
Adaptive Traffic Assignment in Stochastic Dynamic Networks

Song Gao

Abstract— This paper establishes a user-equilibrium dynamic
traffic assignment (DTA) model where users make adaptive
routing decisions, denoted as routing policies, in a stochastic
time-dependent network. A routing policy is defined as a
decision rule which specifies what node to take next out of the
current node based the current time and online information,
essentially a mapping from network states to decisions on next
nodes. A general definition of routing policy is given to allow
for a wide variety of information accessibility situations, thus
excluding the usually simplified assumptions such as eitherno
information or full information. In the proposed DTA model,
a routing policy is treated as an element of a traveler’s route
choice set. The key advantage of this approach is that online
information is embedded in a traveler’s route choice alternatives
and, thus, systematic methods can be designed independent of
online information formats. A generalization of Wardrop’s First
Principle is used as the equilibrium condition: each user follows
a routing policy with minimum perceived disutility at his/h er
departure time and no user can unilaterally change routing
policies to improve his/her perceived disutility. A general
framework is provided and the equilibrium model is formulat ed
as a fixed point problem with three components: the routing
policy generation module, the routing policy choice model and
the policy-based dynamic network loader. An MSA (method of
successive averages) heuristic is designed. Computational tests
are carried out in a hypothetical network, where a random
incident is the source of stochasticity. The heuristic converges
satisfactorily in the test network under the proposed test
settings. The adaptiveness in the routing policy based model
leads to shorter expected travel times at equilibrium compared
to DTA models where users make non-adaptive routing choices.
As a byproduct, travel time reliability is also enhanced. The
value of online information is an increasing function of the
incident probability. Travel time savings are high when market
penetrations are low. However, the function of travel time saving
against market penetration is not monotonic. This suggeststhat
in a traveler information system or route guidance system,
the information penetration needs to be chosen carefully to
maximize benefits.

I. I NTRODUCTION

Stochasticity in transportation systems is both intuitively
prevalent and experimentally shown. Travelers’ routing de-
cisions in a stochastic network with online information is
conceivably different from those in a deterministic network.
It is generally believed that adaptive routing will save travel
time and enhance travel time reliability. For example, in a
network with random incidents, if one does not adapt to an
incident scenario, he/she could be stuck in the incident link
for a very long time. However, if adequate online information
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is available about the incident and the traveler adapts to
it by taking an alternative route, he/she can save travel
time compared to the non-adaptive case. The adaptiveness
also ensures that the travel time is not prohibitively high
in incident scenarios, and thus provides a more reliable
travel time. The problem of optimal adaptive routing decision
making for individual travelers has been studied by various
researchers [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
[12] [13] [14] [15] [16] [17] [18] [19], and a complete
literature review can be found in Gao and Chabini [9]. A
general conclusion from the above studies is that in a flow-
independent stochastic time-dependent (STD) network, an
individual user’s expected travel time from being adaptive
(in one way or another, depending on the problems studied
specifically) is always no higher than that from being non-
adaptive, i.e. following a simple path.

After understanding how an individual traveler makes
adaptive routing decisions, another research question would
be: what will be the network-level impact if many travelers
make adaptive routing decisions? The interaction between
supply and adaptive demand in a stochastic dynamic network
needs to be captured to answer the question. This interaction
in a deterministic network (with possible perception errors
from the demand side) is captured by a conventional dynamic
traffic assignment (DTA) model. This paper establishes a
user-equilibrium traffic assignment model where users make
adaptive routing decisions in a general stochastic time-
dependent network with online information.

A routing policy is defined as a decision rule which
specifies what node to take next out of the current node
based the current time and online information, essentiallya
mapping from network states to decisions on next nodes. The
critical difference between a routing policy and a path liesin
the way adaptive behavior is modeled: a routing policy can
manifest itself as various paths depending on the underlying
stochastic process that drives a traffic network, while a path
is fixed regardless of random disturbances to the network and
available online information. The adaptive DTA model has
the following distinctive features to contribute to the state of
the art:

• Users’ choice sets are composed of routing policies,
rather than simple paths. The definition of routing policy
is general and can handle a wide range of informa-
tion accessibility situations, and thus avoids the usual
simplified assumptions such as no information or full
information.

• Link travel times are random variables with time-
dependent distributions. A joint distribution of all ran-
dom variables is used such that both link-wise and time-



wise stochastic dependencies of link travel times are
modeled.

• The equilibrium is in terms of distribution of link travel
times, flow and other traffic quantities of interest, and
generalizes the conventional equilibrium concept.

There is quite limited study of equilibrium dynamic traffic
assignment models in the literature, where adaptive routing
decisions are an integral part of a user’s behavior model.
Hamdouch et al. [20] proposed a strategic model for dynamic
traffic assignment, as an extension to the static model studied
by Marcotte et al. [21]. The model assumes that travel delays
happen only at nodes, when the arc that a traveler wants to
access has reached its rigid capacity. Randomness in travel
time comes from the fact that the position of any traveler
in the vertical queue at a node is random, while link costs
are not random in terms of day-to-day fluctuations. Ukkusuri
et al. [22] proposed an equilibrium static assignment model
where link travel times are independent static random vari-
ables, and users learn the actual realizations of outgoing links
when reaching a node. A sequential Logit model is employed
to do the loading.

The paper is organized as follows. In Section II, a concep-
tual framework for the policy-based stochastic DTA model is
introduced with a fixed-point formulation. Three components
of the DTA model are presented in detail: users’ routing
choice model, policy-based dynamic network loading model
and routing policy generation module. The equilibrium con-
dition based on a generalized Wardrop’s principle is proposed
next and a method of successive average (MSA) solution
algorithm is described. In Section III, computational tests
are set up to study the behavior of the proposed model
and to compare it with models that do not model adaptive
routing choices. Throughout the paper, a symbol with a
∼ over it is a random variable, while the same symbol
without the∼ is one specific value of the random variable. A
“support point” is defined as a distinct value that a discrete
random variable can take or a distinct vector of values
that a discrete random vector can take, depending on the
context. Thus a probability mass function (PMF) of a random
variable(vector) is a combination of support points and the
associated probabilities.

II. A F RAMEWORK FOR THEPOLICY-BASED

STOCHASTIC DTA M ODEL

We present a framework for the policy-based stochastic
dynamic traffic assignment model to give a big picture on the
input, output, model components’ interaction, and data flow,
as shown in Figure 1. The input to the overall DTA model is
the stochastic dynamic demand̃D and supplyS̃ represented
by a joint discrete distribution withR support points, each
of which has a probabilitypr, r = 1, ..., R. The demand is
assumed to be inelastic, i.e. the demand distribution is fixed.
In a discrete time representation, any realization of random
demand is given as a matrix of time-dependent numbers of
O-D trips during all time intervals.̃D = {D1, D2, ..., DR},
whereDr is the demand matrix for therth support point.
Dr = {Dr

jd,t, t = 0, 1, 2, ...,∀OD pair{j, d}}, whereDr
jd,t

is the number of trips between originj and destinationd for
departure timet for therth support point. The random supply
can be represented through the random occurrence, duration
and severity of an incident or any other random supply
factors:S̃ = {S1, S2, ..., SR}. Note that the same probability
pr is associated with the outputs computed fromSr, Dr. In
the remaining of the paper, whenever a support point has
a superscriptr, its associated probability ispr, otherwise
indicated. The output is an equilibrium distribution of flow-
dependent link travel times̃C = {Cr

jk,t, ∀{j, k} ∈ A, ∀t, r =
1, 2, ..., R}, whereA is the set of links of the traffic network,
and the corresponding routing policy splitsf = {f i

jd,t},
where {j, d} is an OD pair,t is the departure time, and
i is the index of policies. Note that the distributions of all
relevant traffic random variables are discrete. The framework
in general does not restrict the link travel time distribution to
be continuous or discrete. However, conceivably it is easier
to work with a discrete distribution, based on which a routing
policy is defined, and also it is not clear how to do network
loading with continuously distributed demand/supply. It is an
interesting future research question to work with continuous
distributions.

There are three major components of the stochastic DTA
model: the users’ routing policy choice model, denoted asU ,
the policy-based dynamic network loading model, denoted as
L, and the optimal routing policy algorithm, denoted asO.
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Fig. 1. A Conceptual Framework of Stochastic Dynamic TrafficAssign-
ment Model

A. Users’ Routing Policy Choice Model

The users’ routing policy choice model takes as input a set
of routing policiesG = {µ1, µ2, ..., µi, ...} generated by the
optimal routing policy algorithm, and a joint distributionof
link travel timesC̃ = {Cr

jk,t, r = 1, ..., R} generated by the
policy-based dynamic network loading model. The method
of generating the choice set will be discussed in Section II-D.
Based on the relevant attributes of candidate routing policies,
such as expected OD travel time and travel time standard
deviation, a logit choice model corrected for the overlapping
of different routing policies (Gao [7]) outputs policy splits
f among the routing policies for each OD pair and each
departure time.

f = U(G, C̃)



We keep the “large sample” assumption and assume policy
splits are equal to corresponding policy choice probabilities.
Note that we use “splits” rather than “flows” here: policy
splits are deterministic, while policy flows could be stochas-
tic, if the demand is stochastic. Policy splits will be translated
into policy flows in the network loading model. The notion
of policy flow can be understood as a generalization of path
flow. Since a routing policy will manifest itself as a specific
path for a given realization of link travel times, a policy flow
will become a path flow for each support point of link travel
times. Thus a policy flow can be viewed as a set of path
flows, each with some probability.

B. Policy-Based Dynamic Network Loading Model

The demand is then loaded onto the network according
the policy flow splits, by the policy-based dynamic network
loading model. The stochastic demand and supply play their
roles in the loading process. For each support point of the
random demand and/or supply, the network loading model
outputs a single realization of the link travel time distribu-
tion. The loading is deterministic, given a support point of
demand and/or supply, and thus any existing network loading
method can potentially be extended to carry out the policy-
based loading (Gao [7]). Therefore through the loading,
we obtain the PMF of link travel times from the PMF of
demand/supply. Note that although the input demand/supply
support points are distinct from each other, the output link
travel time realizations are not necessarily distinct. This is
why the word “realization” is used here, rather than support
point. Nevertheless, the PMF of link travel times is still
expressed through theR realizations with the corresponding
probabilities.

C̃ = L(f, D̃, S̃)

C. Optimal Routing Policy Algorithm

The routing policy generation algorithm then takes as input
the link travel time distribution and produces an optimal
routing policy for each destination, which again will be used
to generate the choice set for the users’ policy choice model.

µi = O(C̃)

G = G ∪ µi

The two equations can be combined as

G = G(C̃).

What follows is a summary of optimal routing policy
problems described in Gao and Chabini [9]. LetG =
(N, A, T, P ) be astochastic time-dependent network. N
is the set of nodes andA is the set of links. The number
of nodes and links are denoted respectively as|N | = n and
|A| = m. The network has a single destination noded. T is
the set of time periods{0, 1, ..., K−1}. Travel time on each
link (j, k) during each time periodt is a random variable
C̃jk,t with finite number of discrete, positive and integral
support points. Beyond time periodK − 1, travel times are

static and deterministic, i.e. the travel time of link(j, k) at
any timet ≥ K − 1 is equal toCjk,K−1.

P is the probabilistic description of link travel times. Let
P = {v1, v2, ..., vR} be the set of support points of the
link travel time distribution. Therth support point has a
probability pr, and

∑R

r=1 pr = 1 . Cr
jk,t is the travel time

on link (j, k) at time t for the rth support point.
We assume the traveler knowsa priori the probabilis-

tic descriptionP of the network. The traveler can make
decisions only at nodes. The decision is what nodek to
take next, based on thecurrent statex = {j, t, I}, where
j is the current node, t is the current time, and I is the
current information. Current informationI is defined as
a set of available realized link travel times at the current
time and current node that are useful for making inferences
about future link travel times. It represents the traveler’s
knowledge about the network conditions. This knowledge
could be dependent on time, location of the traveler, mode
of transportation, etc. Current informationI therefore should
be regarded asI(j, t), but we usually useI only sinceI
is always associated with a state wherej and t are well
defined. An ideal case is when travelers have perfect online
information, where all link travel time realizations up to the
current time are available, but generally the information is
local, e.g. one learns the travel time realization of some
downstream links when he/she passes a Variable Message
Sign (VMS). One can be in many different states traveling
in the stochastic time-dependent network, and we have the
following definition.

Definition 2.1 (Routing Policy):A routing policy µ(x) is
a mapping from network states to decisions (next nodes
specifically).
This definition indicates that the routing decision in a
stochastic time-dependent network is far from being seta
priori . Rather, it is closely related to the network condi-
tions, and this notion is critical in any ATIS application.
The generic optimality condition for optimal routing policy
problems and an operational algorithm for the perfect online
information variant can be found in Gao and Chabini [9],
where an optimal routing policy is defined as a routing policy
that minimizes the expected travel time from any initial
state to a given destination. Other optimization criteria,such
as reliability and expected schedule delay are discussed in
Gao [7].

D. Policy-Based Equilibrium

The three components interact with each other, and a fixed-
point formulation of the policy-based equilibrium can be
derived based on the interaction.

C̃ = L
(

U
(

G
(

C̃,
)

, C̃
)

, D̃, S̃
)

(1)

The equilibrium can be described by the following gen-
eralized Wadrop’s First Principle: a traffic network is in
policy-based stochastic dynamic equilibrium, if each user
follows the routing policy with minimum perceived disutility



at his/her departure time, and no user can unilaterally change
routing policies to improve his/her perceived disutility.

The idea of the solution algorithm is to find a solution to
the fixed point problem (Equation 1) by an iterative process
on policy splits. At each iteration, the policy splits are
updated by combining the results from the current iteration
and previous iterations. Since no proof of convergence is
available at this moment, the method is heuristic for the DTA
problem. The algorithm is presented as follows:

Policy-Based Stochastic DTA Heuristic

Step 0 (Initialization)
0.1: N = maximal number of iterations;
0.2: MSA counteri = 1
0.3: Cr

(0) = free flow link travel times,r = 1, ..., R

0.4: Policy choice setG(0) = {paths}
0.5: Policy splitsf(0) = 0

Step 1 (Main Loop)

1.1: Generate an optimal routing policyµi = O
(

C̃(i−1)

)

1.2: Choice set updateG(i) = G(i−1) ∪ {µi}

1.3: Users’ choice modelf ′ = U
(

G(i), C̃(i−1)

)

1.4: MSA updatef(i) = (1 − α)f(i−1) + αf ′,
whereα = 1/i

1.5: LoaderC̃(i) = L
(

f(i), D̃, S̃
)

Step 2 (Stopping Criterion)
If i = N , STOP
Otherwise,i = i + 1, and go to Step 1

A reasonable value for the maximum number of iterations
will be obtained by running the heuristic for a sufficiently
large number of iterations and observing the convergence
property. Experimental results on this topic will be presented
in the next chapter. In Step 0.4, we initialize the policy choice
set to include all paths that would have been included in a
choice set for a path-based DTA model. Note that for each
OD pair and each departure time, there is a choice set, and
the initialization is done for all choice sets. The subscripts
for OD pair and departure time are omitted to avoid heavy
notation. In Step 0.5, we initialize policy splits to be zeros
for all OD pairs and departure times. These are infeasible
policy splits, and the initialization is just for the convenience
of writing a formula in Step 1.4.f(0) is not taken into account
in the MSA update, as wheni = 1, its coefficient is zero.

III. C OMPUTATIONAL TESTS

A. Comparison of Four Models

The motivation for the policy-based DTA model is to
be able to model users’ adaptive choices and analyze the
effects of online information in a truly stochastic network.
We develop four models for comparison purposes as shown
in Table I.

In each column, we have one equilibrium model: base
model, path model, online path model, and policy model, re-
spectively. We have three features listed: distributions of de-
mand/supply, online information, and optimal online choice,

Base Path Online Path Policy
Distributions
of demand/supply No Yes Yes Yes
Online
information No No Yes Yes
Optimal
online choice No No No Yes

TABLE I

FOUR EQUILIBRIUM MODELS

which specify respectively whether distributions of random
demand/supply are considered, whether online information
is utilized in routing decision making, and whether online
information is utilized optimally by applying the optimal
routing policy algorithm developed in Gao and Chabini [9].
We elaborate on the models one by one.

The first model is the base equilibrium model. It is an
assignment model in a deterministic network with determin-
istic demand. It ignores stochastic disturbances in supply, e.g.
assumes no incidents at all in a network. On the other hand,
the demand is set at its expected value, if any stochasticityin
demand exists. This corresponds to the case where users have
no idea about the incident at all and just follow their habitual
paths in a normal network. After the equilibrium path flows
are obtained, they are loaded onto the true network with
stochastic demand and supply, and the resulting measures of
effectiveness are calculated.

The second model is the path based model with equi-
librium in distribution. In this model, the distributions of
both demand and supply are known and are used in the
assignment. We seek equilibrium in the distribution of link
travel times. Users are assumed to take paths with minimum
expected travel time. We emphasize that a path is a fixed
set of concatenated links. If a user follows a path, then
s/he will traverse this set of links one by one, regardless
of any online information. Note that online information
includes information at the origin node and it should not
be restricted to information collecteden route. Basically it
is any information beyond thea priori knowledge about the
distribution of link travel times.

The third model is the online path based model with equi-
librium in distribution. It makes use of online information
as compared to the previous model. With the equilibrium
link travel time distribution, a user makes routing decisions
as follows. For any given state, i.e. node, time and current
information, the conditional link travel time distribution is
obtained and a path with minimum expected travel time is
sought. The user then takes the first link of the path. When
s/he arrives at the next node with an arrival time and updated
online information, a new conditional distribution is obtained
with a new minimum expected time path. The user continues
on the first link of this new path. The above steps are repeated
until the destination is reached. We remark that the outcome
of the process is also a routing policy, in the sense that
it is a mapping from any state to a next node. It is just
that the routing policy is not generated optimally, as each
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decision is made assuming that no further information will
be available. We term a routing policy generated in the above
stated process as “online path”. On the other hand, since the
information is updated quite often (at the same pace as in an
optimal routing policy algorithm), the online path could be
a good approximation to an optimal routing policy.

The last model is the optimal routing policy based model
with equilibrium in distribution. It is different from the
online path model, in the sense that it makes optimal use of
online information. We note that the routing decisions in both
models are link based, in the sense that only a next link is
chosen at each decision node. However, the attractiveness or
utility of a link is evaluated differently in these two models.
In the online path choice model, the utility of a link is based
on only one path; while in the optimal routing policy model,
the utility of a link is based on a set of paths that have this
link in common. Intuitively the second approach should lead
to better decisions.

By comparing results of the base model and the path
model, we can study the value ofa priori information on
stochasticity of demand/supply, as the base model ignores
the stochasticity of demand/supply while the path model
makes use of thea priori knowledge on distributions of
demand/supply. By comparing results of the path model and
the last two models (online path model and policy model),
we can study the value of online information. Finally, by
comparing results of the online path model and policy model,
we can study the value of making optimal use of online
information.

B. Experimental Design

1) The Test Network:We conduct computational tests on
the simple hypothetical network shown in Figure 2. The
network has 6 nodes and 8 directed links. It is symmetric
with respect to the horizontal line passing through nodes 0
and 5. The link data is summarized and shown under the
network.

We deal with one OD pair between node 0 and node 5. We
assume zero flows between any other OD pair. Four paths
exist for OD pair (0,5) as shown in Figure 2, with online
diversion possibilities at nodes 0, 1 and 2. The study period
is from 6:30am to 8:00am. The time resolution is 1 minute
for the optimal routing policy algorithm and users’ behavior

Link 0(1) Link 2(4) Link 3(5) Link 6(7)

Length (mi) 0.5357 0.7576 0.8470 0.3788
# of Lanes 2 1 1 1
Free Flow 40 30 20 30
Speed (mph)
Free Flow 48 91 152 45
Time (sec)
Jam Density 0.30 0.15 0.15 0.15
(veh/link/meter)
Output Capacity 1.1 0.5 0.5 0.5
(veh/link/sec)

TABLE II

L INK DATA OF THE TEST NETWORK

model. The loader works at a finer resolution (5 sec) for the
simulation, but the post-processed link (path) travel times are
also by minute. Therefore we have 90 time periods in the
tests.

2) Random Incidents:We have random incidents in the
network. An incident is defined by the segment ID, start time,
duration and capacity reduction factor. A segment is part ofa
link, and a link can be composed of one or multiple segments.
In our network, each link is composed of only one segment.
If an incident starts from 8:00am and lasts for 20 minutes
with a capacity reduction factor 0.5 on link 0, then the output
capacity of link 0 will be0.5 × 1.1 = 0.55 veh/link/sec
from 8:00am to 8:20am, and will revert to the original value
1.1 veh/link/sec from 8:20am on. As the capacity reduction
is with respect to output capacity, an incident could only
happen at the end of a link.

The random incident is defined as follows.
• There is at most one incident during the study period

for any given day;
• The incident has a positive probability of occurring on

link 0, 2, 3 and 6, but zero on links 1, 4, 5 and 7, which
simulates a situation where some links are much safer
than others, and thus incident probabilities on those
links are negligible;

• The probability of incident occurrence on a link is
proportional to the link’s length (for links 0, 2, 3 and
6);

• If an incident occurs on a link, the start time can
be 6:30am, 6:40am, 6:50am, ..., 7:50am with equal
probability;

• The duration of any incident is fixed at 10min, and the
capacity reduction factor is fixed at 0.3;

• The probability of no incident in the network is1 − p.
Based on the above description, the random incident can

be described by the joint distribution of link IDl and start
time t0. Denotel0, l2, l3, l6 as the length of link 0, 2, 3 and
6 respectively andL =

∑

i=0,2,3,6 li.

(l, t0) =























(0, 6:30 or 6:40 ... or 7:50), w.p. p × l0/L/9
(2, 6:30 or 6:40 ... or 7:50), w.p. p × l2/L/9
(3, 6:30 or 6:40 ... or 7:50), w.p. p × l3/L/9
(6, 6:30 or 6:40 ... or 7:50), w.p. p × l6/L/9
(non-exist, non-exist), w.p. 1 − p



3) Demand:We assume that the demand for OD pair (0,
5) is always deterministic. The flow rate is 2880 veh/hour
between 6:30am and 7:00am, and 4680 veh/hour between
7:00am and 8:00am.

Users are assumed to minimize expected travel time with
perception errors. The coefficient of expected travel time
is negative with a large enough absolute value (-6.0) to
approximate a fastest policy (path) choice situation. All users
have perfect online information in the online path model and
policy model, i.e. knowledge of travel time realizations on
all links up to the current time. Obviously, users have no
online information in the base model and the path model.

C. Results

We discuss the solutions of the four models and compare
them when appropriate. For the sake of brevity, not all
results are presented. Note that we focus on the statistics
collection period 7:00am through 7:30am, although statistics
for all time intervals are presented. Special caution should
be taken when reading statistics close to 8:00am, as there
are unfinished trips during that period and the calculation of
travel times could be mistaken.

We present the equilibrium OD travel time distribution
of the path model (dashed lines) and the online path model
(solid lines) as a function of departure time for all 37 support
points in Figure 3. Each plot in the figure is of the 37
discrete supporting points for the distribution of OD travel
times. The x-axis represents departure time, while the y-axis
represents OD travel time. Recall that in support points 1
through 9, the incident is on link 0 and with 9 different
start times from 6:30am to 7:50am. Then in support points
10 through 18, the incident is on link 2; in support points
18 through 27, on link 3; and in support points 28 through
36, on link 6; and finally in support point 37, there is no
incident in the network. The incident link ID and incident
start time are listed on the top of each graph in the figure.
Generally, the online path model gives lower OD travel
time, and the savings are quite outstanding in some cases
(e.g. when incidents are on link 4 and start from 7:00 and
7:10). This is largely due to the flexibility gained through
adaptive routing. Figure 4 gives time-dependent path flow
distributions for path 2, and we can see flows on path 2
change from different support points, while in a path model,
path flows are fixed across support points. We omit the
presentation of other path flow distributions for the sake of
brievity. When an incident happens, affected links will have
longer travel times. Furthermore, at different stages of an
incident, the realized link travel times so far are different. For
example, if we are at a point when an incident just begins,
then link travel times along the time axis would be flat at
normal values and then jump to higher values. If we are at a
point when an incident just ends, then we would see a longer
period during which link travel times are at high values. If
we are at a point when an incident has ended for a while,
then we would be able to see link travel times first increasing
and then decreasing. To sum up, the message contained in
the current realized link travel times makes us adaptive to

incidents. A very distinctive feature of the flows in Figure 4
is the decrease around incident across all support points. As
we arrange the graphs by the start time of incident, we can
see a moving “pit” in path flow. This is more intelligent than
deterministic path flows as in path model. Note that policy
flows are deterministic. As a policy will manifest itself as
different paths in different incident support points, pathflows
are random and we can talk about their distributions.

The OD travel time distribution and path 2 flow distri-
bution of the policy model are very simliar to those of the
online path model, respectively, and thus are not presented
here. In fact, these two models are both based on routing
policies, and it is just that the methods of generating optimal
routing policies are different. We expect that results from
the two models are not significantly different in our simple
test network, due to the limited diversion nodes. Further
computational tests on larger networks are desirable to study
the differences between these two models.

Next we compare expected OD travel times from all the
four models in Figure 5. Expected OD travel time is the
major measure of effectiveness in our tests. We observe
that the path model gives lower expected OD travel times
than the base model, and the two adaptive models (online
path model and policy model) provide further travel time
savings. Figure 6 gives the time-dependent OD time standard
deviations. Although travelers are minimizing expected travel
time only, their travel time variances are also reduced by
taking adaptive routing choices. This is due to the fact that
their travel times are reduced in incident scenarios, and thus
more smooth across support points.

We just discussed in detail the results for a specific test
setting (incident probabilityp = 0.9). We are also interested
in learning the behavior of the models when we vary the
incident probability. On the other hand, in reality online
information could be provided only to part of the travelers,
thus it is desirable to study how the traffic conditions change
as a function of market penetration of online information.
We define a single measure of effectiveness (MOE) to be
compared in the sensitivity analysis, which is the expected
OD travel time averaged over the statistics collection period:
7:00am through 7:29am.

First we carry out the sensitivity analysis with respect to
incident probabilityp. We vary p from 0 to 1.0 by a step
size of 0.1. The result is plotted in Figure 7. For each of
the models, the average expected OD travel time increases
as incident probability increases, but different model has
different increasing rate. This increasing function seems
intuitively correct, as a more likely incident increases the
probability that a network is congested, and thus a higher
expected travel time. We note that the policy model gives a
higher value forp = 0.9 (216.06) than forp = 1.0 (216.00).
We believe that this difference is too small to be significant,
and are inclined to believe that they are the same.

The relationship for the base model is linear. The ex-
planation is as follows. First, the path flows are the same
for various incident probabilities, since the base model does
not consider incidents at all. Then the OD travel time for



each incident support point is calculated, and a weighted
average is taken to obtain the expected OD travel time,
where the weight is the probability of an incident support
point. As we can see from the design of incident distribution,
incident probabilities are linear functions ofp. Therefore the
expected OD travel time is also linear function ofp. While
in other three models, random incidents are considered in
the equilibrium process and equilibrium path (policy) flows
differ whenp differs. Therefore the relationship is in general
nonlinear.

In general, the path model gives less expected travel time
than base model, and the two adaptive models (online path
model and policy model) give less expected travel time than
the path model. The savings (path over base, and adaptive
over path) increase as incident probability increases, both
in absolute values and in relative percentage savings. The
relative saving of the path model over the base model is in
the range of0 ∼ 2.9%, and the relative saving of adaptive
models over the path model is in the range of0 ∼ 4.4%. This
increasing function suggests that values of botha priori and
online information are more evident when traffic conditions
are worse. This could be reasonable in reality when traffic
conditions without incident are not too congested, as then
there is enough room for diversion. This is actually the
setting of our tests, as traffic is almost in free flow state
with no incident. We expect that when a network is already
quite congested without incident, this function might become
flat after some point.

Next we carry out sensitivity analysis with respect to mar-
ket penetration of online information. For a given penetration
k which is a value between 0 and 100%, we assignk of
the demand to take minimum expected travel time routing
policies, while the remaining1 − k of the demand to take
minimum expected travel time paths. Equilibrium is sought
by an MSA heuristic that updates the path splits and policy
splits simultaneously. We have the result forp = 0.1 in
Figure 8. The average expected OD travel time is at its largest
value when market penetration of online information is zero.
At that time, if one traveler is intelligent enough and take a
routing policy rather than a path, he/she can save travel time.
More and more of them find the benefits of online informa-
tion, and they gain travel time savings and thus bring down
the average expected travel time. However, in a congested
traffic network, the changing of users’ behavior changes the
network-wide traffic conditions through interaction between
supply and demand. As seen from the figure, the saving
in travel time becomes less evident when penetration goes
from 20% to 40% and from 40% to 60%. Later on, higher
penetration actually does not bring any more savings. We
see an increase in travel time from 60% to 100%. We then
conclude that the savings gained from online information is
larger when market penetration is lower. After some point,
more online information could actually make things worse.
Therefore the function of travel time saving against market
penetration is not monotonic. Despite the varying effect of
online information, travel time savings are always positive
with online information, compared to no-online-information

case. This analysis might only be valid for the test setting,
and caution should be taken if one intends to generalize the
result. Future research will include market penetration tests
with different incident probablities.
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Fig. 3. OD Travel Time Distribution of Online Path Model (X-Axis:
Departure Time; Y-Axis: OD Travel Time (sec);p = 0.9)

IV. CONCLUSIONS

This paper establishes a policy-based dynamic traffic as-
signment model for the analysis of effects of online informa-
tion in stochastic dynamic traffic networks. The distinctive
feature of the proposed model is the ability to model trav-
elers’ adaptive routing choices based on online information.
Computational tests are carried out in a hypothetical network,
where random incidents are the source of stochasticity. Sys-
tem costs derived from four models with different informa-
tion accessbility situations are compared. The adaptiveness
to online information leads to less expected travel time and
variance at equilibrium. The value of online information is
an increasing function of the incident probability. Traveltime
savings are high when market penetrations are low. However,
the function of travel time saving against market penetration
is not monotonic.
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