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Introduction. 
Container shipping companies provide scheduled maritime transportation world-wide. A significant 
factor for their competitiveness is the availability of empty containers in ports to meet customer 
orders. Due to the global trade imbalance, some ports tend to accumulate empty containers, 
resulting in unnecessary storage costs, while others face shortages that expose shipping companies 
to the risk of competitors providing containers as requested. As a consequence, shipping companies 
must be reactive to meet customer needs and perform the maritime repositioning of empty 
containers. 
A major difficulty in this operation is the many sources of uncertainty regarding, e.g., the number of 
containers that may be requested in the future, the time when empty containers become available, 
and the vessel capacity for empty containers. Several deterministic models were proposed (e.g., 
Choong et al., 2002), but they take into account a single realization of uncertain parameters. 
Stochastic optimization models were presented as well (e.g., Cheung and Chen, 1998). However, 
they require a good knowledge of random variable distributions to avoid low quality solutions.  
We present a description of a general transportation network over which empty container 
repositioning is performed. We then propose an optimization model to solve this issue for a 
heterogeneous fleet of empty containers, taking into account uncertainty through a set of 
representative scenarios. A weight can be assigned to each scenario to characterize its relative 
importance. Weights may represent probabilities of occurrence or subjective parameters assigned by 
managers according to the particular application. Finally, the most significant results of the study 
are introduced and discussed. 
 
Problem description. 
Empty containers can be available in ports due to past inventory, trucks and trains arriving from the 
landside, and vessels arriving from the seaside. They can be dispatched to the landside to serve 
exporters, loaded on vessels to reach shortage ports. Empty containers can be stored in ports once 
assigned to scheduled vessels or kept as not-yet-assigned inventory. In the first case, shipping 
companies must decide “now” to which vessels scheduled at ports in future time-periods to assign 
the arriving empty containers. In the second case shipping companies can store arriving empty 
containers and decide later. 
Several container types are considered and their different sizes result in different utilizations of the 
available space. In order to take into account the impact of current decisions on the future state of 
the system, we need to explicitly consider the time perspective. Moreover, some decisions must be 
made when there is only a partial knowledge of some crucial parameters. For instance, vessels 
traveling over short maritime distances do not offer sure information about their composition. 
Indeed, while they are stopping in a given port, shipping companies must decide how many 
containers will be loaded and unloaded in the next one. Finally, another major source of uncertainty 
is represented by the so-called “Cut and Run” policy, that is, when berthed vessels have delays in 



their schedule, sometimes terminal operations are concluded without loading empty containers. For 
instance, due to adverse climatic conditions, some ports interrupt their activity and, when they 
restart their operations, empties are “cut” to gain time. 
Figure 1 shows as an example of a time-extended network made up of ports, denoted by letters A 
and C, where empty containers must be assigned to vessels, and a port, indicated by letter B, where 
they can be kept unassigned. Numbers from 1 to 4 indicate four lines operated by four different 
vessels. For instance, vessel 1 will arrive in period 4 at port B. This port can load on this vessel 
empty containers available from the third period and unload empties, which become available from 
the fifth period. It is worth noting that shipping companies cannot decide now vessels for empty 
containers available in the first period at ports A and C, because such a decision was made before 
their arrival. As regards port B, shipping companies must decide “now” the utilization of containers 
that have become available before the first period. 
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Figure 1.  Sample time-extended network. 

Optimization model. 
Shipping companies must decide the number of empty containers repositioned, stored, loaded, 
unloaded, and kept on vessels. As indicated before, we take into account two categories of decisions 
for empty containers stored in ports, depending on the requirement to be assigned or unassigned to 
scheduled vessels.  We consider a multi-period network and assume that decisions are implemented 
in a rolling horizon fashion. 
Regarding notation, we consider a set P of container types, a set T of contiguous time-periods, a set 
V of vessels, and a set G of scenarios associated with weights wg, g∈G. Let H1 be the set of ports in 
which unassigned empty containers can be stored and let H2 represent the set of ports in which this 
option is not allowed. Moreover we indicate by θ the time up to which decisions must be the same 
for every scenario. Furthermore, we denote by t’ the interval of time between the arrival of empty 
containers at ports of set H2 and the berthing of vessels, to which such containers have to be 
assigned. 
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problem is presented as an integer programming model whose decision variables are denoted by 
letter x and costs by letter c, where l means “loaded”, u “unloaded”, r “repositioned”, and h “hold”. 
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5. Variable  indicates the number of empty containers of type p∈P, to be 
repositioned in scenario g∈G by vessel v
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The resulting mathematical model can be expressed as follows:  
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where t τ, t± t’ and t 1 must belong to T. All decision variables take only non-negative integer 
values.  

± ±

The objective function (1) minimizes the cost of loading, unloading, repositioning and storing 
empty containers over a maritime network. Using network notation, constraint set (2) represents 



flow conservation of empty containers of every type p∈P in each node i∈H1 at every time t∈T 
over each scenario g∈G. Constraint set (3) requires to assign to vessels empty containers available 
in each node i∈H2 at every time t∈T over each scenario g∈G. Constraint set (4) imposes to satisfy 
the demand of empty containers associated with each node i’∈H2 at every time t∈T over each 
scenario g∈G. Constraint set (5) represents flow conservation of p-type containers for the for each 
vessel k∈V, berthing at time t∈T in port 21 HHi U∈ . Constraint sets (6) and (7) ensure that 
inventory level of empty containers stored does not exceed a value expressed in number of 
containers of a given type ∈p P. Constraint set (8) guarantees that containers repositioned between 
ports does not exceed the space available for empties on vessels. Constraint sets from (9) to (15) 
represent the non-anticipativity conditions. 
 
Main results and conclusions. 
We consider several reposition problems having up to 15 container types and 1500 scenarios. To 
solve numerical instances, the well-known solver Cplex (1995) is used. In our computational tests, 
problems are solved in less than 150 seconds, which is a time suitable for the operating needs of the 
shipping industry. The resulting reposition plan will be dispatched to ports to plan in time their 
internal activity (for instance they must organize the so-called housekeeping). 
A major research perspective in this issue consists of estimating how many scenarios should be 
taken into account. Moreover the model exhibits strong algebraic structures (networks, commodities 
and scenarios) that can be exploited to develop specialized resolution techniques. 
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