
An Exact Algorithm

for a Vehicle Routing Problem

with Time Windows and Multiple Use of Vehicles

Nabila Azi

Michel Gendreau

Jean-Yves Potvin

Département d’informatique et de recherche opérationnelle

and

Centre interuniversitaire de recherche sur les réseaux d’entreprise,

la logistique et le transport,

Université de Montréal,

C.P. 6128, succursale Centre-ville,

Montréal, Québec, Canada H3C 3J7.

Abstract

The vehicle routing problem with multiple use of vehicles is a variant of the
classical vehicle routing problem. It arises when each vehicle performs several
routes during the workday due to strict time limits on route duration (e.g., when
perishable products are transported). The routes are defined over customers
with a revenue, a demand and a time window. Given a fixed-size fleet of vehicles,
it might not be possible to serve all customers. Thus, the customers must be
chosen based on their profitability (i.e., revenues minus traveling costs). In this
paper, a column generation approach is first proposed to address this problem.
The master problem is a variant of a set covering problem, while the pricing
subproblems are elementary shortest path problems with resource constraints.
The column generation algorithm is then embedded within a branch-and-price
framework to obtain integer solutions. Computational results are reported on
Euclidean problems derived from well-known benchmark instances for the ve-
hicle routing problem with time windows. Additional results are reported on
highly constrained instances where the width of the time windows is reduced.

Keywords: Vehicle routing, time windows, multiple use of vehicles, elementary
shortest paths with resource constraints, column generation, branch-and-price.

1 Introduction

We consider a variant of the Vehicle Routing Problem with Time Windows (VRPTW)
where each vehicle can perform several routes during its workday. Surprisingly, this
problem has received little attention in the literature in spite of its importance in

1

practice. For example, in the home delivery of perishable goods, like food, routes
are of short duration and must be combined to form a complete workday. We be-
lieve that this type of problem will become increasingly important in the future with
the advent of electronic services, like e-groceries, where customers can order goods
through the Internet.

The vehicle routing problem with multiple use of vehicles, but no time windows,
has been addressed through heuristic means in [9, 16]. In [16], different solutions to
the classical vehicle routing problem are generated using a tabu search heuristic. The
routes obtained are then combined to produce workdays for the vehicles by solving
a bin packing problem, an idea previously introduced in [9]. A recent work in [5]
describes insertion heuristics that can efficiently handle different types of constraints
including time windows and multiple use of vehicles. Logistics and socio-economic
considerations about different types of home delivery problems, with a particular
emphasis on electronic groceries, can also be found in [10, 11, 12, 13, 17].

In [1], we proposed an exact algorithm for solving the single vehicle variant of the
problem. This algorithm is a two-phase method in which all non-dominated feasible
routes are first generated; some of these routes are then selected and sequenced to
form the vehicle workday. In this paper, we extend this work to the much more
challenging multiple vehicle case. To the best of our knowledge, this is the first time
that an exact algorithm is devised for such a problem.

The outline of the paper is as follows. In Section 2, a mathematical programming
formulation is proposed. The column generation scheme is presented in Section 3.
Section 4 then describes the branch-and-price framework within which the column
generation algorithm is applied at each node of the search tree. Computational
results on problem instances derived from Solomon’s VRPTW benchmarks [15] are
reported in Section 5. Finally, concluding remarks follow in Section 6.

2 Problem Formulation

Our problem can be stated as follows. We have a fixed-size fleet of vehicles (each
of capacity Q) denoted by set V , that delivers perishable goods from a depot to a
set of customer nodes N = {1, 2, ..., n} in a complete directed graph with arc set A.
A distance dij and a travel time tij are associated with every arc (i, j) ∈ A. Each
customer i ∈ N is characterized by a revenue gi, a demand qi, a service or dwell time
si and a time window [ai, bi], where ai is the earliest time to begin service and bi is
the latest time. Hence, a vehicle must wait if it arrives at customer i before ai. The
working day of each vehicle is made of a sequence of routes where each route starts
and ends at the depot (some of these routes might be empty). These routes are
denoted by set K, where |K| is large enough to accommodate the maximal number
of routes that the fleet can possibly perform in a day. We assume, without loss of
generality, that the routes served by any vehicle are numbered in increasing order,
that is, a vehicle serves route l after route k if and only if l > k.

The depot is denoted by 0 or n+1 depending if it is the initial or terminal node

2

of an arc, with s0 = sn+1 = 0, q0 = qn+1 = 0, a0 = an+1 = 0; b0 = bn+1 = ∞; the
symbol N+ is used for N

⋃

{0, n+1} and A+ for A
⋃

{(0, n+1)}, where (0, n+1) is
a dummy arc with distance d0,n+1 = 0 and travel time t0,n+1 = 0. Every customer
in a route must be served before a given deadline associated with that route. The
latter is defined by adding a constant tmax to the route start time. Also, a setup
time σk for loading the vehicle is associated with each route k ∈ K.

In practice, it might not be profitable nor feasible, due to the time window
constraints, to serve all customers with the fleet of vehicles. The objective that we
consider is thus to minimize the difference between the total distance traveled and
the total revenue earned from served customers (weighted by a parameter α).

The following variables are used in the formulation of the problem.

• For each route k ∈ K and each arc (i, j) ∈ A+, binary variable xk
ij indicates

whether or not arc (i, j) appears in route k. (Note that when xk
0,(n+1) = 1,

route k is empty.)

• For each route k ∈ K and each customer i ∈ N , binary variable yk
i indicates

whether or not customer i is served by route k.

• For each route k ∈ K and each customer i ∈ N , continuous variable tki in-
dicates when service starts at customer i if it is served by route k. When
customer i is not served by route k, this value is meaningless. For each route
k ∈ K, tk0 (resp. tkn+1) is the time at which the route starts (resp. ends) at
the depot.

• For each pair of routes k, l ∈ K with k < l, binary variable zkl indicates
whether or not route l immediately follows route k in the workday of one of
the vehicles.

This problem can be formulated as follows, with M an arbitrary large constant:

Min
∑

k∈K

∑

(i,j)∈A

dijx
k
ij − α

∑

k∈K

∑

i∈N

giy
k
i (1)

subject to

∑

j∈N+

xk
ij = yk

i , i ∈ N, k ∈ K, (2)

∑

k∈K

yk
i ≤ 1, i ∈ N, (3)

∑

i∈N+

xk
ih −

∑

j∈N+

xk
hj = 0, h ∈ N, k ∈ K, (4)

3

∑

i∈N+

xk
0i = 1, k ∈ K, (5)

∑

i∈N+

xk
i(n+1) = 1, k ∈ K, (6)

∑

i∈N

qiy
k
i ≤ Q, k ∈ K, (7)

tki + si + tij − M
(

1 − xk
ij

)

≤ tkj , (i, j) ∈ A+, k ∈ K, (8)

aiy
k
i ≤ tki ≤ biy

k
i , i ∈ N, k ∈ K, (9)

tk0 ≥ σk, k ∈ K, (10)

tki ≤ tk0 + tmax , i ∈ N, r ∈ K, (11)

σk = β
∑

i∈N

siy
k
i , k ∈ K, (12)

tl0 + M(1 − zkl) ≥ tkn+1 + σl, k, l ∈ K k < l, (13)
∑

k∈K

∑

l∈K|l>k

zkl ≥ |K| − |V | k, l ∈ K, (14)

xk
ij ∈ {0, 1}, i, j ∈ A, k ∈ K, (15)

yk
i ∈ {0, 1} i ∈ N, k ∈ K, (16)

zkl ∈ {0, 1} k, l ∈ K, k < l, (17)

tki ≥ 0, i ∈ N, k ∈ K. (18)

In this formulation, equations (2) and (3) state that every customer should be
visited at most once. Equations (4), (5), and (6) are flow conservation constraints
that describe the individual routes. Equation (7) states that the total demand on
a route cannot exceed vehicle capacity. Equations (8), (9), (10) and (11) ensure
feasibility of the time schedule. Note that equation (11) corresponds to the deadline
constraint for the service at a customer and that equation (9) forces the tki variables
to 0 when customer i is not in route k. Consequently, equation (11) is automatically
satisfied in this case. Equation (12) defines the vehicle loading time for a route as
the sum of the service times of all customers in that route multiplied by a constant β.
Constraints (13) and (14) ensure the proper route sequencing within the workdays
of individual vehicles. Note that through equation (14), at most |V | routes are at
the beginning of workdays, which implies that there are at most |V | workdays.

In the following, we assume that gi = 1, for all i ∈ N . Also, we set α to a large
value, so that the inclusion of any additional customer is always profitable. In this
way, we obtain a hierarchical objective where the number of served customers is first
maximized and, for the same number of served customers, the total travel distance
is minimized.

4

3 Column generation

In practice, the formulation in Section 2 is unlikely to be tractable for any instance of
reasonable size. We thus propose to address this problem with a column-generation
approach embedded within a branch-and-price framework. Column generation is
well documented in the literature. We will thus only briefly introduce the master
problem and the pricing subproblem in the following. The interested reader will
find more details about column generation in [2, 7].

3.1 Master problem

In the master problem (MP), every column corresponds to a workday r. The decision
variables xr are binary variables that indicate if each workday r is used or not. The
MP can then be written as:

Min
∑

r∈Ω

(dr − αgr)xr (19)

s. t.
∑

r∈Ω

airxr ≤ 1, i ∈ N, (20)

∑

r∈Ω

xr ≤ |V |, (21)

xr ∈ {0, 1}, r ∈ Ω. (22)

where Ω is the set of all feasible workdays, gr is the number of customers in workday
r (recall that gi = 1, i ∈ N), dr is the total travel distance in workday r and air is 1
if customer i is in workday r, 0 otherwise. A solution is thus a subset of workdays
Ω′ taken from Ω that covers each customer at most once.

As the number of columns can be huge, the columns are progressively intro-
duced into the master problem to obtain a number of restricted MPs. The linear
relaxation of these restricted MPs (RLMPs) is then solved with CPLEX. The dual
variables associated with the optimal solution of a given RLMP are used to define
a pricing subproblem, which is basically an elementary shortest path problem with
resource constraints defined on an auxiliary graph. Solving this subproblem allows
the identification of workdays with negative reduced cost, if any. The latter are then
added to the current RLMP to obtain the next RLMP, and its linear relaxation is
solved again to obtain new dual variables. This iterative procedure is repeated until
no more paths with negative reduced costs can be found. At this point, an optimal
solution for the linear relaxation of the MP has been obtained.

3.2 Pricing subproblem

The pricing subproblem consists in finding an elementary shortest path with resource
constraints on an auxiliary graph GT = (AT , NT). The latter, called the route

5

graph, is constructed as follows. First, the algorithm proposed by Feillet et al. [8] is
applied on the original graph to find all non dominated feasible routes. These routes,
plus two artificial nodes that correspond to the start and end of the workday, form
node set NT . The arc set AT corresponds to feasible transitions between routes.
In particular, given two routes k and l, arc (k, l) ∈ AT if routes k and l have
no customers in common and route l can be feasibly served after route k (where
feasibility relates to the time window constraints). The arc cost ckl corresponds to
dl − αgl, where dl is the distance of route l and gl is the number of customers in
route l. There is also an arc from the artificial start node to every route node and
from every route node to the artificial end node (in the latter case, the costs are set
to 0). Note that this route graph is constructed once and for all at the beginning
of the algorithm. More details about the construction of this graph can be found
in [1].

We can now formulate the pricing subproblem using binary variables Xkl which
indicate if arc (k, l) in used in the route graph. The reduced cost of arc (k, l) is
denoted c′kl = ckl −

∑

i∈Nl
λi, where Nl is the set of customers in route l and λi is

the dual variable associated with constraint (20) for customer i, and µ is the dual
variable associated with constraint (21).

Min
∑

(k,l)∈AT

c′klXkl − µ (23)

s. t.
∑

(k,h)∈AT

Xkh −
∑

(h,l)∈AT

Xhl = 0, h ∈ NT , (24)

∑

k∈NT

X0k = 1, (25)

∑

k∈NT

Xk(n+1) = 1, (26)

Tk + σl +
(

t
k
n+1 − t

k
0

)

− M(1 − Xkl) ≤ Tl, (k, l) ∈ AT , (27)

tk0 ≤ Tk ≤ t
k
0, k ∈ NT , (28)

Xkl ∈ {0, 1}, (k, l) ∈ AT , (29)

Tk ≥ 0, k ∈ NT . (30)

In this formulation, nodes 0 and n + 1 are the artificial start and end nodes,
respectively. Continuous variable Tk corresponds to the vehicle departure time of
route k while tk0, t

k
0, tkn+1 and t

k
n+1 are the earliest departure time, latest departure

time, earliest return time, latest return time of route k, respectively. These bounds
are derived from the time windows of the customers served in that route. Note
also that (t

k
n+1 − t

k
0) corresponds to the route duration, which is also the minimum

duration because the waiting time is minimized by serving the route at the latest
feasible time.

Once again, we do not solve that formulation directly, but rather apply the

6

elementary shortest path algorithm with resource constraints of Feillet et al. [8] to
find the best path from the artificial start node to the artificial end node in the
route graph (i.e., to find a sequence of routes or workday). This algorithm is briefly
introduced below.

3.3 Solving the pricing subproblem

The algorithm of Feillet et al., denoted FDGG in the following, is a label cor-
recting algorithm that solves the elementary shortest path problem with resource
constraints. In this context, a path is characterized by the consumption of each
resource, in addition to its cost. Accordingly, when different paths lead to the same
node, it might well be that no path dominates, or is better than the others, over all
criteria. As a consequence, many different labels are typically maintained at each
node (i.e., all non-dominated paths leading to that node).

Since elementary paths must be generated, cycles are detected by keeping a trace
of previously visited nodes. More precisely, a path p from some origin node o to
some node j ∈ N is labeled with Rp = (cp, t

1
p, . . . , t

l
p, sp, V

1
p , . . . , V n

p), where n is
the number of nodes in the graph, L = {1, ..., l} is the set of resources, cp is the
cost of path p, tkp is the consumption of resource k = 1, ..., l, sp is the number of
unreachable nodes (either because they have already been visited or because their
inclusion would violate one or more resource constraints) and V i

p = 1 if node i is
unreachable, 0 otherwise. The following dominance relation is then defined:

Dominance relation. If p and p′ are two different paths from origin o to node j

with labels Rp and R′
p, respectively, then path p dominates p′ if and only if cp ≤ cp′ ,

sp ≤ sp′ , tkp ≤ tkp′ , k = 1, ..., l, V i
p ≤ V i

p′ , i = 1, ..., n.

That is, path p dominates p′ if (1) it is not longer, (2) it does not consume
more resources for every resource considered and (3) every unreachable node is also
unreachable for path p′. Note that sp, the number of unreachable nodes, is included
in the label only to speed up the computations. As stated in [8], by eliminating
paths through this dominance relation, only labels corresponding to non dominated
elementary paths are kept and a solution to the problem is obtained at the end.

The FDGG algorithm is used to find elementary least cost paths with time
window constraints from the artificial start node to the artificial end node in the
route graph. The time windows for vehicle departure associated with each route are
used for this purpose. That is, the vehicle must be back at the depot and ready
to depart before the latest departure time of its next route. When arc (k, l) is
added to the current path, route l is added to the vehicle workday. In this case,
the cost of route l is incurred and the time consumed corresponds to the duration
of route l, plus the setup time of route l, plus any waiting time before departure.
The sequence of nodes in a least cost path obtained at the end corresponds to the
sequence of routes in the vehicle workday.

To speed up the computations, we start with a heuristic version of this algorithm
where the condition V i

p ≤ V i
p′ , i = 1, .., n, is not checked in the dominance relation

between paths p and p′ (i.e., path p′ is eliminated even if it is not really dominated

7

by p). The exact algorithm is used only when the heuristic cannot find a workday
of negative reduced cost.

3.4 The column generation algorithm

In this subsection, we explain how the column generation algorithm is initialized,
how the columns are managed, and what are the lower bounding and termination
criteria. This algorithm is executed at each node of the search tree.

Initialization. At the root of the search tree, the RLMP is initialized with workdays
made of a single customer. The number of columns thus corresponds to the number
of customers. For the other nodes in the search tree, the algorithm initializes the
RLMP with the set of columns in the last node considered, after removing columns
that are infeasible due to branching (see Section 4).

Column management. We stop solving the pricing subproblem when a large number
of columns with negative reduced costs has been found. This number is set to 200
in our experiments. That is, we do not want to spend too much time in the pricing
subproblem, given that a column with an optimal reduced cost value is not really
needed.

Lower bounding and termination. One disadvantage of the column generation al-
gorithm is that a lot of iterations are often needed to prove optimality, while the
optimal value of the RLMP does not change significantly from one iteration to the
next. Many authors have thus proposed alternative lower bounding techniques that
allow earlier termination. In particular, the following dual bound θ(λ) can be de-
rived from the lagrangean relaxation of constraints (20), where λ stands for the
vector of dual variables associated with these constraints:

θ(λ) = |V |c′∗ + Z∗
RLMP .

In this formula, Z∗
RLMP is the optimal value of the current RLMP and c′∗ is the

optimal reduced cost of the subproblem, which depends on λ. If this dual bound is
greater than or equal to the best incumbent feasible solution (primal bound), the
column generation algorithm is stopped.

4 The branch-and-price algorithm

The column generation algorithm described in Section 3 is run at every node of a
search tree within a branch-and-price framework. This section thus describes the
search and branching strategies that we used.

4.1 Search strategy

The search tree is explored according to a best-first policy, where subproblems are
ranked according to their associated lower bound. Best-first was chosen over a depth-

8

first search policy, as the latter yielded inferior results in preliminary experiments.

4.2 Branching

Different branching schemes are applied in the following order: branching on the
number of vehicles, branching on customers and branching on arcs. All these strate-
gies are compatible with the structure of the pricing subproblem. They are explained
in the following.

Branching on the number of vehicles. First, we determine the number of vehicles
v =

∑

r∈Ω′ xr in the optimal solution of the current relaxed RLMP. If this number
is fractional, we impose

∑

r∈Ω′ xr ≤ ⌊v⌋ in the first branch and
∑

r∈Ω′ xr ≥ ⌊v + 1⌋
in the second branch. This branching rule does not impact the subproblem.

Branching on customers. We search for a customer i for which yi =
∑

r∈Ω′ airxr is
fractional. If several fractional customers exist, the one with a value closest to 0.5
is selected. Two branches are created which respectively forbid (yi = 0) and enforce
(yi = 1) customer i in the solution. In the first case, all columns or workdays that
serve customer i are deleted from the RLMP, as well as all routes with this customer
in the route graph. In the second case, the corresponding constraint in (20) is forced
to 1.

Branching on customers can make the RLMP infeasible because, once a substan-
tial number of branching decisions has been made, many constraints of type (20)
can be forced to one. This situation is addressed by adding artificial zi variables in
(20) to obtain zi +

∑

r∈Ω′ airxr = 1, i ∈ N . A very large cost is assigned to these
variables to make sure that they are part of the solution only in case of infeasibility.

Branching on arcs. We also branch when the flow on any arc (i, j) is fractional.
Two branches are created: one branch with xij = 1, where vertex j must be visited
immediately after vertex i; and the other branch with xij = 0, where it is forbidden
to visit vertex j after vertex i. In the first case, all workdays in the RLMP, as well
as all routes in the route graph, that contain arc (i, k) with k 6= j or arc (k, j) with
k 6= i are deleted. Also, vertices i and j are forced in the RLMP by setting yi = 1
and yj = 1. In the second case, all workdays in the RLMP, as well as all routes in
the route graph, where vertex j immediately follows vertex i, are deleted.

We also branch on two consecutive fractional arcs at once to reach integrality
faster. Assuming that xij and xjk are both fractional and close to 0.5, we impose
xij +xjk ≥ 1 on one branch and xij +xjk = 0 on the other branch. The RLMP and
the route graph are then updated accordingly. We also generalized this concept to
more than two arcs, but no significant improvement was observed.

5 Computational Results

Solomon’s classical VRPTWs [15] were used for this study. In these problems both
the distance and travel time between two customer locations correspond to the
Euclidean distance. There are six different classes of instances depending on the

9

geographic location of the customers (R: random; C: clustered; RC: mixed) and
width of scheduling horizon (1: short horizon; 2: long horizon). In this study,
instances of type 1 have been discarded due to the short horizon that does not allow
a significant number of routes to be sequenced to form a workday. Results are thus
reported for R2 (11 instances), C2 (8 instances) and RC2 (8 instances). All tests
were run on an AMD Opteron 3.1 MHz with 16 GB of RAM, using ILOG CPLEX
10.0 to solve the RLMPs. The time limit for each run of the branch-and-price
algorithm was set to 25 hours.

Solomon’s VRPTWs were modified to fit our problem. In particular, a deadline
constraint tmax was associated with each route. Based on the results obtained on
the single vehicle variant of the problem [1], this parameter was set to 75 in the
cases of R2 and RC2, and to 220 in the case of C2. This value needs to be larger
for C2 because the service time at each customer is 90, as opposed to 10 for R2
and RC2. It should also be noted that the algorithm is very sensitive to the tmax

value and that the route graph quickly becomes unmanageable when larger values
are used. Finally, parameter β for the route loading time in equation (12) was set
to 0.2 in all experiments.

For each instance, only the first 25 or 40 customers, out of 100 customers, were
considered. The results were recorded at the root node and at the end of the branch-
and-price algorithm (due either to timeout or optimality). These results are shown
in Tables 1 to 5. In these tables, a particular instance is identified by its class and
its index followed by a dot and the number of customers considered. For example
RC202.40 is the second instance of class RC2, where only the first 40 customers are
considered.

In the tables, column Problem is the problem identifier, Gap is the gap in %
between the value of the linear relaxation at the root and the optimal value, Cols is
the total number of columns generated during the branch-and-price algorithm, Iter

is the total number of RLMPs that were solved by CPLEX, Nodes is the number of
nodes explored in the search tree, Dist. is the total travel distance, % Cust. is the
percentage of served customers, Routes per day is the average number of routes in
a workday, Cust. per route is the average number of customers in a route and CPU

is the computation time in seconds.

Tables 1 to 3 show that our algorithm can solve all instances with 25 customers
and 2 vehicles to optimality, with the exception of instances RC204.25, RC208.25
and C203.25, and that all customers are served by the vehicles. The CPU times vary
widely and range from a few seconds to a few hours. When the number of customers
is increased to 40, 11 problems out of 27 were solved to optimality, as indicated in
Table 4, with a sharp increase in CPU time. In some cases it was not possible to
serve all customers, even if the number of routes per workday significantly increased.
Finally, we tried to help our algorithm by reducing in half the width of the time
windows (i.e., by working on more constrained instances). The results for class RC2
are shown in Table 5. As we can see, we were able to solve three more instances
in this class, with a spectacular reduction in CPU time. Only instance RC204.40,
which seems to be particularly difficult, could not be solved within the alloted time.

10

It is worth noting that the problem is not harder to solve by our algorithm when
the number of vehicles is increased, because the route graph remains the same. This
is to be opposed to the number of customers and the value of the route deadline
tmax that lead to a quick increase in the size of this graph (i.e., a quick increase in
the number of feasible routes).

Problem Gap Cols Iter Nodes Dist. % Cust. Routes Cust. CPU
per day per route (sec.)

rc201.25 0.2% 1363 266 19 988.05 100% 6.0 2.1 988.1

rc202.25 3.1% 13496 670 67 881.49 100% 5.5 2.3 715.6

rc203.25 3.0% 10038 332 53 751.39 100% 4.5 2.8 753.7

rc205.25 2.2% 1693 194 21 840.35 100% 5 2.5 16.4

rc206.25 2.2% 7106 587 61 761.03 100% 4.5 2.8 138.1

rc207.25 6.1% 22377 1975 197 743.20 100% 4.5 2.8 4868.8

Table 1: RC2 instances with 25 customers and 2 vehicles

Problem Gap Cols Iter Nodes Dist. % Cust. Routes Cust. CPU
per day per route (sec.)

r201.25 0.4% 1787 230 9 762.43 100% 6.0 2.1 8.5

r202.25 0.0% 1500 25 1 645.78 100% 4.5 2.8 37.3

r203.25 0.1% 3074 43 3 621.97 100% 4.5 2.8 489.1

r204.25 0.3% 8226 159 23 581.50 100% 4.0 3.1 4772.0

r205.25 0.6% 6965 479 29 634.09 100% 4.5 2.8 209.3

r206.25 0.0% 1893 22 1 596.74 100% 4.0 3.1 143.2

r207.25 0.1% 8947 203 86 585.74 100% 4.0 3.1 3786.3

r208.25 0.3% 5052 95 91 579.68 100% 4.0 3.1 4769.3

r209.25 0.3% 3614 170 15 602.39 100% 4.0 3.1 252.0

r210.25 1.4% 9794 510 53 637.21 100% 4.5 2.8 1834.4

r211.25 0.5% 10514 331 97 575.91 100% 4.0 3.1 7734.0

Table 2: R2 instances with 25 customers and 2 vehicles

11

Problem Gap Cols Iter Nodes Dist. % Cust. Routes Cust. CPU
per day per route (sec.)

c201.25 0.9% 5873 1121 65 659.02 100% 5.5 2.3 302.9

c202.25 1.3% 27886 1237 115 653.37 100% 5.5 2.3 9000.5

c204.25 0.7% 38469 1271 233 602.59 100% 4.5 2.8 55881.8

c205.25 2.5% 15617 1880 103 641.93 100% 5.5 2.3 4519.5

c206.25 2.3% 30314 2708 167 636.39 100% 5.5 2.3 19926.5

c207.25 1.0% 48636 2109 159 603.22 100% 5.0 2.5 48013.3

c208.25 1.1% 15584 1430 111 613.20 100% 5.0 2.5 5793.8

Table 3: C2 instances with 25 customers and 2 vehicles

Problem Gap Cols Iter Nodes Dist. % Cust. Routes Cust. CPU
per day per route (sec.)

rc201.40 2.5% 3492 973 191 1372.25 80% 8.0 2.0 59.4

rc202.40 1.5% 18485 959 79 1431.62 92.5% 8.0 2.3 2150.4

rc203.40 1.4% 26825 1234 101 1468.44 100% 8.0 2.5 78913.2

rc205.40 2.4% 6496 1124 167 1330.73 87.5% 7.5 2.3 613.4

r201.40 0.2% 4291 494 13 1173.28 97.5% 9.0 2.2 535.2

r202.40 0.2% 10516 210 9 1042.09 100% 7.0 2.9 86493.5

r205.40 0.3% 12972 565 15 999.42 100% 7.0 2.9 23595.2

r206.40 0.0% 8673 74 3 918.61 100% 6.0 3.3 89461.8

c201.40 0.6% 17360 1662 47 1125.33 100% 8.5 2.4 2008.8

c205.40 0.9% 74560 6375 79 1091.50 100% 8.0 2.5 40179.6

c206.40 1.3% 46314 2866 85 1104.24 100% 8.5 2.4 24785.5

c208.40 0.8% 28990 848 17 1081.34 100% 8.0 2.5 5281.7

Table 4: RC2, R2 and C2 instances with 40 customers and 2 vehicles

12

Problem Gap Cols Iter Nodes Dist. % Cust. Routes Cust. CPU
per day per route (sec.)

rc201.40 0.0% 76 8 1 766.85 47.5% 4.5 2.1 0.0

rc202.40 0.0% 396 28 1 877.50 60% 5.0 2.4 2.3

rc203.40 4.1% 6828 1984 857 855.15 65% 5.0 2.6 3334.6

rc205.40 0.0% 207 16 1 843.61 50% 5.0 2.0 0.2

rc206.40 2.3% 371 67 21 851.08 55% 5.0 2.2 1.0

rc207.40 1.0% 783 96 7 834.13 65% 5.0 2.6 6.8

rc208.40 0.2% 841 63 11 850.28 70% 5.0 2.8 27.8

Table 5: RC2 constrained instances with 40 customers and 2 vehicles

6 Conclusion

In this paper, the first exact branch-and-price algorithm for solving the vehicle
routing problem with time windows and multiple use of vehicles was proposed. An
elementary shortest path algorithm was also exploited to solve the pricing subprob-
lems. Although the algorithm is limited by problem size and some characteristics
of the problem (like the time deadline of each route), it can still routinely solve
problems with 25 customers and some problems with up to 40 customers. Clearly, a
heuristic approach remains a viable alternative for larger instances and we are now
focusing our current research efforts in that direction.

Acknowledgments. Financial support for this work was provided by the Canadian
Natural Sciences and Engineering Research Council (NSERC). This support is grate-
fully acknowledged.

References

[1] Azi N., Gendreau M., Potvin J.-Y., “An Exact Algorithm for a Single Vehicle
Routing Problem with Time Windows and Multiple Routes”, European Journal

of Operational Research 178, 755–766, 2007.

[2] Barnhart C., Johnson E., Nemhauser G., Savelsbergh M. Vance P., “Branch-
and-price : column generation for solving huge integer programs“, Operations

Research 46, 316–329, 1998.

[3] Bent R., van Hentenryck P., “A Two-Stage Hybrid Local Search for The Vehicle
Routing Problem with Time Windows”, Transportation Science 38, 515–530,
2004.

13

[4] Campbell A.M., Savelsbergh M., “Decision Support for Consumer Direct Gro-
cery Initiatives”, Transportation Science 39, 313–327, 2005.

[5] Campbell A.M., Savelsbergh M., “Efficient Insertion Heuristics for Vehicle
Routing ans Scheduling Problems”, Transportation Science 38, 369–378, 2004.

[6] Czech Z.J., Czarnas, P., “A Parallel Simulated Annealing for the Vehicle Rout-
ing Problem with Time Windows”, in Proceedings of the 10th Euromicro Work-

shop on Parallel, Distributed and Network-based Processing, Canary Islands,
Spain, 376–383, 2002.

[7] Desrosiers J., Dumas Y., Solomon M.M., Soumis F., “Time Constrained Rout-
ing and Scheduling”, in Network Routing, M.O. Ball, T.L. Magnanti, C.L.
Monma, G.L. Nemhauser (Eds.), North Holland, 35–139, 1995.

[8] Feillet D., Dejax P., Gendreau M., Gueguen C., “An Exact Algorithm for the
Elementary Shortest Path Problem with Resource Constraints: Application to
Some Vehicle Routing Problems”, Networks 44, 216–229, 2004.

[9] Fleischmann B., “The Vehicle Routing Problem with Multiple Use of Vehicles”,
Working Paper, Fachbereich Wirtschaftswissenschaften, Universität Hamburg,
Germany, 1990.

[10] Kilpala H.K., “The Impact of Electronic Commerce on Transport & Logistics
in the Retail Grocery Industry”, M.Sc. Thesis, University of Oulu, Finland,
1999.

[11] Lin I.L., Mahmassani H.S., “Can online grocers deliver? Some Logistics Con-
siderations”, Transportation Research Record 1817, 17–24, 2002.

[12] Punakivi M., Saranen J., “Identifying the Success Factors in E-Grocery Home
Delivery”, International Journal of Retail and Distribution Management 29,
156–163, 2001.

[13] Punakivi M., “Comparing Alternative Home Delivery Models for E-Grocery
Business”, Doctoral Dissertation, Department of Industrial Engineering and
Management, Helsinki University of Technology, Finland, 2003.

[14] Rousseau L.-M., Gendreau M., Pesant G., “Using Constraint-Based Opera-
tors to Solve the Vehicle Routing Problem with Time Windows”, Journal of

Heuristics 8, 43–58, 2002.

[15] Solomon M.M., “Algorithms for the Vehicle Routing and Scheduling Problem
with Time Window Constraints”, Operations Research 35, 254–265, 1987.

[16] Taillard É. D., G. Laporte, M. Gendreau, “Vehicle Routeing with Multiple Use
of Vehicles”, Journal of the Operational Research Society 47, 1065-1070, 1996.

[17] Yrjölä H., “Physical Distribution Considerations for Electronic Grocery Shop-
ping”, International Journal of Physical Distribution and Logistics Management

31, 746–761, 2001.

14

