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Abstract  The problem of excessive empty backhaul distances is a major challenge in the 
planning and operation of truckload transportation, in which goods are picked up from an 
origin and delivered to a destination without mid-route pickups or deliveries.  Backhaul 
distances can be reduced by combining two or more truckload trips together to form a 
sequence of continuous move truckload trips.  Finding optimal or effective combinations of 
truckload trips, however, is complicated, especially for large-scale transportation network, 
because the number of possible combinations increases exponentially with the number of 
shipments.  In this paper, we propose a continuous move optimization model for large-scale 
transportation network, incorporating major operational complexities, namely, fleet-
commodity compatibility, trip-based cost function, and time windows.  We develop two 
solution approaches—an exact column-generation-based branch-and-bound algorithm and a 
heuristic algorithm—which yield significant empty haul distance reduction under relatively 
short runtimes, and provide a comparison study measuring the effectiveness and applicability 
of the two methods. 
 
Keywords: Vehicle Routing, Lane Covering, Continuous Move, Large-Scale Optimization, 
Column Generation 
 
1. PROBLEM DESCRIPTION 

This paper focuses on Truckload (TL) operation, in which trucks pickup shipments from their 
origins and directly deliver them to their destinations.  On their return trips, if backhaul loads 
cannot be secured, the trucks return empty.  There are a few commonly used countermeasures, 
e.g., back-haul and continuous-move, each of which offers varying degree of effectiveness 
depending on the characteristics of the demand and the supply.   
 
In the back-haul operation, the carrier attempts to secure a shipment from the current location 
back to the base.  Back-haul operation is effective when there is a reasonable balance of the 
transportation demand going in both directions within some acceptable time windows and 
utilizing the same type of vehicles.  Like the back-haul operation, the continuous-move 
operation attempts to reduce empty-haul distance by carrying shipments on the way back to 
the base.  But unlike the back-haul operation, the continuous-move operation attempts to 
match shipments more extensively by looking beyond the exact opposite OD direction.  
Specifically, it allows a sequential continuous movement of the truck, visiting two or more 
destinations in the sequence before ultimately returning to the base.  This improves upon the 
back-haul operation by allowing shipments to be matched not necessarily in the exact 
opposite OD direction and sequenced in a more flexible manner.  That is, it does not rely 
heavily on the balance of opposite OD shipments like the back-haul operation does.  This 
increased operational efficiency comes at a great planning complexity.  Specifically, planners 
now have exponentially many ways they can match shipments to create efficient continuous-
move trips (c-move trips).   
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In this paper, we study a continuous move planning optimization model for large-scale 
transportation network, incorporating major operational complexities such as fleet-
commodity compatibility, trip-based cost function, and time windows.   
 
2. MODEL  

In this section, we state the formal problem statement, present model formulation, and outline 
our approach to modeling operational complexities.  
 
2.1. Problem Statement 

The Continuous-Move Optimization (CMO) Problem can be formally stated as follows: 
 

Given a truckload distribution network comprising of multiple fleet types, origins, 
destinations, predetermined routes connecting the origins to/from the 
destinations, trip-based cost functions, operational time windows at origins and 
destinations, and truckload trip demands over the network, find the cost 
minimizing continuous move plan satisfying all truckload trips demanded.   

 
2.2. Notations 

To facilitate our discussion, we summarize all notations used in the formulation and present 
them here.   
 
Variables 

kpx  is the number of times a fleet-type-k c-move trip kp  is used, or, equivalently, the 
number of fleet-type-k trucks making the fleet-type-k c-move trip kp .  

i
kn  is the number of fleet-type-k trucks used at an origin i. 

Parameters 

kpc  is the trip-based cost of a fleet-type-k c-move trip kp . 
i

kr  is the daily cost of using a fleet type k truck from an origin i. 

k

ij
pδ  is the number of times a c-move trip kp  covers a fleet-type-k OD shipment ij

kt . 

k

i
pα  equals 1 if a fleet-type-k c-move trip kp  begins the day at an origin i, and 0 otherwise.
ij

kT  is the number of fleet-type-k shipments demanded from i to j . 
i
kN  is the number of fleet-type-k trucks available at the beginning of the day at an origin i. 

Sets 
kP  is the set of fleet-type-k c-move trips, indexed by kp . 

I is the set of origins, indexed by i. 
J is the set of destinations, indexed by j. 
O is the set of origin-destination (O-D) pairs, indexed by ij. 

 
2.3. Mathematical Formulation 

The authors formulate this continuous move optimization model as a set-partitioning model 
where the set comprises OD shipments and each partition is an ordered sequence of OD 
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shipments in a c-move trip.  The objective of the model is to find the cost-minimizing 
partitioning of the OD shipments.   
 
Notice that the main advantage of modeling the CMO problem as a set partitioning model is 
that each variable, 

kpx , represents a continuous move trip covering shipments ij O∈ , 
k

ij
pδ  

times.  Thus, we can model any complicated trip-based cost function very easily through the 
objective function coefficient, 

kpc .  In addition, if any cost dominance exists among c-move 
trips visiting similar stops but in different order, we can easily remove dominated trips from 
consideration.  The disadvantage of set partitioning model, however, is the exponential 
number of the variables/c-move trips.  We, therefore, need to develop special algorithms to 
solve this problem efficiently.  The solution algorithms will be presented later in Section 3.   
 
The Continuous Move Optimization (CMO) Model is formulated as follows: 
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The first term in the objective function (Equation 1) minimizes the summation of trip-based 
costs and the second term minimizes the number of vehicles used.  Constraints (2) dictate that 
all shipments from origin i to destination j, ij O∈ ,  by fleet type k K∈  are covered.  
Constraints (3) count the number of vehicles of fleet type k K∈  originating from origin i I∈ , 
which cannot exceed i

kN controlled by Constraints (5).  Constraints (4) and (5) ensure non-
negative integrality.   
 
Recall from Section 2.2 that we a priori assign shipments/commodities to fleet types.  Thus, 
the original problem decomposes into K  subproblems and the complexity of the problem is 
greatly reduced because we can solve the problem for each fleet type independently.  For 
subproblem k K∈ the formulation reduces to:  
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2.4. Modeling Operational Complexities 

We take into consideration a number of operational constraints, namely, fleet-commodity 
compatibility, trip-based cost function, and time windows, in order to ensure the practicality 
of that the solution. 
 
2.4.1 Fleet-Commodity Compatibility 

The fleet-commodity compatibility is important because different shipments/commodities 
require different handling equipments and types of vehicle.  To handle this requirement, we 
decompose our problem into subproblems by fleet type.  That is, we a priori assign 
commodities/shipments to fleet types and optimize the continuous-move plan by solving the 
CMO problem for each fleet type independently.  The fleet-commodity assignment can be 
done manually by planners or heuristically using a simple algorithm that observes (i) the 
fleet-commodity compatibility requirement and (ii) the approximate fleet size constraints. 
 
2.4.2 Trip-Based Cost Function 

The typical cost function of a TL operation trip is straightforward and often is driven 
primarily by distance and/or weight of the OD shipment.  In a continuous-move operation, 
however, the cost function can be more complicated.  The costs of the heavy-haul legs of the 
trip can be calculated accurately by measuring the distances and/or weights of the OD 
shipments, but the costs of the empty-haul legs of the trip cannot be fixed until the selection 
and the order of the heavy-haul legs of that c-move trip is determined.  If the OD shipments 
making up the c-move trip or the order of the OD shipments change, the total cost of the trip 
can change.  Thus, a trip-based cost function is necessary.   
 
Because each variable in the CMO model represents an entire c-move trip, its objective 
function coefficient can represent profit or cost of that particular c-move trip.  Any complex 
trip-based profit or cost function can be adopted.   
 
In this paper, we minimize the total cost of the operation, and our cost function comprises 
four components: rental, distance-based, weight-based, and driver costs.  Rental cost is the 
actual rent or the estimated depreciation of the truck in Baht per vehicle per day.  Distance-
based costs are measured in Baht per km and include such items as fuel, oil, and maintenance 
costs.  Weight-based costs, in Baht per ton-km, are levied on some high density shipments.  
Driver costs are paid per shipment on a decreasing scale, i.e., on subsequent shipments (after 
the first shipments), drivers’s pays are reduced by some small percentages.   
 
2.4.3 Time Windows 

We model three types of time windows in our model: (i) pickup, (ii) delivery, and (iii) truck-
ban time windows.   Pickup and delivery time windows represent the time windows at the 
origins and destinations, within which trucks can make pickups and deliveries.  The model 
takes into consideration also the loading and unloading times at the origins and destinations.  
Truck ban time windows are specific times of day that large trucks are banned on the streets 
in the heart of Bangkok—a traffic management policy to reduce congestion in center of the 
city during peak hours.   
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In this section, we describe how we model the pickup and delivery time windows and explain 
the algorithm used to check the time-window feasibility of a c-move trip.  We first describe 
the notations below. 
 

k is the max number of shipments allowed in a c-move trip. 
ie  is the window opening time at Location i ( oe  is at the origin). 

il  is the window closing time at Location i ( ol  is at the origin). 
m is the number of truck-ban periods. 

iet  is the window opening time at Location i ( oe  is at the origin). 

ilt  is the window closing time at Location i ( ol  is at the origin). 

od  is the departure time at the origin. 
a is the current arrival time. 
it  is the total travel time from location i, including loading/unloading time (if any). 
s is the departure time shift from oe , i.e., the difference between od  and oe . 

is  is the arrival time shift at Location i.  

sf  is the trip flexibility (the available time window for waiting time reduction). 

iw  is the waiting time at Location i. 
w is the total waiting time. 
TE is the end-of-trip time back at the origin. 

 
To understand, consider Figure 1.  On the left side of the figure, the solid arrow represents a 
truck moving from Location 0 (origin) to Location 1 (destination).  At Location 0, it has a 
time window of o ol e− and at Location 1, the time window width is 1 1l e− .  The truck leaves 
Location 0 at time o od e s= +  to arrive at Location 1 at time o oa d t= + , where ot is the total 
travel time from Location 0, including loading/unloading time (if any).  If the truck had left 
earlier than oe s+ , it would have to wait at Location 1.  At Location 0, sf  measures the trip 
flexibility, i.e., the remaining time flexibility of the trip to move from the current departure 
time od  at the truck origin (P1).   
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Graphical representation. 
 
The right side of Figure 1 demonstrates an example of a trip leaving the origin (P1) at time 

o od l= , arriving at the first customer (C1) at time 1l .  The truck then departs C1 and arrives at 
P2 before the window opening time 2e  at P2.  It, therefore, has to wait 2w minutes.  The truck 



6 

leaves from P2 to arrive at the window opening time 3e at C2.  Then, it returns to the origin 
before the ending time TE. 
 

  1: d ← oe  

  2: sf  ← o ol e−  
  3: s  ← 0 
4: for i = 1 to 2k do 
5:   d ← Adjust_Time_for_Truck_Ban 

  6: is  ← 0 
  7: a ← d + 1it −  
  8: d ← a 
  9: w ← 0 
10:      if ( d > il ) then break   //Infeasible Trip 
11:      if ( id e≤ ) then 
12:  is   = min ( ie  – a, sf )  
13:  iw  = max ( ie  – a – sf , 0) 
14:  w  = w + iw  
15:  sf  = min ( i il e− , sf – is ) 
16:  s  = s  + is  
17:  d = ie  
18:      endif 
19: sf  = min ( il d− , sf ) 
20: od  = oe  + s  
21:  endfor 

 

 
Figure 2  Pseudo code for verifying the time window feasibility of a c-move trip. 

 

 
Figure 2 gives the pseudo code of the algorithm we developed (adapted from the work of 
Ergun, Kuyzu, and Savelsbergh, 2005) to verify time window feasibility of a c-move trip.  
Lines 1-3 initiate parameters d , sf , and s . The algorithm then iteratively checks the 
arrival and departure time of each subsequent destination in the c-move trip considered 
(Line 4).  Line 5 calls on a sub-function (Figure 3) to adjust departure times to avoid 
truck-ban windows (Figure 4).   
 

 

 
  1: for j = 0 to m do 
  2:      if ((d + ti-1 < lti or d > lti) = FALSE) then 
  3:           d = lti 
4:      endif 
5: endfor 

  6: return d 
 

 
Figure 3  Pseudo code for adjusting departure time to avoid truck bans. 
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Figure 4  An example of a truck traveling inside a truck-ban period.. 

 
 
Lines 6-9 initiate the temporary parameters for each iteration.  Line 10 identifies 
infeasibility at Location i (see Figure 5) when the earliest departure time (d ← a) is greater 
than the window closing time ( il ), in which case it marks the trip infeasible and removes it 
from further consideration.   
 

 
Figure 5  An example of time window infeasibility. 

 
If the arrival time at Location i (C1) is earlier than the earliest time ( ie ) (Line 11), the 
arrival time can be shifted by the smaller of ie  – a  (Figure 6) and sf  (Figure 7) (Line 12) 
in order to minimize the total waiting time accrued during the trip (w).  The total trip waiting 
time is the summation of the waiting time at each location, which is the larger of ie  – a – sf  
and 0 (Line 13).  Line 14 updates the total waiting time.     
 
The new trip flexibility changes to be the smallest of  i il e−  , il d− , and sf – is  as the truck 
moves along its trip (Line 15).  And the new initial departure time ( od ) shifts by the 
amount s, which must be updated at each iteration by the addition of an amount equals to is  
(Line 16).  The departure from Location i ( id ) takes places at the earliest time (Line 17).   
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Figure 6  An early arrival is shifted to the earliest time at Location i. 

 
Figure 7  An early arrival is shifted by the remaining trip flexibility. 

 
Figure 8 demonstrates the case when the arrival time at Location i is within the time window 
at Location i.  In this case, the new trip flexibility is the smaller of il d−  and sf  (Line 19), 
and the new initial departure time need not change (Line 20).   
 

 
Figure 8  An arrival is within the destination’s time window. 
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Note that in all cases, a c-move trip is considered infeasible if it returns to the origin at the 
end of the day after the allowable time TE.  In our implementation, all possible c-move trips 
are generated and checked for time window feasibility.  Those that are infeasible are removed 
from the problem.  Further, all shipments are checked to ensure that at least one c-move trip 
can cover them.  If some shipments cannot be covered by any trips, they are flagged for 
manual intervention.  If no intervention happens, they too are removed from the problem to 
ensure the feasibility of the model. 
 
3. SOLUTION ALGORITHMS 

We devise two solution algorithms for the CMO model: an exact column generation based 
approach and a heuristic greedy algorithm.  During the preprocessing, we generate all 
possible c-move trips in the beginning and check them to ensure time window feasibility at 
origins, destinations, and on the roads (truck-bans).  C-move trips comprising shipments 
beginning or ending outside of specified time windows are disregarded.  Concurrently, we 
also check to ensure that at least one c-move trip exists to cover each and every shipment.  If 
at the end there are some shipments that cannot be covered by any c-move trips, those 
shipments are removed from the problem to ensure feasibility of the model.  In reality, each 
of those shipments will require manual interventions to ensure that at least one c-move trip 
can cover each of them.  Those interventions may include time window modification at one 
or both ends, or fleet change (to improve truck speed), for example.  Once the preprocessing 
is done, the model can be solved using one of the two solution algorithms.   
 
3.1. Branch-and-Bound with Column Generation 

Figure 9 summarizes our column generation based approach.  It first removes a majority of 
the variables from the problem to form a restricted master problem (RMP), which is then 
solved to optimality using an ordinary branch-and-bound algorithm.  The optimal solution 
obtained is checked whether it satisfies a pre-specified objective function value (a linear 
program lower bound in the CMO model).  If it does, the optimal solution is obtained and the 
algorithm terminates.  If it does not, the algorithm looks for variables that can improve the 
current solution.  If new variables are found, they are added to the reduced-sized problem to 
form an expanded RMP, which is then resolved using the branch-and-bound algorithm again.  
From then on, the algorithm repeats until the bound is achieved or no new variables are found, 
at which point the optimal solution for the original problem is obtained.  
 
3.2. Heuristics 

The heuristic algorithm depicted in Figure 10 is a simple greedy algorithm.  It starts by 
generating all feasible columns for the problem.  Feasible columns are those that satisfy the 
time window requirements both at the origins and destinations as well as other side 
constraints such as maximum distance requirement.  For each of the feasible column, we 
compute the Trip Value Index (TVI), the ratio between the total heavy haul distance of the trip 
and the total trip cost.  TVI is a proxy for the value of the trip and can be used to rank 
relatively the efficiency of the c-move trip.  Next, we sort all columns by TVI in a decreasing 
order (breaking ties arbitrarily).  From here on the algorithm iterates until all shipments are 
covered.  At each iteration, the algorithm selects a Trip p from the top of the sorted TVI List 
and check whether Trip p can be used to cover unsatisfied shipments.  If yes, the algorithm 
checks the number of times Trip p is needed, marks Trip p as used, removes shipments 
satisfied by Trip p from further consideration, and removes Trip p from the TVI List.  If no, 
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Trip p is simply removed from the TVI List.  Then the algorithm checks whether all 
shipments have been satisfied.  If no, the algorithm iterates by selecting the next trip from the 
TVI List.  If yes, the algorithm terminates.  
 
The algorithm terminates in finite iteration because we have ensured in the preprocessing step 
that all shipments are feasible before entering the solution algorithm. 
 

 
 

Figure 9  Simplified diagram of the branch-and-bound with column generation approach. 
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Figure 10  Heuristic algorithm 

 
 
4. COMPUTATIONAL RESULTS 

We test our model and algorithms using large-scale data derived from actual physical 
network distribution of a large logistics provider (Table 1).    All tests are performed on a 
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Pentium IV 3.06 GHz desktop with 2 GB of memory.  Three sets of runs—regular branch-
and-bound on full-size problem, column generation, and heuristic—are performed and 
compared.   
 

Table 1 Data characteristics 
 

Problem 
 

1 2 3 4 5 6 

No. of fleet types 6 6 6 6 6 6

No. of OD pairs 118 342 540 1,080 2,340 4,320

No. of shipments 314 1,058 1,984 3,960 9,539 13,657

No. of trucks at each origin 377 1,431 2,232 2,925 7,700 11,835

Origin time windows 8:00--18:00 (Return Trips before 21:00 ) 

Avg. destination time windows (hrs) 6.15 5.97 5.97 5.97 5.97 5.97

Total empty haul distance (km) 7,198 50,563 142,601 366,900 950,819 2,261,933

 
Figure 11 shows the resulting empty haul distances compared to a non-c-move operation.  
Our findings indicate that as problems become larger, empty haul reduction increases but at a 
decreasing rate because (i) more shipments allow for greater combination opportunities and 
(ii) this reduction slowly tends to the deadweight empty haul distance, which exists in most 
real life problems.  Note that column generation algorithm gives high quality solutions 
comparable to those from using regular branch-and-bound algorithm, while the heuristic 
algorithm also gives substantial reductions in empty haul but not as large.   
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Figure 11  Empty haul distances (compared to non-c-move operation). 

 
The heuristic algorithm, however, outperforms the other two algorithms in term of runtime 
(Figure 12).  Column generation algorithm gives slightly longer runtimes compared to the 
heuristic while the regular branch-and-bound algorithm takes significantly longer.   
 
Figure 13 shows the performance of our column generation algorithm.  As the number of 
variables in the master problem increases, the smaller percentage of those columns is 
generated.  In large problems with more than 1 million variables in the master problem, less 
than 1% of the columns are used in the final RMP.   
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Figure 12  Runtimes. 
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Figure 13  Percentage of variables used in the final RMP of column generation. 

 
 
In summary, the comparison between the branch-and-bound with column generation 
approach and the heuristic shows slightly better cost savings with the former and markedly 
better runtimes with the latter.  To decide which approach to use, it is a tradeoff between 
higher savings with the column generation approach and better runtimes as well as simpler 
implementation with the heuristic approach.   
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