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ABSTRACT 
 
The road choice behavior of travelers is closely related to their activity planning and location 
choice. This approach has led to the increasing development of multi-agent and activity-oriented 
modeling. This work attempts to model travelers’ dynamic departure time/route/destination choice 
behavior in a queuing network. In this respect, we propose an activity-based predictive dynamic 
traffic assignment model based on a multi-agent approach with two interacting levels: the 
travelers’ adaptive reaction level and the network propagation level. For the first level, traffic 
conditions change according to travelers’ departure time/route/destination choices, dynamic traffic 
information and network supply constraints. En-route dynamic traffic assignment is reflected by 
travelers’ strategies in response to the traffic state and the activity distribution information. For the 
second level, traffic congestion is modeled by point queue dynamics concept on a network. As a 
solution method of the predictive equilibrium, we propose an ACO (ant colony optimization) 
algorithm based on a time-dependent multi-type pheromone scheme in order to solve the proposed 
dynamic traffic assignment model. This algorithm focuses on how to provide dynamic on-route 
information and off-route information to guide travelers to make the best travel decision in a 
dynamic environment. The algorithm can be adapted to communication and information exchange 
schemes closer to actual traveler behaviour. A numerical example is given to illustrate the 
performance of the proposed method.  
 
Keywords: Dynamic traffic assignment; Activity-based analysis; Departure time choice; Ant 
colony optimization 
 
 
1. INTRODUCTION 
 
The road choice behavior of travelers is closely related to their activity planning and location 
choice [1]. This approach has led to the increasing development of multi-agent and 
activity-oriented modeling [2], [3]. The growing interest for using intelligent agents also in 
applications is illustrated by [4]. This work attempts to model travelers’ dynamic departure 
time/route/destination choice behavior in a queuing network. Previous work in the same direction 
includes [5] and [6]. In this respect, we propose an activity-based predictive dynamic traffic 
assignment model based on two interaction levels: travelers’ adaptative reaction level and network 
propagation level. For the first level, traffic conditions change according to travelers’ departure 
time/route/destination choice behavior, dynamic traffic information and network supply constraints. 
En-route dynamic traffic assignment is reflected by traveler’s strategies in response to traffic states 
and activity distribution information. For the second level, traffic congestion is modeled by queue 
dynamics concept, following ideas introduced in [7]. For the solution method, we propose a 
multi-agent approach based on a time-dependent multi-type pheromone scheme to solve the 
activity-based dynamic traffic assignment problem. This algorithm focuses on how to provide 
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dynamic on-route (local traffic condition) information and off-route information (travelers’ 
(agents’) experience) to guide agents to take the best travel decision in a dynamic environment. We 
develop a discrete-event traffic simulator to simulate the travelers’ behavior of adaptation to 
network traffic characteristics while satisfying their activity requirements, and to approximate the 
network dynamics equilibrium. 
 
2. MODEL FORMULATION 
 
Notation  
Network variables 
G(V, E) network of interest composed of a set of nodes V and a set of directed arcs E 

o(k) origin node of the origin-destination pair k 

d(k) destination node of the origin-destination pair k 

M(i) set of entering links of node i 

N(i) set of outgoing links of node i 

)(tdo  demand flow rate from origin o at time t  

oD  total demand from origin o  

)(tAij
 cumulative number of vehicles entering link (i, j) at time t 

)(tDij
 cumulative number of vehicles leaving link (i, j) at time t 

)(σ tij  inflow capacity of link (i, j) at time t 

)(δ tij
 outflow capacity of link (i, j) at time t 

*
ijδ  maximum outflow capacity of link (i ,j) 

)(tT ij
 travel time over link (i, j) that results from entering link (i, j) at time t 

)(tyij
 number of vehicles on link (i, j) at time t 

maxk  maximum density per lane 

ijL  length of link (i, j)  

ijn  number of lanes at link (i, j) 
f

ijt  travel time with free speed on link (i, j). 

)(txe  flow rate over link e at time t 

)(tx p  flow rate of path p at initial point of path p and at time t 
p  designation of a path  

kP  set of paths between the origin-destination pair k  

l lane index 

oΩ  set of travelers (agents) departing from origin o 
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Time variables     
t time index  

],0[ T  departure time window 
],0[ T  time window of simulation in which the right bound is the time of last vehicle 

leaves the network  
H time interval index  

TH  set of time intervals for T , },...,{ 0 TT hhH = with fixed time slice h∆ , where T is a 

multiple of h∆  

TH  set of time intervals forT , },...,,{ 10 TT hhhH ≡ , where T is a multiple of the 

same fixed time slice h∆  
W iteration index 
    
The basic assumptions adopted in this model are firstly discussed as follows. (i) We consider a 
road network represented by a directed graph with multiple origins and destinations. The profile of 
time-dependent origin-destination (OD) demands is a priori unknown. (ii) The departure time 
choice problem is considered in a fixed study time period, which is equally divided into numerous 
small departure time choice intervals. Each traveler, from their chosen departure time interval, 
selects a departure time instant leaving their origin to engage in an activity towards a yet unknown 
destination within a desired arrival time interval, assumed to be the same for all travelers. (iii) As 
in many activity-based models, the dynamical activity/destination choice problem is formulated as 
a utility maximization problem. However, its assumption of perfect human cognitive capacity has 
been questioned [8]. Following the previous work [9], we assume that activities are distributed in 
some nodes of the network and that each activity possesses an economic value, determined 
following a probability distribution. In order to facilitate the essential idea without loss of 
generality, we consider only homogeneous activity types and assume its perceived economic value 
is the same for all travelers. However, different classes of travelers/activities may have various 
activity value evaluations. Travelers who move to some node to engage an activity receive its 
economic value. The complex activity chain problem is not considered in this work. (iv) Travelers 
have no perfect information about activity value/location distributions, and about traffic condition 
throughout the whole network. The route/destination choice behavior is link/node based according 
to travelers’ adaptive behavior with respect to congestion and activity availability dynamics. (v) 
The framework of our model is that each traveler tries to maximize his revenue obtained by 
engaging certain activity and reducing its related general travel cost. The last one is comprised of 
the travel cost resulting from the travel time between the origin and the destination, plus 
time-related penalty cost linked to early/late arrival. We describe the model as follows: 1.dynamic 
traffic flow propagation model; 2. activity value distribution assumption and arrival penalty; 3. 
activity-based dynamic user equilibrium condition.      
 
Dynamic traffic flow propagation 
 
We consider that the network of interest is composed of a set of nodes and a set of directed links. 
At a chosen time, travelers leave their respective origin into the network of interest. The conditions 
for the conservation of the flow at origins is defined by: 

OodttdD
T

oo ∈∀= ∫ ,)(
0

                                                    (1) 
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Also, the number of vehicles absorbed at destinations is constrained by their available activity 
capacity, dN : 

∑ ∫
∈

≤
)(

0
)(

dMe
d

T

e Ndttx , Dd ∈∀                                                    (2) 

For a link (i, j), flow direction being from node i to node j, link travel time is valued by the 
difference between the arrival and departure curves at arrival time t: 

ttADtT ijijij −= − ))(()( 1                                                         (3) 

We consider intersections as a transition point, which does not imply extra passing time 
and stock space. However, the intersections can be modeled more realistically by endowing their 
physical characteristics. Now let us consider the flow propagation at intersections comprised of 
various entering (upstream) links and various outgoing (downstream) links. The flow splitting 
from upstream links to downstream links is limited by some dynamic inflow and outflow capacity 
constraints. Before addressing this issue, let us discuss the formation and dissipation of traffic 
queues in general intersections. Contrarily to the common point queue model, we separate 
different queue generations and dissipations in two or more groups of lanes within a link. 
First-In-First-Out (FIFO) discipline is respected within each group of lanes. Travelers’ route choice 
is link-based, following a stochastic choice model as described in the next section. As an outgoing 
link choice is made, agents are added in the corresponding group of lanes. As far as links are 
concerned, when time-dependent traffic demand exceeds its time-dependent capacity, a traffic 
queue is generated. In this model, the traffic queue is separated within two or more groups of lanes 
if the number of lanes and the number of outgoing links exceed 1. Traffic queue in one group of 
lanes is assumed not to influence the fluidity of another group of lanes within the same link. For 
links with only one lane or one outgoing link, the common point queue model is applied. We 
assume that traffic propagation behaviors are different according the traffic conditions (free 
flow/congestion). This very basic model can easily and at little cost be improved, by implementing 
particle discretization of macroscopic traffic flow models, such as first order models [11] or 
second order models [12]. To model the traffic propagation at intersection nodes, for free flow case, 
the FIFO discipline is imposed to entering vehicles. By contrast, in the congestion case, when 
more than one entering link are congested and agents aim at the same outgoing link, then the 
entering order to the chosen outgoing link is given with a probability of choice expressing how 
conflicts between agents are resolved in the node. Different rules, based on [13], could be used: 
node optimization models, supply split equilibrium models etc. Vehicles’ link delay depends on the 
number of vehicles in the front of the agent in the same queue. Below, we discuss the traffic flow 
constraints for diverge and merge case in intersections with multiple upstream links and multiple 
downstream links.  
 
Diverge constraints 
In the diverge case, the time-dependent departure flow capacity of lane group sl  within upstream 

link re  for the next chosen downstream link se  is constrained by (supply/demand approach 
[10]): 

))(σ,δαmin()(δ * tt
sr

ss

r ee
l
rs

l
e =                                                    (4) 



 

 5

where sl
rsα  is a split coefficient corresponding partial outflow capacity from upstream link re  to 

downstream link se  by lane group sl .  
Such constraints can be managed by random entrance or pointwise node models, as mentioned 
above. 
 
Merge constraints 
For intersection i, the total flow entering the downstream link se  cannot exceed its total 
time-dependent inflow capacity: 

)(),(σ)(δ iMett r
e

e
l
e

r

s

s

r
∈≤∑                                                   (5) 

where sl  is the lane group within upstream link re  for the next chosen downstream link se . 
 
Gross activity value distribution and arrival time penalty 
 
For the probability distribution of gross activity value v, in each destination d, we assume in the 
numerical simulation that the gross activity value follows an exponential distribution function, 

))(λexp(λ)( dddd mvvP −−=  where dmv ≥  and 0λ ≥d . This probability function can be 
replaced by any other more realistic probability function if needed. Let )(π t

kp denote travel time 

on route kp for origin-destination pair k with departure time t. For an agent traveling route kp  
with departure time t, the net activity value obtained is defined by 

)())(π()(~
)( tCttvtv

kkk ppkdp −+=                                                (6) 

where ))(π()( ttv
kpkd + is the maximum available gross activity value when arriving at 

destination d with )(π tt
kp+  being the arrival time at destination d and )(tC

kp is the general 
path cost. 

The general path cost is composed of two parts. The first part is associated with traveling 
time from origin to destination. The path travel time is the sum of all links’ travel time in the path. 
We suppose that the unit value of time is the same for all travellers. The second part is associated 
with the arrival time at destination. We use a piecewise early/late arrival penalty function to reflect 
the arrival cost associated to the ideal arrival time [14], [15] (bounded rationality). The general 
cost function is defined by:              

),0max(µ),0max(µµ)(π *arr
β

arr*
α ∆−−+−∆−+× ttttt

kp                      (7) 

where µ  is the unit cost of travel time, αµ is the unit penalty linked to an early arrival, and βµ is 

the unit penalty of a late arrival. Also, arrt  is the actual arrival time with *t  being the desired 
arrival time for all travellers, and ∆ is the half of the tolerance interval in which penalty cost is 0. 
According to the experimental result [16], the condition βα µµµ0 <<<  holds. 
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The equilibrium condition 
 
We consider a predictive dynamic assignment problem, i.e. a long term equilibrium with demand 
varying within the day. The dynamic traffic assignment based on the activity distribution 
considering for departure time choice can be described as (Wardrop’s principle): 

In dynamic user equilibrium (DUE), for travellers departing from the same origin, the net activity 
obtained relating to departure time, destination and route choice is equal and no less than that of 
any unused departure time/destinations/routes.     

Let max
ov  denote the maximum net activity value departing from origin o within the period of 

interest T to some activity destination, we define max
ov  by 

 

{ }ookok
m
po mTtDkdPptvv Ω∈∀∈∀∈∀∈∀= = ],,0[,)(,:)(~max )(|

max                  (8) 

where m denotes a traveller with net activity value )(~ tv m
p  defined by (6). 

This DUE condition can be expressed by 

KkOoPpTt
tx

v
vtv okok

p

o

o
p ∈∀∈∀∈∀∈∀

⎩
⎨
⎧ >

≤
=

= ,,],,0[
otherwise

0)(if
)(~

)(|max

max

             (9) 

where 

],0[,),()(
)(|

TtKktdtx
okok Pp

op
k

∈∀∈∀=∑ ∑
= ∈

                                     (10) 

3. TIME-DEPENDENT ACO APPROACH  
 
This section is devoted to the computation of the network equilibrium. Many solution methods 
have been proposed in similar contexts. One method, well suited to multi-agent models, is a 
metaheuristic approach based on the ant colony algorithm (ACO) concept [17] to solve the 
time-dependant user equilibrium problem. Extending the ACO algorithm, we propose a time 
discretization scheme maintaining time-dependent pheromone value corresponding to 
time-dependent path quality for guiding ant-like agents (travellers) to find better solutions. Each 
agent selects a departure time interval (for example 5 minutes) according to the departure time 
choice model (described later). Furthermore, agents departing from different origins use 
origin-specific pheromone information to reflect correctly the quality of routes used by agents 
from these different origins.    

For the selection of route and destination, agents use the time-dependent pheromone 
quantity and travel time information over links, indicating at the current time how good it seems to 
select the next outgoing link in order to optimise the net activity value. These time-dependent 
pheromone trails are maintained and updated according to pheromone update rules. These rules are 
composed of a local update rule and a global update rule. The first one is immediately applied to 
the utilized paths after an agent arrives to some activity destination for which the quantity of added 
pheromone depends on the quality of solution found by the agent. The second one is applied 
throughout all links after all agents have found activities. The rule is based on the cross-entropy 
pheromone update concept [18] in order to avoid the scale problem resulting from the variability 
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of numbers of agents and path quality function settings. We introduce a penalty function in the 
agents’ link travel time estimation in order to dissuade agents from using links in a state close to 
hyper congestion. Concerning the destination choice, we utilize artificial nodes and artificial links 
connecting all possible destinations. The capacity of artificial links is set to be equal to the number 
of vacant activities of connected destinations. The flow over artificial links is the amount of 
occupied activities. We apply the concept of penalty on artificial links in order to model the 
competition between destinations. The algorithm is stopped when the average quality of solutions 
has not changed significantly after a certain number of iterations.  

We detail the time-dependent ACO approach as follows:             
1. Initialize a small quantity of pheromone in each time interval

THh∈ for all types of pheromone, 
Oo∈ , and for all links (i, j).  

cho
ij =)(τ THhOoEji ∈∀∈∀∈∀ ,,),(                                         (11) 

where h is a time interval index, 
TH  is the set of the intervals of the discretization of 

time-dependent pheromones, and o is the type of pheromone with respect to origin node.  
 
2. The probability for one agent m at node i to choose next outgoing link (i, j) at instant t, ( sht ∈ ), 
according to the following stochastic decision rule (following [17]): 

otherwise

)(if

0

)](η~[)](τ~[
)](η~[)](τ~[

)(
)(u

βα

βα
tJj

th
th

tP

m
i

tJ
ius

o
iu

ijs
o
ij

m
ij

m
i

∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

= ∑
∈

Tso HhOom ∈∈∀Ω∈∀ ,,               (12) 

where : 
t : route choice decision making time instant when arriving at node i within time interval sh , s is an 
index. 

βα, : constant parameters manipulating the relative importance of normalized pheromone value at 
time interval sh , )(τ~ s

o
ij h , and normalized visibility value, )(η~ tij

, on link (i, j) at time instant t. 

)(tJ m
i : set of non-visited outgoing nodes for agent m situated at node i at time t.  

)(τ~ s
o

ij h : normalized type o pheromone value on link (i, j) at time interval sh , defined by 

∑
∈

=

)(u

)(τ
)(τ

)(τ~

tJ
s

o
iu

s
o
ij

s
o
ij

m
i

h
h

h

                                         

)(η~ij t : normalized visibility value on link (i, j) at time t, defined by 
( )∑

∈

=

)(

η
)(η

)(η~

tJu
iu

ij
ij

m
i

t
t

t  

in which )(η tij  
is the inverse of link travel time adding expecting waiting time in queue and a 

penalty function, )(tijΓ , reflecting traffic congestion condition on link (i, j), defined by: 
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)(
)(δ
)(

1)(η
t

t
ty

t
t

ij
ij

ijf
ij

ij

Γ++
=

                                                     (13) 

otherwise
)()γ1( if

0

]
γ

1
)(

1[ψ
)( ijijij

ijijijij

BtyB
BtyBt

≤≤−

⎪⎩

⎪
⎨
⎧ −

−=Γ                         (14) 

where )(tyij  is the number of agents on link (i, j) at time t, )(δ tij
 is the temporal outflow 

capacity, ijB is the vehicle stock capacity at link (i, j), ijijij LnkB ××= max , γ  is a parameter 

controlling the activation of the penalty function, ψ  is a parameter defined by ζψ ijB=  in order 

to eliminate the influence of link stock capacity, and ζ  is a parameter controlling the influence of 
the penalty value, 0ζ > . It is necessary to include the penalty function in the expression of the 
visibility (16), in order to dissuade agents (ants) from using a link close to hyper congestion.  
 
3. After an agent constructs its path to some activity destination, the time-dependent pheromone 
trail over its path is immediately updated. The time-dependent pheromone in the interval of which 
the next outgoing link choice decision is taken is updated. The local pheromone update rule is 
defined by: 

Ts
m

s
mo
ijs

o
ij HhOowhwh

o

∈∀∈∀∆=∆ ∑
Ω∈∀

,),(τ),(τ                              (15) 

Ts

m
m

s
mo
ij HhOo

wpjiwLQ
wh ∈∀∈∀

⎩
⎨
⎧ ∈

=∆ ,
otherwise

)(),(link  if
0

)(/
),(τ                (16) 

where sh  is the time interval of the decision taken for choosing the next link (i, j) of agent m, 
)(wpm
 is the path used by agent m at iteration w, Q is a constant parameter, and )(wLm  is a 

solution quality function, defined by general cost minus obtained gross activity value plus the 
maximum gross activity value in order to guarantee 0)( >wLm . 

Concerning the destination choice, we use the virtual nodes and virtual links connecting all 
destinations. The capacity of virtual links is set to be equal to the number of vacant activities of 
connected destinations. The flow over virtual links is the amount of occupied activities. We apply 
the concept of penalty on virtual links to model the competition between destinations. A penalty 
function similar to equation (13) is applied here.     

When all agents have found activities, we apply the global pheromone update rule to all 
links, defined by   

T

Evu

o
uv

o
ijo

ij
o
ij HhOoEji

wh
wh

whwh ∈∀∈∀∈∀
∆

∆
+−=+

∑
∈∀

,,),(,
),(τ

),(τ
ρω),(τ)ρ1()1,(τ

),(     

(17) 

where )1,0(ρ∈  is constant evaporation rate of pheromones and ω  is a parameter adjusting the 



 

 9

amount of added pheromone.  
This global pheromone update rule is based on the cross-entropy pheromone update 

concept [18] in order to avoid the scale problem resulting from the variability of numbers of agents 
and path quality function settings.  
  
The departure time choice model  
 
For the departure time choice problem, we propose a departure choice model based on an ACO 
approach similar to the one proposed in the preceding section. We create a graph composed by a 
set of origin nodes O and a set of time interval indices over the demand interval T. Links connect 
origin nodes and all departure time interval indices. Agents start at origin nodes and select for their 
next node some neighboring node (index of departure time interval), based on pheromone 
information over links. After all agents find solutions, the pheromone quantity over these departure 
time interval edges is updated according agents’ obtained solution quality (net activity value). The 
performance of leaving at a certain time interval depends on all agents’ behavior and network 
dynamics. Thus, the obtained net activity value influences the departure time choice in the next 
day (iteration). In extensions of this scheme (action of information systems), the ACO concept 
(communication through pheromone) would be replaced by an emulation of the action of 
information systems in conjunction with the cross entropy concept. 
 
4. NETWORK EXAMPLES 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

Figure 1: The network 
 
In order to test the proposed algorithm in a congested situation, the capacity of some outgoing 
links is set to be small and the total demand is set great enough to cause congestion on some links. 
The demand period is 2 hours (7200 seconds, from 7:00 to 9:00), the unitary departure time choice 
interval is 5 minutes, and the desired arrival time is 9:00 with a tolerance time window from 8:54 
to 9:06. The unit value of time spent in travel is 7 euros/hour, and early/late arrival penalty is 
respectively 4 euros/hour and 15 euros/hour. The departure time chosen is initialized uniformly in 
the period of demand. 
 
The test network consists of 8 nodes and 12 links with two origins and two destinations (see figure 
1). The demands at the origin nodes (node 1 and node 4) are set to 1500 travellers each. 
Destination nodes with vacant activities are node 5 and node 8 with 4000 vacant activities each. 
The gross activity value follows an exponential distribution, with average of 30 euros (node 8) and 
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20 euros (node 5). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2 : ACO algorithm convergence 
 

Figure 2 depicts the objective value over 40 iterations. This objective value increases rapidly 
during early iterations, and then converges to the near optimal value, due to the fact that agents 
learn their best departure time/route/destination choice through on-route information and the 
agents’ collective experiences. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Net activity value frequency plot 
 

Figure 3 depicts the net activity value distribution for travellers from different origins, and shows 
that, even in a situation of congestion, most agents still find the best net activity value. 
 

0 5 10 15 20 25 30 35 40
6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2
x 104

Iteration

O
bj

ec
tiv

e 
va

lu
e

22 24 26 28 30
0

50

100

150

200

250

300

350

Net activity value

N
um

be
r o

f v
eh

ic
le

s

Net activity value distribution of travelers form origin node 1

22 24 26 28 30
0

50

100

150

200

250

300

350

400

Net activity value

N
um

be
r o

f v
eh

ic
le

s

Net activity value distribution of travelers form origin node 4



 

 11

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 9 at initial iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 10 at initial iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 9 at 10th iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 10 at 10th iteration

Type 1(node 1)
Type 2(node 4)

 

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 9 at 20th iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 10 at 20th iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 9 at 30th iteration

Type 1(node 1)
Type 2(node 4)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time(in minutes)

P
he

ro
m

on
e 

qu
an

tit
y

Pheromone quantity profile over link 10 at 30th iteration

Type 1(node 1)
Type 2(node 4)

 
Figure 4: Time variation of pheromone values on some links, for iterations 1, 10, 20, and 30 
 
Figure 4 depicts the evolution of the pheromone quantity on a critical link (link 9) in the shortest 
paths from origin node 1(or node 4) to destination node 8 (left) and on its alternative link (right). 
Note that agents start favouring the shortest geometrical paths, where the pheromone quantity 
increases rapidly. As the critical link becomes congested, the amount of pheromone within the 
congested period drops quickly. By contrast, the amount of pheromone increases rapidly in 



 

 12

alternative link (link 10) within the same period of congestion. 
 
5. CONCLUSION 
 
The model is expected to yield approximate dynamic assignment equilibriums with departure 
time/route/destination choice in a dynamic network context. We propose a multi-agent approach 
for the model of the system coupled with an ACO-like algorithm to solve the proposed predictive 
dynamic traffic assignment problem. Further extensions of this work should include demand 
modelling on the basis of activity plans, and testing the effect of various information provision or 
exchange schemes such as road-to-user communication information system and/or user-to-user 
information system on network operations. 
 
6. ACKNOWLEDGEMENTS 
 
The authors gratefully acknowledge the support of the ACI (Action concertée incitative) NIM 
(Nouvelles interfaces des mathématiques) “Modélisation mathématique du trafic automobile” of 
the French Ministry for Higher Education and Research. 
 
7. REFERENCES  
 
[1] Gärling, T., T. Laitila, and K. Westin eds. Theoretical foundations of travel choice modeling. 

Pergamon. 1998. 
[2] Axhausen K. W. and T. Gärling. Activity-Based Approaches to Travel Analysis: Conceptual 

Frameworks, Models and Research Problems. Transport Reviews 12(4), 1992, pp.323-341. 
[3] Bowman, J. L. and M. E. Ben-Akiva. Activity-based disaggregate travel demand model 

system with activity schedules. Transportation Research B(35), 2000, pp.1-28.  
[4] Schleifer, R. Guest editorial: Intelligent agents in traffic and transportation. Transportation 

Research C(10), 2002, pp.325-329,. 
[5] Huang, H. -J., Z. -C. Li, W. H. K. Lam, and S. C. Wong. A time dependent activity and travel 

choice model with multiple parking options. In: Transportation and traffic theory (H. 
Mahmassani ed.), 2004, pp.717-739. 

[6] Lam, W. H. K., and Y. Yin. An activity based time-dependent traffic assignment model. 
Transportation Research B(35), 2001, pp.549-574. 

[7] Kuwahara M. and T. Akamatsu. Decomposition of the reactive assignments with queues for 
many-to-many origin-destination pattern. Transportation Research B(31):1, 1997, pp. l-10. 

[8] Keen, S. Standing on the toes of pygmies: Why econophysics must be careful of the 
economic foundations on which it builds. Physica A(324), 2003, pp.108-116. 

[9]  Leurent, F. Accessibility to Vacant Activities: a Novel Model of Destination Choice. European 
Transport Conference, Proceedings of Seminar F, PTRC, London, 1999, pp. 307-318. 

[10] Lebacque J. P. The Godunov scheme and what it means for first order traffic flow models, in: 
Transportation and Traffic Theory, Proceeding of the 13th ISTTT, Pergamon, Oxford, 1996, 
pp. 647-677.  

[11] Greenberg, J. M., A. Klar, and M. Rascle. Congestion on multilane highways. SIAM journal of 
applied mathematics, Vol. 63, No. 3, 2003, pp. 813-818. 

[12] Mammar S., J. P. Lebacque, and H. Haj-Salem. A hybrid Model Based on a Second Order 
Traffic Model. Transportation Research Board, CD-ROM, 2006. 

[13] Lebacque J. P., and M. M. Khoshyaran. First order macroscopic traffic flow models: 
intersection modeling, network modeling. In: Proc of the 16th ISTTT Conf. (Transportation 
and Traffic Theory), H. Mahmassani (Ed), Washington, 2005. 



 

 13

[14] Mahmassani, H. S., and G. -L. Chang. Dynamic aspects of departure time choice behaviour in 
a commuting system: Theoretical framework and experimental analysis. Transportation 
Research Record, No. 1037, 1985, pp. 88-101. 

[15] Vickrey, W. S. Congestion Theory and Transport Investment, American Economic Review 
Proceedings, 59, 1969, pp. 251-260. 

[16] Small, K. A. The scheduling of consumer activities: Work trips. American Economic Review, 
Vol. 72, No. 3, 1982, pp. 467-479. 

[17] Dorigo, M., and C. Blum. Ant colony optimization theory: A survey. Theoretical Computer 
Science, Vol. 344, No. 2-3, 2005, pp. 243-278. 

[18] Rubinstein, R. Y. The Cross-Entropy Method for Combinatorial and Continuous Optimization. 
Methodology and Computing in Applied Probability, Vol. 1, No. 2, 1999, pp.127-190. 

 
 
 


