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Abstract 

The estimation/correction of the o-d matrix from traffic counts is a classical procedure 
usually adopted in transport engineering by practitioners for improving the overall 
reliability of transport simulation models. Recently, Marzano and Papola (2006) has 
shown as this procedure is generally not able to effectively correct the o-d matrix through  
laboratory experiments. This result can be justified from a theoretical standpoint because 
of the lower number of (stochastic) equations (equal to the number of independent 
observed link flows) with respect to the number of unknowns (equal to the number of o-d 
pairs). Indeed, the paper confirms firstly that this circumstance represents the main reason 
of failure of this procedure, by showing that a very good correction is generally obtained 
when the number of equations is greater than the number of unknowns. Then, since this 
does not happen usually in practice, (being the number of o-d pairs usually much grater 
than the number of link counts), the paper explores alternative application fields allowing 
for a proper balance between unknowns and equations. This can be achieved by moving 
to within-day dynamic contexts, wherein a much larger number of equation is generally 
available (i.e. traffic counts for each time slice within the modelling period). Obviously, 
in order to bound the corresponding increase in the number of unknowns (i.e. o-d flows 
for each time slice), specific reasonable hypotheses in o-d flow variation across time 
slices must be introduced. In that respect, the paper analyzes the effectiveness of the o-d 
matrix correction procedure in the usually adopted linear hypothesis on the dynamic 
process evolution of the o-d flows and under the assumption of constant distribution 
shares.  

1. Introduction 

Transport systems planning is usually based on the application of systems of models, whose 
reliability and goodness-of-fit strongly influence the results and the quality of the 
planned/designed interventions. The reliability and effectiveness of these model systems 
should be achieved through a disaggregate estimation of each model component (i.e. supply, 
demand and assignment) and can be checked through an overall validation, based on 
comparisons between model outputs and corresponding observed measures (normally link 
flows). Mainly in virtue of the inherent approximation of each model component, this 
aggregated validation generally fails and, therefore, the observed measures are used to correct 
part of the model trying to improve its reliability. This correction normally involves the o-d 
matrix. 
After this correction, the model system would need new data for a further validation, normally 
either part of the data used for model correction (hold-out sample) or data related to future 
scenarios (before and after study) wherein the prediction reliability of the model system can 
be directly observed (Cascetta et al. 2005). For a number of reasons - mainly the lack of data - 
this important validation is normally not carried out and therefore the model reliability is 
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almost entirely addressed by means of the model correction through traffic counts. Moreover, 
this procedure is so widely applied and trusted in practice that researchers and practitioners 
often adopt sub-models already estimated in different contexts, therefore leading to a further 
approximation in the model system.  
In spite of that, a systematic analysis of to what extent this procedure is able to provide for an 
effective correction of the whole model system and consistently guarantee its forecast 
reliability has not been carried out in the literature yet. Therefore, this paper reports the results 
of a research project focused on a thorough investigation of the reliability of the methods for 
o-d matrix correction through laboratory experiments.  
Some preliminary results were reported in Papola and Marzano (2006), who analysed the 
static un-congested context by means of a set of laboratory experiments wherein a demand 
matrix, a supply and an assignment model as well as the corresponding link flows (i.e. 
resulting from demand assignment to the network) are all assumed to be “true”, i.e. given a 
true o-d matrix dtrue, the corresponding true link flows ftrue are determined through a SNL-
Probit assignment. This allows carrying out a series of experiments wherein both the true o-d 
matrix and the whole set of (observed) unbiased link flows are available for the o-d matrix 
correction. In more detail, the following experiments were carried out: (a) given a specific 
perturbation of the true o-d demand (mimicking both generation and distribution demand 
biases), checking the capability of different subsets (included the whole set) of link flows to 
reproduce the starting true demand through the GLS estimator; (b) the same as the preceding 
point plus introducing a random perturbation of link flows so as to mimic 
assignment/sampling errors. In general, results of all experiments showed the correction not to 
be satisfactory, as briefly reported in the next section. On the other hand, this result can be 
easily justified because from the theory it is well known that in a standard application of the 
o-d correction procedure through traffic counts, the number of (stochastic) equations (equal to 
the number of independent observed link flows) is generally much lower than the number of 
unknowns (equal to the number of o-d pairs). 
The basic idea of this paper is therefore checking whether this may be regarded as the 
only/main reason of the  o-d correction procedure failure and, if so, providing for an 
investigation of possible effective applications of this procedure. For example, in a dynamic 
context a much larger number of equation is generally available (i.e. traffic counts for each 
time slice within the modelling period). Obviously, the number of unknowns theoretically 
increases with the same law (i.e. o-d flows for each time slice) but it is worthy exploring 
whether reasonable rules can be assumed in the o-d flow variation among time slices so as to 
bound the number of unknowns (with respect to the increase in the number of equations) and 
therefore obtaining an effective correction of the time slices o-d matrices. 
In accordance with that, section 3 deals with the effectiveness of the GLS estimator for the 
static un-congested case for different values of the ratio r between number of unknowns and 
number of equations. Results show that a very good correction is generally obtained when r≤1 
and vice versa for r>1. The possibility of interesting possible applications in the within-day 
dynamic context, wherein r can be handled so as to be close to one as mentioned above, is 
investigated in section 4, where some possible o-d flow variation laws between time slices are 
proposed so as to generate case studies with r≤1. For these case studies, laboratory 
experiments similar to the static case are carried out, together with an analysis of how 
effective can be the o-d correction procedure on real networks (i.e. with number of o-d pairs 
much greater than the number of link flows) if some assumptions on the o-d flows variation 
between time slices were true. Section 5 summarises research outcomes and points out further 
research developments.  
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2. Literature review 

The estimation/correction of the o-d matrix from traffic counts is a classical problem of 
transport engineering. Most of the studies proposed in the literature can be classified, 
according to their theoretical approach, either in the “classical” framework, i.e. the Maximum 
Likelihood (ML) estimator proposed by Maher (1983) and Bell (1983) and the Generalised 
Least Squares (GLS) estimator proposed by Cascetta (1984), or in the “Bayesian” framework 
proposed by Maher (1983). Following Cascetta and Nguyen (1988) and Cascetta (2001), 
classical estimators provide for a Maximum Likelihood estimate dML of the demand vector by 
maximizing the probability (likelihood) of observing both o-d sampling survey data and link 
counts (under the usually acceptable assumption that these two probabilities are independent), 
yielding: 
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                                         (1) 

wherein x is the variable demand, d̂ is the demand by sample and f̂ the vector of link counts. 
Log-likelihood functions in equation (1) are specified on the basis of hypotheses on the 
probability distribution of demand counts d̂  and traffic counts f̂ respectively, conditional on 
the demand vector x. Normally, traffic counts can be assumed as independently distributed as 
Poisson random variables, or following a Multivariate Normal random variable, while the 
statistical distribution of o-d demand counts depends on the sampling strategy. Generalized 
Least Squares (GLS) demand estimation dGLS provides for an estimate of the o-d demand 
flow, starting from a system of linear stochastic equations, leading to the following 
optimization problem: 
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where Mf is the sub-matrix of the assignment matrix related to links with available traffic 
counts and Z and W the covariance matrices related to the sampling error underlying the 
demand estimation and the measurement/assignment errors respectively. 
Bayesian methods estimate unknown parameters by combining experimental information 
(traffic counts in this case) with non-experimental  information (a priori or “subjective” 
expectations on o-d demand, e.g. coming from an out-of-date estimation or from a model 
system), by maximizing the logarithm of the a posteriori probability: 
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wherein g(x/d*) expresses the distribution of subjective probability attributed to the unknown 
vector given the a priori estimate d* and L( f̂ /x) expresses the probability of observing the 
vector of traffic counts f̂ conditional on the unknown demand vector x. Again, the detailed 
specification of a Bayesian estimator depends on the assumptions made about the probability 
functions g(x/d*) and L( f̂ /x). Normally, the unknown demand vector can be assumed to 
follow a multinomial random variable (in this case lng(x/d*) becomes the entropy function of 
the unknown vector x), a Poisson random variable (in this case lng(x/d*) becomes the 
information function of the unknown vector x), or a Multivariate Normal random variable.  
Moreover, within this framework, a number of generalizations have been carried out. For 
instance, Bell (1991) explored further theoretical properties of the GLS method. Yang et al. 
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(1992) dealt with the hypothesis of congested network, incorporating o-d estimation and 
traffic assignment feedbacks in the correction procedure; this problem has been eventually 
studied as a bi-level optimization problem, among others, by Florian and Chen (1995), Yang 
(1995) and Cascetta and Postorino (2001). Lo et al. (1996) introduced an explicit 
representation of the stochastic nature of observed flows, eventually generalized by Vardi 
(1996); Lo et al. (1999) describe an optimization method for the application of this approach 
to large-scale networks. A further generalization is proposed in Lo and Chan (2003), who 
proposed a procedure for the simultaneous estimation of o-d matrix and route choice 
dispersion parameter for congested networks. Hazelton (2000) proposes a method which can 
also make use only of link counts, but it requires explicit path enumeration and is therefore 
practically strong time-requiring for large-size networks. Finally, as pointed out by and 
Hazelton (2003), a promising research development deals with considering time-series link 
counts (e.g. referred to several days) as a key aspect for improving the reliability of o-d matrix 
estimation. In more detail, he took into account the covariance matrix of link count 
observations taken on several days within the estimation procedure, showing its reliability in 
very small test networks. 
Moving towards the dynamic framework, an extension of the static o-d correction procedure 
for obtaining time-varying o-d flows using time-varying traffic counts was provided by 
Cascetta et alii (1993), who proposed two different dynamic estimators, i.e. a simultaneous 
and a sequential estimator. The first jointly estimates all o-d matrices for all time slices using 
the whole set of traffic counts: this approach, requiring knowledge of the dynamic assignment 
matrix resulting from a dynamic traffic assignment (DTA) in order to map the relationship 
between o-d flows and traffic counts, represents a straightforward extension of the static case. 
The second is based on the estimation at each interval of the o-d demand dh for that single 
interval h, expressing traffic counts of time slice h as a function of dh and of the already 
estimated demands of previous intervals ( ...ˆ,ˆ

21 −− hh dd ). This approach offers computational 
advantages, since reduces a large optimization problem into a number of smaller ones and 
gives the possibility of using the estimates for an interval as a priori estimates of subsequent 
ones. Such aspects have made this approach suitable for real-time estimation problem, while 
the simultaneous approach is usually used for off-line estimation. 
Starting from the sequential framework, several formulations have been proposed in order to 
overtake the limitation inherent the dependence of o-d demand dh  only on traffic counts for 
the same interval. For example, Ashok and Ben-Akiva (1993) implemented an augmented 
state-space model where the state variables, relative to the deviation of vector demand from 
their historical estimates for a number of time interval, are estimated on the basis of traffic 
counts observed in different time slices. Bieralire and Crittin (2004) also proposed an efficient 
algorithm to deal with this problem. In many applications, the technique of interpreting 
demand estimates of a given interval as a priori estimates of subsequent slices has been 
replaced by linear combinations involving demand estimates related to more previous time 
slices. This leads to procedures mainly based on Kalman filters, assuming the within day 
evolution of demand as an autoregressive process and utilising a DTA model as measuring 
equation (Ashok and Ben-Akiva, 1993). Other studies dealt with the randomness of dynamic 
matrix assignment, e.g. Chang and Wu (1995) and Ashok an Ben-Akiva (2002), who in 
particular introduced a new estimator, including the dynamic assignment matrix or the 
variable which it depends on (travel time and path choice fraction) within the state-space 
formulation. 
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3. O-d matrix correction performances in static un-congested contexts 

As stated in the introduction, in spite of the practical diffusion of the o-d model correction 
through traffic counts, few studies focused on a systematic analysis of its reliability and 
goodness-of-fit. To the authors’ knowledge the most relevant was carried out by Di Gangi 
(1988) who considered a mesh network made up by 64 o-d pairs and 96 links. Two different 
sets of link counts, comprising respectively 8 and 24 links, were considered for o-d matrix 
correction using different estimators. A more systematic analysis was provided by Papola and 
Marzano (2006), whose results will be reviewed and enlarged in this section. 
Following the approach shared by the aforementioned works, the performances of the GLS 
estimator (2) can be checked by means of laboratory experiments wherein a given origin-
destination demand matrix dtrue is assumed to be the “true” o-d matrix. The assignment, 
through a supposed “true” assignment model, of this matrix to the network determines a 
vector of “true” link flows ftrue. In a first step, link counts are assumed to be equal to the 
“true” link flows, i.e. without any perturbation (no measurement and/or assignment errors). 
From a practical standpoint, the hypothesis of unbiased link counts can be practically 
introduced in equation (2) either by means of a variance matrix W close to zero, i.e. with flow 
estimate variances small enough, or following the approach reported for instance by Cascetta 
et al. (2005), that is introducing link counts consistency as a constrain in the optimization 
problem: 
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solvable through a convex simplex algorithm (Zangwill, 1969). Notably, from a mathematical 
standpoint, when Z=I (identity matrix), dGLS is the (unique) projection (in the usual metric 
defined in |d| where |d| is the dimension of the vector d) of the prior demand estimate d̂  on 
the convex subset Df of demand vectors compliant with constraints of problem (4). Therefore, 
from the properties of the projector on convex subsets in a Hilbert space, it follows that the 
distance of the true o-d matrix from dGLS is always not greater than the distance from the prior 
matrix d̂ 1. This property obviously does not imply that all performance indicators reported in 
Table 1 would indicate an “improvement” of dGLS with respect to d̂  towards the true demand. 
The performances of GLS estimator are evaluated imposing specific perturbations to the true 
o-d matrix, in order to mimic different modelling errors. In more detail, the following 
perturbations are considered: 
• amplification: all entries of the true o-d matrix are multiplied by an amplification factor, in 

order to mimic errors in estimating demand generation, i.e. true
od

pert
od dd α=  ∀od; 

• row spreading: true demand generated by each origin o is equally split among all nd/o 
(number of destinations with nonzero flow from origin o) destinations, i.e. given 

∑=
d

true
od

true
o dd  each value of the o-th row is set to od

true
o nd // . This assumption corresponds 

to setting infinite variance within the distribution model, collapsing into an equiprobable 
model; 

                                                 
1 In more detail, whatever d*∈Df, a property of the projector states that ( ) ( ) 0ˆ ≤−⋅− GLSGLS

* dddd where ⋅ 
denotes the scalar product generating the projection metric. Since the true demand vector lies within Df, from the 
preceding inequality it is trivial to recognize that dGLS is always closer to the true demand vector than d̂ . 
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• amplification plus row spreading: this perturbation, given by the combination of the 
preceding perturbations, allows simulating simultaneously errors both in demand generation 
and distribution; 

• random: all entries of the true o-d matrix are independently drawn for a normal distribution 
(truncated to nonnegative values) with mean true

odd and variance true
oddβ , in order to mimic 

randomly distributed errors in o-d flow estimation; 
 
The distance between the true o-d matrix dtrue and the corrected o-d matrix dcorr are measured 
through well-known performance indicators, reported in the following Table 1. 
 

[Table 1] 
 
The same indicators have been also applied in order to measure the distance between link 
counts and simulated link flows, where appropriate. Moreover, in order to provide for a 
measurement reference, those indicators have been also computed for the initial perturbations 
imposed on demand and/or link counts. It is also worthy noting that the covariance matrix Z 
in equation (4) has been explicitly defined only for the random perturbation, while it has been 
assumed equal to the identity matrix for the other perturbations. 
The first experiments are carried out under the hypothesis of using all link counts for the o-d 
matrix correction: this does not correspond to a real situation but can provide for a first check 
of the reliability of the GLS estimator. In more detail, Table 2 reports the results achieved by 
Papola and Marzano (2006) on an 870 o-d pairs 208 links mesh network, leading to a ratio r 
between unknown and independent equations equal to 4.94 (32 dependent equations). 
 

[Table 2] 
 
It is immediate recognizing that the correction performances are always very poor under all 
kinds of perturbations. Worse results are obviously obtained when using subset of link counts, 
and/or by introducing perturbations in link flows, as shown by Papola and Marzano (2006).  
As mentioned in the introduction, this result can be interpreted as a consequence of the 
significant discrepancy between unknowns and equations, and therefore it is worthy exploring 
a situation wherein the ratio r is close to one instead. Table 3 reports the results of an 
experiment run on a 208 links 208 o-d pairs mesh network, so as to balance approximately the 
number of unknown and equations (precisely, r=1.08 due to 15 dependent equations). 
 

 [Table 3] 
 
Thanks to the balance between unknowns and equations, results are satisfactory when starting 
from amplification and spreading perturbations, and correction performances tend to become 
poor only for randomly perturbed matrices with β>1.  
This result suggests that working with r values close to one is a key issue for enhancing o-d 
matrix correction reliability. Notably, since in the static case handling much more unknowns 
rather than equations is a common condition, the o-d matrix correction through GLS estimator 
may lead to significant biases in the practice. This is obviously true even more in principle in 
the dynamic case, wherein the addition of a time slice in the modelling horizon provides an 
increase both in unknowns (o-d values for that time slice) and equations (observed flows for 
that time slice). As mentioned in the introduction, however, specific assumptions can be 
introduced in this context so as to limit the ratio r. This aspect will be deepened in the next 
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section. 

4. O-d matrix correction performances in within-day dynamic contexts  

As mentioned in the previous section, the difference between the number of independent 
equations and the number of variables is still an issue in the dynamic case, unless specific 
assumptions are introduced on the structure of time-varying o-d matrices so as to reduce the 
number of unknown variables.  
Usually, these assumptions involve the dynamic evolution of o-d flows, modelling their 
temporal relationship or their deviations from historical estimates, by means of an 
autoregressive process. Alternatively, other assumptions can be introduced as well, for 
instance the hypothesis of constant distribution shares within the analysis horizon. Correction 
performances of GLS estimator will be checked in the following, under both assumptions, 
through laboratory experiments similar to those described in section 3. 
With reference to the first assumption, true o-d profiles were generated according to the 
hypothesis of o-d flows following an autoregressive process of order 2, with different values 
of the dispersion parameters. In other terms, starting from initial o-d matrices for the first two 
intervals, the subsequent ones were generated from the following equations: 
 

t2-t1-tt zddd ++= BA               (5) 
 
where td is the o-d vector at time interval t and tz is the error term with =]tE[z 0. In 
particular, matrices A and B have been assumed diagonal (rth o-d flow is affected only by the 
two preceding rth o-d flows) and the covariance matrix of tz  is assumed independent on time 
and diagonal (no correlation between error terms of different o-d cells). 
In a first experiment, the covariance matrix was set equal to zero (deterministic process), then 
in subsequent experiments two covariance matrices were chosen and several draws of the 
process were generated for each case. The variances in the two covariance matrices were 
fixed for each o-d cell proportionally to its mean value in the first two intervals trough a 
dispersion parameter, chosen equal to 0.1 and 0.2 in the two experiments respectively. The 
true link flows are obtained from a dynamic network loading of the true o-d matrices, while 
perturbed o-d matrices for the first two time slices and the true evolution equation are 
assumed as prior information. 
Notably, estimators applied in the two experiments are different. In the deterministic case, the 
unknowns are represented by the o-d flows belonging to the first two matrices, and the GLS 
estimator becomes: 

( ) ( )T
txGLS tttttfM

dxZdxd −−= ∑
=

−

=

2

1

1min             (6) 

where M is the overall dynamic assignment matrix and d and f the overall demand and flow 
vectors respectively (i.e. the vectors obtained by queuing the demand and the flow vectors 
related to each time slice). In the stochastic case, the unknowns are the o-d flows related to all 
time slices and the corresponding GLS estimator can be expressed as: 
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where f(.) is intended to be the linear stochastic equation (5). Table 4 reports the results of this 
experiment on a 200 o-d pairs 120 links mesh network, considering 8 time slices from the 
demand side, leading to 11 time slices for the supply side (i.e. further three time slices in 
order to carry out the network flows clearance). Consequently the number of unknowns is 400 
(all the elements of the first two o-d matrices) and the number of equation is 1320 leading to 
r=0.30 (the actual r value is higher due to the presence of dependent equations). Notably, 
results are satisfactory only if the true evolution of o-d flows is close to a deterministic 
process. 
 

[Table 4] 
 
The second assumption, that is the hypothesis of constant distribution shares within the 
analysis horizon (i.e. an analysis horizon wherein the dynamic evolution of the distribution 
shares is slower than the generation), allows also handling the ratio r between unknowns and 
equations. In more detail, given a time interval T wherein the distribution shares are assumed 
constant, the number of unknowns becomes nT·no+nod

 being nT the number of time slices 
included in T, no the number of origins and nod the number of o-d pairs. The corresponding 
GLS estimator is therefore of the type (4), wherein variables are actually demand generation 
for each time slice and distribution shares . 
The laboratory experiment in this case is based on perturbations of the distribution shares 
(spreading row) and/or of the generation profiles (amplification). Table 5 reports the results 
obtained in the network used in the previous case using all link counts. In this case the 
number of unknowns is 8*33+200=464 and the number of equation is 1320 with r=0.35 (by 
not taking into account the number of dependent equations). Notably, correction results are 
also compared to those obtained by relaxing the hypothesis of constant distribution shares, i.e. 
using a classical simultaneous estimator wherein the number of variables is 200*8=1600: 

( ) ( )T
n

txGLS tttttfM
dxZdxd −−= ∑

=

−

= 1

1min             (8) 

[Table 5] 
 

It is worthy underlining that the proposed estimator always provides very satisfactory results 
while the simultaneous estimator (9) exhibits poor performances, i.e. it does not recognize the 
underlying constancy of distribution shares. 
The GLS estimator has been also applied on subsets of link counts chosen accordingly to the 
maximum flow selection method (Yang et al. 1998). Results are reported in Table 6, together 
with the outcomes of the simultaneous estimator. 
 

[Table 6] 
 
Notably, results are satisfactory only for values of the ratio r lower than one and get further 
improved for decreasing r.  
Another experiment has been carried out by assuming for each time slice a true distribution 
share matrix obtained through random perturbations of the distribution share matrix of the 
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previous experiment. This mimics a more real situation wherein distribution shares are not 
constant but slightly variable within the analysis horizon. Results are reported in Table 7 and 
once again compared with those obtained by applying the simultaneous estimator (8). 
 

[Table 7] 
 

Once again, assuming that analyst is not perfectly able to reproduce the law underlying o-d 
flows variation across time slices, results become worse but are still better with respect to 
those obtained with the simultaneous estimator (8) for small perturbations of the distribution 
shares. 

5. Conclusions and research perspectives 

The paper dealt with a thorough investigation of the o-d matrix correction procedure by 
means of real-size laboratory experiments. The paper starts from the drawbacks of the static 
un-congested o-d correction, whose main failure has been shown to depend strictly on the 
ratio r between unknowns and equations. Then, alternative application fields allowing for a 
proper balance between unknowns and equations are explored. In more detail, this is achieved 
by moving to within-day dynamic contexts, wherein a much larger number of equation is 
generally available (i.e. traffic counts for each time slice within the modelling period). 
Obviously, in order to bound the corresponding increase in the number of unknowns (i.e. o-d 
flows for each time slice), specific reasonable hypotheses in o-d flow variation across time 
slices must be introduced. Namely, the paper analyzed the usually adopted linear hypothesis 
on the dynamic process evolution of o-d flows and the assumption of constant distribution 
shares.  
Results of the within-day laboratory experiments provide for a further evidence that the key 
issue for an effective o-d matrix correction is handling contexts with a r value close to one, 
wherein very good o-d estimates are always obtained whatever o-d prior estimates available. 
This suggests that, regardless of the specific hypotheses adopted throughout the paper (to be 
obviously checked in their practical validity on real data), the within-day dynamic context 
seems to represent the only background allowing for effective o-d correction, provided the 
existence of real and identifiable rules describing demand evolution.  
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Euclidean MSE RMSE MAPD MSPE RMSPE
initial 55 3,46E+00 1,9 10,00% 1,00% 10,00%
final 25 7,11E-01 0,8 7,40% 1,91% 13,81%
initial 110 1,38E+01 3,7 20,00% 4,00% 20,00%
final 49 2,75E+00 1,7 14,19% 5,97% 24,44%
initial 165 3,11E+01 5,6 30,00% 9,00% 30,00%
final 71 5,86E+00 2,4 19,85% 9,89% 31,44%
initial 219 5,53E+01 7,4 40,00% 16,00% 40,00%
final 93 9,89E+00 3,1 24,77% 13,65% 36,95%
initial 274 8,64E+01 9,3 50,00% 25,00% 50,00%
final 113 1,47E+01 3,8 29,16% 17,33% 41,63%
initial 251 7,25E+01 8,5 86,81% 249,41% 157,93%
final 224 5,76E+01 7,6 72,04% 175,73% 132,56%
initial 256 7,53E+01 8,7 96,01% 315,68% 177,67%
final 224 5,76E+01 7,6 72,38% 176,98% 133,04%
initial 269 8,34E+01 9,1 106,46% 391,27% 197,81%
final 224 5,78E+01 7,6 72,81% 178,74% 133,70%
initial 291 9,71E+01 9,9 117,79% 476,20% 218,22%
final 225 5,83E+01 7,6 73,30% 181,01% 134,54%
initial 318 1,16E+02 10,8 130,05% 570,46% 238,84%
final 227 5,91E+01 7,7 73,82% 183,77% 135,56%
initial 350 1,41E+02 11,9 143,18% 674,05% 259,62%
final 229 6,01E+01 7,8 74,46% 187,03% 136,76%
initial 129 1,93E+01 4,4 18,90% 5,62% 23,71%
final 109 1,36E+01 3,7 17,41% 4,81% 21,94%
initial 276 8,78E+01 9,4 40,20% 24,94% 49,94%
final 227 5,90E+01 7,7 36,60% 21,10% 45,93%
initial 398 1,82E+02 13,5 56,37% 49,57% 70,40%
final 324 1,21E+02 11,0 49,85% 38,10% 61,72%
initial 455 2,38E+02 15,4 68,70% 69,75% 83,52%
final 358 1,47E+02 12,1 57,52% 50,61% 71,14%
initial 533 3,26E+02 18,1 82,67% 105,27% 102,60%
final 395 1,80E+02 13,4 69,47% 75,43% 86,85%
initial 697 5,58E+02 23,6 97,13% 148,28% 121,77%
final 504 2,92E+02 17,1 78,71% 92,14% 95,99%
initial 765 6,73E+02 25,9 107,47% 192,52% 138,75%
final 534 3,28E+02 18,1 84,62% 118,14% 108,69%
initial 839 8,10E+02 28,5 117,83% 233,69% 152,87%
final 554 3,52E+02 18,8 88,74% 123,73% 111,23%
initial 857 8,43E+02 29,0 118,98% 244,34% 156,31%
final 573 3,77E+02 19,4 89,87% 128,95% 113,56%
initial 1078 1,34E+03 36,5 143,28% 374,28% 193,46%
final 621 4,44E+02 21,1 99,27% 164,56% 128,28%
initial 1189 1,62E+03 40,3 144,54% 400,24% 200,06%
final 653 4,90E+02 22,1 98,27% 157,17% 125,37%
initial 1209 1,68E+03 41,0 156,21% 452,68% 212,76%
final 698 5,60E+02 23,7 106,08% 185,88% 136,34%
initial 1375 2,17E+03 46,6 181,55% 653,73% 255,68%
final 726 6,06E+02 24,6 118,22% 264,87% 162,75%
initial 1246 1,79E+03 42,3 170,94% 576,99% 240,21%
final 708 5,77E+02 24,0 114,00% 239,69% 154,82%
initial 1567 2,82E+03 53,1 194,28% 774,10% 278,23%
final 809 7,53E+02 27,4 122,44% 274,89% 165,80%
initial 1561 2,80E+03 52,9 202,34% 868,09% 294,63%
final 774 6,89E+02 26,2 123,31% 290,15% 170,34%
initial 1617 3,01E+03 54,8 215,43% 944,87% 307,39%
final 773 6,87E+02 26,2 121,09% 260,92% 161,53%
initial 1879 4,06E+03 63,7 228,88% 1164,10% 341,18%
final 828 7,89E+02 28,1 129,16% 317,36% 178,14%
initial 1995 4,57E+03 67,6 239,68% 1273,40% 356,84%
final 804 7,44E+02 27,3 127,61% 320,60% 179,05%
initial 1837 3,88E+03 62,3 224,16% 1105,40% 332,47%
final 824 7,80E+02 27,9 129,12% 339,04% 184,13%
initial 2138 5,25E+03 72,5 254,33% 1457,70% 381,80%
final 888 9,07E+02 30,1 136,84% 376,89% 194,14%
initial 2033 4,75E+03 68,9 262,69% 1481,60% 384,92%
final 829 7,89E+02 28,1 130,81% 343,38% 185,30%
initial 2202 5,57E+03 74,7 278,45% 1685,10% 410,50%
final 897 9,25E+02 30,4 139,12% 402,96% 200,74%
initial 2227 5,70E+03 75,5 276,01% 1743,00% 417,49%
final 874 8,77E+02 29,6 136,48% 379,24% 194,74%
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Table 2 – Correction results for the 870 links 208 o-d pairs mesh network (perturbation parameters α 
and β indicated beside perturbations)
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Euclidean MSE RMSE MAPD MSPE RMSPE
initial 1131 6,15E+03 78,5 10,00% 1,00% 10,00%
final 90 3,87E+01 6,2 0,54% 0,01% 1,17%
initial 2263 2,46E+04 156,9 20,00% 4,00% 20,00%
final 180 1,55E+02 12,4 1,08% 0,05% 2,33%
initial 3394 5,54E+04 235,4 30,00% 9,00% 30,00%
final 269 3,49E+02 18,7 1,62% 0,12% 3,50%
initial 4526 9,85E+04 313,8 40,00% 16,00% 40,00%
final 359 6,20E+02 24,9 2,15% 0,22% 4,67%
initial 5657 1,54E+05 392,3 50,00% 25,00% 50,00%
final 449 9,68E+02 31,1 2,69% 0,34% 5,83%
initial 3112 4,66E+04 215,8 30,23% 20,90% 45,72%
final 878 3,71E+03 60,9 5,18% 1,31% 11,45%
initial 3297 5,23E+04 228,6 34,70% 29,01% 53,86%
final 877 3,70E+03 60,8 5,16% 1,31% 11,44%
initial 3797 6,93E+04 263,3 41,29% 40,03% 63,27%
final 876 3,69E+03 60,7 5,15% 1,31% 11,43%
initial 4510 9,78E+04 312,7 49,60% 53,96% 73,46%
final 875 3,68E+03 60,7 5,14% 1,30% 11,42%
initial 5350 1,38E+05 370,9 59,36% 70,80% 84,14%
final 874 3,67E+03 60,6 5,13% 1,30% 11,41%
initial 6266 1,89E+05 434,5 69,69% 90,55% 95,16%
final 873 3,67E+03 60,6 5,12% 1,30% 11,41%
initial 2600 3,25E+04 180,3 18,53% 5,16% 22,71%
final 662 2,11E+03 45,9 3,48% 0,50% 7,09%
initial 5455 1,43E+05 378,2 38,05% 22,68% 47,63%
final 924 4,10E+03 64,0 5,44% 1,39% 11,79%
initial 7858 2,97E+05 544,8 54,63% 44,44% 66,66%
final 1361 8,90E+03 94,4 8,90% 3,82% 19,54%
initial 8985 3,88E+05 623,0 65,18% 63,46% 79,66%
final 2508 3,02E+04 173,9 13,58% 7,71% 27,77%
initial 10786 5,59E+05 747,9 80,82% 90,27% 95,01%
final 2469 2,93E+04 171,2 12,51% 7,21% 26,85%
initial 13723 9,05E+05 951,5 101,02% 160,11% 126,53%
final 2855 3,92E+04 198,0 17,29% 11,20% 33,47%
initial 18016 1,56E+06 1249,2 117,53% 234,63% 153,18%
final 3897 7,30E+04 270,2 18,60% 13,40% 36,60%
initial 19362 1,80E+06 1342,5 135,58% 303,24% 174,14%
final 2863 3,94E+04 198,5 16,72% 11,57% 34,01%
initial 20146 1,95E+06 1396,9 122,39% 263,82% 162,43%
final 2931 4,13E+04 203,2 15,13% 9,23% 30,37%
initial 25341 3,09E+06 1757,1 156,98% 445,54% 211,08%
final 2910 4,07E+04 201,8 16,59% 11,25% 33,54%
initial 22824 2,50E+06 1582,5 143,27% 390,02% 197,49%
final 3082 4,57E+04 213,7 17,18% 12,30% 35,08%
initial 28828 4,00E+06 1998,9 182,61% 668,77% 258,61%
final 3653 6,42E+04 253,3 21,13% 14,98% 38,70%
initial 25280 3,07E+06 1752,9 178,20% 576,20% 240,04%
final 3182 4,87E+04 220,7 17,73% 11,65% 34,14%
initial 25207 3,05E+06 1747,8 167,61% 514,76% 226,88%
final 3039 4,44E+04 210,7 17,42% 12,51% 35,37%
initial 32212 4,99E+06 2233,5 182,93% 653,75% 255,69%
final 3840 7,09E+04 266,3 21,21% 17,93% 42,35%
initial 31369 4,73E+06 2175,1 194,59% 735,63% 271,22%
final 3799 6,94E+04 263,4 20,53% 15,56% 39,45%
initial 33960 5,54E+06 2354,7 230,80% 1135,40% 336,96%
final 4043 7,86E+04 280,3 24,69% 24,21% 49,20%
initial 39181 7,38E+06 2716,7 218,10% 997,88% 315,89%
final 3163 4,81E+04 219,3 16,79% 12,59% 35,49%
initial 39272 7,42E+06 2723,1 234,80% 1182,50% 343,88%
final 3830 7,05E+04 265,6 18,36% 14,50% 38,08%
initial 43808 9,23E+06 3037,5 251,62% 1364,20% 369,35%
final 3405 5,57E+04 236,1 17,58% 12,61% 35,51%
initial 41007 8,08E+06 2843,3 269,70% 1594,60% 399,32%
final 4672 1,05E+05 323,9 25,25% 22,06% 46,97%
initial 44326 9,45E+06 3073,4 290,68% 1882,90% 433,93%
final 4664 1,05E+05 323,4 27,29% 26,38% 51,36%
initial 44867 9,68E+06 3110,9 261,96% 1554,60% 394,29%
final 3841 7,09E+04 266,4 21,99% 17,72% 42,10%
initial 47340 1,08E+07 3282,4 300,07% 1902,80% 436,21%
final 4142 8,25E+04 287,2 24,15% 21,11% 45,94%
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Table 3 – Correction results for the 208 links 208 o-d pairs mesh network (perturbation parameters α 
and β indicated beside perturbations) 
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  Performance indicator INITIAL PERTURBATION dipersion parameter
  Euclidean MSE RMSE MAPD 

initial 1368.00 0.86 0.92 70.00% 0.0 
final 48.63 0.03 0.17 7.20% 
initial 2891.60 1.81 1.34 143.91% 0.1 
final 511.49 0.32 0.56 37.80% 
initial 2145.00 1.84 1.35 112.86% 

Spreading 

0.2 
final 618.10 0.39 0.62 47.63% 

  
Table 4 –Results of a simulation run on a 120 links 200 o-d pairs mesh network, considering 8 time 

slices. True o-d profiles generated according to the assumption of o-d flows following an 
autoregressive process 
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Performance indicator PERTURBATION 
Euclidean MSE RMSE MAPD MSPE RMSPE 

initial 466.49 0.29 0.54 20.00% 4.07% 20.00% 
final 0.04 0.00 0.00 0.70% 0.05% 2.42% 20% 

simultaneous 19.82 0.01 0.11 10.20% 7.27% 26.96% 
initial 1045.70 0.65 0.80 30.00% 9.08% 30.00% 
final 0.04 0.00 0.00 0.72% 0.05% 2.42% 30% 

simultaneous 6.10 0.00 0.06 5.66% 1.91% 13.84% 
initial 1857.00 1.16 1.07 40.00% 16.09% 40.00% 
final 0.04 0.00 0.00 0.72% 0.05% 2.42% 40% 

simultaneous 6.70 0.00 0.06 6.04% 3.10% 17.63% 
initial 2896.70 1.81 1.34 50.00% 25.10% 50.00% 
final 0.04 0.00 0.00 0.72% 0.05% 2.42% 

amplification 

50% 
simultaneous 9.59 0.01 0.11 9.59% 5.79% 24.07% 

initial 2404.00 1.50 1.22 93.38% 305.33% 174.74%
final 0.04 0.00 0.00 0.68% 0.04% 2.09% spreading 

simultaneous 660.24 0.41 0.64 55.39% 166.91% 163.37%
initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%
final 0.04 0.00 0.00 0.72% 0.05% 2.42% ampSpreading 

simultaneous 622.15 0.39 0.62 52.18% 218.60% 147.74%
  

Table 5 – Correction results for the 120 links 200 o-d pairs 8 time slices mesh network - the 
hypothesis of constant distribution shares holds exactly 
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variables /equations
Euclidean MSE RMSE MAPD MSPE RMSPE

initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%
0.4 final 0.04 0.00 0.00 0.72% 0.05% 2.42%

1.21 simultaneous 622.15 0.39 0.62 52.18% 218.60% 147.74%
initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%

0.4 final 0.05 0.00 0.00 0.72% 0.05% 2.29%
1.45 simultaneous 913.04 0.57 0.75 60.47% 204.47% 142.99%

initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%
0.5 final 71.29 0,04 0.21 4.01% 6.12% 24.75%

1.62 simultaneous 1048.10 0.65 0.81 64.05% 234.20% 153.04%
initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%

0.5 final 71.31 0.04 0.21 4.10% 6.14% 24.80%
1.82 simultaneous 1145.60 0.72 0.85 66.13% 218.13% 147.90%

initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%
0.6 final 72.57 0.05 0.21 4.72% 6.49% 25.47%

2.08 simultaneous 1314.30 0.82 0.91 70.64% 196.74% 140.27%
initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%

0.7 final 89.68 0.06 0.24 5.59% 7.00% 26.46%
2.42 simultaneous

initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%
0.8 final 263.70 0.16 0.41 14.31% 23.64% 48.63%

2.91 simultaneous
initial 4685.80 2.93 1.71 153.81% 809.70% 284.56%

1.1 final 473.46 0.29 0.54 31.10% 37.29% 61.06%
3.64 simultaneous

PERTURBATION
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Table 6– Correction results for the 120 links 200 o-d pairs 8 time slices mesh network  for different 

number of sensors;, the hypothesis of constant distribution shares holds exactly 
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Euclidean MSE RMSE MAPD MSPE RMSPE
initial 4804.10 3.00 1.73 153.87% 808.39% 284.32%
final 389.31 0.24 0.49 22.68% 11.91% 34.51%

simultaneous 680.63 0.43 0.65 54.24% 233.89% 152.94%
initial 4981.80 3.19 1.79 169.26% 1020..1% 319.39%
final 650.78 0.41 0.64 29.11% 21.01% 45.84%

simultaneous 1101.70 0.69 0.83 64.38% 388.64% 197.14%
initial 5344.60 3.34 1.82 210.62% 8936.70% 945.34%
final 2225.00 1.39 1.17 67.85% 198.46% 140.87%

simultaneous 739.25 0.46 0.68 62.19% 343.57% 185.36%

Performance indicatordispersion parameter

0.1

0.2

0.3

Amplificationspreading

PERTURBATION

Table 7– Correction results for the 120 links 200 o-d pairs 8 time slices mesh network for different 
dispersion parameter in drawing the true o-d matrices from the initial matrices with the constant 
distribution shares 

 
 


