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Abstract

Many traditional dynamic pricing models such as the ones widely used in revenue manage-
ment assumed that the demand at each point in time depends on the price at that point in
time only, that is, it is independent of prices at other points in time. Recently some models of
so-called strategic customer behavior have been studied, in which buyers’ purchasing decisions
at a point in time depend on the prices at other points in time, or more generally, on the sellers’
pricing policies. Many new questions are associated with such models. One question is how the
buyers can be expected to obtain and process all the information necessary to make such com-
plicated decisions. We study several models in which buyers learn quantities that are simpler
than the pricing policies of the sellers. We investigate the convergence of the buyers’ estimates,
and compare the limits with equilibria associated with full information.

1 Dynamic Pricing with Learning by the Buyer

The demand models used in most revenue management research assume that the demand at a
particular point in time does not depend on the prices or availabilities of products at other points in
time. It seems that such models underestimate the sophistication of the buyers’ decision processes.
Recently, some models have been developed in which buyers’ choices depend on the prices or
availabilities of products at multiple points in time. Some of this work includes Besanko and
Winston (1990), Xu and Hopp (2004), Aviv and Pazgal (2004, 2005), Su (2005), Liu and Van Ryzin
(2005), Gallego and Şahin (2005), Gallien (2006), Levin et al. (2006), and Zhang and Cooper (2006).
In most of this work, it is assumed that buyers know the seller’s dynamic pricing policy (most of
the work considers a single seller), and the buyers choose a best buying policy in response to the
seller’s dynamic pricing policy. In contrast with traditional revenue management models, it seems
that such models overestimate the sophistication of buyers’ decision processes. Typically, sellers’
dynamic pricing policies can be quite complicated, and it is questionable whether buyers have the
data, the insight, and the computational power to learn the sellers’ dynamic pricing policies and to
compute their best responses to these policies. If sellers use heuristics unknown to the buyers, it
may be an even harder task for buyers to figure out what the resulting pricing policies are. Thus
we are interested in studying what happens if buyers do not know sellers’ dynamic pricing policies,
but rather learn simpler quantities, and use the resulting simple models to make their decisions.

Next we briefly describe two problems that are motivated by the considerations described above.
Section 2 considers a setting in which buyers attempt to learn the probability distribution of the
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spot price of a product, and Section 3 considers a setting in which buyers learn about product
availability.

2 Buyer Learning of Spot Price Distribution

Consider a setting with both longer term contracts and a spot market for a product or service. Such
a setting is typical in markets for freight transportation services, in which carriers and customers can
enter into longer term contracts that specify prices before it is known exactly how much freight will
be transported, and in which customers can also purchase transportation services when it is known
how much freight will be transported, even if they had not entered into a contract before. There
is quite a large literature on the interaction between contracts and spot markets; see for example
Cohen and Agrawal (1999), Lee and Whang (2002), Wu et al. (2002), Kleindorfer and Wu (2003),
Mendelson and Tunca (2003), Burnetas and Ritchken (2005), Wu and Kleindorfer (2005), and Tunca
and Zenios (2006). However, none of this work considers learning by the market participants. In
the model that we consider, the buyers do not know how the prices will be determined on the
spot market when they make their contracting decisions. Instead, the buyers observe a sequence
of spot market prices and attempt to estimate a probability distribution for the spot price. At
each step in the sequence, the buyers base their contracting decisions on their current estimate
of the spot price distribution. The seller’s choice of the spot price is affected by the contracting
decisions of the buyers. Thereafter, buyers make their spot market purchasing decisions, which are
affected by the spot price and the quantities contracted by the buyers. Thus, the buyers affect
the spot prices through their contracting decisions, and thus through their estimates. Thus the
sequence of observed spot prices is neither independent nor identically distributed, but depends
on the decisions and thus the estimates of the buyers at every step. As mentioned, the buyers do
not know exactly how this complicated dependence works, and construct a sequence of probability
distributions as though they are estimating a single exogenous distribution, instead of estimating
a family of distributions that explicitly depend on their decisions. It seems intuitive that if each
buyer’s decisions have only an infinitesimal effect on the spot price, then the sequence may converge
to a point that is also an equilibrium for the game in which the players know the details of the
system’s behavior. We also identify sufficient conditions for such convergence even if each buyer’s
decisions have a significant effect on the spot price. Thus two interesting questions are the following:

1. Sufficient conditions for the sequence of distribution estimates to converge. (Recall that the
sequence of random variables is not i.i.d., but is generated by quite a complicated process
with feedback.)

2. If the sequence converges, how the limit is related to equilibria in the game with full infor-
mation.

3 Buyer Learning of Product Availability

Often customers buy airline tickets before they are certain that they will take the trip. It is not
unusual for 1/3 or more of the bookings on hand for a flight a week before departure time to be
cancelled during the last week. There are several incentives for customers to buy airline tickets
before they are certain that they will take the trip. One incentive is that the tickets often tends
to become more expensive as the departure time comes closer. Another reason is that customers
want to make sure that they get a booking on their preferred flight.
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We consider a model in which the buyers are not sure whether they will need the product later,
but there is an incentive to buy the product early because the price increases over time and because
the product may not be available later. The probability that the product is available later depends
on the earlier purchasing decisions. Each buyer does not observe the earlier purchasing decisions of
the other buyers and/or does not know the exact dependence of the later availability on the earlier
decisions. Instead, each buyer observes product availability when they attempt to buy the product
later. The process repeats, and each buyer uses such a sequence of observations to estimate a
probability that the product is available later if the buyer does not buy it early. At each step, each
buyer uses the buyer’s current estimate to make a decision, namely whether to buy the product
early or to wait until later. A buyer’s decisions at one step in the sequence affects the observations
of the other buyers, and thereby the estimates and the decisions of the other buyers at later steps,
and hence the observations of the buyer at later steps. However, each buyer does not take this
complicated dependence into account, and does not model availability as a function of the decisions.
Rather, each buyer only estimates availability as though it is an exogenous quantity. Questions
to be addressed in this work are similar to those for the previous problem, namely (1) conditions
under which the estimates converge, and (2) if the estimates converge, how the limit is related to
equilibria with no modeling error.

Next we give a few more details regarding the latter problem. The seller sells a single type of
product, and chooses a price for each of two time periods. The seller has a given amount C of
the product available for sale over the two time periods. The seller announces the prices x1 and
x2 for each of the two time periods, and each buyer decides whether to buy in the first period,
or whether to wait until the second period. Other revenue management literature that considers
buyer decisions over two periods include Liu and Van Ryzin (2005), Gallego and Şahin (2005), and
Zhang and Cooper (2006). In the first time period, buyers are not certain whether they will end up
needing the product (for example, travelers may later change their minds and decide not to travel).
In the first time period, each buyer knows a probability p that the buyer will end up needing the
product, and if so, a utility u for the product. The values of p and u follow a joint distribution
F in the population of potential buyers. In the second period, each buyer knows whether he/she
needs the product or not. It may turn out that there is not enough product for all the buyers who
want the product in the second period. Buyers do not know in advance whether the product will
be available in the second period.

There are various versions of the problem depending on the number of buyers and whether the
seller changes prices or not. Here we describe a version with m > 1 buyers, m < ∞. In the first
period, each buyer i knows x1, x2, and the buyer’s values pi and ui, and has to decide whether to buy
or wait. The seller does not know the values pi and ui, and each buyer does not know the values of
the other buyers. The strategy of each buyer i can be represented by a function Li : [0, 1]×[0,∞) �→
{0, 1}, with Li(pi, ui) = 1 denoting that buyer i decides to buy in the first period. Let L denote the
set of such functions L with L−1(1) a measurable set. The objective function of buyer i is given
by fi : Lm × [0,∞)2 × [0, 1] × [0,∞) �→ R. (Objective function fi(L1, . . . , Lm, x1, x2, pi, ui) gives
the expected utility of buyer i given x1, x2, pi, ui, taking into account the dependence of second
period availability on the strategy combination (L1, . . . , Lm) and on (x1, x2). It is easy to give an
expression for fi, but it requires additional notation that we want to avoid here.) Given the prices
x1, x2, a strategy combination (L∗

1, . . . , L
∗
m) ∈ Lm is an equilibrium for the buyers if, for each i,

pi, and ui, fi(L∗
1, . . . , L

∗
i , . . . , L

∗
m, x1, x2, pi, ui) ≥ fi(L∗

1, . . . , L
∗
i−1, L, L∗

i+1, . . . , L
∗
m, x1, x2, pi, ui) for

all L ∈ L. The objective function of the seller is given by g : Lm × [0,∞)2 �→ R. Suppose that, for
each (x1, x2), there is a unique equilibrium (L∗

1(x1, x2), . . . , L∗
m(x1, x2)) for the buyers. Then the

seller’s problem is maxx1,x2≥0 g(L∗
1(x1, x2), . . . , L∗

m(x1, x2), x1, x2).
The setup in the previous paragraph defines equilibria with full information. As mentioned
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before, we are interested in the setting where buyers do not know the dependence of second period
availability on the strategy combination (L1, . . . , Lm). Instead, when buyer i decides to wait until
the second period and then decides to buy the product, the buyer either gets a product or not,
and the buyer records the observation. The process repeats, producing a sequence of decisions
and observations, each involving two periods. At each step n of the sequence, each buyer i uses
the buyer’s observed data to estimate the “probability” Ĥi,n that the product will be available
in the second period of that step. Each buyer i makes a decision in the first period of step n to
maximize his/her own “expected” utility, choosing max{pi,nui,n − x1, pi,n[ui,n − x2]+Ĥi,n}, using
the estimated probability Ĥi,n that the product will be available in the second period. The first and
second period demands, D1,n and D2,n respectively, are determined by aggregating the customers’
decisions. Then the actual fraction Hn of second period demand that is satisfied is given by
Hn = min{[C − D1,n]+, D2,n}/D2,n. Note that Hn depends on (Ĥ1,n, . . . , Ĥm,n), although the
notation does not show the dependence. In one version of the problem, each buyer does not
observe Hn, but only whether that buyer gets a product in the second period or not (if the buyer
does not want to buy product in the second period, then the buyer makes no observation in that
step). In another version of the problem, each buyer observes Hn at step n.

Next, a number of questions arise naturally. One question is whether there exist values of
(Ĥ1, . . . , Ĥm) such that the resulting expected actual fraction H = Ĥi for all i, that is, the expected
actual fraction H is consistent with the “probability” estimates Ĥi used by the buyers, or in
other words, Ĥi is a fixed point of H regarded as a function of Ĥi. If such values exist, then a
second question is whether the estimates of the buyers would converge to such a consistent point
if the buyers started with a different estimate and used a good forecasting method to update their
estimates (again, the sequence of observations of each buyer is neither independent nor identically
distributed). A third question is how such a consistent point compares with equilibria with full
information.
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