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Abstract 
We present a new deterministic annealing metaheuristic for the fleet size and mix vehicle 

routing problem with time windows. The objective is to service a set of customers at minimal 

cost within their time windows by a heterogeneous capacitated vehicle fleet. The suggested 

metaheuristic comprises three phases. In the first phase, high quality initial solutions are 

generated by means of a savings-based heuristic combining diversification strategies with 

learning mechanisms. An attempt is then made to reduce the number of routes in the initial 

solution with a new local search procedure in phase two. The solution is further improved in 

phase three by a set of four local search operators that are embedded in a deterministic 

annealing framework. Computational experiments show that the suggested method 

outperforms the previously published results. 

1 Introduction 
The Vehicle Routing Problem (VRP) is a key to efficient transportation management 

and supply-chain coordination. Although often assumed in VRP theory, a vehicle fleet is 

rarely homogeneous in real life. A fleet manager typically controls vehicles that differ in their 

equipment, carrying capacity, speed, and cost structure. There are many types of motivation 

for keeping a diversified fleet. Some customers may require vehicles with costly equipment. 

Large vehicles may be more cost effective, but the road network and the nature of a 

customer’s premises often impose physical restrictions on vehicle size and weight. Some 

types of vehicle may not be allowed in urban areas due to environmental concerns. Vehicles 



of different carrying capacity give flexibility to allocate capacity according to varying demand 

in a more cost effective way. 

The Fleet Size and Mix Vehicle Routing Problem (FSMVRP) is a VRP where the 

homogeneous fleet assumption of the traditional VRP has been lifted. In this paper, we study 

the FSMVRP with time windows (FSMVRPTW), where each customer has a time window 

within which service must start. It is a natural extension of the recently much studied VRPTW 

(see Bräysy and Gendreau, 2005a and 2005b). Time windows are critical in many 

applications, as more and more importance is given to customer service and timeliness. We 

focus on the FSMVRPTW variant that was first studied by Liu and Shen (1999). Here, the 

fleet is heterogeneous because each vehicle might have its own fixed cost and its own 

capacity. Driving speed and customer service times are identical for all vehicles. The routing 

cost for a solution is defined as the sum of “en route time” over all vehicles used. The main 

contribution of this paper is to present a new efficient multi-start deterministic annealing 

(MSDA) heuristic for the problem. In Section 1.1, a mathematical formulation of the 

FSMVRPTW is given and Section 1.2 presents a literature review. Section 2 contains a 

description of the algorithmic approach. Section 3 describes our experimental study and 

results. Conclusions are given in Section 4. 

1.1. Problem Formulation 
We base our formulation of the FSMVRPTW on the well-known vehicle flow arc-

based formulation for the VRPTW. Let ( )G = N, A  be a graph, where 

{ } { } { }0 1, , 1n n∪ ∪ +N = K 0.  and 1n +  represent the depot. { }1, ,n=C K  is the set of 

customers.  represents the travel possibilities between nodes. ⊆ ×A N N { }1, , K=V K  is the 

set of alternative vehicles. There are vehicle specific acquisition / depreciation costs  and 

capacities .  are the vehicle independent travel time between nodes. For each customer  

there is a time window , and  is the vehicle independent customer service time. For 

each with 

ke
kq ijt i

,i ia b⎡⎣ ⎤⎦ is

),,( kji ∈ji, A, V,∈k k
ijx  is a binary decision variable that expresses whether 

vehicle  travels directly from customer  to customer . For each , A, V,  

determines the exact start time of service at this customer if it is served by that vehicle. 
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Constraints (2) state that all customers must be visited by a vehicle. (3) are the vehicle 

capacity constraints. Constraints (4) enforce that each vehicle must leave the depot exactly 

once, and (6) that each vehicle must arrive at the depot exactly once. (5) ensure that if a 

vehicle arrives at a customer, it also departs from that customer. (7) guarantee that the arrival 

times at two consecutive customers allow for service and travel time. (8a) and (8b) are the 

time window constraints. The non-linear travel time and time window constraints can be 

easily linearized by use of the “big M” trick. The FSMVRPTW is strongly NP-hard as it is a 

generalization of the CVRP. In this paper, we focus on heuristics. 

1.2. Literature review 
The first FSMVRPTW work was reported by Liu and Shen (1999). They developed a 

savings-based construction heuristic and an improvement heuristic inspired by the work of 

Golden et al. (1984) for the FSMVRP. The approach was tested on a new benchmark 

developed by the authors based on a well-known benchmark for the VRPTW (Solomon, 

1987). Three sets of instances were created, each representing a different cost structure for 

vehicle types. Dullaert et al. (2002) proposed a sequential insertion heuristic based on 

Solomon’s I1 heuristic for the VRPTW and tested their approach on the Liu and Shen 

benchmark. More recently, the FSMVRPTW has been studied by Privé et al. (2006), 

Dell’Amico et al. (2006), Calvete et al. (2006), Tavakkoli-Moghaddam et al. (2006), and 

Dondo and Cerdá (2006). 
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2 Solution approach 
Our proposed solution approach consists of three phases. In the Phase 1 high quality 

initial solutions are generated by means of a savings-based heuristic combining diversification 

strategies with learning mechanisms. In Phase 2 the focus is on reducing the number of 

vehicles. A set of four local search operators are embedded in a deterministic annealing 

framework to guide further improvement in Phase 3. All phases are repeated a user-defined 

number of times, i.e., several initial solutions are created and improved separately. 

2.1. Phase 1: Constructing initial solutions 
Initial solutions are created by a probabilistic modification of the savings heuristic 

(Clarke and Wright, 1964). The search is started by serving each customer by way of a 

separate route. After the first construction and improvement phase, some of the arcs in the 

final solution of the previous improvement phase are kept instead of starting with single 

customer routes in Phase 1. 

The route construction heuristic features three main modifications compared to the 

original savings heuristic. First, the heuristic is implemented from an insertion point of view 

to combine the strengths of savings and insertion-based heuristics. When merging two routes 

 and , all positions between consecutive customers within route are considered. 

Second, the algorithm accepts not only the best savings, but also the second and third best 

savings (if positive) with given probabilities, to allow for diversification. Third, each route is 

initialized with the smallest possible vehicle type. Savings are calculated by considering both 

fixed vehicle costs and the total schedule time. Vehicle sizes are updated whenever needed, 

and are always set to the smallest vehicle available capable of serving the customers on the 

route. Merges are attempted until no further improvement can be found. 

1R 2R 2R

2.2. Phase 2: Route Elimination 
Route elimination is based on a depletion procedure called ELIM, which again uses 

simple insertions. All routes of the current solution are considered for depletion, in random 

order. For a given route, ELIM removes all customers and tries to insert them in the 

remaining routes. The criticality measure iς  defined below determines the sequence in which 

customers are reinserted. The bars mean normalization to [ ]0,1 . 

( )
i

i o
i i

d c
b a

ς = +
−

i  

 4 



For a given customer, all positions in the remaining routes are tried. The best feasible 

insertion according to the total cost objective is selected. The algorithm starts by calculating 

total savings obtained by eliminating the currently selected route. It then keeps track of the 

total increase in total costs resulting from reinsertions. If the total increase exceeds the total 

saving or if any of the customers cannot be inserted in another route, the algorithm reverts and 

proceeds to the next route in sequence. If all the removed customers have been inserted in 

other routes at a lower cost, the route is eliminated. In the Route Elimination Phase, ELIM is 

run until quiescence. 

2.3. Phase 3: Local Search Improvement 
The solution from Phase 2 is further improved by local search and metaheuristics. 

Four local search operators are utilized: ELIM described above, a route splitting operator 

called SPLIT, along with variants of the ICROSS and IOPT operators suggested in Bräysy 

(2003). The SPLIT neighborhood consists of all solutions that result from splitting a single 

route in the current solution into two parts at any point. We employ it in a greedy, first-accept 

fashion, simply by looping through all routes and all customers in them, splitting the selected 

route into two parts at the position of the current customer. The move is made if the split 

reduces cost. ICROSS has been extended with the adjustment of vehicle types. 

The four local search operators are employed as follows: ICROSS, IOPT, ELIM, and 

SPLIT (in that order) are repeated for a given number of iterations . Before each 

iteration, the routes are randomly ordered. The search is embedded in a Threshold Accepting 

(TA) metaheuristic (Dueck and Scheurer, 1990). Our procedure starts with threshold t = 0 (no 

worsening) and is repeated with that value until a local minimum is reached. If no 

improvement has been found for a given number of iterations 

improven

n , t is set to a maximum value 

and the search is restarted from the current best solution. The maximum value is where 

r is a random number in the range [0,1] and is a user-defined parameter. At each non-

improving iteration, t is reduced by  until zero is reached. The search is repeated with zero 

threshold until no more improvements can be found. To escape the local optimum, t is set to a 

new maximum threshold value . To limit search effort for ICROSS and IOPT, we focus 

only on moves that involve customers that are close. When creating subsequent initial 

solutions, the algorithm uses information gathered during the search in a frequency-based 

long-term memory of arcs that appear in high quality solutions. This learning mechanism is 

based on identifying the common arcs in the sequence of incumbent solutions. 

maxtr ⋅

maxt

t∆

maxtr ⋅
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When the iteration limit  for the current initial solution is reached, a starting 

point is created for the savings heuristic to create a new initial solution based on arc frequency 

information. If an arc is not present in a user-defined share of the best solutions, it is removed. 

Remaining arcs are randomly deleted or kept according to a given user-defined probability. 

The resulting arc set forms a new starting point for the savings algorithm. The creation of 

initial solutions and subsequent improvement is repeated for a given number of times, n

improven

init, 

specified by the user. 

3 Computational experiments 
The proposed algorithm was implemented in Java (JDK 5.0) and tested on an AMD 

Athlon 2600+ (512 MB RAM) computer. Experiments were performed on the instances 

proposed by Liu and Shen (1999), who introduced several vehicle types with different 

capacities and costs to the 56 Solomon 100 cases. In addition, three different vehicle cost 

structures A, B and C were suggested, resulting in 168 problem instances. 

After sensitivity analysis the following parameter values were used: ; 

; ; 

1000=improven

2=initn 04.0max =t 001.0=∆t ; 40=n . It appeared to be important to create several initial 

solutions, but the gain from additional solutions becomes small after 5-6 solutions. Three runs 

were used for each instance. Results show that the MSDA procedure is consistently better 

than the competition for all data sets. It found 157 best-known solutions, where 6 are ties and 

151 are new solutions. Considering computer speed and the number of runs, computing times 

are slightly higher than the competition. A quick variant with a single run and 200 iterations is 

significantly faster and gives better average quality than the competition for all data sets. 

4 Summary and Conclusions 
The Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW) 

is an industrially important problem that has not been studied much in the literature. We have 

developed a novel 3-phase algorithm for solving the FSMVRPTW. With a moderate increase 

of computational effort relative to the competition, our procedure significantly outperforms 

the competition with a small increase of effort and has found 151 new best known solutions. 
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