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ABSTRACT 

This paper reports on the evaluation of alternative algorithms for dynamic, or time-varying, 
equilibrium traffic assignment. The algorithms are used for pre-trip assignment, which reflects 
driver familiarity with expected traffic conditions, and are appropriate for off-line applications 
which require a more detailed analysis – such as temporal network flows and sensitivity to traffic 
control measures – and thus are not well served by static assignment models. The model is 
formulated as a time discrete variational inequality and a solution algorithm is developed. The 
determination of time-dependent path input flows is modeled as a master problem inspired from a 
simplicial decomposition approach. The determination of path travel times for a given set of path 
flows is the network-loading sub-problem, which is solved using the computationally efficient 
space-time queuing approach of Mahut. This solution method to the traffic flow problem is 
combined with heuristic driver behavior models to produce a fully-featured traffic simulation 
model. The complexity of the traffic simulation, which is motivated by a desire for a realistic 
representation of the system, results in an assignment map that is discontinuous and difficult to 
characterize analytically. Nevertheless, algorithms inspired from static network assignment have 
been found to work in practice for finding approximate dynamic equilibrium conditions on real-
world networks of significant size. The routing algorithms are evaluated primarily on the proximity 
of the converged assignment to the dynamic equilibrium conditions. Other measures of algorithm 
performance include the speed of convergence (number of iterations), computational burden (per 
iteration), and computer memory requirements. The reported applications of this model include 
references to studies carried out in several cities around the world and some detailed model 
calibration results for the cities of Bakersfield, USA and Montreal, Canada. The results show that 
this model may be calibrated for medium-size networks and the dynamic flows obtained with very 
reasonable computing times. 
 
Index Terms – dynamic traffic assignment, method of successive averages, projected 
gradient, traffic simulation, queuing models 

1. INTRODUCTION 

This paper reports on the evaluation of alternative algorithms for dynamic equilibrium traffic 
assignment, which are used in conjunction with a detailed traffic simulation model. In order to 
provide a common terminology to the various models, it is convenient to refer to the main 
components of any dynamic traffic model: the route-choice mechanism, the determination of the 
path input flows and the network-loading mechanism. The latter is the method used to represent 
the evolution of the traffic flow over the links of the network once the route choice and the path 
input flows have been determined. 
 
Some of the most popular dynamic traffic models today are those based on the representation of 
the behavior of each driver regarding car following, gap acceptance and lane choice. These are 
micro-simulation models. See for instance CORSIM (http://www.fhwa-tsis.com/corsim_page.htm), 
INTEGRATION (Van Aerde, 1999), AIMSUN2 (Barceló et al, 1994) (http://www.tss-bcn.com), 

http://www.fhwa-tsis.com/corsim_page.htm
http://www.tss-bcn.com/


VISSIM (http://www.ptv.de), PARAMICS (http://www.quadstone.com).See also DRACULA 
(http://www.its.leeds.ac.uk/software/dracula/)and  MITSIM (Yang, 1997) 
(http://web.mit.edu/its/products.html) which are the results of academic research. 
 
The successful and efficient use of micro-simulations is commonly limited to relatively small size 
networks. Their application has been hindered for medium-to-large networks by the relatively high 
computation time and the effort required for a proper model calibration. 
 
The aim of handling larger networks with reasonable computational times has led to the 
development of so-called “mesoscopic” approaches to traffic simulation. The aim is to obtain a 
traffic representation that still captures the basic temporal congestion phenomena, but models the 
traffic dynamics with less fidelity. Some of the earliest examples of such an approach are 
CONTRAM (Leonard et. al., 1989) (www.contram.com) and SATURN (Van Vliet, 1982), which 
are commercially available packages that are still  used in England and elsewhere. More recently 
the FHWA Dynamic Traffic Assignment Project has supported the development of 
DYNASMART (Mahmassani et al., 2001) and DYNAMIT (Ben-Akiva et al., 1998) 
(http://web.mit.edu/). Another approach to dynamic traffic assignment is that based on cellular 
automata theory (Nagel and Schreckenberg, 1992), which has been implemented in the 
TRANSIMS software (http://transims.tsasa.lanl.gov), developed by the Los Alamos National 
Laboratories in the USA.  
 
Ziliaskopoulos and Lee (1997) developed a dynamic traffic assignment model based on the cell 
transmission model which is a particular solution method for the classical hydrodynamic traffic 
flow model (Lighthill and Whitham, 1955) (Richards, 1956). METACOR (Diakakis and 
Papageorgiou, 1996) and METANET (Messmer et al., 2000a are based have their roots in 
macroscopic traffic flow theory. These models are based on the work of Papageorgiou (1990) and 
Messmer et al., 2000b respectively. The network loading method is based on a second order 
(p.d.e.) traffic flow model. Another line of research is that of analytical dynamic traffic assignment 
models, which have their roots in the mathematical programming and optimal control approaches 
static network equilibrium models which are based on link travel time functions. There is a very 
large body of literature that contains academic contributions made by using this approach. A good 
reference is a special issue of Networks and Spatial Economics ( Vol 1, Issue 3/4 , 2001). The 
paper by Friesz et al (1993) provides a formulation of an equilibrium dynamic traffic model which 
serves as the basis for the algorithm developed here.  
 
The network loading method used in this work is based on a traffic simulation model that was 
designed to produce reasonably accurate results with a minimum number of parameters and a 
minimum of computational effort (Mahut, 2001, Astarita et al., 2001). The underlying structure of 
the network model and the car moving logic have more in common with microscopic than with 
mesoscopic approaches, as it is designed to capture the effects of car following, lane changing 
and gap acceptance. This method could be characterized as a simplified microscopic model, as it 
employs less complex variants of the car-following, lane-changing and gap-acceptance models 
implemented in micro-simulation software packages that are intended for more detailed traffic 
modeling. 
 
The paper is structured as follows. The next section is dedicated to the exposition of the network 
and demand representation used in the model; then the formal statement of the model and its 
discretized version are given. The next sections are dedicated to the statement of the algorithms  
and to the description of the network loading method. Applications of the model, along with 
comparisons of the alternative assignment algorithms, are then given and some conclusions end 
the paper. 
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2. NETWORK REPRESENTATION, TRAFFIC CONTROL AND DEMAND 

The physical network is defined by links and nodes. Each link is defined its length, number of 
lanes and free-flow speed. Additional lanes on intersection approaches, for left and right turns, 
bus stops, etc… are required and are appropriate to the fidelity of the traffic simulation model. 
Similarly, at each node, each turning movement is defined by the lanes on its upstream 
(incoming) and downstream (outgoing) links that are permitted for the movement, along with a 
maximum turning speed. Maximum (free-flow) speeds on links and turning movements, when 
combined with the physical parameters of vehicle length and driver response time, produce the 
well-known fundamental relationship of traffic flow for the car-following model used in the traffic 
simulator. As a result, per lane flow capacities, storage (density) capacities, and negative 
(backward moving) shock-wave speeds are all determined by the specification of the maximum 
speed, vehicle length, and driver response time. 
 
The model does not use geometrical information such as intersection size and shape, or the radii 
of curvature of the turning movements. Each lane of a link, and each turning movement, can be 
restricted to a subset of the vehicle classes, permitting the modeling of HOV (high-occupancy 
vehicle) lanes, or reserved lanes for buses and/or taxis, etc. The model also permits the 
specification of detailed traffic control information such as (pre-timed) signal timing and ramp 
metering plans.  
 
The demand is defined by a time-sliced O-D matrix for each vehicle class. Each vehicle class is 
comprised of one or more vehicle types, which are distinguished by the physical attributes of the 
vehicle effective length and the driver/vehicle response time, as discussed above. 

3. DYNAMIC TRAFFIC ASSIGNMENT – THE MODEL 

Two different approaches are commonly used to emulate the path choice behavior of drivers: 
dynamic assignment en route and dynamic equilibrium assignment. In this work, the approach 
taken is to seek an approximate solution to the dynamic equilibrium (pre-trip) conditions.  
 
The path choices are modeled as decision variables governed by a user optimal principle where 
each driver seeks to minimize the used path travel time. All drivers have perfect access to 
information, which consists of the travel times on all paths (used and unused). The solution 
algorithm takes the form of an iterative procedure designed to converge to these conditions.  
 
The solution approach adopted for solving the dynamic network equilibrium model (1)-(3) is 

based on a temporal discretization into periods 1,2,..., dT
t

τ =
∆

, where t∆  is the chosen duration 

of a departure-time interval. This results in a time discrete model. 
 
 
The mathematical statement of a time discrete version of the dynamic equilibrium problem is in 
the space of path flows khτ , for all paths k belonging to the set iK  for an origin-destination , at 

time t. The time-varying demands are denoted 
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and a temporal version of Wardrop’s (1952) user optimal route choice results in the model:: 
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which can be shown to be equivalent to solving the discrete variational inequality. 
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where   where i
i I

K
∈

=Uk hτ is the vector of path flows ( )khτ for all k and τ. 

 
The demonstration of existence and uniqueness of a solution to this model depends on the 
properties of the mapping s(h[g]), that is the dependence of link and path travel times on the path 
input flows and the dependence of the path input flows on the demands. Since the properties of 
this mapping are not easily verified due to the fact that it is the output of a simulation model and 
not an analytical transformation, no claims are made about the existence or the uniqueness of a 
solution. The equilibrium principle is used as a guide in computing an approximate solution of the 
time discrete variational inequality. 
 
The next sections present an MSA-based solution algorithm to this problem, followed by an 
algorithm inspired by the projected gradient method. A heuristic method which allows the 
maximum step size to increase with departure time, which is applicable to both the MSA and 
quasi-gradient algorithms, is presented afterwards. 

4. MSA-BASED ALGORITHM 

The solution algorithm used here consists of two main components other than the computation of 
the temporal shortest paths: a method to determine a new set of time-dependent path input flows, 
given the experienced path travel times at the previous iteration, and a method to determine the 
actual link flows and travel times that result from a given set of path inflow rates.. The algorithm 
furthermore requires a set of initial path flows. The general structure of the algorithm is shown 
schematically in Figure 1. 
 
The path input flows  are determined by a variant of the method of successive 
averages (MSA), which is applied to each O-D pair I and time interval 

,kh k Kτ ∈
τ . An initial feasible 

solution is computed by assigning the demand for each time period to a set of successive 
shortest paths. Starting at the second iteration, and up to a pre-specified maximum number of 
iterations, N, the time-dependent link travel times after each loading are used to determine a new 
set of dynamic shortest paths that are added to the current set of paths. 
iteration , the volume assigned as input flow to each path in the set is ,n n N≤ ig

n
τ , i I , all τ∈ . 

After that, for iteration m m , only the shortest among used paths is identified and the path 
input flow rates are redistributed over the known paths. 

, N>

 
If the flow of a particular path decreases below a small predetermined value then the path is 
dropped and its remaining flow is distributed to the other used paths. This heuristic approach is 
akin to the restricted simplicial decomposition algorithm of Lawgphonpanich and Hearn (1984) for 
the solution of the static network equilibrium model with fixed demand. The algorithm is 
summarized below. 
 
 
 



 
EQUILIBRIUM DTA ALGORITHM  

 
• Step 0 Initialization (iteration counter l=1): 

 
 Compute temporal shortest paths based on free-flow travel times. 
 Load the demands to obtain an initial solution;  

Update iteration counter: l=l+1. 
 
• Step 1 Reallocation of input  flows to paths: 

 
Step 1.1 If (l ≤ N)  
Compute a new dynamic shortest path. 

Assign to each path k the input flow ( )
gihlk l

τ

τ =  

Step 1.2 If (l > N)  
Identify the shortest among used paths. 
Redistribute the flows as follows: 
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• Step 2 Stopping rule: 
 If l ;L or RGap STOPε≤ ≤  ⇒

 
  otherwise return to Step 1 
 

While no formal convergence proof can be given for this algorithm, since the network loading map 
does not have an analytical form, a measure of gap, inspired from that used in static network 
equilibrium models may be used for qualifying a given solution. It is the difference between the 
total travel time experienced and the total travel time that would have been experienced if all 
vehicles had the travel time (over each interval τ ) equal to that of the current shortest path. 
 
Hence a Relative Gap for each departure time interval τ  may be computed as 
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where u  are the lengths of the shortest paths at iteration n. A relative gap of zero would  ( )i nτ

indicate a perfect dynamic user equilibrium flow. Clearly this is a fleeting goal to aim for with any 
dynamic traffic assignment. 
 
It is very important to note that this model, even though its general formulation is very similar to 
flow based models, is in fact a discrete vehicle model. The network loading procedure, as 
realized by the event based simulation, moves individual cars on the links of the network. This is 
discussed in more detail in a later section. 
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Figure 1. Structure of the solution algorithm for the DTA model 
 

5. GRADIENT-BASED ALGORITHMS 

The equilibration algorithms used in static equilibrium models that operate in the space of path 
flows provide some ideas that may be adapted heuristically for the solution of the dynamic 
equilibrium traffic assignment. These algorithms are adaptations of the classical convex simplex, 
projected gradient and reduced gradient algorithms implemented with a Jacobi or a Gauss Seidel 
decomposition scheme. Some selected references on the topic are Leventhal et al (1973), 
Dafermos (1971) and the text by Patriksson (1994). 
 
The algorithm that is implemented for the solution of the DTA model considered in this paper 
operates in the space of path flows. Hence it is very attractive to adapt the equivalent of the 
projected gradient and the reduced gradient algorithms, even though there is no formal objective 
function that can be identified and the model formulation is a time discrete variational inequality. 
Since there is no objective function the step sizes adopted are those of the MSA method or the 
modified MSA method described below. 
 
In order to state the algorithms (for one O-D pair) the notation used is the following. Let  be 
the set of paths with positive flow. Let  is the cost (time) of a path and 

K +

ks s  be the average value 

of the path costs; kp  is the proportion of input flows to the paths k K +∈ ;  Is the direction of 

change for each path and d  is the normalized direction; 
kd

n
k α  is the MSA step size. 

 
The quasi projected gradient algorithm modifies the flow changes by using the following steps: 
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5. Update the path proportions n

k k kp p dα= + . 
 
The quasi reduced gradient algorithm modifies the flow changes by using the following steps: 
 
1. Select the path that has the largest flow: { }* arg max kk h= ; 
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5. The step size is MSA maxmin( , )α α α= ; 
 
6. Update the path proportions n

k k kp p dα= + . 
 
The trips that are assigned to be loaded on each path are simply the product of the demand for 
the O-D pair multiplied by the path proportions. Then the simulation that achieves the network 
loading is carried out. 

6. TIME-VARYING STEP-SIZE ADJUSTMENT 

A basic observation about the behavior of the MSA algorithm is that the assignment for a specific 
departure-time interval is further away from the equilibrium conditions (measured by the relative 
gap in this work) with later departure times. In fact, for a majority of the real-world networks that 
have been tested to date, the relationship between departure time and relative gap is 
monotonically non-decreasing (exceptions to this rule are invariably cases with very severe 
congestion). Another consistent trend in time-varying relative gap (see Figure 5, below) is that 
later departure-time intervals require more iterations before converging to a stable value of 
relative gap: again, the relationship is very consistent across various networks.  
 
One basic explanation for these phenomena is that the travel times of later-departing vehicles are 
affected by earlier-departing vehicles, and thus the convergence for a later-departing interval 
cannot be achieved until it has first been achieved for the prior interval. This inherent property of 
the model suggested the possibility that the higher values of relative gap in the later-departing 
intervals might be partially a result of the fact that the MSA step-size is the same for all departure-



time intervals at each iteration. To put it simply, by the time (in iterations) that a later interval 
finally starts to converge, the step-size is so small that not enough flow is being moved away from 
the longer paths towards the shortest path. Another reason for the increasing values of relative 
gap is simply that the later-departing vehicles incur higher congestion, and that it is more “difficult” 
for the algorithm to reach equilibrium conditions as congestion increases. This idea is also 
supported by the various scenarios that have been tested to date, which cover a wide range of 
congestion levels. 
 
These observations are the basis of a time-varying step-size heuristic, which gradually modifies 
the step-sizes applied to later departure intervals. The heuristic uses an integer reset parameter 
n, and is first applied in step 2.2 of the MSA algorithm above (step 2.1 remains unchanged). The 
first n*d iterations, where 
 

dTd
t

=
∆

 

 
is the number of departure-time intervals, of step 2.2 are a transitory period during which the l-
values of a departure intervals are iteratively rolled back using a cascading pattern, which can be 
succinctly described as follows. 
 

Modified step 2.2: at iteration N+n*r, 1<r≤d; apply l=l-n for departure intervals r, r+1, …, d. 
 
This rule creates a cascade or staircase pattern of l-values, when viewed in a table of iteration vs. 
departure interval, that is gradually built during iterations N+n, N+n+1,…. N+n*d. The l-values for 
the first departure interval are not modified using this heuristic. After iteration N+n*d, the l-values 
for increasing departure intervals are offset by exactly n and this pattern remains until termination 
of the DTA algorithm. 

7. NETWORK LOADING MODEL 

The core of the traffic simulation model is the following simplified car-following model: 
 

[ ]( ) min ( ) , ( )f f lx t x t V x t Rε ε= − + ⋅ − L−  , 
 
Where x(t) is the trajectory of a vehicle (position as a function of time),  L is the effective vehicle 
length, R is the driver/vehicle response time, V is the free flow speed, and ε is an arbitrarily short 
time interval. The subscripts f and l denote the trajectories of the following and leading vehicles, 
respectively. This model considers only the free-flow speed (without acceleration constraints) 
combined with a simple collision avoidance model, and can easily be shown to yield the well-
known “triangular” relationship between traffic flow and density, also known as the fundamental 
diagram of traffic (Mahut, 2000). This relationship can be solved in a rigorous way, while only 
calculating the time at which a vehicle enters and exits each link, using the following expression: 
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Where X1 and X2 are the lengths of the links upstream and downstream of the position x=0, V1 
and V2 are the free-flow speeds of these two links, respectively, and the subscripts indicate 
vehicle numbering in sequential order. This “link-based” solution provides a very practical and 
computationally efficient way to model traffic without actually calculating the state variables 
(position, speed, etc..) of each vehicle at each second or less (using a time-step solution). It 
should be noted that this expression only applies strictly to the case of a one-lane link.  



 
A multi-lane version of the above relationship maintains the same property of only calculating the 
entrance and exit times of each vehicle, but also captures the interactions between vehicles due 
to lane-changing maneuvers (Mahut 2001). The multi-lane model also employs a complex set of 
heuristics for modeling a driver’s lane-selection decisions, which takes into consideration the 
driver’s intended path downstream of his current position, the lane(s) that may be used to execute 
the next turning movement, and the prevailing traffic conditions on each lane between the driver 
and the end of the link. This model is described in more detail elsewhere in the literature (Mahut 
2001), (Florian et al 2005), (Tian et al, 2006). 
 
The link-based expression above determines the earliest entrance time for any vehicle wishing to 
enter the link, as a function of the historical record of exit times and prior entrance times. The 
information is used in a way that rigorously applies the above car following model. Essentially, the 
car following model is extended in a recursive way to apply over a sequence of vehicles. For 
example, rather than modeling the relationship between vehicle 1 and vehicle 2 (higher number is 
follower of lower number), and the subsequent relationship between vehicles 2 and 3, the model 
allows the impact of vehicle 1 on vehicle 3 to be expressed directly. This can be extended to any 
number of vehicles, which is the essence of the link-based expression above. Conceptually, as 
the primary source of delays in a traffic network is at the nodes, the role of (link) traffic dynamics 
in such a model is to correctly propagate the delays incurred by vehicles at the downstream end 
of the link to the upstream end, where these delays (congestion spill-back) will affect the entrance 
times of vehicles to the link, i.e. the maximum in-flow rate. Rather than explicitly modeling the 
position of each vehicle in order to determine when link congestion begins to affect these 
entrance times, the exit delays are propagated directly back to the entrance. This particular 
characteristic – the ability to rigorously solve the traffic model over entire links – has also been 
demonstrated for the kinematic wave model based on the triangular fundamental diagram 
(Newell, 1992). 
 
This model of traffic dynamics – which can be characterized as a continuous time, continuous 
space, discrete-flow model – is combined with a node model which explicitly represents the traffic 
control system (pre-timed traffic signals), and also models driver interactions at uncontrolled 
points of conflict with gap-acceptance logic. The combined system is then solved using a 
discrete-event (event based) algorithm which allows entire networks to be modeled. Event-based 
models are fundamentally different from time-step models, in the following way: 

• Time-step model: at each time step (usually 1 second or less), for each vehicle, all input 
data required for all of the individual models (car-following, lane-changing, gap-
acceptance, route choice), is updated and the outputs (acceleration, deceleration, lane 
changing action, etc…) are re-computed. 

• Event-based model: the individual models are only re-executed at the moment in time at 
which any of their relevant inputs change. The models are thus designed in such a way 
that their outputs (e.g. vehicle speed) will remain valid for as long as the inputs to the 
calculation do not change. An event is generated at a specific point in (continuous) time, 
to reflect a change in information (stimuli) which must be acted upon. Generally, the 
execution of an event results in the creation of one or more subsequent events. 

 
The result in this case is an event-based model that is very efficient computationally, but that also 
respects all of the basic laws of traffic flow and explicitly represents the mechanisms of 
congestion that occur in real traffic. As can be seen in the expression above, the car following 
model is a relatively simple one: this simplification (relative to other car following models in the 
literature) is necessary in order to permit an efficient event-based procedure. However, this 
results in a major savings in computation time relative to time-step simulation models (between 
one and two orders of magnitude). The computation time is particularly important in the context of 
a DTA model which must perform numerous iterations of the simulation model in the process of 
solving for the equilibrium assignment. The fact that DTA modeling tends to be done on larger 
networks, where there is significant route choice, only makes the computation time issue even 
more critical.  



 
An overview of the properties the simulation model is as follows: 

• Individual vehicle movements are modeled, resulting in a realistic representation of 
congestion mechanisms (mainly at nodes), and the resulting spill-back (propagation) of 
congestion across lanes (laterally) and to upstream links (longitudinally); 

• Advanced lane-selection rules that employ look-ahead logic; the latter is not restrained to 
a fixed number of links downstream of the driver; 

• A deadlock prevention algorithm identifies cycles of links that are very close to locking up 
(during the simulation itself), and manages the inflows to these cycles, much like an 
adaptive traffic control system, in order to prevent deadlock and maintain traffic flow; 

• Very fast computation times compared to time-step simulation models; 

8. APPLICATIONS 

This dynamic traffic assignment algorithm was coded in C++ using an object-oriented approach. 
The code runs under the Windows XP/2000 operating systems. The model was first applied in 
Stockholm and then in Calgary, Canada. The Calgary application and model calibration was 
reported in Mahut et al (2004). 
 
Other applications have been accomplished in Basel (Switzerland), Bakersfield (California, 
U.S.A.),  Montreal (Canada) and elsewhere. We give below the relative sizes of some of these 
applications and the computer resources on a 1.6 Ghz Intel Centrino notebook computer 
operating under Win XP. 
 
City Zones Nodes Links Vehicles Area 

(km2) 
RAM 
(MB) 

CPU/iteration

Calgary 76 402 752 12,563 14  6.4 s 
Bakersfield 64 368 582 47,023 45 75 M 51.2 s 
Basel 120 576 1450 65,631 21  50.3 s 
Stockholm 114 1191 2080 108,000 200 90 1.5 min 
Montreal 232 966 2563 232,667 45 550 4.5 min 
 
We present next some details of the Montreal application. The static planning model for the 
Montreal Region consists of 1,400 zones, 15,000 nodes and 33,500 links. A sub-area identified in 
pink in Figure 2 indicates the sub-area that was identified for the study of an improved urban 
arterial facility. A traversal matrix was computed for the sub-area and then adjusted by using link 
counts. More detail was added where necessary and some 320 traffic signals were coded by the 
staff of the City of Montreal. The resulting model has 232 zones, 966 nodes, 2,563 links and the 
total vehicular demand is 232,667. The data collection, coding and calibration effort took some 
nine months.  
 
Figure 3 shows a snapshot of a snapshot of link-based simulation results for a 5-minute time 
interval: link outflow is shown as bar width, while level of congestion (0-100% scale) is indicated 
with color. A typical convergence plot for 10 departure-time intervals for the 6:30 – 9:00 AM peak 
hour are shown in Figure 4. The calibration results, displayed as a scatterplot of traffic counts vs. 
model outputs as shown in Figure 5, were found to be excellent. Figure 6 shows a comparison of 
simulation results (link outflow and congestion) for before and after the capacity is increased on 
the Notre-Dame facility (indicated with an arrow). The wider bars and cooler colors indicate higher 
flows and lower congestion after the facility is improved. 



 
 
Figure 2. The Notre Dame highway sub-area                                                                                             

 

Figure 3. Sub-area AM flows and congestion levels                                                                                        



 

Figure 4. Convergence for AM peak period (3 hours)  

 

Figure 5. Calibration results: predicted vs. observed flows 

 



Improved facility: 
Notre Dame 
Avenue 

 

Figure 6. Scenario comparison: left window after improvement. 

9. COMPARISON OF ASSIGNMENT ALGORITHMS 

The section compares convergence results for the MSA algorithm and quasi projected gradient 
method with time-varying step-size adjustment. The quasi reduced gradient method was not 
found to perform well in the tests and thus this method was removed from the evaluation.  
 
The methods were first compared on the Bakersfield network, which appears in the table of the 
previous section and is shown in Figure 7. This application is smaller than the Montreal network 
and focuses on a 7-mile (11.2 km) section of Interstate freeway and part of the urban arterial 
network. The sub-area considered was obtained from the Kern COG regional static network and 
the origin destination matrices for private cars and trucks were synthesized by using a 
combination of O-D matrix adjustment techniques and new counts.  
 
Plots of relative gap (for six departure-time intervals) are shown for the MSA algorithm in Figure 
8. Figure 9 shows the relative gaps for the MSA algortihm with time-varying step-size adjustment, 
while Figure 10 shows the relative gaps for the quasi projected gradient with step-size 
adjustment. The offset parameter (n) used for the step-size adjustment was 3. 
 
Looking at figures 8 to 10, it can be seen that the step-size adjustment rule, when added to the 
MSA algorithm, significantly accelerated the convergence. The quasi-projected gradient, in 
combination with the step-size adjustment rule, further accelerated the convergence and also 
resulted in a smoother overall convergence. Although a detailed investigation is beyond the 
scope of this paper, it has been observed that the relative gaps do not ultimately converge to 
zero, regardless of how many iterations are executed. Rather, for a given network and demand, 
there is a stable value of relative gap for each interval to which system converges, with more or 
less fluctuation, beyond which no more improvement is observed. The improved methods were 
found to consistently lower these stable gap measures, and thus provided tigher convergence as 
well as faster convergence. 
 



Visually, this stability can be clearly observed in Figure 10, which shows the gap measures for the 
quasi projected gradient with step-size adjustment. There is no significant improvement beyond 
roughly iteration 45, where the average relative gap is 3.2%. For practical applications, this is an 
entirely acceptable approximation of dynamic equilibrium, indicating that more iterations would 
not be required. By comparison, the average relative gaps at iteration 45 of the MSA algorithm 
and MSA with step-size adjustment are 6.6% and 3.9%, respectively. Even if these values might 
also be considered adequate, the fact that the gaps are still significantly improving at iteration 45 
in Figures 8 and 9 makes it impractical, or at least unsatisfying, to stop the the algorithms at this 
point. The reduction in the number of iterations is at least as significant, for practical purposes, as 
the tigher convergence obtained once the gap values stabilize. 
 
It must be stressed that due to the complexity of the traffic simulation model, there are practical 
limitations as to how close the algorithms can get the system to perfect equilibrium. For example, 
the reductions obtained in total CPU (number of iterations) and in the relative gap values, are 
both roughly 50% (comparing MSA to quasi projected gradient with step size adjustment). These 
improvements may seem modest in the realm of static assignment methods, where 
improvements in convergence may be measured on a log scale. However, in the realm of 
simulation-based assignment, and in particular for a high-fidelity simulation model as is used 
here, these improvements are remarkable.  
 
 

 
 
Figure 7. Bakersfield Network.



 

Figure 8. Relative Gaps for MSA algorithm. 

 

Figure 9. Relative Gaps for MSA with time-varying step-size rule. 

 

Figure 10. Relative Gaps for quasi projected gradient with time-varying step-size rule.



The algorithms were also tested on a more recent version of the Montreal sub-area which is more 
than double the size (in area) of the one shown in Figure 2. This network was run on a laptop 
computer with a Centrino-2 dual core 2.3 GHz processor. The scenario and performance 
measures for this test are as follows. 
 
City Zones Nodes Links Vehicles Area 

(km2) 
RAM 
(MB) 

CPU/iteration

Montreal (2) 401 2216 6488 320,742 115 950 241 s 
 
The general trend towards faster convergence is again visible to the eye. The same trend 
towards tighter convergence is also found, although is less dramatic, with average gap measures 
of 3.9%, 3.3% and 2.8% for the MSA, MSA with step-size adjustment, and quasi projected 
gradient with step-size adjustment, respectively (see Figures 11 to 13). This network exhibited 
more fluctuation in the gap measures, particularly for the later departure intervals. This appears to 
be due to acute congestion areas in the network, in which congestion increases rapidly even with 
very small changes in path flows.  
 
The CPU times for the assignment methods were also investigated, but since the assignment 
algorithm only contributes about 1% of the total (the traffic simulator contributes the remaining 
99%), modest changes in CPU time among the assignment alogrithms is of no practical concern.  
For the large Montreal network, the quasi-projected gradient with step-size adjustment required 
about twice the CPU time as for the regular MSA algorithm (0.6 vs. 0.3 seconds per iteration). 

10. CONCLUSIONS 

Two assignment algorithms, namely MSA and a quasi projected gradient method, along with a 
time-varying step-size adjustment heuristic, were tested in a simulation-based dynamic 
equilibrium model. The primary measure of performance was the relative gap, which gives a 
direct indication of how closely the algorithms are able to bring the simulated system to satifying 
dynamic equilbrium conditions. The best performace was consistenly obtained with the 
combination of the quasi projected gradient and the time-varying step-size adjustment heuristic. 
Compared to the MSA algorithm this method provided considerably faster convergence, which for 
a typical network allowed the algorithm to achieve practical convergence in half as many 
iterations.  
 
The use of a microscopic simulator for mapping the path input flows to time-varying experienced 
path travel times imposes practical limitations on the degree of convergence that can possibly be 
attained. Nevertheless, average relative gaps (across departure intervals) of 3% were typically 
achieved with a reasonable amount of computing time, which for practical applications is certainly 
an acceptable approximation of dynamic equilbrium conditions. The combination of a high fidelity 
representation of the traffic system on a medium-sized network (6500 links in this case), with 
good equilibrium properties and reasonable RAM and CPU requirements, is unprecedented. 
 
The overall method has excellent potential for use in practice for a variety of off-line applications 
for short-term planning, such as infrastructure planning, contruction staging, work-zone analysis, 
evacuation modeling, and evaluation of alternative traffic control plans. The model is also  
appropriate for longer-term planning studies, which in some cases also required a higher level of 
detail and realism in the representation of the traffic system.  
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Figure 11. Relative Gaps for MSA algorithm. 

 

Figure 12. Relative Gaps for MSA with time-varying step-size rule. 

 

Figure 13. Relative Gaps for quasi projected gradient with time-varying step-size rule.
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