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EXTENDED ABSTRACT: 
 
In most public transport systems, the movement of transit vehicles is affected by different disruptions as 
the day progresses, such as traffic congestion and unexpected delays, randomness in passenger demand 
(both spatial and temporal), irregular vehicle dispatching times, incidents and so on. These events hinder 
the dispatch of vehicles either following a pre-planned schedule or trying to maintain a regular headway. 
As an attempt to reduce the negative effects of service disturbance, researchers have devoted significant 
effort to develop flexible control strategies, either in real-time or off-line, depending on the specific 
features of the problem.  
 
The most studied transit control strategies can be classified into three categories (Eberlein, 1995): station 
control, interstation control and other strategies. Station control strategies are of two types: holding and 
station skipping. Interstation control strategies include speed control, transit signal priority and so on. The 
holding strategy has been intensely studied in the literature in the last years. Among the most remarkable 
contributions we can mention Turnquist and Blume (1980), Eberlein (1995), Eberlein et al. (2001),  
Hickman (2001) and Sun and Hickman (2004). The operation of express services (expressing) as a pre-
planned strategy is studied by Jordan and Turnquist (1979) and Furth (1986). Other novel research topic is 
the Transit signal priority (TSP) that studies the utilization of traffic signals to regularize bus headways 
(Furth and Muller, 2000; Ling and Shalaby, 2004; and Lee et al., 2005)  
 
The real-time control strategies as found in the public transport literature have been treated mostly 
heuristically, lacking of a dynamic control framework. In this paper, we develop a model integrating three 
of the aforementioned strategies (holding, expressing and transit signal priority) to solve a real-time public 
transport control problem with uncertain passenger demand, relying on online information of system 
behaviour. The model is formulated as a predictive control problem, since the theory nicely fit the 
dynamic conditions of typical public transport problems. Predictive models permit to estimate the effects 
of the control actions on the behaviour of the transit system, and also allow the inclusion of complex 
system constraints. They also have the capability of optimizing the system performance in real time based 
on an objective function properly chosen (Hegyi, 2004).  
 
Specifically in this research, we propose to design and evaluate a predictive control strategy of a bus 
system with uncertain passenger arrival at bus stops, in a real-time framework. The generic predictive 
control strategy to be applied is shown in Figure 1 below.  For this problem, the predictive controller 
corresponds to the bus dispatcher, who dynamically provides the optimal control actions to the bus system 
in order to regularize the headway between buses according to the assumed objective function. The real-
time passenger demand, which is unknown and uncertain, is modelled as a disturbance for the predictive 
scheme. That because, different passenger arrival patterns could significantly affect the estimated bus 
travel time from longer passenger transfer operations at bus stops.    



 

 
Figure 1. Predictive control scheme for a bus transport system. 

 
For the design of the predictive controller, an objective function to be optimized is defined. In our 
approach, such a function includes four components as shown in expression (6) ahead. The control 
strategies will allow us incorporating into the design the future behaviour of the bus system, by using an 
on-line prediction system for the disturbances, such as number of passengers at stops. In our approach, 
there are discrete (traffic light states, number of passengers on the buses) as well as continuous (bus 
position and speed) variables. For this reason, we will use a hybrid predictive approach of the form 
proposed by Bemporad and Morari (1999), in which it is possible to optimize the control actions 
considering both kinds of variables. We propose Genetic Algorithm for solving the resulting hybrid 
predictive control optimization problem. 
 
DYNAMIC MODELING FOR HYBRID PREDICTIVE CONTROL DESIGN  
 
One major objective of this paper is to formulate the real-time transit system optimization problem under a 
hybrid predictive control (HPC) approach. For the sake of simplicity, the HPC framework is constructed 
for a single loop bus system, although is extensible to more complex systems too.  
 
The system is represented in Figure 2a). The network is a one-way loop route, with N equidistant stations 
and B buses running around the loop, under the control of the dispatcher. Station 1 is the terminal of the 
bus route. All passengers have to get off the bus there. Passengers arrive to each station at certain rate, 
with destination among the stations ahead of the station the passenger is getting on. The problem is 
formulated as a hybrid predictive system, where events are triggered by specific actions, resulting in a 
variable stepsize as a proxy for expected arrival time at either bus stops or traffic lights.  
 

 
Figure 2. Transit network a) and the dynamic model of the bus system/traffic light b). 

 
One major feature of this particular HPC approach, different from typical HPC schemes, is the double 
dimensionality of this specific dynamic modeling framework: spatial and temporal. The events are 
triggered when a bus arrives at either a bus stop or a traffic light (spatial dimension), and when that 
happens, the status of each bus is updated every time any other bus arrives at a specific spatial location 
(station or traffic light), which defines the corresponding variable time step (temporal dimension). Figure 
2b) shows the main variables for the dynamic modeling of the system, which are function of a continuous 
and discrete time. Input variables at the instant before (k-1) generate the outputs at either continuous 



instant t or when a new event occurs (discrete instant k). As shown in Figure 2b), passengers boarding and 
alighting (demand) are modeled as a disturbance in the dynamic model scheme. Moreover, we define two 
state space variables in order to check the bus status and consequently trigger the events. These are the 
position of the bus at any instant t, ( )ix t , and the remaining time for the bus to reach the next stop, ( )iT t . 
 
Consequently with the three strategies integrated in the scheme, the inputs of the dynamic model 
correspond to the control action variables, and are defined as follows: 

• ( 1)iSu k − : Passenger boarding action of bus i, at instant k-1.  

1   if passengers are allowed to board bus  at instant k-1
( 1)

0 otherwisei

i
Su k ⎧

− = ⎨
⎩

                             

• ( 1)ih k − : Holding action of bus i at instant k-1 

where ( 1) holding action was executed at -1, , 0 knowni i ih k n k nτ τ+− = ∈ >        
• ( 1)iSe k − : Traffic light action when the bus i reaches a traffic light at instant k-1.  

where ( 1) ( 1) traffic light action was executed at -1,i i iSe k s k k sκ +− = − ∈        
Note that ( 1) 0kκ − >  depends on the instant at which the bus reaches the traffic light.  
 
In the scheme in Figure 2b, the required output variables are the bus i load at discrete instant k, ( )iL k , and 
the departure time of bus i when the new event occurs at time k, ( )iTd k .  
         
Let us start computing he position of the bus i at continuous time t as follows                                               

( ) ( ) ( )
k

t

i i k i
t

x t x t v dϑ ϑ= + ∫      (1) 

where  kt  is the continuous instant at which the event k is triggered. The instantaneous speed ( ) ( )i iv t x t=  
is simplified by assuming a constant speed whenever the vehicle is moving, and speed equals to zero 
otherwise. For example, in Figure 3 we show the speed representation of the trajectory of bus i while it is 
traveling from the station it reaches at instant k until the bus arrives to the next stop in its route (which is 
associated with future instant k+d).    
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Figure 3. Example of bus trajectory between stops 
 
In Figure 3, ( )iTr k  is the time associated with passenger transference ( )iR k  and Tv  is the travel time 
between two consecutive stations. As defined above, ( )ih k  is the holding time at the station to be decided 
by the dispatcher. In this context, analytically the speed can be computed as 
 

0

0       ( ) ( )
( )

     ( ) ( )
k k i i

i
k i i k d

t t t h k Tr k
v t

v t h k Tr k t t +

≤ ≤ + +⎧
= ⎨ + + ≤ ≤⎩

     (2) 



In order to trigger the next event of the dynamic model, the remaining time (measured from time t) for the 
bus i to reach the next stop is required, and can be computed as follows: 
 

( ) ( ) ( )i k i iT t t h k Tr k Tv t= + + + −      (3) 
 
With regard to the outputs of the dynamic model, first, let us define the estimated passenger load of bus i 
at instant k+1 as follows:   

 

ˆ ( 1) ( ) ( )
( ) ( ) ( ) ( )

i i i

i i i i

L k L k R k
R k B k Su k A k

+ = +
= −

     (4)  

where )(kLi is the load of bus i at the previous instant k, and ( )iR k is the net transference of passenger 
between instants k and k+1, that is, the number of passenger boarding bus i minus the number of 
passenger alighting from bus i during this interval of time, which corresponds to the disturbance of the 
dynamic model. ( )iA k  is the number of passenger alighting from bus i and ( )iB k  is the number of 
passenger boarding bus i, both defined between instants k and k+1. In addition, max( 1)iL k L+ ≤ 1...i n=  
is added as a boundary condition of the problem to check the physical capacity constraint.     

 
Moreover, the estimated departure time of bus i at future discrete instant k +  can be computed as  

( ) ( ) ( )i k i iTd k t h k Tr k
∧

+ = + +      (5) 
 
Finally, the system based on the dynamic model must satisfy some physical operational constraints, such 
as capacity load (already stated above), precedence, demand consistency, etc.  
 
The next step is to properly define a predictive objective function in order to take the re al time decisions 
and optimize the dynamic system. In this case, the expression as in (6) comprises four components. The 
first term quantifies the total passenger waiting time (capturing the regularization of bus headways), the 
second component measures the delay associated with passengers on-board a vehicle when held at a 
control station. The third component is the extra waiting time of passengers whose station is skipped by an 
expressed vehicle. Finally, the fourth term shows the extra delay due to holding at traffic lights.  
 

( )
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 (6) 

 
1θ , 2θ  and 3θ  are weighting parameters. Np is the prediction horizon, p is the number of the buses and N 

is the number of the stops. Besides, ( )i kλ + is the passenger arrival rate at the stop where bus i is located 

at k + . Finally, ( )iH k
∧

+  represents the predicted headway of bus i at the station reached when event 
k +  happens, and can be computed as follows: 

1ˆ ( ) ( ) ( )ii iH k Td k Td k z
∧ ∧

−+ = + − + −     (7) 

where ( )iTd k
∧

+  (defined in (5)) is the estimated departure time of bus i at future instant k +  and 

1( )iTd k z
∧

− + −  is the estimated departure time of precedent  bus i-1 at future instant k z+ − . The 



variable z represents the instant at which the previous bus i-1 reached the same stop.  Note that the 
definition of z is not the same as that of d provided before. 
 
PROPOSED SOLUTION METHODS: ONGOING RESEARCH 
 
The minimization of the objective function defined in (6) corresponds to a mixed integer non linear 
optimization problem, which is NP-Hard. In order to solve the bus system optimization problem, we 
define the sequences of future control actions associated with bus i at stops ( )i * *u (k),u (k+1), ,u (k+Np-1)  
by considering the passenger boarding and holding actions. Note that the control action ahead 

( ) ( ) T
* * *u (k+ -1)= Su k+ -1 h k+ -1⎡ ⎤⎣ ⎦  is associated with an unknown bus that will arrive to an unknown 

stop that depends on the previous control action. The potential solutions belonging to the search space set 
are limited for both ( )*Su k+ -1  and ( )*h k+ -1 . Thus, the optimization problem of HPC strategies for 
the bus system using the formulation defined here could be solved by using Explicit enumeration (EE) and 
Branch and Bound (BB). Both allow to solve mixed integer optimization problems (MIOP) (Floudas, 
1995), but the elevated computational effort, especially in the case of EE, results in inefficient solutions 
for real-time problems. In that sense, Genetic Algorithms (GA) has proved to be an efficient tool to solve 
MIOP (Man et al., 1998).  So, we propose the GA as an efficient tool for optimization of the bus system.  
 
SOME PRELIMINARY TESTS AND FINAL COMMENTS 
 
This is an ongoing research, and currently we have coded the proposed HPC strategy in a discrete event 
simulation environment. The proposed strategy is applied to a hypothetical bus corridor of 10 [km] 
comprising 20 stations evenly distributed over the bus route. By using proper average boarding, alighting 
and load profiles, in Figures 4a) and 4b) we show the movement (time-space graph) of a small fleet of 5 
buses moving around the circuit. The simulation assumes uncertain demand dynamically arriving at 
stations by following a Poisson process. Figure 4a) shows the movement of buses without applying any 
control, while in Figure 4b), a holding strategy is applied, allowing buses to stay at stations for a fixed 
period of 20 seconds ( 20ijτ = ) whenever needed according to the HPC formulation (note that in the 

general model, the holding time ijτ  is also an optimization variable). As a result, we can see that the 
strategy allows the manager to maintain much more regular headways (b compared with a), which is the 
result of optimizing the cost function as in (9). In Figure 4c) we specifically allow holding only in one 
specific station (station 6), showing how the system can dynamically react in order to keep regular 
headways as well.  
 
In this paper we have shown a hybrid predictive model to optimize in real time the performance of a 
public transport system along a linear corridor with uncertain demand at bus stops. The optimization is 
conducted by applying holding, expressing and transit signal priority. Currently, we are developing GA 
tools to efficiently take optimal real time decisions based on the proposed framework. As further research, 
we plan to work over more complex systems configurations, such as trunk schemes combined with feeder 
transit lines connected with transfer points. We also will test our schemes under a microscopic simulation 
environment in order to properly capture the dynamic effects of such a transit system.    
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Figure 4. Illustrative HPC transit test results. 
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