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INTRODUCTION 

Evaluating uncertainty of traffic networks is very important for network design. One of the 

methodology (or method) of assessing the uncertainty theoretically is an equilibrium model 

that can estimate probability distributions of travel times or traffic flows. 

Stochastic User Equilibrium (SUE), introduced by Daganzo & Sheffi (1977), is one of 

the most important network equilibriums. SUE is regarded as Wardrop’s equilibrium 

(Wardrop, 1952) with route choice based on random utility models. The (route) utility in route 

choice of SUE has an error term. The interpretation of the error term is disputable. Variance 

of the error term is constant despite the route’s length, and the term does not seem to reflect 

variation or uncertainty of travel time on the route. The error term should be interpreted as 

“perceptual” error or effect of the components that are not considered in the model. 

Furthermore, network flows in SUE is not stochastic but deterministic. SUE cannot treat 

uncertainty or variation of network flows. 

There have been several studies about uncertainty of network flows. Mirchandani & 

Soroush (1987) assumed that free-flow travel time is random, and proposed a network 

equilibrium model with probabilistic travel times. Arnott et al. (1991) and Chen et al. (2002) 

introduced random capacity to network equilibrium. These three studies assumed exogenous 

randomness. Cascetta (1989) and Cascetta & Canterella (1991) formulated day-to-day 

dynamics of network flows as a Markov process. The convergent distribution of network flow 

could be interpreted as network equilibrium with stochastic flow. Watling (2002) extended 

SUE and presented a second order stochastic network equilibrium. He assumed route choice 

based on random utility theory and stochastic flow variables. The travel demands are assigned 

based on the mean cost. Cascetta (1989), Cascetta & Canterella (1991), and Watling (2002) 

consider stochastic route choice, but the travel demand is fixed. One of the main causes of 

network uncertainty is variation of travel demands. Stochastic demand should be incorporated 

into network equilibrium models.  

In this study, we assume stochastic demand as well as stochastic route choice, and 

formulate a stochastic network equilibrium model under stochastic demands. This model 

enables us to examine network reliability under uncertain demands. 

 



 

CONDITIONAL FLOW DISTRIBUTION 

We assume that a driver chooses a route stochastically. This represents a combination of 

choices with probabilities. For example, Choice 1 is adopted with probability 0.5 and Choice 

2 with 0.5. This type of choice is called mixed strategy in game theory. In Watling (2002), the 

route choice probabilities are given by the random utility models. In this study, for simplicity, 

the route choice probabilities are given by the logit model. 

Let i (i = 1, 2,…, I) denote an origin-destination (OD) pair in the network and n
 i
 the 

demand of the ith OD pair. Let j denote a route, where the total number of routes is J and the 

number of routes linking the ith OD pair is Ji. Let a denote a link, where the total number of 

links in the network is A. 

Assume that each driver who travels between the ith OD pair chooses the jth route with 

probability pij; that is, pij is the probability of choosing the jth route between the ith OD pair. 

Clearly, Σ iJ

i 1= pij = 1. The joint probability of route flows between the ith OD pair follows a 

multinomial distribution if the route choice probability is common among drivers (Sheffi, 

1985, p. 281, Watling, 2002). That is, Yi
 ∼ Mn(ni, p

i
) where

 
Yi

 
is the vector of random 

variables of route flows between the ith OD pair when the demand is ni and which follows a 

multinomial distribution, pi is the vector of route choice probabilities between the ith OD pair, 

and Mn(⋅) is a multinomial distribution. 

We can obtain the probability of a single route flow as the marginal probability of the 

multinomial distribution. The probability mass function of the flow on the jth route between 

the ith OD pair is expressed as: 
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where )(
Y ijn

yf
iij

 is the probability mass function of flow on the jth route between the ith OD 

pair when the demand is ni, ∏∏ j ijj

y

iji ypn ij !!  is a probability mass function of multinomial 

distribution, yij is the realized value of the jth route flow, and Yij is the component of Yi. This 

is a binomial distribution. The flow on a single route follows the binomial distribution Bn(ni, 

pij), where Bn(·) denotes a binomial distribution. 

 

STOCHASIC DEMAND 

Travel demand variation is one of the main causes of network uncertainty. Stochastic demand 

should be incorporated. Assume that travel demand follows a negative-binomial distribution, 

NgBn(α, β). Negative binomial distributions are discrete and always take positive values 

unlike normal distributions. The probability mass function of the demand, gNi(ni), is: 
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where Γ(⋅) denotes a gamma function, and αi and βi are constant parameters and specify the 

demand of the ith OD pair. The mean and variance of gNi(ni) are αi βi and αi βi (1 + βi), 

respectively. 

The route flows between the same OD pair are given as a compound distribution of a 

multinomial distribution and a negative binomial distribution. That is, the route flows in 

which the demand follows gNi(ni) are given by )()( iNin
ngyf

iiiY
. 
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where ni = Σj yij, ξi0 = 1
 
/(1 +βi), ξij = βi pij

 
/(1 + βi). This is a negative-multinomial distribution. 

Means and variances and covariance are given by: 

 

ijiiij pβαµ =  

)1(
2

ijiijiiij pp ββασ +=  

jiijiijij pp ′′ =
2

, βασ . 

 

Thus, route flows of each OD pair follow a negative-multinomial distribution under negative-

binomial distributed demands. 

Each route flow follows a negative binomial distribution. The flow on the jth route 

between the ith OD pair is given by Σyij⋅⋅⋅Σyij-1 Σyij+1⋅⋅⋅ΣyiJi
 fYi(yi). The p.d.f., fYij(yij),is: 
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In order to calculate mean travel time, pa,i is defined as Σj δa,ij pij. This pa,i means the 

probability that drivers between the ith OD pair travel on the ath link. Let Xa,i denote Σj δa,ij Yij 

and xa,i denote the realized value of Xa,i. Xa,i follows the negative binomial distribution 

NgBn(αi, βi, pa,i).  
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MEAN TRAVEL TIME 

Let xa denote the traffic volume on the ath link and Xa its random variable. Xa is Σi Σj δa,ij Yij, 

where δa,ij takes a value of 1 if the ath link is part of the jth route; otherwise its value is 0. As 

mentioned in the previous section, the link flow follows a probability distribution. The mean 

travel time on a link is calculated as follows: 
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where fXa(·) is the probability mass function of flow on the ath link, Ta is the random variable 

of travel time on the ath link, ta(xa) is the travel time function of the ath link, and E[⋅] is the 

expectation operator. 

In this study, we adopt a BPR-type travel time function for calculating travel time; t = tf 
(1 + c´(x/C)

b
) where t is the link travel time, tf is the free-flow travel time, x is the link flow, 

and b and c´ are positive parameters. For simplicity, we express link travel times as h + c⋅xb
, 

where b, c, and h are positive constant parameters. When b is an integer (4.0 is usually used), 

the mean link travel time can be calculated using moment generating functions.  

A moment generating function, M(s), is defined as E[e
sX

] (e.g., Ang & Tang, 1977; 

Papoulis, 1965). The moment generating function of the sum of independent random variables 

is the product of their moment generating functions. The ath link flow, Xa, is Σj Xa,i. Xa,i is 

mutually independent because the demand is independent among OD pairs. Let Ma,i(s) denote 

the m.g.f. (moment generating function) of Xa,i and Ma(s) denote the m.g.f. of the ath link. 

Ma(s) = Πi Ma,i(s). As a property of the moment generating function, E[X
b
] = d

b
M(s)/dsb |s=0. 

The mean travel time on the ath link is given as: 
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where Ma(s) is the moment generating function of the ath link. 

The variance of link travel time, Var[Ta], is E[Ta
2
] – {E[Ta]}

2
, and E[Ta

2
] is also 

calculated using moment generating functions.  

 

FORMULATION 

Assume that each driver choose a route stochastically based on the logit model as follows: 
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where vij is the mean travel time of the jth route between the ith OD pair, p the vector of the 

routes, θ a positive parameter. We can incorporate toll fee, risk attitude and so on into vij. 

Define g = (g11,.., g1J1, g21,…, gIJI)
T
. The component of g, gij, is: 
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where p is the vector of all route flows and is (p11,.., p1J1, p21,…, pIJI)
T
. 

A logit-based stochastic network equilibrium model can be formulated as a fixed point 

problem as follows:  

( )pgp =  (10) 

The above can also be formulated as the following complementary problem: 
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where p = (p1,..,pi,..,pI)
T
, pi = (pi1,…, piJi)

T
, ln(p) = (ln p11,..., ln pIJI

)
T
, )(pc  (= ( )(11 pc ,…, 

)(p
iIJc )

T
) mean route travel times and κκκκ the vector of minimum mean route travel times, ΛΛΛΛ 

OD-route incident matrix, 〈x, y〉 the inner product，I the unit vector, 0 the null vector, T 

transition for vectors or matrices. 

 

EXAMPLE 

As an illustration of the above equilibrium model under stochastic demand, a simple network 

example is presented, consisting of two OD pairs and three links. Fig. 1 shows the example 

network. Table 1 presents the distributions of OD demands and Fig. 2 illustrates the 

probability mass functions. The link travel time functions are given in Table 2.  

In order to consider drivers’ risk attitude, route disutility, Uj, in the logit model is defined 

as E[Tij] + η ][Var ijT  instead of E[Tij] = ijc . We set the diversion parameter, θ, and the risk 

attitude parameter, η, at both 1.0.  

We could obtain the route choice probabilities by solving the problem written in the 

previous section. Table 3 shows the results of the example network. Link 1 and Link 2 are the 

same link. The (mean) flow on Link 1 is greater than that on Link 2, and the S.D. and 

variance on Link 1 are greater than those on Link 2. The capacity of Link 3 is half of Link 1 

and Link 2, and the flow on Link 3 fluctuates more largely than Link 1 and Link 2. So, S.D. 
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Fig. 1. Example Network 
 
 

Table 1. Demand 

 

 OD 1 

between node 1&3 

OD 2 

between node 2&3 

distribution NgBn(40, 40) NgBn(20, 50) 

mean 1600 1000 

variance 65600 51000 

S.D. 256.1 225.8 
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Fig. 2. Demand’s Probability Function Fig. 2. Demand’s Probability Function Fig. 2. Demand’s Probability Function Fig. 2. Demand’s Probability Function     
 
 

Table 2. Travel Time Function 
 

 Free-flow travel time Capacity 

Link 1 10 2000 

Link 2 10 2000 

Link 3 5 1000 

  



 

and variance of Link 3 are greater than Link 1 and Link 2 although mean flow on Link 3 is the 

least. We can also calculate covariance between link travel times. Thus, we can evaluate 

network’s uncertainty using the model presented.  

 

CONCLUSION 

Evaluating uncertainty of traffic networks is very important for network design or traffic 

management. We assume that drivers choose their routes stochastically based on the logit 

model and that the travel demands are negative-binomial-distributed. A network equilibrium 

model with stochastic route choice under stochastic demands is formulated as a fixed point 

problem and a complementary problem. Then, the model is applied to a simple example. As a 

future work, we have to examine the properties of the equilibrium under gamma-distributed 

demand are discussed. Also, for applying for a large-scale network, an algorithm should be 

developed. 

 

REFERENCES  

Ang, A. H-S. & W. T. Tang (1975). Probability Concepts in Engineering Planning and 

Design, John Wiley & Sons, New York. 

Arnott, R., A. de Palma, & R. Lindsey (1991). Does Providing Information to Drivers Reduce 

Traffic Congestions?, Transportation Research, 25A, 309-318. 

Bell, M.G.H. & C. Cassir (2002). Risk-Averse User Equilibrium Traffic Assignment: An 

Application of Game Theory, Transportation Research, 36B, 671-681. 

Cascetta, E. (1989). A stochastic process approach to the analy-sis of temporal dynamics in 

transportation networks, Transportation Research, 23B, 1-17. 

Cascetta, E. & G.E.Canterella (1991). A day-to-day and within-day dynamic stochastic 

assignment model, Transportation Research, 25A, 277-291. 

Chen, A., H. Yang, H.K. Lo, & W.H. Tang (2002). Capacity Reliability of a Road Network: 

An Assessment Methodology and Numerical Results, Transportation Research, 36B, 

225-252. 

Daganzo, C.F., Sheffi, Y. (1977). On Stochastic Model of Traffic Assignment, Transportation 

Science, 11, 253-274. 

Table 3. The Results on Link Travel Times 

 

Link 1 Link 2 Link 3

Mean 16.56 14.40 13.40

S.D. 2.11 1.18 2.24

Variance 4.47 1.38 5.01

Link 1, 2 Link 1, 3 Link 2, 3

Covariance 1.81 3.55 2.50

Correlation coefficient 0.73 0.75 0.95  
 



 

Lo, H.K. & Y.K. Tung (2003). Network with Degradable Links: Capacity Analysis and 

Design, Transportation Research, 37B, 345-363. 

Mirchandani, P., & H. Soroush (1987). Generalized Traffic Equilibrium with Probabilistic 

Travel Times and Percep-tions, Transportation Science, 21, 133-152. 

Nakayama, S. (1999). A Study of Dynamical Analysis of Trans-portation Systems Considering 

Agents’ Cognitive Process, Doctoral Dissertation, Kyoto University, Kyoto, Japan. 

Papoulis, A. (1965). Probability, Random Variables, and Sto-chastic Processes, McGraw-Hill, 

Inc., New York. 

Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical 

Programming Methods, Pren-tice-Hall, Englewood Cliffs, N.J. 

Wardrop, J.G. (1952). Some Theoretical Aspects of Road Traffic Research, Proceedings the 

Institution of Civil Engineers, II, 325-378. 

Watling, D. (2002). A Second Order Stochastic Network Equilibrium Model, I: Theoretical 

Foundation, Transportation Science, 36,149-166. 

 

 


