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Abstract

The estimation/correction of the o-d matrix from traffic counts is a classical procedure
usually adopted in transport engineering by practitioners for improving the overall
reliability of transport simulation models. Recently, Marzano and Papola (2006) has
shown as this procedure is generally not able to effectively correct the o-d matrix through
laboratory experiments. This result can be justified from a theoretical standpoint because
of the lower number of (stochastic) equations (equal to the number of independent
observed link flows) with respect to the number of unknowns (equal to the number of o-d
pairs). Indeed, the paper confirms firstly that this circumstance represents the main reason
of failure of this procedure, by showing that a very good correction is generally obtained
when the number of equations is greater than the number of unknowns. Then, since this
does not happen usually in practice, (being the number of o-d pairs usually much grater
than the number of link counts), the paper explores alternative application fields allowing
for a proper balance between unknowns and equations. This can be achieved by moving
to within-day dynamic contexts, wherein a much larger number of equation is generally
available (i.e. traffic counts for each time slice within the modelling period). Obviously,
in order to bound the corresponding increase in the number of unknowns (i.e. o-d flows
for each time slice), specific reasonable hypotheses in o-d flow variation across time
slices must be introduced. In that respect, the paper analyzes the effectiveness of the o-d
matrix correction procedure in the usually adopted linear hypothesis on the dynamic
process evolution of the o-d flows and under the assumption of constant distribution
shares.

1. Introduction

Transport systems planning is usually based on the application of systems of models, whose
reliability and goodness-of-fit strongly influence the results and the quality of the
planned/designed interventions. The reliability and effectiveness of these model systems
should be achieved through a disaggregate estimation of each model component (i.e. supply,
demand and assignment) and can be checked through an overall validation, based on
comparisons between model outputs and corresponding observed measures (normally link
flows). Mainly in virtue of the inherent approximation of each model component, this
aggregated validation generally fails and, therefore, the observed measures are used to correct
part of the model trying to improve its reliability. This correction normally involves the o-d
matrix.

After this correction, the model system would need new data for a further validation, normally
either part of the data used for model correction (hold-out sample) or data related to future
scenarios (before and after study) wherein the prediction reliability of the model system can
be directly observed (Cascetta et al. 2005). For a number of reasons - mainly the lack of data -
this important validation is normally not carried out and therefore the model reliability is



almost entirely addressed by means of the model correction through traffic counts. Moreover,
this procedure is so widely applied and trusted in practice that researchers and practitioners
often adopt sub-models already estimated in different contexts, therefore leading to a further
approximation in the model system.

In spite of that, a systematic analysis of to what extent this procedure is able to provide for an
effective correction of the whole model system and consistently guarantee its forecast
reliability has not been carried out in the literature yet. Therefore, this paper reports the results
of a research project focused on a thorough investigation of the reliability of the methods for
0-d matrix correction through laboratory experiments.

Some preliminary results were reported in Papola and Marzano (2006), who analysed the
static un-congested context by means of a set of laboratory experiments wherein a demand
matrix, a supply and an assignment model as well as the corresponding link flows (i.e.
resulting from demand assignment to the network) are all assumed to be “true”, i.e. given a
true o-d matrix dire, the corresponding true link flows fi, are determined through a SNL-
Probit assignment. This allows carrying out a series of experiments wherein both the true o-d
matrix and the whole set of (observed) unbiased link flows are available for the o-d matrix
correction. In more detail, the following experiments were carried out: (a) given a specific
perturbation of the true o-d demand (mimicking both generation and distribution demand
biases), checking the capability of different subsets (included the whole set) of link flows to
reproduce the starting true demand through the GLS estimator; (b) the same as the preceding
point plus introducing a random perturbation of link flows so as to mimic
assignment/sampling errors. In general, results of all experiments showed the correction not to
be satisfactory, as briefly reported in the next section. On the other hand, this result can be
easily justified because from the theory it is well known that in a standard application of the
0-d correction procedure through traffic counts, the number of (stochastic) equations (equal to
the number of independent observed link flows) is generally much lower than the number of
unknowns (equal to the number of o-d pairs).

The basic idea of this paper is therefore checking whether this may be regarded as the
only/main reason of the o0-d correction procedure failure and, if so, providing for an
investigation of possible effective applications of this procedure. For example, in a dynamic
context a much larger number of equation is generally available (i.e. traffic counts for each
time slice within the modelling period). Obviously, the number of unknowns theoretically
increases with the same law (i.e. o-d flows for each time slice) but it is worthy exploring
whether reasonable rules can be assumed in the o-d flow variation among time slices so as to
bound the number of unknowns (with respect to the increase in the number of equations) and
therefore obtaining an effective correction of the time slices o-d matrices.

In accordance with that, section 3 deals with the effectiveness of the GLS estimator for the
static un-congested case for different values of the ratio r between number of unknowns and
number of equations. Results show that a very good correction is generally obtained when r<1
and vice versa for r>1. The possibility of interesting possible applications in the within-day
dynamic context, wherein r can be handled so as to be close to one as mentioned above, is
investigated in section 4, where some possible o-d flow variation laws between time slices are
proposed so as to generate case studies with r<1. For these case studies, laboratory
experiments similar to the static case are carried out, together with an analysis of how
effective can be the o-d correction procedure on real networks (i.e. with number of o-d pairs
much greater than the number of link flows) if some assumptions on the o-d flows variation
between time slices were true. Section 5 summarises research outcomes and points out further
research developments.



2. Literature review

The estimation/correction of the o-d matrix from traffic counts is a classical problem of
transport engineering. Most of the studies proposed in the literature can be classified,
according to their theoretical approach, either in the “classical” framework, i.e. the Maximum
Likelihood (ML) estimator proposed by Maher (1983) and Bell (1983) and the Generalised
Least Squares (GLS) estimator proposed by Cascetta (1984), or in the “Bayesian” framework
proposed by Maher (1983). Following Cascetta and Nguyen (1988) and Cascetta (2001),
classical estimators provide for a Maximum Likelihood estimate dy,_ of the demand vector by
maximizing the probability (likelihood) of observing both o-d sampling survey data and link
counts (under the usually acceptable assumption that these two probabilities are independent),
yielding:

dy, =max InL@ /) +InL(F /)] (1)

wherein x is the variable demand, dis the demand by sample and f the vector of link counts.
Log-likelihood functions in equation (1) are specified on the basis of hypotheses on the

probability distribution of demand counts d and traffic counts f respectively, conditional on
the demand vector x. Normally, traffic counts can be assumed as independently distributed as
Poisson random variables, or following a Multivariate Normal random variable, while the
statistical distribution of o-d demand counts depends on the sampling strategy. Generalized
Least Squares (GLS) demand estimation dgLs provides for an estimate of the o-d demand
flow, starting from a system of linear stochastic equations, leading to the following
optimization problem:

doss = mjp{%(x_a)T z-l(x—a)%(f “M, X)W - fo)} 2

where Mg is the sub-matrix of the assignment matrix related to links with available traffic
counts and Z and W the covariance matrices related to the sampling error underlying the
demand estimation and the measurement/assignment errors respectively.

Bayesian methods estimate unknown parameters by combining experimental information
(traffic counts in this case) with non-experimental information (a priori or “subjective”
expectations on o-d demand, e.g. coming from an out-of-date estimation or from a model
system), by maximizing the logarithm of the a posteriori probability:

d, = nQEan[In g(x/d") + InL(f/ x)} ?)

wherein g(x/d*) expresses the distribution of subjective probability attributed to the unknown
vector given the a priori estimate d* and L(f /x) expresses the probability of observing the

vector of traffic counts f conditional on the unknown demand vector X. Again, the detailed
specification of a Bayesian estimator depends on the assumptions made about the probability

functions g(x/d*) and L(f /x). Normally, the unknown demand vector can be assumed to
follow a multinomial random variable (in this case Ing(x/d*) becomes the entropy function of
the unknown vector x), a Poisson random variable (in this case Ing(x/d*) becomes the
information function of the unknown vector x), or a Multivariate Normal random variable.

Moreover, within this framework, a number of generalizations have been carried out. For
instance, Bell (1991) explored further theoretical properties of the GLS method. Yang et al.



(1992) dealt with the hypothesis of congested network, incorporating o-d estimation and
traffic assignment feedbacks in the correction procedure; this problem has been eventually
studied as a bi-level optimization problem, among others, by Florian and Chen (1995), Yang
(1995) and Cascetta and Postorino (2001). Lo et al. (1996) introduced an explicit
representation of the stochastic nature of observed flows, eventually generalized by Vardi
(1996); Lo et al. (1999) describe an optimization method for the application of this approach
to large-scale networks. A further generalization is proposed in Lo and Chan (2003), who
proposed a procedure for the simultaneous estimation of o-d matrix and route choice
dispersion parameter for congested networks. Hazelton (2000) proposes a method which can
also make use only of link counts, but it requires explicit path enumeration and is therefore
practically strong time-requiring for large-size networks. Finally, as pointed out by and
Hazelton (2003), a promising research development deals with considering time-series link
counts (e.g. referred to several days) as a key aspect for improving the reliability of o-d matrix
estimation. In more detail, he took into account the covariance matrix of link count
observations taken on several days within the estimation procedure, showing its reliability in
very small test networks.

Moving towards the dynamic framework, an extension of the static o-d correction procedure
for obtaining time-varying o-d flows using time-varying traffic counts was provided by
Cascetta et alii (1993), who proposed two different dynamic estimators, i.e. a simultaneous
and a sequential estimator. The first jointly estimates all o-d matrices for all time slices using
the whole set of traffic counts: this approach, requiring knowledge of the dynamic assignment
matrix resulting from a dynamic traffic assignment (DTA) in order to map the relationship
between o-d flows and traffic counts, represents a straightforward extension of the static case.
The second is based on the estimation at each interval of the o-d demand dy for that single
interval h, expressing traffic counts of time slice h as a function of dy and of the already

estimated demands of previous intervals (ah_l, ah_Z...). This approach offers computational

advantages, since reduces a large optimization problem into a number of smaller ones and
gives the possibility of using the estimates for an interval as a priori estimates of subsequent
ones. Such aspects have made this approach suitable for real-time estimation problem, while
the simultaneous approach is usually used for off-line estimation.

Starting from the sequential framework, several formulations have been proposed in order to
overtake the limitation inherent the dependence of o-d demand dy only on traffic counts for
the same interval. For example, Ashok and Ben-Akiva (1993) implemented an augmented
state-space model where the state variables, relative to the deviation of vector demand from
their historical estimates for a number of time interval, are estimated on the basis of traffic
counts observed in different time slices. Bieralire and Crittin (2004) also proposed an efficient
algorithm to deal with this problem. In many applications, the technique of interpreting
demand estimates of a given interval as a priori estimates of subsequent slices has been
replaced by linear combinations involving demand estimates related to more previous time
slices. This leads to procedures mainly based on Kalman filters, assuming the within day
evolution of demand as an autoregressive process and utilising a DTA model as measuring
equation (Ashok and Ben-Akiva, 1993). Other studies dealt with the randomness of dynamic
matrix assignment, e.g. Chang and Wu (1995) and Ashok an Ben-Akiva (2002), who in
particular introduced a new estimator, including the dynamic assignment matrix or the
variable which it depends on (travel time and path choice fraction) within the state-space
formulation.



3. O-d matrix correction performances in static un-congested contexts

As stated in the introduction, in spite of the practical diffusion of the o-d model correction
through traffic counts, few studies focused on a systematic analysis of its reliability and
goodness-of-fit. To the authors’ knowledge the most relevant was carried out by Di Gangi
(1988) who considered a mesh network made up by 64 o-d pairs and 96 links. Two different
sets of link counts, comprising respectively 8 and 24 links, were considered for o-d matrix
correction using different estimators. A more systematic analysis was provided by Papola and
Marzano (2006), whose results will be reviewed and enlarged in this section.

Following the approach shared by the aforementioned works, the performances of the GLS
estimator (2) can be checked by means of laboratory experiments wherein a given origin-
destination demand matrix dgye IS assumed to be the “true” o-d matrix. The assignment,
through a supposed “true” assignment model, of this matrix to the network determines a
vector of “true” link flows fie. In a first step, link counts are assumed to be equal to the
“true” link flows, i.e. without any perturbation (no measurement and/or assignment errors).
From a practical standpoint, the hypothesis of unbiased link counts can be practically
introduced in equation (2) either by means of a variance matrix W close to zero, i.e. with flow
estimate variances small enough, or following the approach reported for instance by Cascetta
et al. (2005), that is introducing link counts consistency as a constrain in the optimization
problem:

.1 A\ A
Ao :Xrg)lni(x—d) 7 (x-d) (4)
M x=f
solvable through a convex simplex algorithm (Zangwill, 1969). Notably, from a mathematical
standpoint, when Z=1 (identity matrix), dc.s is the (unique) projection (in the usual metric

defined in R where [d| is the dimension of the vector d) of the prior demand estimate d on
the convex subset Ds of demand vectors compliant with constraints of problem (4). Therefore,
from the properties of the projector on convex subsets in a Hilbert space, it follows that the
distance of the true o-d matrix from dgs is always not greater than the distance from the prior

matrix d*. This property obviously does not imply that all performance indicators reported in

Table 1 would indicate an “improvement” of dg s with respect to d towards the true demand.
The performances of GLS estimator are evaluated imposing specific perturbations to the true
o-d matrix, in order to mimic different modelling errors. In more detail, the following
perturbations are considered:

» amplification: all entries of the true o-d matrix are multiplied by an amplification factor, in

order to mimic errors in estimating demand generation, i.e. d 5" = ad;,* Vod;

e row spreading: true demand generated by each origin o is equally split among all ng,
(number of destinations with nonzero flow from origin o) destinations, i.e. given
dy*e =Y dig* each value of the o-th row is set to d;"*°/n,,,. This assumption corresponds

d
to setting infinite variance within the distribution model, collapsing into an equiprobable
model;

Y In more detail, whatever d"eDy, a property of the projector states that (d* —dGLS)~ (d —dGLS)S Owhere -
denotes the scalar product generating the projection metric. Since the true demand vector lies within Dy, from the
preceding inequality it is trivial to recognize that dg, s is always closer to the true demand vector than d .



» amplification plus row spreading: this perturbation, given by the combination of the
preceding perturbations, allows simulating simultaneously errors both in demand generation
and distribution;

 random: all entries of the true o-d matrix are independently drawn for a normal distribution

rue true

(truncated to nonnegative values) with mean dl;°and variance Adi°, in order to mimic
randomly distributed errors in o-d flow estimation;

The distance between the true o-d matrix die and the corrected o-d matrix dcor are measured
through well-known performance indicators, reported in the following Table 1.

[Table 1]

The same indicators have been also applied in order to measure the distance between link
counts and simulated link flows, where appropriate. Moreover, in order to provide for a
measurement reference, those indicators have been also computed for the initial perturbations
imposed on demand and/or link counts. It is also worthy noting that the covariance matrix Z
in equation (4) has been explicitly defined only for the random perturbation, while it has been
assumed equal to the identity matrix for the other perturbations.

The first experiments are carried out under the hypothesis of using all link counts for the o-d
matrix correction: this does not correspond to a real situation but can provide for a first check
of the reliability of the GLS estimator. In more detail, Table 2 reports the results achieved by
Papola and Marzano (2006) on an 870 o-d pairs 208 links mesh network, leading to a ratio r
between unknown and independent equations equal to 4.94 (32 dependent equations).

[Table 2]

It is immediate recognizing that the correction performances are always very poor under all
kinds of perturbations. Worse results are obviously obtained when using subset of link counts,
and/or by introducing perturbations in link flows, as shown by Papola and Marzano (2006).
As mentioned in the introduction, this result can be interpreted as a consequence of the
significant discrepancy between unknowns and equations, and therefore it is worthy exploring
a situation wherein the ratio r is close to one instead. Table 3 reports the results of an
experiment run on a 208 links 208 o-d pairs mesh network, so as to balance approximately the
number of unknown and equations (precisely, r=1.08 due to 15 dependent equations).

[Table 3]

Thanks to the balance between unknowns and equations, results are satisfactory when starting
from amplification and spreading perturbations, and correction performances tend to become
poor only for randomly perturbed matrices with £>1.

This result suggests that working with r values close to one is a key issue for enhancing o-d
matrix correction reliability. Notably, since in the static case handling much more unknowns
rather than equations is a common condition, the o-d matrix correction through GLS estimator
may lead to significant biases in the practice. This is obviously true even more in principle in
the dynamic case, wherein the addition of a time slice in the modelling horizon provides an
increase both in unknowns (o-d values for that time slice) and equations (observed flows for
that time slice). As mentioned in the introduction, however, specific assumptions can be
introduced in this context so as to limit the ratio r. This aspect will be deepened in the next



section.

4. O-d matrix correction performances in within-day dynamic contexts

As mentioned in the previous section, the difference between the number of independent
equations and the number of variables is still an issue in the dynamic case, unless specific
assumptions are introduced on the structure of time-varying o-d matrices so as to reduce the
number of unknown variables.

Usually, these assumptions involve the dynamic evolution of o-d flows, modelling their
temporal relationship or their deviations from historical estimates, by means of an
autoregressive process. Alternatively, other assumptions can be introduced as well, for
instance the hypothesis of constant distribution shares within the analysis horizon. Correction
performances of GLS estimator will be checked in the following, under both assumptions,
through laboratory experiments similar to those described in section 3.

With reference to the first assumption, true o-d profiles were generated according to the
hypothesis of o-d flows following an autoregressive process of order 2, with different values
of the dispersion parameters. In other terms, starting from initial o-d matrices for the first two
intervals, the subsequent ones were generated from the following equations:

d,=Ad,,+Bd,, +z, (5)

where dyis the o-d vector at time interval t and Zis the error term with E[z,]=0. In
particular, matrices A and B have been assumed diagonal (r'™ o-d flow is affected only by the

two preceding r" o-d flows) and the covariance matrix of Z, is assumed independent on time

and diagonal (no correlation between error terms of different o-d cells).

In a first experiment, the covariance matrix was set equal to zero (deterministic process), then
in subsequent experiments two covariance matrices were chosen and several draws of the
process were generated for each case. The variances in the two covariance matrices were
fixed for each o-d cell proportionally to its mean value in the first two intervals trough a
dispersion parameter, chosen equal to 0.1 and 0.2 in the two experiments respectively. The
true link flows are obtained from a dynamic network loading of the true o-d matrices, while
perturbed o-d matrices for the first two time slices and the true evolution equation are
assumed as prior information.

Notably, estimators applied in the two experiments are different. In the deterministic case, the
unknowns are represented by the o-d flows belonging to the first two matrices, and the GLS
estimator becomes:

dGLS =min ) (Xt —dt)Zt_l(Xt _dt)T (6)

Mx=f o1

where M is the overall dynamic assignment matrix and d and f the overall demand and flow
vectors respectively (i.e. the vectors obtained by queuing the demand and the flow vectors
related to each time slice). In the stochastic case, the unknowns are the o-d flows related to all
time slices and the corresponding GLS estimator can be expressed as:



doss = p;xi_r;{i(xt A 20— ] e O )2, - f(xt_l,xt_z))ﬂ (7)

t=1 t=3

where f(.) is intended to be the linear stochastic equation (5). Table 4 reports the results of this
experiment on a 200 o-d pairs 120 links mesh network, considering 8 time slices from the
demand side, leading to 11 time slices for the supply side (i.e. further three time slices in
order to carry out the network flows clearance). Consequently the number of unknowns is 400
(all the elements of the first two o-d matrices) and the number of equation is 1320 leading to
r=0.30 (the actual r value is higher due to the presence of dependent equations). Notably,
results are satisfactory only if the true evolution of o-d flows is close to a deterministic
process.

[Table 4]

The second assumption, that is the hypothesis of constant distribution shares within the
analysis horizon (i.e. an analysis horizon wherein the dynamic evolution of the distribution
shares is slower than the generation), allows also handling the ratio r between unknowns and
equations. In more detail, given a time interval T wherein the distribution shares are assumed
constant, the number of unknowns becomes nr:no+tnyg being nr the number of time slices
included in T, n, the number of origins and nyg the number of o-d pairs. The corresponding
GLS estimator is therefore of the type (4), wherein variables are actually demand generation
for each time slice and distribution shares .

The laboratory experiment in this case is based on perturbations of the distribution shares
(spreading row) and/or of the generation profiles (amplification). Table 5 reports the results
obtained in the network used in the previous case using all link counts. In this case the
number of unknowns is 8*33+200=464 and the number of equation is 1320 with r=0.35 (by
not taking into account the number of dependent equations). Notably, correction results are
also compared to those obtained by relaxing the hypothesis of constant distribution shares, i.e.
using a classical simultaneous estimator wherein the number of variables is 200*8=1600:

dGLS = m'_rflznl:(xt _dt )Zt_l(xt - dt )T (8)
t=

[Table 5]

It is worthy underlining that the proposed estimator always provides very satisfactory results
while the simultaneous estimator (9) exhibits poor performances, i.e. it does not recognize the
underlying constancy of distribution shares.

The GLS estimator has been also applied on subsets of link counts chosen accordingly to the
maximum flow selection method (Yang et al. 1998). Results are reported in Table 6, together
with the outcomes of the simultaneous estimator.

[Table 6]

Notably, results are satisfactory only for values of the ratio r lower than one and get further
improved for decreasing r.

Another experiment has been carried out by assuming for each time slice a true distribution
share matrix obtained through random perturbations of the distribution share matrix of the



previous experiment. This mimics a more real situation wherein distribution shares are not
constant but slightly variable within the analysis horizon. Results are reported in Table 7 and
once again compared with those obtained by applying the simultaneous estimator (8).

[Table 7]

Once again, assuming that analyst is not perfectly able to reproduce the law underlying o-d
flows variation across time slices, results become worse but are still better with respect to
those obtained with the simultaneous estimator (8) for small perturbations of the distribution
shares.

5. Conclusions and research perspectives

The paper dealt with a thorough investigation of the o-d matrix correction procedure by
means of real-size laboratory experiments. The paper starts from the drawbacks of the static
un-congested o-d correction, whose main failure has been shown to depend strictly on the
ratio r between unknowns and equations. Then, alternative application fields allowing for a
proper balance between unknowns and equations are explored. In more detail, this is achieved
by moving to within-day dynamic contexts, wherein a much larger number of equation is
generally available (i.e. traffic counts for each time slice within the modelling period).
Obviously, in order to bound the corresponding increase in the number of unknowns (i.e. o-d
flows for each time slice), specific reasonable hypotheses in o-d flow variation across time
slices must be introduced. Namely, the paper analyzed the usually adopted linear hypothesis
on the dynamic process evolution of o-d flows and the assumption of constant distribution
shares.

Results of the within-day laboratory experiments provide for a further evidence that the key
issue for an effective o-d matrix correction is handling contexts with a r value close to one,
wherein very good o-d estimates are always obtained whatever o-d prior estimates available.
This suggests that, regardless of the specific hypotheses adopted throughout the paper (to be
obviously checked in their practical validity on real data), the within-day dynamic context
seems to represent the only background allowing for effective o-d correction, provided the
existence of real and identifiable rules describing demand evolution.
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Table 1 — Performance indicators
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Performance indicator
PERTURBATION | llidean MSE  RMSE MAPD MSPE RMSPE
1o MU@l| 55 346E+00 19 10,00% 1,00% 10,00%
final | 25 711E-01 0,8 7,40% 1,91% 13,81%
Jov Nitial| 110 138E+0L 3,7 20,00% 2,00% 20,00%
final | 49  275E+00 1,7 14,19% 5,97% 24,44%
- initial| 165  3.11E+01 5.6 30,00% 9,00% 30,00%
amplification 130% gl 77 sgeEs00 24 19,85% 9,80% 31,44%
aove INital] 219 553E+01 74 40,00% 16,00% 40,00%
final | 93  9,89E+00 3,1 24.77% 13,65% 36,95%
sov Nitiall 274 B64E01 9,3 50,00% 25,00% 50,00%
final | 113 147E+01 38 29,16% 17,33% 41,63%
sproading nital| 251 7.25E+01 8,5 86,81% 249,41% 157.93%
final | 224  576E+01 7,6 72,04% 175,73% 132,56%
oy, MUall 256 7,53E01 8,7 96,01% 315,68% T77,67%
final | 224  576E+01 7,6 72,38% 176,98% 133,04%
s0%, Nitial| 269 B34E+0L 91 106,46% 391,27% 197,81%
final | 224  578E+01 7,6 72,81% 178,74% 133,70%
. initial| 291 9,71E+0L 9,9 117,79% 476,20% 218,22%
ampSpreading| 30% ool 505 5g3E+01 7.6 73,30% 181,01% 134,54%
a00 Initial] 318 L16E+02 10,8 130,05% 570,46% 238,84%
final | 227  501E+01 7,7 73,82% 183,77% 135,56%
sove INitiall 350 141E+02 119 143,18% 674,05% 259,62%
final | 220  601E+01 7,8 74,46% 187,03% 136,76%
o M@l 129 193E+0I 4.4 18,90% 5.62% 23.71%
> final| 109 1.36E+01 37 17,41% 481% 21,94%
o5 Nial| 276 878E+01 9.4 40,20% 24,94% 49,94%
20 final| 227 590E+01 7.7 36,60% 21,10% 45,93%
o7s nitial] 398 182E+02 135 56,37% 49,57% 70,40%
7 final| 324 121E+02 11,0 49,85% 38,10% 61,72%
Lo Mtiall 455  238E+02 154 68,70% 69,75% 83.52%
% final| 358 147E+02 121 57,52% 50,61% 71,14%
L5 iNitiall 533 3266402 18,1 82,67% 105,27% 102,60%
> final| 395  1,80E+02 13,4 69,47% 75,43% 86,85%
L5 iNtiall 697  558E402 23,6 97,13% 148,28% 121,77%
Y final| 504 202E+02 17,1 78.71% 92,14% 95,99%
L initall 765 6736402 259 107,47% 192,52% 138,75%
" final| 534 328E+02 181 84,62% 118,14% 108,69%
0o Initiall 839 B810E+02 285 117,83% 233,69% 152,87%
% final| 554  352E+02 18,8 88,74% 123,73% 111,23%
o5 initiall 857 B843E+02 290 118,98% 244,34% 156,31%
2 final| 573 377E+02 194 89,87% 128,95% 113,56%
o5 Nitial] 1078 134E+03 365 143,28% 374,28% 193,46%
9 final| 621 444E+02 21,1 99,27% 164,56% 128,28%
o7 initial| 1189 1626403 403 144,54% 200,24% 200,06%
" final| 653 490E+02 221 98,27% 157,17% 125,37%
300 Mtiall 1209 168E+03 410 156,21% 252,68% 212,76%
andom final| 698  560E+02 23,7 106,08% 185,88% 136,34%
aps Nitial] 1375  217E+03 466 181,55% 653,73% 255,68%
“> final| 726 6,06E+02 24,6 118,22% 264,87% 162,75%
a5 Niial| 1246 179E+03 423 170,94% 576,99% 240,21%
9 final| 708 577E+02 24,0 114,00% 239,69% 154,82%
475 initial] 1567 2826403 531 194,28% 774,10% 278,23%
> final| 809 7,53E+02  27.4 122,44% 274,89% 165,80%
oo Nitial| 1561  2,80E+03 529 202,34% 868,09% 294,63%
99 final| 774 6.89E+02 262 123,31% 290,15% 170,34%
45 Nitial] 1617  301E+03 548 215,43% 944,87% 307,39%
“ final| 773 6.87E+02 26,2 121,00% 260,92% 161,53%
45 Nial| 1879  406E+03 637 228.88%  1164,10%  341,18%
"~ final| 828  7,80E+02 281 129,16% 317,36% 178,14%
475 initiall 1995  4,57E+03 67,6 230,68%  1273,40%  356,84%
" final| 804  7.44E+02 273 127,61% 320,60% 179,05%
oo INitiall 1837  3,88E+03 623 224,16%  110540%  332,47%
00 final| 824 7.80E+02  27.9 129,12% 339,04% 184,13%
5o initial| 2138 5256403 725 254,33%  1457,70%  381,80%
> final| 888  9,07E+02 30,1 136,84% 376,89% 194,14%
5gp initiall 2033 4756403 689 262,69%  1481,60%  384,02%
Y final| 820  7,80E+02 281 130,81% 343,38% 185,30%
o5 initial| 2202 5576403 747 278,45%  168510%  410,50%
" final| 897  9,25E+02 30,4 139,12% 402,96% 200,74%
600 INitiall 2227 570E+03 755 276,01%  1743,00%  417,49%
Y final| 874 877E+02 29,6 136,48% 379,24% 194,74%

Table 2 — Correction results for the 870 links 208 o-d pairs mesh network (perturbation parameters «
and gindicated beside perturbations)
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PERTURBATION ‘ Performance indicator
Euclidean MSE  RMSE MAPD MSPE RMSPE
o Mbal| 1131 6156403 785 10,00% 1,00% 10,00%
final| 90  387E+01 62 0,54% 0.01% 117%
J00 INitiall 2263 2,46E+04  156,9 20,00% 4,00% 20,00%
final| 180  1,55E+02 124 1,08% 0,05% 2,33%
i initial| 3394  554E+04 2354 30,00% 9,00% 30,00%
amplification | 30% g/l 269 3.49E+02 18,7 1,62% 0,12% 3,50%
a0v6 Initial] 4526 9,85E+04 3138 40,00% 16,00% 20,00%
final| 359  6,20E+02 249 2,15% 0,22% 467%
Sov INitial| 5657  1,54E+05 3923 50,00% 25,00% 50,00%
final | 449  968E+02 311 2,69% 0,34% 5,83%
sproading nitial]| 3112 4.66E+04 2158 30,23% 20,90% 75.72%
final| 878  371E+03 60,9 5,18% 1,31% 11,45%
oy INall 3297  523E+04 2286 34,70% 29,01% 53,86%
final| 877  3,70E+03 60,8 5,16% 1,31% 11,44%
J0v6 INitial| 3797 6,93E+04 2633 41,20% 20,03% 63,27%
final| 876  3,69E+03 60,7 5,15% 1,31% 11,43%
_ initial| 4510  9,78E+04  312,7 49,60% 53,06% 73,46%
ampSpreading| 30% o'l g75  3.68E+03 607 5,14% 1,30% 11,42%
200, Initial] 5350  1,38E+05 3709 59,36% 70,80% 84,14%
final| 874  367E+03 60,6 5,13% 1,30% 11,41%
sov MNiial| 6266  18OE+05 4345 69,69% 90,55% 95,16%
final| 873 367E+03 60,6 5,12% 1,30% 11,41%
05 Nitiall 2600  3,25E+04 1803 18,53% 5.16% 22,71%
= final| 662  2,11E+03 459 3,48% 0,50% 7,09%
050 initial| 5455  1,43E+05 3782 38,06% 22,68% 27,63%
20 final| 924 410E+03 64,0 5,44% 1,30% 11,79%
075 initial| 7858  2,97E+05 54438 54,63% 24,44% 66,66%
> final| 1361  8,90E+03 94,4 8,90% 3,82% 19,54%
Lop Nitial| 8985  3.88E+05 6230 65,18% 63,46% 79,66%
9 final| 2508 3,00E+04  173,9 13,58% 7.71% 27,77%
L5 initial] 10786  550E+05  747,9 80,82% 90,.27% 95,01%
= final| 2469  293E+04 1712 12,51% 7.21% 26,85%
s iNitiall 13723  9,05E+05 9515  101,02% 160,11% 126,53%
2 final| 2855  3,92E+04  198,0 17,20% 11,20% 33,47%
Lo initiall 18016  156E+06 1249,2  117,53% 234,63% 153,18%
™ final| 3807  7,30E+04 270, 18,60% 13,40% 36,60%
500 Mitial] 19362  180E+06 13425  13558% 303,24% 174,14%
99 final| 2863  3,94E+04 1985 16,72% 11,57% 34,01%
5 o5 Mitiall 20146 195E+06 1396,9  122,39% 263,82% 162,43%
> final| 2031 4,13E+04 2032 15,13% 9,23% 30,37%
o5 Niial] 25341  300E+06 17571  156,98%  44554% 211,08%
=0 fnal| 2010  4,07E+04 2018 16,59% 11,25% 33,54%
, g initial| 22824  250E+06 15825  143,27% 390,02% 197,49%
' final| 3082 457E+04 2137 17,18% 12,30% 35,08%
300 Mitiall 28828 4,00E+06 1998,9  182,61% 668,77% 258,61%
andom " final | 3653  642E+04 2533 21,13% 14,98% 38,70%
a5 Niiall 25280  307E+06 17529  178,20% 576,20% 240,04%
= final| 3182  4,87E+04  220,7 17,73% 11,65% 34,14%
5o MNiiall 25207 3056406 17478  167,61% 514,76% 226,88%
20 final| 3039 4,44E+04  210,7 17,42% 12,51% 35,37%
a7o MNiliall 32212 499E+06 22335  182,93% 653,75% 2565,69%
> final| 3840  7,00E+04 2663 21,21% 17,93% 42,35%
oo INitial| 31369 4,73E+06 21751  194,59% 735,63% 271,22%
9 fnal| 3799 6,94E+04 2634 20,53% 15,56% 39,45%
45 iNitiall 33960  554E+06 23547  230.80%  113540%  336,96%
= final| 4043 7,86E+04  280,3 24,69% 24,21% 49,20%
45 initial| 39181  7,38E¥06 27167  218,10% 997,88% 315,89%
©0 final| 3163 4,81E+04 2193 16,79% 12,59% 35,49%
45 nitial] 39272 7,42E+06 27231  23480%  118250%  343.88%
™ final| 3830  7,05E+04  265,6 18,36% 14,50% 38,08%
5o Nitial| 43808 9,03E+06 30375  25162%  136420%  369,35%
9 final| 3405  557E+04  236,1 17,58% 12,61% 35,51%
o initial| 41007 B,08E+06 28433  260,70%  1504,60%  399,32%
> final| 4672  1,05E+05  323,9 25,25% 22,06% 46,97%
cop Niial| 44326  945E+06 30734  290,68%  1882,90%  43393%
Y final| 4664  1,05E+05 3234 27,29% 26,38% 51,36%
o o5 initial| 44867 9,68E+06 31109  26196%  1554,60%  394,09%
> final| 3841  7.00E+04 2664 21,99% 17,72% 42,10%
6o iNtiall 47340  108E+07 32824  30007%  1902,80%  436,21%
0 final| 4142 825E+04 2872 24,15% 21,11% 45,94%

Table 3 — Correction results for the 208 links 208 o-d pairs mesh network (perturbation parameters «
and gindicated beside perturbations)
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INITIAL PERTURBATION | dipersion parameter ~ Performance indicator

Euclidean MSE RMSE  MAPD

00 initial 1368.00 _ 0.86 092  70.00%

: final 48.63 003 017 7.20%
_ initial 2891.60  1.81 134  143.91%

Spreading 0.1 )

final 511.49 032 056  37.80%
02 initial 214500  1.84 135  112.86%

: final 618.10 039 062  47.63%

Table 4 —Results of a simulation run on a 120 links 200 o-d pairs mesh network, considering 8 time
slices. True o-d profiles generated according to the assumption of o-d flows following an
autoregressive process
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PERTURBATION

Performance indicator

Euclidean MSE RMSE MAPD MSPE RMSPE
initial 466.49 029 0.54 20.00% 4.07% 20.00%
20% final 0.04 0.00 0.00 0.70% 0.05% 2.42%
simultaneous 19.82 0.01 0.11 10.20% 7.27% 26.96%
initial 1045.70 0.65 0.80 30.00% 9.08% 30.00%
30% final 0.04 0.00 0.00 0.72% 0.05% 2.42%
e simultaneous 6.10 0.00 0.06 5.66% 1.91% 13.84%
amplification —
initial 1857.00 116 1.07 40.00% 16.09% 40.00%
40% final 0.04 0.00 0.00 0.72% 0.05% 2.42%
simultaneous 6.70 0.00 0.06 6.04% 3.10% 17.63%
initial 2896.70 181 1.34 50.00% 25.10% 50.00%
50% final 0.04 0.00 0.00 0.72% 0.05% 2.42%
simultaneous 9.59 0.01 011 9.59% 5.79% 24.07%
initial 2404.00 150 1.22 93.38% 305.33%  174.74%
spreading final 0.04 0.00 0.00 0.68% 0.04% 2.09%
simultaneous 660.24 041 0.64 55.39% 166.91%  163.37%
initial 4685.80 2.93 1.71 153.81%  809.70% 284.56%
ampSpreading final 0.04 0.00 0.00 0.72% 0.05% 2.42%
simultaneous 622.15 0.39 0.62 52.18% 218.60%  147.74%

Table 5 — Correction results for the 120 links 200 o-d pairs 8 time slices mesh network - the
hypothesis of constant distribution shares holds exactly
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: variables /equations Performance indicator
PERTURBATION Number of sensors | Number of equations Euclidean YEE o WEED) VEPE  ENERE
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
all link s120 1320 0.4 final 0.04 0.00 0.00 0.72% 0.05% 2.42%
1.21 simultaneous 622.15 0.39 0.62 52.18%  218.60% 147.74%
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
100 1100 0.4 final 0.05 0.00 0.00 0.72% 0.05% 2.29%
1.45 simultaneous 913.04 0.57 0.75 60.47%  204.47% 142.99%
initial 4685.80 293 1.71 153.81% 809.70% 284.56%
90 990 0.5 final 71.29 0,04 0.21 4.01% 6.12% 24.75%
1.62 simultaneous | 1048.10 0.65 0.81 64.05%  234.20% 153.04%
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
80 880 0.5 final 7131 0.04 0.21 4.10% 6.14% 24.80%
) 1.82 simultaneous | 1145.60 0.72 0.85 66.13%  218.13% 147.90%
ampSpreading initial 4685.80 2.93 171 153.81% 809.70% 284.56%
70 770 0.6 final 72.57 0.05 0.21 4.72% 6.49%  25.47%
2.08 simultaneous | 1314.30 0.82 0.91 70.64%  196.74% 140.27%
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
60 660 0.7 final 89.68 0.06 0.24 5.59% 7.00%  26.46%
2.42 simultaneous
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
50 550 0.8 final 263.70 0.16 0.41 14.31%  23.64%  48.63%
2.91 simultaneous
initial 4685.80 2.93 171 153.81% 809.70% 284.56%
40 440 11 final 473.46 0.29 0.54 31.10%  37.29%  61.06%
3.64 simultaneous

Table 6— Correction results for the 120 links 200 o-d pairs 8 time slices mesh network for different
number of sensors;, the hypothesis of constant distribution shares holds exactly
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PERTURBATION dispersion parameter . el ey
Euclidean MSE RMSE MAPD MSPE  RMSPE
initial 4804.10 3.00 1.73 153.87% 808.39% 284.32%
0.1 final 389.31 0.24 0.49 22.68%  11.91% 34.51%
simultaneous 680.63 0.43 0.65 54.24%  233.89% 152.94%
initial 4981.80 3.19 1.79 169.26% 1020..1% 319.39%
Amplificationspreading 0.2 final 650.78 0.41 0.64 29.11% 21.01%  45.84%
simultaneous 1101.70 0.69 0.83 64.38%  388.64% 197.14%
initial 5344.60 3.34 1.82 210.62% 8936.70% 945.34%
0.3 final 2225.00 1.39 1.17 67.85%  198.46% 140.87%
simultaneous 739.25 0.46 0.68 62.19%  343.57% 185.36%

Table 7— Correction results for the 120 links 200 o-d pairs 8 time slices mesh network for different
dispersion parameter in drawing the true o-d matrices from the initial matrices with the constant
distribution shares
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