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1. Introduction 
 

To support the planning, operation, and evaluation of various dynamic road pricing 
schemes, particularly, on large-scale networks, dynamic user equilibrium (DUE) network 
assignment models are often applied to predict path choices and the resulting network flow 
patterns, which in turn form the basis for assessing the economic and financial impacts or 
benefits of proposed toll facilities or schemes.  DUE models for dynamic road pricing 
applications should essentially be able to (i) capture traffic flow dynamics and spatial and 
temporal vehicular interactions, (ii) adhere to the time-dependent generalization of Wardrop’s 
first principle (Wardrop, 1952), i.e. so-called DUE conditions, (iii) provide the basis for an 
algorithm that exhibits better performance (solution quality and computational effort) than 
commonly used algorithmic schemes on practical networks, (iv) address the heterogeneous user 
preference of path choice in response to toll charges, and (v) be deployable on large-scale 
networks.  This paper describes a bi-criterion dynamic user equilibrium (BDUE) model and 
solution algorithm that meet the above requirements.   

 
2. Assumptions, Definition, and Problem Statement 

 
Given a time-dependent network G = (N, A), where N is the set of nodes and A is the set 

of directed links (i, j), i∈N and j∈N. The time period of interest (planning horizon) is discretized 
into a set of small time intervals, S = {t0, t0 +σ, t0 +2σ,…, t0 +Mσ}, where t0 is the earliest 
possible departure time from any origin node, σ is a small time interval during which no 
perceptible changes in traffic conditions and/or travel cost occur, and M is a large number such 
that the intervals from t0 to t0+Mσ cover the planning horizon S. Without loss of generality, 
associated with each arc (i, j) and departure time interval t are two essential time-dependent arc 
travel impedances: time (dij(t)) and cost (cij(t)), which are required to travel from node i to node j 
when departing at time t from node i, and would be minimized simultaneously in trip-makers’ 
path choice decision framework. Note that dij(t) may include both non-congested travel time and 
delay, while some other cost-related arc attributes can be considered in cij(t). 

 
By assuming that path travel disutilities are additive of their respective link travel 

disutilities, the experienced path generalized cost perceived by a trip-maker with VOT α is 
defined as path travel cost plus path travel time weighted by the α.  The VOT α relative to each 
trip represents how much money the trip-maker is willing to trade for a unit time saving.  To 



reflect heterogeneity of the population, the VOT in this study is treated as a continuous random 
variable distributed across the population of trip-makers, with the density function φ(α)>0, 

∀α∈[αmin,αmax] and ∫ =
max

min
1)(

α

α
ααφ d , where the feasible range of VOT is defined by the closed 

interval [αmin,αmax].  Note that the distribution of VOT is assumed given, and can be estimated 
from survey data.  The time-dependent origin-destination (OD) demand for the entire feasible 
range of VOT over the planning horizon (i.e. number of trips for each OD pair, each departure 
time interval and each possible value of VOT) is also known a priori.  

 
The key behavioral assumption for the path choice decision is as follows: in a disutility-

minimization framework, each trip-maker chooses a path that minimizes the generalized cost 
(i.e. disutility).  Accordingly, the bi-criterion dynamic user equilibrium (BDUE) that extends 
Wardrop’s first (or UE) principle (Wardrop, 1952), is stated as: For each OD pair and for each 
departure time interval, every trip-maker cannot decrease the experienced generalized trip cost 
with respect to that trip’s particular VOT α by unilaterally changing paths.  This definition can 
be also viewed as the dynamic extension of Dial’s bi-criterion equilibrium traffic assignment 
(Dial, 1996) or Leurent’s cost versus time equilibrium (Leurent, 1993).  Given the assumptions 
and definition above, this study aims at solving the BDUE traffic assignment problem, under a 
given time-dependent road pricing scheme, to obtain the time-dependent path flow pattern 
satisfying the BDUE condition. Specifically, the focus is to determine the BDUE path flows 
(routing policies) in a vehicular network for each OD pair, each departure time interval and all 
possible values of time.  
 
3. Model Formulation 
 
Notations and Variables 

)(ατ
odr  number of trips with VOT α departing from o to d in departure time interval τ. 
τ
odr   number of trips departing from o to d in time interval τ, and ∫=

max

min
)(

α

α

ττ αα drr odod . 

)(ατ
odpr  number of trips with VOT α departing from o to d in time interval τ that are assigned 

to path p∈P(o, d, τ). 
r(α)   the class-specific time-varying path flow vector for the trips with VOT α; i.e. r(α) ≡ 

{ )(ατ
odpr , ∀o, d, τ, and p∈P(o, d, τ)}. 

r the time-varying path flow vector for the trips with all possible values of time; i.e. r 
≡{r(α),∀α∈[αmin, αmax]}. 

TT the vector of experienced path travel times. 
TC the vector of experienced path travel costs. 
 

Let Ω(α) ≡ {r(α)} be the feasible set of path flow vectors r(α) satisfying the path flow 
conservation and non-negativity constraints: 

∑ ∈
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doPp ododp rr , ∀o, d, and τ, (1) 

)(ατ
odpr ≥ 0, ∀o, d, τ, and p∈P(o, d, τ). (2) 



Solving for the BDUE flow pattern r* is equivalent to finding the solution of a system of 
variational inequalities r*(α)∈Ω(α) such that 

G(α, r*)T ° (r*(α) − r(α)) ≤ 0, ∀ r(α)∈Ω(α), ∀α∈[αmin, αmax], (3) 

where ° is the inner product in Im, and G(α, r*) is the path generalized cost vector perceived by 
the trips with VOT α and evaluated at flow pattern r*. Since (3) is only required to hold on 

],[ maxmin αα , it can be further represented by the following (possibly) infinite dimensional VI 
(see e.g. Marcotte and Zhu, 1997): find r* ≡ {r*(α), ∀α∈ ],[ maxmin αα } and r*∈Ω such that 

G(r*)T ° (r* − r) ≤ 0, ∀ r∈Ω (4) 

where G(r*) ≡{G(α, r*), ∀α∈ ],[ maxmin αα }, and Ω={r}={Ω(α),∀α∈ ],[ maxmin αα }.  
 
4. Solution Algorithm 

Since the infinite dimensional VI formulation of the BDUE problem uses path-related 
variables, a set of feasible paths on which the time-varying OD demands is to be equilibrated is 
required. It is generally very difficult, if not impossible, to enumerate the complete set of feasible 
paths of all OD pairs for a road network of practical size. To avoid explicit enumeration of all 
possible paths, this study uses a column generation-based approach to generate a representative 
subset of paths that have competitive travel times. The column generation-based approach 
augments, in the outer loop, the subset of the extreme efficient paths and solves, in the inner loop, 
the restricted multi-class dynamic user equilibrium (RMDUE) sub-problem defined by the 
current subset of extreme efficient paths. Embedded in this algorithmic framework is a 
simulation-based dynamic traffic model that captures traffic dynamics and determines 
experienced path generalized costs G(r) for any given path flow pattern r; that is traffic flow 
propagations and the vehicular spatial and temporal interactions are addressed through the traffic 
simulation instead of analytical calculations. By and large, the original BDUE problem, finding a 
DUE path flow pattern resulting from the interactions of (possibly) infinite number of user 
classes, is solved in this algorithmic framework as series of approximate RMDUE sub-problems 
to progressively find BDUE solutions. 
  
Initialization 
0. Input: (1) a time-dependent OD demand matrix for the entire feasible range of VOT over the 

planning horizon ( )(ατ
odr , ∀o, d, τ, and α∈[αmin,αmax]), (2) a set of time-dependent link tolls, 

(3) VOT density and distribution functions (φ(α) and Φ(α), ∀α∈[αmin,αmax]), and (4) initial 
paths and path assignment. 

1. Set the iteration counter of outer loop k = 0. Perform a multi-class dynamic network loading 
(MDNL) with the initial path assignment. Obtain time-dependent link travel times and 
experienced path travel times and costs (i.e. TT and TC) from the traffic simulator. 

Outer Loop – generating extreme efficient path set 
2. Solve the bi-criterion time-dependent least generalized cost path (tree) problem to obtain the 

set of extreme efficient paths, their corresponding generalized costs (πk), and breakpoints that 
partition the entire VOT interval and define the multi-user classes.  

3. Convergence checking: if (a) there is no new path found or (b) k = Kmax (maximum number of 
outer iterations) then stop; otherwise start the inner loop (go to step 4). 

Inner Loop – solving the RMDUE sub-problem 



4. Set the iteration counter of inner loop l = 0; read the output of step 2: πl and VOT breakpoints, 
as well as the current path set (and TT and TC) and path assignment (rl). 

5. Update path assignment: determine path assignment rl+1 by using the descent direction method. 
Set l = l + 1. 

6. MDNL: perform a MDNL with the new path assignment rl. Obtain experienced path travel 
times and costs (i.e. TT and TC) from the traffic simulator. 

7. Find, in the existing path set, the least generalized cost path for each ),,( τdo and each user 
class u, defined based on the breakpoints obtained in step 2. 

8. Convergence checking: if |Gap(rl)−Gap(rl−1)| ≤ ε (a preset convergent threshold; Gap(rk) will 
be defined in the following subsection) or l = Lmax (maximum number of inner iterations) 
then return to the step 2 (the outer loop) with current link travel times, path generalized costs 
G(rl) and rl, and set k = k+1; otherwise go back to step 5. 

 
4.1 Outer Loop – Generating Extreme Efficient Path Set  

This study adopts the bi-criterion time-dependent least generalized cost path (BTDLGCP) 
algorithm developed by Mahmassani et al. (2005) to find the set of time-dependent extreme 
efficient paths and the corresponding set of breakpoints (i.e. values of time α = { Iααα ,...,, 10 | 

max10min ...... αααααα =<<<<<= Ii } that partitions the entire feasible range of VOT and 
hence defines the multiple user classes of trips, where each class ui covers the trips with VOT 
α∈ ),[ 1 ii αα − , i = 1,…I. Starting from the lowest possible VOT, the BTDLGCP algorithm 
continuously solves for the time-dependent least generalized cost path (TDLGCP) tree rooted at 
each destination for a given VOT subinterval and determines the upper bound of that VOT 
subinterval, for which the TDLGCP tree remains optimal, until reaching the highest possible of 
VOT. If there is no new path found for each ),,( τdo  and each user class u, or the outer loop 
iteration counter k equals Kmax (maximum number of outer iterations) then terminate the 
algorithm; otherwise start the inner loop with the output of BTDLGCP algorithm: πk and α, as 
well as current path set (and TT and TC) and path assignment rk . 
 
4.2 Inner Loop – Solving the RMDUE Sub-problem 

4.2.1 The RMDUE Sub-problem 
With the set of breakpoints α that determines the (finite number of) multiple user classes 

(ui, i = 1,…I), the sub-problem defined by a (currently available) subset of the feasible time-
dependent extreme efficient paths and solved in the inner loop of the column generation-based 
algorithmic framework can be considered as a restricted multi-class dynamic user equilibrium 
(RMDUE) problem by following the terminology often adopted in the literature. Solving the 
RMDUE problem aims at finding a finite-dimensional multi-class path flow vector so that for 
each ),,,( τdou i  every trip-maker cannot decrease the experienced generalized trip cost by 
unilaterally changing paths.  
  
4.2.2 A Descent Direction Method for Solving the RMDUE sub-problem 

This study adapts the descent direction method proposed by Lu and Mahmassani (2006) 
to solve the RMDUE sub-problem and update path assignments in the inner loop of the column 
generation-based BDUE solution algorithm. The descent direction method is a projection type 
algorithm that decomposes the RMDUE problem into many ),,,( τdou i  sub-problems and solves 



each of them by adjusting time-varying OD flows between (all) non-least generalized cost paths 
and the least generalized cost path(s). Given a feasible solution rl in an inner loop iteration l, the 
method features the following form: 

]
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l

lll
llllll
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rrGrrPDirrPr πρρ −×

×−=×−= ΩΩ
+ ,   (5) 

where ρl∈(0,1) is the step size in iteration l , lDir−  is the descent direction, and π(rl) is the 
vector of least generalized path costs evaluated at rl. ][uPΩ  denotes the unique projection of 
vector u onto Ω (the set of feasible multi-class path flow vectors r). Based on Eq.(10), the new 
path assignment rl+1 is obtained by updating the current path assignment rl along the descent 
direction ( lDir− ) with a move size ρl. This path assignment updating scheme is intuitively 
based on the fact that travelers farther from the equilibrium and on paths with larger flow rates 
are more strongly inclined to change path than those on paths with smaller flow rates and with 
travel cost closer to the minimal cost. 
 
4.2.3 Multi-Class Dynamic Network Loading Using Traffic Simulator 

By the BDUE definition, all trips in a network are equilibrated in terms of actual 
experienced path generalized costs, consisting of experienced path times and path costs, so it is 
necessary to determine the experienced path generalized costs G(r) for a given multi-class path 
flow vector r. To this end, the simulation-based dynamic traffic (network loading) model – 
DYNASMART (Jayakrishnan et al., 1994) is employed to evaluate a path assignment r and to 
obtain G(r) and time-dependent link travel times used in the path generation step. It should be 
noted that the algorithm is independent of the specific dynamic traffic model selected; any 
particle-based (microscopic or mesoscopic) dynamic traffic model capable of capturing complex 
traffic flow dynamics can be embedded into the proposed algorithm.  
 
4.2.4 Convergence Checking Using Gap Values 

This study extends the gap-based criterion proposed by Lu and Mahmassani (2006) to the 
BDUE context and defines the multi-class version of the gap function as the following: 

∑∑∑∑ ∑
∈
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Note that, Gap(rl) provides a measure of the violation of the BDUE conditions in terms of the 
difference between the total actual experienced path generalized cost and the total least 
generalized cost evaluated at any given multi-class path flow pattern r. The difference vanishes 
when the path flow vector r* satisfies the BDUE conditions.  
 
5. Preliminary Numerical Results 

 The proposed BDUE algorithm is implemented and tested on the Irvine (California, USA) 
network, consisting of 326 nodes (70 of them are signalized), 626 links, and 61 traffic analysis 
zones (Mahmassani et al. 2003). To create hypothetic dynamic road pricing scenarios, one lane 
of a portion (about 1 mile) of the I-405 westbound freeway is converted to the toll road, along 
with an additional new toll lane. The two toll lanes have the same length as the (remaining) three 
regular lanes but a 10-mile higher posted speed limit (and hence higher capacity) than the regular 
lanes. Table 1 lists the three simple dynamic pricing scenarios tested in the experiments 
conducted on the Irvine network. These three pricing scenarios have the same four pricing 



periods but different toll levels representing low, middle, and high toll scenarios, respectively.  
The experimental results are presented in Table 2. These small gap values indicate that the 
BDUE algorithm is able to find close-to-BDUE solutions.   

Table 1 Dynamic road pricing scenarios tested on the Irvine network 
 

Pricing Scenario 
Period 1 

(7:00-7:30AM) 
Period 2 

(7:30-8:00AM) 
Period 3 

(8:00-8:30AM) 
Period 4 

(8:30-9:00AM) 
1 $0.10 $0.20 $0.30 $0.15 
2 $0.20 $0.30 $0.40 $0.25 
3 $0.30 $0.40 $0.50 $0.35 

 

Table 2 Experimental results on the Irvine network 
 Gap(r) 
Iteration Scenario 1 Scenario 2 Scenario 3 

1 1669.0 1846.6 2224.7 
2 1478.6 1851.8 1444.9 
3 1260.1 737.3 873.0 
4 559.1 551.4 764.1 
5 536.4 1034.5 483.3 
6 485.9 657.2 614.2 
7 917.0 703.8 395.9 
8 452.9 458.8 695.4 
9 724.5 809.5 451.4 

10 310.9 287.5 333.3 
11 698.1 785.5 452.7 
12 320.6 863.7 295.5 
13 312.5 316.2 314.2 
14 291.4 300.2 290.0 
15 602.1 285.3  
16 406.1 263.2  
17 361.7 299.4  
18 262.7   

 
References 
Dial, R. B. (1996). Bicriterion traffic assignment: basic theory and elementary algorithms. Transportation Science, 

Vol. 30 (2), pp. 93-110. 
Jayakrishnan, R., Mahmassani, H. S., and Hu, T.-Y. (1994). An evaluation tool for advanced traffic information and 

management systems in urban network. Transportation Research Part C, Vol. 2 (3), pp. 129-147. 
Leurent, F. (1993). Cost versus time equilibrium over a network. European Journal of Operational Research, Vol. 

71 (2), pp. 205-221. 
Lu, C.-C., Mahmassani, H. S. and Zhou, X. (2006). Equivalent gap function-based reformulation and solution 

algorithm for the dynamic user equilibrium problem. Submitted to Transportation Research Part B. 
Mahmassani, H. S., Qin, X., Zhou, X., Mahfoud, R. H., Lu, C.-C. and Erdogan, S. (2003). TMC evaluation report 

for a real-time DTA system prototype: phase 1.5B. Technical Report, Maryland Transportation Initiative, 
University of Maryland, College Park, USA. 

Mahmassani, H. S., Zhou, X., and Lu, C.-C. (2005). Toll pricing and heterogeneous users: approximation algorithms 
for finding bi-criterion time-dependent efficient paths in large-scale traffic networks. Transportation Research 
Record 1923, pp.28-36. 

Marcotte, P. and Zhu, D. L. (1997). Equilibria with infinitely many differential classes of customers. In 
Complementarity and Variational Problems. State of the Art, Proceedings of the 13th International Conference 
on Complementarity Problems, Jong-Shi Pang and Michael Ferris, eds., SIAM, Philadelphia, pp. 234-258. 


