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1 Introduction

This research considers a single-period, single-depot vehicle routing problem in which a fleet of homogeneous
capacitated vehicles is dispatched to serve the demands of customers. When customer load demands are not
known with certainty when planning, the routing problem is referred to as the Vehicle Routing Problem with
Stochastic Demands (VRPSD). Traditional solution methodologies for the VRPSD can be grouped roughly
into two classes: chance-constrained approaches and two-stage expectation minimization approaches; see
(3) for more discussion. Most research focuses on the latter approach, using either exact stochastic integer
programming methods (e.g., (4) and (6)) or heuristics (e.g., (5) and (1)).

To date, however, the VRPSD research literature has not explicitly addressed time considerations, and
thus its utility in practice is limited. In this work, we address this deficiency by focusing on vehicle duration
considerations, including hard tour duration constraints. Duration constraints are usually critical in practice
due to driver hours-of-service regulations and deadlines inherent in time-definite transportation services,
and it is therefore important to explore solution approaches that treat such constraints explicitly. With
this motivation, we propose and study a two-stage solution approach for VRPSD problems with duration
considerations motivated by ideas drawn from the field of robust optimization (see, e.g., (2)). The approach
relies on efficient methods for determining the maximum duration of each a priori vehicle tour given a
recourse policy for any joint realization of customer demands. With such methods, it is then possible to
solve problems that include hard duration constraints or those with minimax objective functions.

2 Problem definition and notation

The VRPSD is defined on a directed graph G = (V0, A) with V0 = {v0} ∪ V , where v0 represents the depot
and V = {v1, · · · , vn} represents the set of customers, and with A = {(vi, vj) | i 6= j, vi, vj ∈ V0}. A travel
time tij(= tji) is defined for each arc (i, j) ∈ A, and the vector {tij} is assumed to satisfy the triangle
inequality. Vehicle capacity is denoted by Q, and customer demands are integer-valued random variables
with known distributions. Customer demands are denoted by vector d̃ ∈ Z|V |+ . It is assumed that d ≤ d̃ ≤ d
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for known d, d ∈ Z|V |+ , and that element d(i) ≤ Q for each i ∈ V . The actual customer demand becomes
known only when the vehicle arrives at a customer’s location. A tour specifies the a priori sequence in which
a set of customers is visited by a single vehicle. Let Tk denote the tour of vehicle k. Assume that vehicles
carry inventory to be delivered to customers.

A recourse policy P determines uniquely for any given demand instance a set of recourse actions to be
undertaken by vehicles to ensure that all customers are fully served. We consider only recourse policies that
do not jointly replan vehicle operations; i.e., each vehicle k will serve all customers in Tk without assistance
from other vehicles. Let L(Tk) be the total travel time required by vehicle k to complete its a priori tour
if no recourse were required, and let φ(Tk,P, d) be the total additional travel time required given policy P
and demand realization d. Then, the maximum duration of tour k is:

L(Tk,P) = L(Tk) + max
d≤d≤d

φ(Tk,P, d) . (1)

Similarly, the expected duration of tour k is given by:

LE(Tk,P) = L(Tk) + Eed [φ(Tk,P, d)] . (2)

The two problems considered are now defined. Given a fleet of m vehicles, the Robust Vehicle Routing
Problem with Stochastic Demand (RVRPSD) develops a set of m vehicle tours with minimum maximum
duration:

RVRPSD min
Tk

max
k

L(Tk,P) (3)

Note that the RVRPSD does not require knowledge of the distribution of d̃.
Alternatively, the Vehicle Routing Problem with Stochastic Demands and Duration Constraints (VRPS-

DDC) finds the set of tours with minimum total expected duration subject to a hard constraint on individual
vehicle duration:

VRPSDDC min
Tk

∑

k

LE(Tk,P) (4)

s.t. L(Tk,P) ≤ ∆ ∀ k

Here it is assumed that each vehicle faces the same maximum allowable duration ∆.

3 Evaluating L(T ,P)

Given P and T where n = |T |, the problem of determining L(T ,P) is central to the solution of any RVRPSD
or VRPSDDC. The adversarial problem is to determine the demand realization d∗ that maximizes φ(T ,P, d),
enabling computation of L(T ,P). Note that if φ were non-decreasing in d, it is easy to see that d∗ = d. For
many recourse policies, φ does not have this property and alternative approaches are needed.

Consider policies in which vehicles serve customers in their a priori tours in order, and may make a
return trip(s) to the depot (a detour) to reload when appropriate. The recourse actions during tour T can
then be described by a triplet (i, r, I) defined for each customer i ∈ T . For customer i, let r = j if the j-th
detour to the depot is initiated immediately prior to serving the customer, or r = 0 if no detour occurs. Let
I represent the inventory carried by the vehicle after serving customer i. While I is clearly bounded above
by Q, it is also easy to show that r is bounded above by a maximum value R ≤ n which results from the
scenario where d = d.
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For most practical recourse policies P, it is possible to define recourse conditions C1(i, Ii) that provide
simple necessary and sufficient conditions for the existence of some demand realization in which the vehicle
first detours to the depot before serving customer i and then departs with inventory Ii, and Cr,r+1(i, Ii, k, Ik)
that provide conditions in which the vehicle detours for the r + 1-th time before customer k and departs
with inventory Ik if the r-th detour occurred before i leaving inventory Ii. The problem of determining the
demand vector d which maximizes L(T ,P) is then equivalent to solving a longest (s, t) path problem on an
acyclic network G(P, T ) = (N ,A). Node set N includes s and t, and a node for each (i, r, I) for each i ∈ T ,
r ∈ {1, ..., R}, and I ∈ {0, 1, ..., Q}. Arc set A includes:

1. arcs connecting s to nodes (i, 1, Ii) when warranted by conditions C1, with costs equal to the net cost
of the recourse action before serving node i;

2. arcs connecting (i, r, Ii) to (k, r + 1, Ik) when warranted by conditions Cr,r+1, with costs equal to the
net cost of the recourse action before serving node k; and

3. arcs connecting all nodes (i, 1, Ii) to t with no cost.

This shortest-path network leads directly to the following pseudopolynomial complexity result:

Lemma 3.1 Given a tour T with n customers operating using recourse policy P, L(T ,P) can be determined
in O(n3Q2) time.

For many recourse policies, determination of L(T ,P) is possible in polynomial time using a simplified
acyclic network. One class of such policies are called history independent :

Definition 3.1 (History-independent recourse policy) A recourse policy P is history independent, if
for every i, k ∈ T such that i < k, recourse conditions Cr,r+1 can be evaluated without considering d(1), · · · , d(i−
1).

Lemma 3.2 Given a tour T with n customers operating using history-independent recourse policy P, L(T ,P)
can be determined in O(n3) time.

4 Recourse Policies

We consider a set of recourse policies where customer demand is not splittable across vehicles, or across
multiple return trips to the depot for a single vehicle:

Definition 4.1 (Myopic Policy P0) A detour recourse occurs at customer i if and only if d(i) is strictly
greater than the on-board inventory of the arriving vehicle, Ii−1.

Definition 4.2 (One Lookahead Policy P1) A preemptive detour is taken between customer i− 1 and i

if and only if Ii−1 is strictly less than d(i) after serving i.

Definition 4.3 (All Lookahead Policy Pn) Prior to departing from customer i − 1, determine whether
to take a preemptive detour before proceeding to customer i by solving an optimal tour partitioning problem
on the remaining customers assuming demand d(j) = d(j) and using initial vehicle inventory Ii−1.

It turns out that P1 is history independent, but P0 is not. Determination of L(T ,P0), however, is
possible in general in O(n4) using a specialized form of network G. Furthermore, we show that determination
of L(T ,Pn) is simple since φ(T ,Pn, d) is non-decreasing in d, and thus the worst-case demand instance is
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d = d. This leads to the following result. Let LOP (T , d) be the duration of the set of vehicle routing tours
formed by using the optimal tour partitioning algorithm to determine the best set of vehicle detours given
known customer demands d.

Theorem 4.1 For any fixed sequence T , L(T ,Pn) = LOP (T , d) = maxd LOP (T , d)

Thus, in the worst case, knowing all customer demands a priori is no better than using policy Pn if customers
are still to be served in the same order as given by T . Since no such policy can be better than Pn, the
following lemma holds.

Lemma 4.1 For any fixed sequence T ,

L(T ,Pn) ≤ L(T ,P0)

L(T ,Pn) ≤ L(T ,P1)

Interestingly, however, the following result only holds for R ≤ 1; simple counterexamples exist for R = 2.

Theorem 4.2 For any fixed sequence T and R ≤ 1,

L(T ,Pn) ≤ L(T ,P1) ≤ L(T ,P0)

5 Computational Findings

We focus an initial computational study on recourse policies P0 and Pn. The myopic policy is appealing
because of its simplicity, and since it is frequently analyzed in literature on stochastic vehicle routing prob-
lems. Tabu search solution heuristics are developed and used for the different problems to follow using the
standard N(p, q, x) remove-and-reinsert neighborhood from (5).

5.1 Single-vehicle RVRPSD

We compare robust vehicle tours to those generated by expectation minimization only. Ten geographic
instances were generated for each n ∈ {10, 20, 30}, with customers located according to a uniform distribution
on [0, 100]2 with depot at (50, 50) and Euclidean travel times. Customers have homogeneous demands, with
d(i) = 1. Three different levels for d(i) ∈ {5, 11, 17} were used to understand the impact of increasing
variance; to compute expectations, d̃(i) is assumed to be discrete uniform on [d(i), d(i)]. Finally, Q was
varied using a parameter r that estimates the approximate number of required detours to serve a set of
customers: Q = round

(
n
r

d(i)+d(i)
2

)
where r ∈ {1, 2, 3}.

For each instance, tabu search was used to determine both a best robust minimax tour TR and a best
minimum expected duration tour TE . Next, the expected duration of TR and the maximum duration TE

were computed. Table 1 summarizes the results with using myopic policy P0, presenting average performance
measures over all instances while holding one parameter fixed. Columns WCE give the average percentage
difference between the expected and maximum durations of TE ; note that these differences can be quite
large. Columns POR give the price of robustness, measured as the average percentage difference between
the expected duration of TR and the expected duration of TE . For these problems, this price is about 2
to 4 percent. Finally, columns PON give the price of non-robustness, measured as the average percentage
difference between the maximum duration of TE and the maximum duration of TR. These differences average
about 4 to 6 percent, and represent the tour duration penalty one may face in the worst case from not using
the robust tour TR.
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n WCE POR PON d(i) WCE POR PON r WCE POR PON
10 48.5 2.2 3.6 5 26.3 3.0 4.8 1 21.5 1.7 2.2
20 32.2 2.2 4.6 11 42.3 3.0 3.7 2 37.1 3.9 5.6
30 30.4 4.3 4.2 17 42.6 2.8 3.8 3 52.5 3.1 4.6

Table 1: Comparative results for single-vehicle RVRPSD

Best robust tours were also generated with lookahead policy Pn. In this case, the minimax duration
robust tour TA can be determined by solving a deterministic VRP for the customers using demands d(i).
The expected cost of each tour TA is evaluated by simulation. For the test instances, the average penalty
in maximum duration for using myopic policy P0 instead of Pn was about 14 percent, while the average
penalty in expected duration was about 1.5 percent.

5.2 Multiple-vehicle VRPSDDC with P0

n Vehicle capacity d(i) 0.75∆k 0.85∆k 0.95∆k

5 4.89% 1.89% 1.25%
Q(r = 5) 11 3.50% 1.66% 1.09%

17 2.74% 1.69% 1.12%
5 5.05% 3.04% 1.05%

20 Q(r = 4) 11 1.47% 1.01% 0.81%
17 1.57% 1.05% 0.83%
5 6.63% 3.28% 1.63%

Q(r = 3) 11 5.85% 2.95% 0.92%
17 5.54% 2.87% 0.89%
5 11.35% 7.74% 5.19%

Q(r = 5) 11 15.82% 10.12% 6.08%
17 14.60% 9.60% 5.60%
5 8.87% 6.93% 3.39%

100 Q(r = 4) 11 12.55% 8.38% 5.33%
17 12.37% 9.17% 4.02%
5 8.41% 4.62% 2.84%

Q(r = 3) 11 9.91% 8.18% 4.91%
17 9.64% 7.87% 6.34%

Table 2: Average percentage increases in expected total travel time for VRPSDDC problems for varying
levels of duration constraint tightness.

We study the impact of duration constraints on multiple vehicle routing problems with stochastic de-
mands when using myopic recourse policy P0. Ten geographic instances were generated for each n ∈
{20, 40, 60, 80, 100}, and customer demands are modeled as in the previous section. Parameter Q is var-
ied using the same expression, where r ∈ {3, 4, 5}; in this context, r can be interpreted as a lower bound on
the required number of vehicles. To understand the potential impact of duration constraints, each instance
k is solved first with no duration constraints to determine an unconstrained minimum. Next, the maxi-
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mum tour duration ∆k is computed. Then, the instance is resolved with three different duration constraint
right-hand sides: {0.95∆k, 0.85∆k, 0.75∆k, }.

Results in Table 2 summarize the average percentage increase in expected solution cost when enforcing
duration constraints for two levels of n. Problems with more customers seem to face larger potential negative
impacts from duration constraints, as well as problems with smaller vehicle capacity (larger r). In the largest
problems, a 25 percent reduction in allowable maximum tour duration leads to increases in total expected
tour cost of 10 to 15 percent.

6 Conclusions

This research has proposed and developed a methodology for incorporating tour duration considerations into
vehicle routing problems with stochastic demands. Efficient evaluation methods are presented for typical
recourse policies, and are embedded within traditional metaheuristic search approaches. Computational
results on VRPSDDC instances demonstrate that tours and expected costs may vary significantly when
problems face hard duration tour duration constraints.
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