emphasize that a path is a fixed
in the next chapter. In Step 0.4, we initialize the policyicko set of concatenated links. If a user follows a path, then
set to include all paths that would have been included in &he will traverse this set of links one by one, regardless
choice set for a path-based DTA model. Note that for eadbf any online information. Note that online information
OD pair and each departure time, there is a choice set, aimtludes information at the origin node and it should not
the initialization is done for all choice sets. The subdsrip be restricted to information collectezh route Basically it
for OD pair and departure time are omitted to avoid heavig any information beyond the priori knowledge about the
notation. In Step 0.5, we initialize policy splits to be zero distribution of link travel times.
for all OD pairs and departure times. These are infeasible The third model is the online path based model with equi-
policy splits, and the initialization is just for the conwence librium in distribution. It makes use of online information
of writing a formula in Step 1.4f ) is not taken into account as compared to the previous model. With the equilibrium
in the MSA update, as when= 1, its coefficient is zero.  link travel time distribution, a user makes routing deaisio
as follows. For any given state, i.e. node, time and current
information, the conditional link travel time distributiois
A. Comparison of Four Models obtained and a path with minimum expected travel time is
The motivation for the policy-based DTA model is tosought. The user then takes the first link of the path. When
be able to model users’ adaptive choices and analyze thée arrives at the next node with an arrival time and updated
effects of online information in a truly stochastic network online information, a new conditional distribution is oipiad
We develop four models for comparison purposes as showith a new minimum expected time path. The user continues
in Table 1. on the first link of this new path. The above steps are repeated
In each column, we have one equilibrium model: basantil the destination is reached. We remark that the outcome
model, path model, online path model, and policy model, reef the process is also a routing policy, in the sense that
spectively. We have three features listed: distributiohdes it is a mapping from any state to a next node. It is just
mand/supply, online information, and optimal online clegic that the routing policy is not generated optimally, as each

Step 2 (Stopping Criterion)
If i =N, STOP
Otherwise,i =i + 1, and go to Step 1

IIl. COMPUTATIONAL TESTS



I [ Tink 0(1) | Link 2(4) [ Link 3(5) | Link 6(7) ]

Length (mi) 0.5357 0.7576 0.8470 0.3788
# of Lanes 2 1 1 1
Free Flow 40 30 20 30
Speed (mph)
Free Flow 48 91 152 45
Time (sec)
Jam Density 0.30 0.15 0.15 0.15
(veh/link/meter)
Output Capacity 1.1 0.5 0.5 0.5

Path 1 Path2 (veh/link/sec)

o TABLE Il
Path 3 Path 4 LINK DATA OF THE TESTNETWORK

Fig. 2. Test Network

decision i d ing that further inf i .anodeI. The loader works at a finer resolution (5 sec) for the
ecision 1S made assuming that no further information wi imulation, but the post-processed link (path) travel raee
be available. We term a routing policy generated in the abovi

stated process as “online path”. On the other hand, since ¥so by minute. Therefore we have 90 time periods in the

information is updated quite often (at the same pace as in an

. } . . ] 2) Random IncidentsWe have random incidents in the
optimal routing policy algorithm), the online path could benetwork. An incident is defined by the segment ID, start time,

a %_?]Odl apiprox(;rr}a_tlci[rrl] to a?_ opltlma![_rout|n? polllcy. d mod (ruration and capacity reduction factor. A segment is paat of
€ ast modet 1S Ine optimal routing policy based mod§j, anq a link can be composed of one or multiple segments.

with equilibrium in distribution. It is different from the In our network, each link is composed of only one segment
online path model, in the sense that it makes optimal use ﬂr}an incident étarts from 8:00am and lasts for 20 minutes

onI|(;1e| mfom;_at;(og. Wzn(_)te ;[]hat the rour:mg d?C'S'OnS '[T.bi with a capacity reduction factor 0.5 on link 0, then the otitpu
models are link based, In the sense that only a next lin l:c‘apacity of link O will be0.5 x 1.1 = 0.55 veh/link/sec

chosen at each decision node. However, the attractivemessfr%m 8:00am to 8:20am, and will revert to the original value

utility of a link is evaluated differently in these two model 1 veh/link/sec from 8:20am on. As the capacity reduction

In the online path choice model, the utility of a link is base s with respect to output capacity, an incident could only
on only one path; while in the optimal routing policy mOdel'happen at the end of a link '

t_he gtility of a link is_ based on a set of paths that have this The random incident is defined as follows.
link in common. Intuitively the second approach should lead . L . .
to better decisions. e There is _at most one incident during the study period
By comparing results of the base model and the path for any given day; " - .
model, we can study the value af priori information on « The incident has a positive probability of occurring on
i . link 0, 2, 3 and 6, but zero on links 1, 4, 5 and 7, which
stochasticity of demand/supply, as the base model ignores simulates a situation where some links are much safer
the stochasticity of demand/supply while the path model 'mu ltuation where : are mu
C T than others, and thus incident probabilities on those
makes use of the priori knowledge on distributions of . o
) links are negligible;
demand/supply. By comparing results of the path model and = L S
: . « The probability of incident occurrence on a link is
the last two models (online path model and policy model), roportional to the link's length (for links 0, 2, 3 and
we can study the value of online information. Finally, by g)_ b 9 e
comparing results of the online path model and policy model, if ’an incident occurs on a link. the start time can
we can study the value of making optimal use of online ° ) ) i B :
be 6:30am, 6:40am, 6:50am, ..., 7:50am with equal

information. .
probability;
B. Experimental Design « The duration of any incident is fixed at 10min, and the

1) The Test NetworkWe conduct computational tests on ~ Capacity reduction factor is fixed at 0.3; _
the simple hypothetical network shown in Figure 2. The * The probability of no incident in the network is— p.
network has 6 nodes and 8 directed links. It is symmetric Based on the above description, the random incident can
with respect to the horizontal line passing through nodes lge described by the joint distribution of link IDand start
and 5. The link data is summarized and shown under tti#ne to. Denotelo, ls, I3, ls as the length of link 0, 2, 3 and

network. 6 respectively and. = 3, 5 5 ¢ li-

We deal with one OD pair between node 0 and node 5. We
assume zero flows between any other OD pair. Four paths (0, 6:30 or 6:40 ... or 7:50) w.p. p x lo/L/9
exist for OD pair (0,5) as shown in Figure 2, with online (2, 6:30 or 6:40 ... or 7:50) w.p. p x l2/L/9
diversion possibilities at nodes 0, 1 and 2. The study period, ¢q) = ¢ (3, 6:30 or 6:40 ... or 7:50) w.p. p x I3/L/9
is from 6:30am to 8:00am. The time resolution is 1 minute (6, 6:30 or 6:40 ... or 7:50) w.p. p x lg/L/9

for the optimal routing policy algorithm and users’ behavio (non-exist, non-exist) wp. 1—p



3) Demand:We assume that the demand for OD pair (Oincidents. A very distinctive feature of the flows in Figure 4
5) is always deterministic. The flow rate is 2880 veh/houis the decrease around incident across all support poists. A
between 6:30am and 7:00am, and 4680 veh/hour betweae arrange the graphs by the start time of incident, we can
7:00am and 8:00am. see a moving “pit” in path flow. This is more intelligent than

Users are assumed to minimize expected travel time wittheterministic path flows as in path model. Note that policy
perception errors. The coefficient of expected travel timflows are deterministic. As a policy will manifest itself as
is negative with a large enough absolute value (-6.0) tdifferent paths in different incident support points, pidivs
approximate a fastest policy (path) choice situation. Aktns are random and we can talk about their distributions.
have perfect online information in the online path model and The OD travel time distribution and path 2 flow distri-
policy model, i.e. knowledge of travel time realizations orbution of the policy model are very simliar to those of the
all links up to the current time. Obviously, users have nonline path model, respectively, and thus are not presented
online information in the base model and the path model. here. In fact, these two models are both based on routing

policies, and it is just that the methods of generating ogkim
C. Results routing policies are different. We expect that results from

We discuss the solutions of the four models and compatke two models are not significantly different in our simple
them when appropriate. For the sake of brevity, not aliest network, due to the limited diversion nodes. Further
results are presented. Note that we focus on the statisticamputational tests on larger networks are desirable tystu
collection period 7:00am through 7:30am, although stesist the differences between these two models.
for all time intervals are presented. Special caution sthoul Next we compare expected OD travel times from all the
be taken when reading statistics close to 8:00am, as thdoair models in Figure 5. Expected OD travel time is the
are unfinished trips during that period and the calculation anajor measure of effectiveness in our tests. We observe
travel times could be mistaken. that the path model gives lower expected OD travel times

We present the equilibrium OD travel time distributionthan the base model, and the two adaptive models (online
of the path model (dashed lines) and the online path modeath model and policy model) provide further travel time
(solid lines) as a function of departure time for all 37 suppo savings. Figure 6 gives the time-dependent OD time standard
points in Figure 3. Each plot in the figure is of the 37deviations. Although travelers are minimizing expectedét
discrete supporting points for the distribution of OD trhavetime only, their travel time variances are also reduced by
times. The x-axis represents departure time, while theig-axtaking adaptive routing choices. This is due to the fact that
represents OD travel time. Recall that in support points their travel times are reduced in incident scenarios, and th
through 9, the incident is on link 0 and with 9 differentmore smooth across support points.
start times from 6:30am to 7:50am. Then in support points We just discussed in detail the results for a specific test
10 through 18, the incident is on link 2; in support pointssetting (incident probability = 0.9). We are also interested
18 through 27, on link 3; and in support points 28 througln learning the behavior of the models when we vary the
36, on link 6; and finally in support point 37, there is noincident probability. On the other hand, in reality online
incident in the network. The incident link ID and incidentinformation could be provided only to part of the travelers,
start time are listed on the top of each graph in the figuré¢hus it is desirable to study how the traffic conditions cteang
Generally, the online path model gives lower OD traveas a function of market penetration of online information.
time, and the savings are quite outstanding in some casé& define a single measure of effectiveness (MOE) to be
(e.g. when incidents are on link 4 and start from 7:00 andompared in the sensitivity analysis, which is the expected
7:10). This is largely due to the flexibility gained throughOD travel time averaged over the statistics collectionqukri
adaptive routing. Figure 4 gives time-dependent path flow:00am through 7:29am.
distributions for path 2, and we can see flows on path 2 First we carry out the sensitivity analysis with respect to
change from different support points, while in a path modeincident probabilityp. We varyp from 0 to 1.0 by a step
path flows are fixed across support points. We omit thsize of 0.1. The result is plotted in Figure 7. For each of
presentation of other path flow distributions for the sake adhe models, the average expected OD travel time increases
brievity. When an incident happens, affected links will @av as incident probability increases, but different model has
longer travel times. Furthermore, at different stages of adifferent increasing rate. This increasing function seems
incident, the realized link travel times so far are diffdréfor  intuitively correct, as a more likely incident increaseg th
example, if we are at a point when an incident just begingrobability that a network is congested, and thus a higher
then link travel times along the time axis would be flat akxpected travel time. We note that the policy model gives a
normal values and then jump to higher values. If we are attdagher value fop = 0.9 (216.06) than fop = 1.0 (216.00).
point when an incident just ends, then we would see a longeéve believe that this difference is too small to be significant
period during which link travel times are at high values. Ifand are inclined to believe that they are the same.
we are at a point when an incident has ended for a while, The relationship for the base model is linear. The ex-
then we would be able to see link travel times first increasinglanation is as follows. First, the path flows are the same
and then decreasing. To sum up, the message containedan various incident probabilities, since the base mode&lsdo
the current realized link travel times makes us adaptive toot consider incidents at all. Then the OD travel time for



each incident support point is calculated, and a weightezhse. This analysis might only be valid for the test setting,
average is taken to obtain the expected OD travel timend caution should be taken if one intends to generalize the
where the weight is the probability of an incident supportesult. Future research will include market penetraticatste

point. As we can see from the design of incident distribytiorwith different incident probablities.

incident probabilities are linear functions pf Therefore the
expected OD travel time is also linear functionpfWhile

Link 0; 06:30

Link 0; 06:40

Link 0; 06:50

Link 0; 07:00

Link 0; 07:10

in other three models, random incidents are considered i, 200 200 300 200
the equmbrlum process and equmbrlum path (_po_llcy) flows, | | | ol ] ZOOJL ZOOM,/\\M
differ Whenp differs. Therefore the relatlonshlp ISIn general 06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00
. Link 0; 07:20 Link 0; 07:30 Link 0; 07:40 Link 0; 07:50
nonlinear.
In general, the path model gives less expected travel tim3°°4_/\ﬁ 3°°~hA\ 3OO_J 300 A
- H 200 200 200 200
than base mOdell and the tWO adaptlve mOdels (On“ne pa 06:39 08:00 06:30 08:00 06:3Q 08:00 06:39 08:00 .
model and p0||Cy model) g|Ve |eSS expected traVeI t|me tha Link 2; 06:30 Link 2; 06:40 Link 2; 06:50 Link 2; 07:00 Link 2; 07:10
the path model. The savings (path over base, and adaptiz® 300 300 mJL mJL
over path) increase as incident probability increasesh bor®r— 2007~ 200/ 200 200
. . . . 06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00
in absolute values and in relative percentage savings. Tt = unkzo720 k20730 Lnk207:40  Link2; 07:50
relative saving of the path model over the base model is isw0 300 300 300
the range of0 ~ 2.9%, and the relative saving of adaptive zoonr/\ﬂ ZODI/\ ZOOMJ 20—
models over the path model is in the rang®ef 4.4%. This T s nks oo ik o650 - k3,070 Link3;07:20
increasing function suggests that values of bofbriori and 200 2300 200 200
online information are more evident when traffic conditionS,,| —— 200 200 200) /S gl ]
are worse. This could be reasonable in reality when traffi %2, , 80 % s oo oo oo | gwoo 060 osoo
conditions without incident are not too congested, as the, w0 w00 w0
ther.e is enough room for Q|v<_ar5|on. ThI.S is actually the, | A |, 0 AL LA Ll
setting of our tests, as traffic is almost in free flow State oss0  oso0 030 0800 0630 o800 0630 0800
. . . . Link 6; 06:30 Link 6; 06:40 Link 6; 06:50 Link 6; 07:00 Link 6; 07:10
with no incident. We expect that when a network is already
uite congested without incident, this function might hbmeo > . 0 0 0
q g . g 200 P 200 e 200 200~—-/\“~‘~1 200»-—/\“"“
ﬂat after some pOInt 06:3[_) 08:00 06:30 08:00 06:3(_) 08:00 06:39 08:00 06:30 . 08:00
NeXt We Cal'l'y Out SenSItIVIty ana|ySIS W|th I’eSpeCt '[0 mar Link 6; 07:20 Link 6; 07:30 Link 6; 07:40 Link 6; 07:50 No Incident
ket penetration of online information. For a given penétrat 3 300 300 300 300
k which is a value between 0 and 100%, we assigof 20[’%_ 200_—”_/\“_ 200_—"—/\_ 2°°_rA_ 200 _
06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00 06:30 08:00

the demand to take minimum expected travel time routing
policies, while the remaining — &k of the demand to take Fig. 3. OD Travel Time Distribution of Online Path Model (Xx:
minimum expected travel time paths. Equilibrium is soughperarture Time; Y-Axis: OD Travel Time (sec);= 0.9)

by an MSA heuristic that updates the path splits and policy
splits simultaneously. We have the result for= 0.1 in
Figure 8. The average expected OD travel time is at its larges

value when market penetration of online information is zero

At that time, if one traveler is intelligent enough and take a This paper establishes a policy-based dynamic traffic as-
routing policy rather than a path, he/she can save travel. timsignment model for the analysis of effects of online informa
More and more of them find the benefits of online information in stochastic dynamiC traffic networks. The distinetiv
tion, and they gain travel time savings and thus bring dowf¢ature of the proposed model is the ability to model trav-
the average expected travel time. However, in a congest8§rs’ adaptive routing choices based on online infornmatio
traffic network, the changing of users’ behavior changes tHeomputational tests are carried out in a hypothetical ne¢wo
network-wide traffic conditions through interaction beeme Where random incidents are the source of stochasticity. Sys
supply and demand. As seen from the figure, the savirf§m costs de_r_|ved_frorr_1 four models with different qurma—
in travel time becomes less evident when penetration gol@n accessbility situations are compared. The adaptaene
from 20% to 40% and from 40% to 60%. Later on, highef© online information leads to less expected travel time and
penetration actually does not bring any more savings. weriance at equilibrium. The value of online information is
see an increase in travel time from 60% to 100%. We the@ increasing function of the incident probability. Tratiele
conclude that the savings gained from online information i§avings are high when market penetrations are low. However,
larger when market penetration is lower. After some pointhe function of travel time saving against market peneirati
more online information could actually make things worselS nNot monotonic.
Therefore the function of travel time saving against market

penetration is not monotonic. Despite the varying effect of

online information, travel time savings are always positiv [1] G. Andreatta and L. Romeo, “Stochastic shortest patttls micourse,”
with online information, compared to no-online-infornati Networks vol. 18, pp. 193—204, 1988.

IV. CONCLUSIONS
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