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ABSTRACT 
Microsimulation models are normally used to evaluate traffic-adaptive signal control systems. 
In this paper develops an analytical approach for this evaluation based on queuing models. 
In particularly, the model is developed for an adaptive control strategy that was originally 
proposed by Newell (1998), where a signal serves two movements alternatively. In this 
strategy, the first movement is served until the queue dissipates, then the second movement 
is served until the queue dissipates, then the signal goes back to serving the first movement 
and this cyclic process repeats. The strategy is an approximation of the RHODES strategy 
(Mirchandani and Head, 2001), which essentially switches to the next phase in a given 
phase order after “sufficiently” serving the current phase. Newell compared such a strategy 
with rolling horizon using a continuous-time formulation. 
 
There have been several continuous-time models for signal control with fixed timing plans, 
including Stephanopoulos and Michalopoulos (1978), Webster and Cobbe (1958) and 
Newell (1989). To obtain distribution of queue lengths at the end of each phase for an 
intersection with fixed timing, Olszewski (1990) has presented a discrete stochastic model. 
 
In this paper we develop a new queuing model for analyzing vehicular delays and queue 
distributions at an undersaturated intersection operating with a two-phase signal, where the 
vehicle arrival process is Poisson, for both fixed-timing signal control and traffic-adaptive 
signal control. Numerical results for the two control strategies are provided and compared.  
 
Briefly, the paper contains the following results: 
 
1. Calculation of the Busy Period Distribution at Signalized Intersection: We model the busy 
period (i.e. when vehicles are passing through the intersection) distribution of the 
intersection given that multiple vehicles are waiting at the beginning of a green phase. Using 
numerical method we calculate the distributions for different v/c ratios. 
 
2. Analysis of an Intersection with Fixed-timing Signal Control: For this case we assume 
that the service time per vehicle of each direction is constant and we define a cycle as 
Phase Duration 1(Φ1) plus Phase Duration 2(Φ2). Each Phase Duration is composed of a 
constant all-red clearance time plus a green phase serving one specific direction (see Figure 
1). Signal settings for fixed-timing control system are based on the average arrival rates and 
service rates in the two directions. If vehicle arrival processes are deterministically uniform 
(i.e. at a constant rate), it’s quite straightforward to get the signal settings that minimize 
average delays. For Poisson arrivals, with the same average arrival rates, these fixed time 
settings are no longer optimal. Therefore, a multiplicative factor � is imposed to both green-
phase lengths and an optimal value of � is found that minimizes average delay. Of course, 
as would be expected in this setting, the delays with given constant arrival rates are much 
less than when the arrivals are Poisson with same average rate. In a way, for fixed-time 
signals, constant arrivals is the best-case scenario and may be considered as some sort of 
lower bound. 
 
 



 2

When Φ1 and Φ2 are fixed, vehicle delays and queues in the two directions are independent 
to each other and the analyses for the two directions are uncoupled. Since the intersection is 
undersaturated the initial queue size can be set arbitrarily since it does not effect limiting 
distributions. Thus, with this model, we can calculate the steady-state values for several 
traffic characteristics, including average delays, average queue lengths, maximum queue 
length, their variances, and so on.  
 
Analysis of an Intersection with Adaptive Traffic Signal: In this case the service time per 
vehicle and arrival process are the same, but, because of the adaptive signal strategy and 
the Poisson arrival processes, the cycle lengths are not fixed. Suppose the first cycle is 
defined as Phase Duration 1(Φ1) plus Phase Duration 2(Φ2), the second cycle as Phase 
Duration 3(Φ3) plus Phase Duration 4(Φ4), and so on (see Figure 2). Our adaptive signal 
strategy serves one direction till its queue is emptied, and then it switches to the other 
direction, and so on. That is, unlike the fixed-cycle case, no residual queue can exist at the 
end of each green phase. Thus the length of each green phase is a discrete random variable 
that is proportional to the total number of vehicles served.  
 
In the analysis for this case, we need to consider both the directions simultaneously because 
consecutive Phase Durations are related until the both queues are emptied, then the overall 
process renews when a new “busy period” begins. For example, assuming Φi serves W-E 
direction, length of Φi determines the red phase length of N-S direction, thus influences the 
queue length distribution at the beginning of the green phase of Φi+1.  
 
In the analysis we simply set Φ1 equal to the length of the first Phase Duration for the fixed-
timed case and then, using the resulting busy period distribution, it is straightforward to get 
the queue distribution in N-S direction at the beginning of the green phase in Φ2, as well as 
characteristic parameters of N-S direction in the cycle Φ1+Φ2. From the distribution of Φ2 we 
can get the queue distribution in W-E direction at the beginning of the green phase in Φ3, 
which is slightly different from the first Phase Duration because Φ2 is now a random variable. 
We then analyze the W-E direction for the cycle (Φ2+Φ3). This process continues till the 
system converges to a steady state value.  
 
A numerical algorithm is developed to compute steady-state performance measures. 
Comparison of numerical results shows the benefits of adaptive signal control over optimized 
fixed-timing control. We show specifically that, with adaptive control, the average delays are 
significantly decreased over the fixed-timing case, and in fact are close to the best possible 
situation that may arise when vehicles arrive in constant streams.  We also compare the 
results with simulation-based results and, indeed, the analytical models predict well the 
simulation results.  
 
This type of analysis can also be used for locally adaptive ramp metering where the metering 
rate changes depending on arrivals and queues at an on-ramp.  We develop a model to 
analyze a simple strategy where the metering rate increases (i.e. more cars are let through 
the ramp) when a spillback detector reaches a specified occupancy rate.   
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Fig. 1 Definition of Phase Durations for Fixed Timing

L   : All-red clearance time,
Φ1 : L plus green phase serving W-E direction,
Φ2 : L plus green phase serving N-S direction
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Fig. 2 Definition of Phase Durations for Adaptive Timing

L      : All-red clearance time,
Φ2i+1 : L plus green phase serving W-E direction,
Φ2i+2 : L plus green phase serving N-S direction,
   i   = 0, 1, 2, ...
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