
1

TRUCKLOAD CONTINUOUS MOVE OPTIMIZATION

Manoj Lohatepanont, Sc.D.
Department of Civil Engineering
Chulalongkorn University
Bangkok 10330, THAILAND
E-Mail: LManoj@gmail.com

Yossiri Adulyasak
Department of Civil Engineering
Chulalongkorn University
Bangkok 10330, THAILAND
E-Mail: a.yossiri@gmail.com

Abstract The problem of excessive empty backhaul distances is a major challenge in the
planning and operation of truckload transportation, in which goods are picked up from an
origin and delivered to a destination without mid-route pickups or deliveries. Backhaul
distances can be reduced by combining two or more truckload trips together to form a
sequence of continuous move truckload trips. Finding optimal or effective combinations of
truckload trips, however, is complicated, especially for large-scale transportation network,
because the number of possible combinations increases exponentially with the number of
shipments. In this paper, we propose a continuous move optimization model for large-scale
transportation network, incorporating major operational complexities, namely, fleet-
commodity compatibility, trip-based cost function, and time windows. We develop two
solution approaches—an exact column-generation-based branch-and-bound algorithm and a
heuristic algorithm—which yield significant empty haul distance reduction under relatively
short runtimes, and provide a comparison study measuring the effectiveness and applicability
of the two methods.

Keywords: Vehicle Routing, Lane Covering, Continuous Move, Large-Scale Optimization,
Column Generation

1. PROBLEM DESCRIPTION

This paper focuses on Truckload (TL) operation, in which trucks pickup shipments from their
origins and directly deliver them to their destinations. On their return trips, if backhaul loads
cannot be secured, the trucks return empty. There are a few commonly used countermeasures,
e.g., back-haul and continuous-move, each of which offers varying degree of effectiveness
depending on the characteristics of the demand and the supply.

In the back-haul operation, the carrier attempts to secure a shipment from the current location
back to the base. Back-haul operation is effective when there is a reasonable balance of the
transportation demand going in both directions within some acceptable time windows and
utilizing the same type of vehicles. Like the back-haul operation, the continuous-move
operation attempts to reduce empty-haul distance by carrying shipments on the way back to
the base. But unlike the back-haul operation, the continuous-move operation attempts to
match shipments more extensively by looking beyond the exact opposite OD direction.
Specifically, it allows a sequential continuous movement of the truck, visiting two or more
destinations in the sequence before ultimately returning to the base. This improves upon the
back-haul operation by allowing shipments to be matched not necessarily in the exact
opposite OD direction and sequenced in a more flexible manner. That is, it does not rely
heavily on the balance of opposite OD shipments like the back-haul operation does. This
increased operational efficiency comes at a great planning complexity. Specifically, planners
now have exponentially many ways they can match shipments to create efficient continuous-
move trips (c-move trips).

2

In this paper, we study a continuous move planning optimization model for large-scale
transportation network, incorporating major operational complexities such as fleet-
commodity compatibility, trip-based cost function, and time windows.

2. MODEL

In this section, we state the formal problem statement, present model formulation, and outline
our approach to modeling operational complexities.

2.1. Problem Statement

The Continuous-Move Optimization (CMO) Problem can be formally stated as follows:

Given a truckload distribution network comprising of multiple fleet types, origins,
destinations, predetermined routes connecting the origins to/from the
destinations, trip-based cost functions, operational time windows at origins and
destinations, and truckload trip demands over the network, find the cost
minimizing continuous move plan satisfying all truckload trips demanded.

2.2. Notations

To facilitate our discussion, we summarize all notations used in the formulation and present
them here.

Variables

kpx is the number of times a fleet-type-k c-move trip kp is used, or, equivalently, the
number of fleet-type-k trucks making the fleet-type-k c-move trip kp .

i
kn is the number of fleet-type-k trucks used at an origin i.

Parameters

kpc is the trip-based cost of a fleet-type-k c-move trip kp .
i

kr is the daily cost of using a fleet type k truck from an origin i.

k

ij
pδ is the number of times a c-move trip kp covers a fleet-type-k OD shipment ij

kt .

k

i
pα equals 1 if a fleet-type-k c-move trip kp begins the day at an origin i, and 0 otherwise.
ij

kT is the number of fleet-type-k shipments demanded from i to j .
i
kN is the number of fleet-type-k trucks available at the beginning of the day at an origin i.

Sets
kP is the set of fleet-type-k c-move trips, indexed by kp .

I is the set of origins, indexed by i.
J is the set of destinations, indexed by j.
O is the set of origin-destination (O-D) pairs, indexed by ij.

2.3. Mathematical Formulation

The authors formulate this continuous move optimization model as a set-partitioning model
where the set comprises OD shipments and each partition is an ordered sequence of OD

3

shipments in a c-move trip. The objective of the model is to find the cost-minimizing
partitioning of the OD shipments.

Notice that the main advantage of modeling the CMO problem as a set partitioning model is
that each variable,

kpx , represents a continuous move trip covering shipments ij O∈ ,
k

ij
pδ

times. Thus, we can model any complicated trip-based cost function very easily through the
objective function coefficient,

kpc . In addition, if any cost dominance exists among c-move
trips visiting similar stops but in different order, we can easily remove dominated trips from
consideration. The disadvantage of set partitioning model, however, is the exponential
number of the variables/c-move trips. We, therefore, need to develop special algorithms to
solve this problem efficiently. The solution algorithms will be presented later in Section 3.

The Continuous Move Optimization (CMO) Model is formulated as follows:

k k

k k

i i
p p k k

k K p P k K i I
Min c x r n

∈ ∈ ∈ ∈

+∑ ∑ ∑∑ (1)

Subject to:

k k
k k

ij ij
p p k

p P
x Tδ

∈

=∑ ,k K ij O∀ ∈ ∀ ∈ (2)

0
k k

k k

i i
p p k

p P
x nα

∈

− =∑ ,k K i I∀ ∈ ∀ ∈ (3)

 0
kpx ≥ and integer , kk K p P∀ ∈ ∀ ∈ (4)

 0 i i
k kn N≤ ≤ and integer ,k K i I∀ ∈ ∀ ∈ . (5)

The first term in the objective function (Equation 1) minimizes the summation of trip-based
costs and the second term minimizes the number of vehicles used. Constraints (2) dictate that
all shipments from origin i to destination j, ij O∈ , by fleet type k K∈ are covered.
Constraints (3) count the number of vehicles of fleet type k K∈ originating from origin i I∈ ,
which cannot exceed i

kN controlled by Constraints (5). Constraints (4) and (5) ensure non-
negative integrality.

Recall from Section 2.2 that we a priori assign shipments/commodities to fleet types. Thus,
the original problem decomposes into K subproblems and the complexity of the problem is
greatly reduced because we can solve the problem for each fleet type independently. For
subproblem k K∈ the formulation reduces to:

k k

k k

i i
p p k k

k K p P k K i I
Min c x r n

∈ ∈ ∈ ∈

+∑ ∑ ∑∑ (6)

Subject to:

k k

k k

ij ij
p p k

p P
x Tδ

∈

=∑ ij O∀ ∈ (7)

0
k k

k k

i i
p p k

p P
x nα

∈

− =∑ i I∀ ∈ (8)

 0
kpx ≥ and integer kp P∀ ∈ (9)

 0 i i
k kn N≤ ≤ and integer i I∀ ∈ . (10)

4

2.4. Modeling Operational Complexities

We take into consideration a number of operational constraints, namely, fleet-commodity
compatibility, trip-based cost function, and time windows, in order to ensure the practicality
of that the solution.

2.4.1 Fleet-Commodity Compatibility

The fleet-commodity compatibility is important because different shipments/commodities
require different handling equipments and types of vehicle. To handle this requirement, we
decompose our problem into subproblems by fleet type. That is, we a priori assign
commodities/shipments to fleet types and optimize the continuous-move plan by solving the
CMO problem for each fleet type independently. The fleet-commodity assignment can be
done manually by planners or heuristically using a simple algorithm that observes (i) the
fleet-commodity compatibility requirement and (ii) the approximate fleet size constraints.

2.4.2 Trip-Based Cost Function

The typical cost function of a TL operation trip is straightforward and often is driven
primarily by distance and/or weight of the OD shipment. In a continuous-move operation,
however, the cost function can be more complicated. The costs of the heavy-haul legs of the
trip can be calculated accurately by measuring the distances and/or weights of the OD
shipments, but the costs of the empty-haul legs of the trip cannot be fixed until the selection
and the order of the heavy-haul legs of that c-move trip is determined. If the OD shipments
making up the c-move trip or the order of the OD shipments change, the total cost of the trip
can change. Thus, a trip-based cost function is necessary.

Because each variable in the CMO model represents an entire c-move trip, its objective
function coefficient can represent profit or cost of that particular c-move trip. Any complex
trip-based profit or cost function can be adopted.

In this paper, we minimize the total cost of the operation, and our cost function comprises
four components: rental, distance-based, weight-based, and driver costs. Rental cost is the
actual rent or the estimated depreciation of the truck in Baht per vehicle per day. Distance-
based costs are measured in Baht per km and include such items as fuel, oil, and maintenance
costs. Weight-based costs, in Baht per ton-km, are levied on some high density shipments.
Driver costs are paid per shipment on a decreasing scale, i.e., on subsequent shipments (after
the first shipments), drivers’s pays are reduced by some small percentages.

2.4.3 Time Windows

We model three types of time windows in our model: (i) pickup, (ii) delivery, and (iii) truck-
ban time windows. Pickup and delivery time windows represent the time windows at the
origins and destinations, within which trucks can make pickups and deliveries. The model
takes into consideration also the loading and unloading times at the origins and destinations.
Truck ban time windows are specific times of day that large trucks are banned on the streets
in the heart of Bangkok—a traffic management policy to reduce congestion in center of the
city during peak hours.

5

oe ol

e1 l1

t0

s fs
P1

C1

P2

C2

TE TB

t1

e0 l0

e1 l1

t0

w2

s
d0

e2 l2

l3 e3

In this section, we describe how we model the pickup and delivery time windows and explain
the algorithm used to check the time-window feasibility of a c-move trip. We first describe
the notations below.

k is the max number of shipments allowed in a c-move trip.
ie is the window opening time at Location i (oe is at the origin).

il is the window closing time at Location i (ol is at the origin).
m is the number of truck-ban periods.

iet is the window opening time at Location i (oe is at the origin).

ilt is the window closing time at Location i (ol is at the origin).

od is the departure time at the origin.
a is the current arrival time.
it is the total travel time from location i, including loading/unloading time (if any).
s is the departure time shift from oe , i.e., the difference between od and oe .

is is the arrival time shift at Location i.

sf is the trip flexibility (the available time window for waiting time reduction).

iw is the waiting time at Location i.
w is the total waiting time.
TE is the end-of-trip time back at the origin.

To understand, consider Figure 1. On the left side of the figure, the solid arrow represents a
truck moving from Location 0 (origin) to Location 1 (destination). At Location 0, it has a
time window of o ol e− and at Location 1, the time window width is 1 1l e− . The truck leaves
Location 0 at time o od e s= + to arrive at Location 1 at time o oa d t= + , where ot is the total
travel time from Location 0, including loading/unloading time (if any). If the truck had left
earlier than oe s+ , it would have to wait at Location 1. At Location 0, sf measures the trip
flexibility, i.e., the remaining time flexibility of the trip to move from the current departure
time od at the truck origin (P1).

Figure 1 Graphical representation.

The right side of Figure 1 demonstrates an example of a trip leaving the origin (P1) at time

o od l= , arriving at the first customer (C1) at time 1l . The truck then departs C1 and arrives at
P2 before the window opening time 2e at P2. It, therefore, has to wait 2w minutes. The truck

6

leaves from P2 to arrive at the window opening time 3e at C2. Then, it returns to the origin
before the ending time TE.

 1: d ← oe

 2: sf ← o ol e−
 3: s ← 0
4: for i = 1 to 2k do
5: d ← Adjust_Time_for_Truck_Ban

 6: is ← 0
 7: a ← d + 1it −
 8: d ← a
 9: w ← 0
10: if (d > il) then break //Infeasible Trip
11: if (id e≤) then
12: is = min (ie – a, sf)
13: iw = max (ie – a – sf , 0)
14: w = w + iw
15: sf = min (i il e− , sf – is)
16: s = s + is
17: d = ie
18: endif
19: sf = min (il d− , sf)
20: od = oe + s
21: endfor

Figure 2 Pseudo code for verifying the time window feasibility of a c-move trip.

Figure 2 gives the pseudo code of the algorithm we developed (adapted from the work of
Ergun, Kuyzu, and Savelsbergh, 2005) to verify time window feasibility of a c-move trip.
Lines 1-3 initiate parameters d , sf , and s . The algorithm then iteratively checks the
arrival and departure time of each subsequent destination in the c-move trip considered
(Line 4). Line 5 calls on a sub-function (Figure 3) to adjust departure times to avoid
truck-ban windows (Figure 4).

 1: for j = 0 to m do
 2: if ((d + ti-1 < lti or d > lti) = FALSE) then
 3: d = lti
4: endif
5: endfor

 6: return d

Figure 3 Pseudo code for adjusting departure time to avoid truck bans.

7

Figure 4 An example of a truck traveling inside a truck-ban period..

Lines 6-9 initiate the temporary parameters for each iteration. Line 10 identifies
infeasibility at Location i (see Figure 5) when the earliest departure time (d ← a) is greater
than the window closing time (il), in which case it marks the trip infeasible and removes it
from further consideration.

Figure 5 An example of time window infeasibility.

If the arrival time at Location i (C1) is earlier than the earliest time (ie) (Line 11), the
arrival time can be shifted by the smaller of ie – a (Figure 6) and sf (Figure 7) (Line 12)
in order to minimize the total waiting time accrued during the trip (w). The total trip waiting
time is the summation of the waiting time at each location, which is the larger of ie – a – sf
and 0 (Line 13). Line 14 updates the total waiting time.

The new trip flexibility changes to be the smallest of i il e− , il d− , and sf – is as the truck
moves along its trip (Line 15). And the new initial departure time (od) shifts by the
amount s, which must be updated at each iteration by the addition of an amount equals to is
(Line 16). The departure from Location i (id) takes places at the earliest time (Line 17).

P1

C1

P2

TE TB
e0 l0

e1 l1

d0

e2 l2 Truck Ban

P1

C1

P2

TE TB

e0 l0

e1 l1

d0

e2

e3 l3

l2

fs

C2

8

Figure 6 An early arrival is shifted to the earliest time at Location i.

Figure 7 An early arrival is shifted by the remaining trip flexibility.

Figure 8 demonstrates the case when the arrival time at Location i is within the time window
at Location i. In this case, the new trip flexibility is the smaller of il d− and sf (Line 19),
and the new initial departure time need not change (Line 20).

Figure 8 An arrival is within the destination’s time window.

P1

C1

P2

C2

TE TB

e0 l0

e1 l1

d0

e2

e3 l3

l2

fs

P1

C1

P2

C2

TE TB
e0 l0

e1 l1

d0

e2

e3 l3

l2

fs

a

w1

fs = 0

si

P1

C1

P2

C2

TE TB
e0 l0

e1 l1

d0

e2

e3 l3

l2

fs

a

fs (new)

si

9

Note that in all cases, a c-move trip is considered infeasible if it returns to the origin at the
end of the day after the allowable time TE. In our implementation, all possible c-move trips
are generated and checked for time window feasibility. Those that are infeasible are removed
from the problem. Further, all shipments are checked to ensure that at least one c-move trip
can cover them. If some shipments cannot be covered by any trips, they are flagged for
manual intervention. If no intervention happens, they too are removed from the problem to
ensure the feasibility of the model.

3. SOLUTION ALGORITHMS

We devise two solution algorithms for the CMO model: an exact column generation based
approach and a heuristic greedy algorithm. During the preprocessing, we generate all
possible c-move trips in the beginning and check them to ensure time window feasibility at
origins, destinations, and on the roads (truck-bans). C-move trips comprising shipments
beginning or ending outside of specified time windows are disregarded. Concurrently, we
also check to ensure that at least one c-move trip exists to cover each and every shipment. If
at the end there are some shipments that cannot be covered by any c-move trips, those
shipments are removed from the problem to ensure feasibility of the model. In reality, each
of those shipments will require manual interventions to ensure that at least one c-move trip
can cover each of them. Those interventions may include time window modification at one
or both ends, or fleet change (to improve truck speed), for example. Once the preprocessing
is done, the model can be solved using one of the two solution algorithms.

3.1. Branch-and-Bound with Column Generation

Figure 9 summarizes our column generation based approach. It first removes a majority of
the variables from the problem to form a restricted master problem (RMP), which is then
solved to optimality using an ordinary branch-and-bound algorithm. The optimal solution
obtained is checked whether it satisfies a pre-specified objective function value (a linear
program lower bound in the CMO model). If it does, the optimal solution is obtained and the
algorithm terminates. If it does not, the algorithm looks for variables that can improve the
current solution. If new variables are found, they are added to the reduced-sized problem to
form an expanded RMP, which is then resolved using the branch-and-bound algorithm again.
From then on, the algorithm repeats until the bound is achieved or no new variables are found,
at which point the optimal solution for the original problem is obtained.

3.2. Heuristics

The heuristic algorithm depicted in Figure 10 is a simple greedy algorithm. It starts by
generating all feasible columns for the problem. Feasible columns are those that satisfy the
time window requirements both at the origins and destinations as well as other side
constraints such as maximum distance requirement. For each of the feasible column, we
compute the Trip Value Index (TVI), the ratio between the total heavy haul distance of the trip
and the total trip cost. TVI is a proxy for the value of the trip and can be used to rank
relatively the efficiency of the c-move trip. Next, we sort all columns by TVI in a decreasing
order (breaking ties arbitrarily). From here on the algorithm iterates until all shipments are
covered. At each iteration, the algorithm selects a Trip p from the top of the sorted TVI List
and check whether Trip p can be used to cover unsatisfied shipments. If yes, the algorithm
checks the number of times Trip p is needed, marks Trip p as used, removes shipments
satisfied by Trip p from further consideration, and removes Trip p from the TVI List. If no,

10

Trip p is simply removed from the TVI List. Then the algorithm checks whether all
shipments have been satisfied. If no, the algorithm iterates by selecting the next trip from the
TVI List. If yes, the algorithm terminates.

The algorithm terminates in finite iteration because we have ensured in the preprocessing step
that all shipments are feasible before entering the solution algorithm.

Figure 9 Simplified diagram of the branch-and-bound with column generation approach.

Start

Generate all
feasible continuous-move trips

Compute Trip Value Indices (TVI)
for all trips

Select an unused Trip p
from the sorted TVI List, in order

Mark the demands satisfied by Trip p

Is Trip p usable?

Stop

Yes

Yes No

Sort the TVI List
in a decreasing order

Remove Trip p from the TVI List

Have all
demands been

met?

No

Figure 10 Heuristic algorithm

4. COMPUTATIONAL RESULTS

We test our model and algorithms using large-scale data derived from actual physical
network distribution of a large logistics provider (Table 1). All tests are performed on a

11

Pentium IV 3.06 GHz desktop with 2 GB of memory. Three sets of runs—regular branch-
and-bound on full-size problem, column generation, and heuristic—are performed and
compared.

Table 1 Data characteristics

Problem

1 2 3 4 5 6

No. of fleet types 6 6 6 6 6 6

No. of OD pairs 118 342 540 1,080 2,340 4,320

No. of shipments 314 1,058 1,984 3,960 9,539 13,657

No. of trucks at each origin 377 1,431 2,232 2,925 7,700 11,835

Origin time windows 8:00--18:00 (Return Trips before 21:00)

Avg. destination time windows (hrs) 6.15 5.97 5.97 5.97 5.97 5.97

Total empty haul distance (km) 7,198 50,563 142,601 366,900 950,819 2,261,933

Figure 11 shows the resulting empty haul distances compared to a non-c-move operation.
Our findings indicate that as problems become larger, empty haul reduction increases but at a
decreasing rate because (i) more shipments allow for greater combination opportunities and
(ii) this reduction slowly tends to the deadweight empty haul distance, which exists in most
real life problems. Note that column generation algorithm gives high quality solutions
comparable to those from using regular branch-and-bound algorithm, while the heuristic
algorithm also gives substantial reductions in empty haul but not as large.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

Problem Set

Solve full problem Column generation Heuristic

Figure 11 Empty haul distances (compared to non-c-move operation).

The heuristic algorithm, however, outperforms the other two algorithms in term of runtime
(Figure 12). Column generation algorithm gives slightly longer runtimes compared to the
heuristic while the regular branch-and-bound algorithm takes significantly longer.

Figure 13 shows the performance of our column generation algorithm. As the number of
variables in the master problem increases, the smaller percentage of those columns is
generated. In large problems with more than 1 million variables in the master problem, less
than 1% of the columns are used in the final RMP.

12

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

0 500,000 1,000,000 1,500,000

Feasible route

R
un

tim
e

(s
ec

)

Solve full problem Column generation Heuristic

Figure 12 Runtimes.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0 300,000 600,000 900,000 1,200,000 1,500,000

Number of variables in the master problem

Pe
rc

en
ta

ge
 o

f v
ar

ia
bl

e
us

ed
 in

 R
M

P

 .

Figure 13 Percentage of variables used in the final RMP of column generation.

In summary, the comparison between the branch-and-bound with column generation
approach and the heuristic shows slightly better cost savings with the former and markedly
better runtimes with the latter. To decide which approach to use, it is a tradeoff between
higher savings with the column generation approach and better runtimes as well as simpler
implementation with the heuristic approach.

REFERENCE

Ergun, O., G. Kuyzu, and M.W.P. Savelsbergh (2005) Reducing truckload transportation

costs through collaboration. To appear in Transportation Science.

