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1 Introduction

A conjunction of several factors (increased competition in a globalized economy, real-
time access to a wealth of transparent information, the rise of a more knowledgeable and
pragmatic generation of consumers) is currently changing the perception and nature of
optimal pricing. Whereas pricing models have in the past often been approached from a
purely academic standpoint, optimal pricing is nowadays considered as a central financial
and operational tool in major industries, and has become one of the most important levers
towards profitability.

Until recently, a key factor in pricing and revenue management problems concerned de-
mand modelling and forecasting. However as mentioned by Van Ryzin and Liu [9], the
traditional “independent demand model”, which assumes that demand for each product
is driven by a stochastic process that is unaffected by the availability of other products,
may be ill-suited. Indeed, it fails to consider two processes: the “buy-up” to higher fares
if discounts are unavailable, and the “buy-down” to discounted fares if the latter are avail-
able. This is all the more important in markets where customers have access to a wealth of
information, and are thus able to compare prices for the same products offered by different
companies, or prices for similar products offered by a single firm. Customers strategic be-
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haviour must be taken into account, which shifts the focus of the demand model towards
the customer.

The optimal pricing problem on a network (NPP) we consider involves a firm acting
in a competitive environment. Given price schedules set by its competitors, the leader
firm (upper level) strives to maximize the revenues raised from tariffs set on a subset
of arcs of a transportation network, taking into account the reaction of the users of the
network (lower level) who rationally minimize their individual travel cost. Neglecting
congestion and assuming that demand is fixed, users of the network are simply assigned to
shortest paths linking their repective departure and arrival nodes. This sequential and non
cooperative decision-making process can be adequately represented as a bilevel program
(cf Labbé et al. [7]). It has been recently proved to be strongly NP-hard by Roch et al.
[8] and Grigoriev et al. [5].

In this presentation, we describe a tabu search algorithm designed to solve large size
instances of the NPP problem and give preliminary numerical results. It is important to
notice that even if this presentation is devoted to a simplified pricing problem, results are
of the main importance since they are basis stone for further developments.

2 Tabu Search algorithm for NPP

Introduced by Glover [4] and Hansen [6], Tabu Search (TS) allows a thorough search of the
solution space to circumvent early stoppings of algorithms due to local optima. It has been
applied to solve large size of a large variety of problems. To our knowledge only Gendreau
et al. [3] proposed a tabu search algorithm to solve linear linear bilevel programs.

At any iteration, the aim of TS is to find a new solution by making local movements over
the current solution. The next solution is the best among all possible solutions in the
neighbourhood of the solution. To avoid cycling, once a solution is visited, the movement
from which it was obtained is considered as tabu by mainting a tabu list. To improve the
efficiency of the exploration process diversification strategies are applied repeatedly after
a given number of iterations.

In what follows we define a commodity as being a set of users with the same origin and
destination on the network. A NPP solution is composed of a follower problem solution
and a set of tariffs compatible with this solution. More precisely it is defined as a set of
tariffs and a set of commodity shortest paths corresponding to those tariffs. We outline
hereafter the main features of the tabu search heuristic.

2.1 Neighborhood structure

The tabu search heuristic aims to explore follower problem solutions providing high leader
revenue. The neighbours of a follower problem solution are obtained by removing one arc
u and inserting one arc v into the shortest path tree associated with a given commodity
k. This move is noted (u, v, k).
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2.1.1 Neighborhood evaluation

The value of a move is characterized by the optimal revenue associated with a follower solu-
tion. It is obtained by determining the optimal tariffs compatible with the fixed commodity
paths. More precisely it means that the commodity paths are the solution of the shortest
paths problems corresponding to the tariffs. This problem, named inverse optimization
program, can be solved by considering its dual which is a generalized multicommodity
flow problem. The ’generalized’ characteristic comes from a constraint requiring a global
null flow on each tariff arc. A path formulation of the iverse optimization dual problem is
efficiently solved by applying a Dantzig Wolfe decomposition algorithm [2].

The (u, v, k) move considered is the one generating the best leader revenue among the
neighbour non tabu solutions and improving the best current solution. If no such move
exists, the solution minimizing the next function is considered:

Π(u, v) = [te(u) − t]+ + [ts(u) − t]+ + 2[tp(u, v) − t]+,

where [a]+ = max{0, a}, t in the current iteration number, te(u) is the iteration index for
which u has been inserted in the Tabu list Le, ts(u) is the iteration index for which v has
been inserted in the Tabu list Ls and tp(u, v) is the iteration index for which u, v have
been inserted in the pivot list Lp. A detailed description of the tabu lists will be given in
the next section.

Each (u, v, k) moves requires to update the commodity shortest path trees. More pre-
cisely, whenever the selected solution does not improve the revenue associated with best
known solution, the commodity tree updates result from simplex pivots. If it is not the
case then the tree updates result from the computation of the commodity optimal paths
corresponding to the tariffs associated with the improving solution.

2.1.2 Neighborhood reduction

To speed up the proposed tabu search approach, we only consider a commodity subset
of k1 commodities at each iteration. At the intial step we consider the k1 commodities
with the largest demands. Then this set is updated with the k1/2 commoditites leading to
the generation of the best solutions at the previous iteration and with k1/2 commodities
unfrequently considered.

2.2 Tabu lists

Cycling among solutions is prevented by considering three tabu lists defined as follows.

• Le: Entering arcs and associated commodity tabu list.

• Ls: Removing arcs and associated commodity tabu list.

• Lp: Pivot and associated commodity tabu list
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With each tabu list element is assigned a tabu status for θ iterations where θ is randomly
selected in the interval [θ, θ]. Note that a solution is named ”tabu” if either the associated
entering arc or removing arc or pivot is tabu.

2.3 Diversification strategies

The diversification strategy aims to get away as far as possible from a follower solution
to extensively explore the solution set. In the diversification phase, we apply TS with a
modified objective function defined as follows. Le S be a follower problem solution and
S∗ the best current follower solution. The objective function Zdiv(S, S∗) is defined as:

Zdiv(S, S∗) = Z(S) + Z(S∗)D(S, S∗),

where Z(S) represents the optimal revenue associated with the solution S and D(S, S∗)
is a similarity measure between the solutions S and S∗. More precisely it is defined as
the ratio of the number of different paths among the two follower solutions over the total
number of commoditities.

3 Numerical Results

The tabu search algorithm has been tested on several families of randomly generated
networks. We report in this abstract some results on complete grid networks with 60
nodes and 208 arcs (15% of tariff arcs) that promote interaction between commodities
and makes for problems that are combinatorially challenging. The generation random
instances is described in Brotcorne et al. [1].

Each line corresponds to an average taken over 5 problem instances. Label Nbcom rep-
resents to the number of commodities. The three labels in the MIP section concerns
the exact solution obtained by applying CPLEX on a MIP equivalent formulation of the
NNP . Label NOpt refers to the number of instances solve to optimality within a time
limit of 43200 seconds. Label % is defined as 100(Zsup − Zinf )/Zinf where Zinf (resp.
Zsup) is the lower bound (resp. the upper bound) on the revenue obtained when the reso-
lution is stopped. Label CPU represents the CPU time in seconds. Concerning the tabu
search algorithm (section TS), label % is defined as Z/Zinf wher Z is heuristic solution
objective value and Zinf the exact one or the best lower bound on the revenue obtained
if the optimal solution could not be obtained within the time limit. Label CPU gives the
computation time in seconds. The number of iterations of the TS is fixed to 2000 and
k1 = 25% × K.

Nb MIP TS

com. NOpt % CPU % CPU

10 5 0.00 30.98 99.79 11.92

20 4 0.91 16689.36 100.00 36.38

30 2 3.37 39566.84 100.09 61.06

40 0 17.53 43492.37 111.33 95.24
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Numerical results show that the tabu search heuristic we design to solve the NPP problem
provide good quality solutions in small computation time. In less than 2 minutes, TS
produces solutions with better or the same quality than the ones obtained with CPLEX
in larger computation times. As will be illustrated in the presentation this can be gener-
alized for other instances families. These encouraging results comfort our belief that this
methodology can be extended to more general pricing problems of the same type.
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