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1 Introduction

Airlines are permanently confronted to disruptions caused by external or internal factors like

extreme weather conditions, unavailability of crew members, unexpected breakdowns of aircraft,

or airport capacity shortages. These disruptions prevent the planned execution of the schedule,

which either becomes suboptimal or infeasible. In this paper, a solution method to solve “the

simultaneous aircraft and passenger recovery problem” is developed. This approach minimizes the

impact of disruptions by taking into consideration the flight schedule, the fleet and maintenance

management requirements and the impact on passengers, all simultaneously. This viewpoint is

contrasted with the classical approach found in the literature that reallocates resources according

to a common hierarchy: aircraft, crew, and finally passengers.

The literature provides some references to approaches where resources are coordinated by a

meta-process. Though, there are very few references proposing integrated approaches where a single

solution process addresses the problem globally. In this respect, Bratu and Barnhart have proposed

an approach in which the objective is to find the optimal trade-off between airline operating

costs and passenger delay costs [2]. More recently, the French Operational Research and Decision
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Analysis Society (ROADEF) and AMADEUS S.A.S. organized the ROADEF challenge 2009 on the

topic: “Disruption Management for Commercial Aviation” [4]. Several research teams participated

with original solution methods solving large-scale instances generated by the organization. The

approaches presented by the finalist teams include MIP-based methods, minimum-cost flow models,

decomposition techniques, and heuristic approaches based on the use of shortest path methods.

In this paper, a post-optimization method that improves the solutions obtained by current

approaches is developed. The method, called Passenger Improver (PI), provides an optimal reac-

commodation for the still disrupted passengers. The term “reaccommodation” refers to a modified

assignment of passengers to flight-cabins such that passenger are re-routed to their destinations

in the best possible conditions. The remainder of the paper is organized as follows. Section 2 de-

scribes two different approaches from the ROADEF challenge used as a first phase of this method.

Section 3 presents PI and a mathematical formulation of the problem. Finally, the conclusions and

main results are discussed in Section 4.

2 Integrated Aircraft-Passenger Recovery Systems

The authors of this paper have worked developing two solution methods. These approaches are:

NCF: New Connection Flights [3]. This is a heuristic approach that tries to recover a per-

turbed schedule by adding flight legs to connect infeasible aircraft routings while passengers are

reaccommodated at each step of the method. These adjustments are locally optimized by applying

an adapted version of Dijkstra’s algorithm.

SAPI: Statistical Analysis of Propagation of Incidents [1]. This method is based on a mixed-

integer programming (MIP) formulation that is solved using a statistical analysis of the propagation

of disruptions. This approach provides the third best overall results of the competition and it

outperformed NCF on small and middle size instances. Nevertheless, on large instances, the MIP

becomes too large to perform in a reasonable amount of time.

NCF and SAPI are based on important approximations. In particular, the schedule changes

provide unused passenger reaccomodation opportunities.

3 Passenger Improver (PI)

Passengers are grouped in an so-called itinerary. Two passengers of the same “itinerary” have to

share at least these common characteristics: flights, type of cabin class, and type of trip. The type

of the cabin class can be first, business or economy; and the type of the trip can be inbound or

outbound trips. Let K be the set of itineraries indexed by k where an itinerary k is composed of nk

passengers. After the execution of one of the recovery procedures described in the previous section,

itineraries are classified in two groups: non-disrupted (KF ) and disrupted (KD). The passengers
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belonging to KF are considered fixed and cannot be reaccommodated. On the other hand, KD

contains passengers that need to be reaccommodated because of missed connections, flight leg

cancelations or delays. The problem can be formulated as a variation of the classical minimum-

cost multi-commodity flow problem. Let G = (V,E) be a directed and connected network, where

V is the set of nodes, indexed by i, and E is the set of directed arcs connecting them. To reduce the

size of the problem, let Vk be the set of nodes compatible with commodity k. Every itinerary in KD

is considered as a commodity having only one supply node and one sink node. All the remaining

nodes, are transshipment nodes representing a pair flight-cabin labeled with Ri, the remaining

capacity of the flight-cabin. In general, an arc represents a valid connection for passengers between

two flight-cabins. Some extra arcs are added to model cancelation of itineraries by connecting

origins to destinations directly. The cost of the flow through each arc is proportional to the

amount of that flow, representing delay, cancelation or downgrading costs. These last costs model

the inconvenience to passengers when they are reaccommodated to a lower service cabin on all

or part of the trip. The objective is then to minimize the total cost of transporting all disrupted

passengers to their destinations including the expensive possibility of canceling their trips. Let xk
ij

be the decision variables that represent the quantity of flow of commodity (itinerary) k from node

i to node j. Thus, the mathematical formulation of this problem is:

Minimize :
∑

k∈KD

∑
i∈Vk

∑
j∈Vk

ck
ijx

k
ij

Subject to: ∑
j∈Vk

xk
ij = nk ∀k ∈ KD, i ∈ Ok (1)

∑
j∈Vk

xk
ji −

∑
j∈Vk

xk
ij = 0 ∀k ∈ KD, i ∈ Vk \Ok \Dk (2)

∑
i∈Vk

xk
ij = nk ∀k ∈ KD, j ∈ Dk (3)

∑
k∈ID

∑
j∈V

xk
ij ≤ Ri ∀i ∈ V \Ok \Dk (4)

xk
ij ∈ N0 ∀k ∈ KD, i ∈ Vk, j ∈ Vk (5)

The classical multi-commodity flow problem is known to be NP-complete for integer flows.

Nevertheless, from numerical tests, it seems that the coefficient matrix is totally unimodular and

a formal proof is under study. This property implies that the solution to the linear relaxation of

the IP model would be integer and the problem would be solved in polynomial time.

The construction of Vk is a key aspect of this method because it permits to reduce the size of the

model. An additional function based on the Floyd - Warshall algorithm is used to limit the nodes

compatibles with the passengers by allowing a maximal number of connections per passenger.

3



4 Results, Conclusion, and Perspectives

Two reference solution methods, NCF and SAPI, have been presented to solve the simultaneous

aircraft and passenger recovery problem. They have their respective strengths, but also show a

common weakness, as they do not guarantee an optimal reaccommodation of disrupted passengers.

To complement these two approaches, a new method called Passenger Improver (PI) is presented

to reaccommodate disrupted passengers based on a particular case of the minimum-cost multicom-

modity flow problem. The algorithm was tested on a PC Intel Core Duo T5500 1.66 GHz 2 GB

RAM over Windows Vista Operation System using ILOG CPLEX 11.1 as a standard MIP solver.

The results evidence important improvements to the final solutions of NCF and SAPI over the

32 instances of the ROADEF challenge 2009, some of them with more than 700000 passenger and

6000 flight-legs. Actually, PI decreases the total cost by 18% (NCF) and 5.92% (SAPI) with an

average CPU time of 120 [s]. Additionally, to the best of our knowledge, 71.8% of the current best

known solutions for these instances have been calculated using NCF, SAPI and PI.

A future research direction is the development of a fully integrated system primarily based on

SAPI. First, an adaptation of NCF will be used to calculate an initial solution. The main part

of the algorithm will perform improvements by the study of propagation of disruptions (SAPI).

Finally, the post-optimization function will be replaced by an adaptation of PI to have a better

reaccomodation for still disrupted passengers. We expect that this integration will help to improve

the CPU time rather than the quality of solutions.

References

[1] R. Acuna-Agost, D. Feillet, P. Michelon, and S. Gueye; “Rescheduling Flights, Aircraft, and

Passengers Simultaneously under Disrupted Operations - A Mathematical Programming Ap-

proach based on Statistical Analysis”, AGIFORS. Submitted to Anna Valicek Medal 2009,

(2009)

[2] S. Bratu and C. Barnhart, “Flight operations recovery: New approaches considering passenger

recovery”, Journal of Scheduling 9, 279298 (2006)

[3] N. Jozefowiez, C. Mancel, and F. Mora-Camino, “Approche heuristique

pour la gestion de pertubation dans le domaine aérien (in French)”,
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1 Introduction

Rising gas prices, traffic congestion, and environmental concerns have increased the interest in

services that allow people to use their cars more wisely. While ride-sharing is not new, the ubiquity

of Internet-enabled cell phones has enabled practical dynamic ride-sharing. By dynamic ride-

sharing we refer to a system where an automated process provided by a ride-share provider matches

up drivers and riders for a ride on very short notice or even en-route. Recently, many new companies

have emerged with ride-sharing concepts similar to those we present in this paper. For example,

providers like Carticipate, EnergeticX/Zebigo, Avego, and Piggyback recently started offering

mobile phone applications that allow drivers with spare seats to connect to people wanting to

share a ride. To ease the fear of sharing a ride with a stranger these services can use reputation

systems (see e.g. PickupPal) or can be linked with social network tools like Facebook (see e.g.

GoLoco and Zimride).

The ability of a dynamic ride-share provider to successfully establish ride-shares on short notice

depends on the characteristics of the environment in terms of participation density, traffic patterns,
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and type of infrastructure. Hall and Qureshi [1] analyze the likelihood that a person will be

successful in finding a ride-match, given a pool size of potential ride matches. Based on a simple

probabilistic analysis, they conclude that in theory ride-sharing is viable since a congested freeway

corridor should offer sufficient potential ride-matches. The authors also observe that there are

many obstacles, primarily in terms of communication, so that the chance of finding a ride-match

in practice may in fact be small. Fortunately, the recent advances in mobile communications give

rise to new opportunities for matching up people for rides in real-time.

Even though the enabling technology is there, ride-sharing success stories are still lacking. The

development of algorithms for optimally matching drivers and riders in real-time may only play a

small role in the ultimate success of ride-sharing, it is at the heart of the ride-sharing concept, and

the transportation community has largely ignored it.

2 Dynamic Ride-Share Problem Setting

Both riders and drivers must provide information on their time schedule preferences. Many of the

currently available and proposed dynamic ride-share applications simply let each potential partic-

ipant specify a desired departure time. The provider then attempts to find an assignment with a

departure time that is as close as possible to this desired departure time. This approach minimizes

the information that participants must supply, but, at the same time, provides only limited infor-

mation regarding a participant’s time preferences and flexibility. A time window representation

may capture a participant’s time preferences more accurately. One could, for example, let a par-

ticipant specify an earliest possible departure time and latest possible arrival time. Furthermore,

it may be beneficial to allow limits on the actual time that users may spend traveling on a given

trip, for example by allowing each participant to specify the maximum excess travel time (over the

direct travel time for his origin to destination) he is willing to accept.

Ride-sharing allows people to save on travel-related expenses by sharing trip costs. A ride-

share provider, either private or public, helps people to establish ride-shares on short-notice by

automatically matching up drivers and riders. If the system is private and operated for profit,

the added value of the ride-share provider is reducing the total costs of all participants by the

largest amount possible; by enabling this economy, the provider can take a cut. Private ride-share

providers typically charge a commission per successful ride-share, either a fixed fee or proportional

to the trip cost. As a result, the objective of the provider is mostly in line with the goals of the

participants. This is also true for a public system with a societal objective, such as the reduction

of pollution and congestion.

Here, we focus on the establishment of ride-shares that minimize the system-wide vehicle-

miles. The system-wide vehicle-miles represent the total vehicle-miles driven by all participants
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traveling to their destinations, either in a ride-share or driving alone. This objective is important

from a societal point of view as its helps to reduce pollution (emissions) and congestion. This

objective is compatible with minimizing total travel costs, which is an important consideration for

the participating drivers and riders and directly related to the revenues of the ride-share provider.

In any practical dynamic ride-share implementation, new riders and drivers continuously enter

and leave the system. A driver enters the system by announcing a planned trip and offering a

ride and a rider enters the system by announcing a planned trip and requesting a ride. Drivers

and riders leave the system when a match has been found for them or when their planned trips

“expire,” i.e., when the latest possible departure time of their planned trip occurs without a match

being found.

Since new drivers and riders continuously arrive, not all relevant offers and requests may be

known at the time the ride-share provider plans the ride-shares. A common approach for dealing

with these types of planning uncertainties is to use a rolling horizon approach. In this paper,

we consider several different re-optimization strategies and frequencies. Notably, we chose to re-

optimize each time a new trip is announced or to re-optimize at fixed time intervals. The best

choice is not obvious. Moreover, we develop heuristics that are fast enough to handle realistic-size

instances in a matching engine of an actual ride-share system, i.e. thousands of riders and drivers

that travel between thousands of origins and destinations at the same time.

The optimization problem that needs to be solved involves all the offered rides (drivers) and

requested rides (riders) that are known at the time of the optimization and that have not yet

been matched. The ride-share provider may decide to immediately notify drivers and riders of

the matches identified by the optimization or may decide to hold off on notifying drivers and

riders in the hope of improved matches the next time the optimization is executed. For example,

if the next optimization is scheduled at time t, then a match between driver d and rider r with

min{b(d), b(r)} ≥ t can be postponed without negatively impacting cost savings.

Although the issues of re-optimization frequency and solution commitment are not unique to

ride-share systems, ride-share systems offer a highly dynamic environment in which to study them.

3 Simulation Experiments

For this study, we have developed a simulation environment based on the 2009 travel demand model

for the metropolitan Atlanta region, developed by the Atlanta Regional Commission (ARC). The

ARC is the regional planning and intergovernmental coordination agency for the 10-county Atlanta

area, a sprawling region with a population of approximately 5 million people occupying 6,500 square

miles. The travel demand model for the region is used in this study to generate daily vehicle trips

by purpose between all pairs of travel analysis zones within the region.
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1. Participation rate: the percentage of the total system-wide vehicle-trips that is participating

in dynamic ride-sharing.

2. Announcement lead-time: the time before the latest departure time that a participant an-

nounces his trip. This can be an absolute value or a relative value i.e., relative to the duration

of the trip.

3. Ride-share time-flexibility: The difference between the earliest and latest departure time

minus the direct trip length. This can be an absolute value or a relative value, i.e., relative

to the duration of the trip.

4. Driver-rider ratio: The ratio between the number of drivers and the number of riders.

Ongoing experimentation with different matching optimization approaches within the simula-

tion environment has begun to generate results that demonstrate the potential additional value to

ride-sharing systems of using more sophisticated matching algorithms rather than simple heuris-

tics. For example, for the simplest problem setting where each driver may be matched with at

most one rider, a solution approach that uses a network-flow formulation to solve a bipartite

matching model optimally systematically outperforms (by 10-20 %) a greedy matching heuristic

in terms of success-rate, vehicle-miles and corresponding cost savings. Furthermore, comparison

to a best-possible a posteriori bound has provided evidence that the rolling horizon approach is

nearly optimal for practical instances. The numerical experiments also show that increasing the

percentage of the total vehicle-trips that announce to potentially participate in ride-sharing results

in relatively more ride-share arrangements, and also increases the average per-trip cost-savings for

the participants. The simulation environment enables clear study of the economy of participant

density for such systems, an important determinant of potential success.
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The maritime inventory routing problem (IRP) combines a ship routing problem with an 

inventory management problem. The goal is to find routes and schedules for the fleet and load/unload 

quantities at each port in order to minimize the transportation costs while satisfying the inventory 

lower and upper bound levels at each port.  

During the last decade optimization problems in maritime transportation have received a 

clearly increased interest compared to air and land-based transportation problems that have been 

intensively studied for several decades. This increase of interest has mainly been motivated by the 

large economic importance and by the high complexity of real maritime transportation problems. 

These two factors created the need to provide good support systems to maritime transportation (MT) 

industrial planners. As a consequence, most of the literature on maritime inventory routing is usually 

concerned with real applications (e.g. [1, 5, 6, 7, 8, 9, 11, 13, 14, 15]). Christiansen et al. [4] present a 

recent review on maritime transportation, while [3] is devoted to maritime IRPs. In a work closely 

related to the one we consider, Christiansen [2] studies a supply chain for ammonia consisting of 

several locations that either produce or consume ammonia and the transportation network between 

these locations. Ammonia is produced and stored in inventories at given loading ports and transported 

at sea to inventories at unloading or consumption ports. Inventory capacities are defined in all ports. 

Here, the production and consumption rates are given and fixed during the planning horizon in all 

9



ports. To transport the product between the given production and consumption ports, the planners 

control a heterogeneous fleet of ships. The planning problem is to design routes and schedules for the 

fleet that minimize the transportation costs without interrupting production or consumption at the 

inventories. The overall problem is solved by a branch-and-price method in [5, 6] and by a heuristic in 

[7]. 

Most of the common approaches for solving the maritime IRP are based on heuristics or 

decomposition techniques (e.g. [2, 5, 6, 8, 11]). The choice of these approaches might be explained by 

the high complexity of real applications. However, the constant hardware development combined with 

the theoretical advances in optimization techniques has produced optimization solvers capable of 

handling increasingly larger instances. Currently, it is possible to obtain optimal or near optimal 

solutions, in acceptable computational time, to small real instances occurring in MT problems using 

commercial solvers. It is well-known that to solve a problem efficiently, the formulation of it is crucial 

[10]. This makes the study of the mathematical formulation a key issue to solve larger maritime IRPs. 

Although the study of valid inequalities for mixed-integer sets and the derivation of extended 

formulations is currently receiving large attention with several applications to other mixed-integer 

problems, little work has been done on applying these techniques to maritime transportation problems. 

However, a few contributions already exist within maritime transportation. Sherali et al., [15], included 

valid inequalities in order to enhance the proposed formulations to an oil products transportation 

problem, and Persson and Göthe-Lundgren, [11], developed valid inequalities within a column 

generation approach for a maritime IRP with production considerations. Recently, Grønhaug et al. [8], 

include valid inequalities to improve the path-flow formulation presented for the liquefied natural gas 

inventory routing problem. 

A maritime IRP may be characterized in different ways, such as the number of products (single 

item vs multi-item); inventory management at all ports vs inventory management only at production or 

consumption ports; constant,  varying or variable production and consumption rates, etc. When 

considering production and consumption rates the underlying models may be quite different. If it is 

assumed that the production and consumption rates are fixed during the planning horizon, then a 

mathematical model based on a continuous time can be used, see for example [1] and [2]. When the 

production and/or consumption rate is varying or variable during the planning horizon a discrete time 

model has been used, see [8, 13]. The case of variable production and consumption rates is, of course, 

the most general one. In practice, the production and consumption rates are most often variable, 

although, in some applications, the simplification made by assuming a constant rate is acceptable. 

We consider a single product problem with varying production and consumption rates with 

inventory management at all ports. The product is produced and stored at production (loading) ports 

and transported by a heterogeneous fleet of ships to the consumption ports (unloading ports). Inventory 

capacities and inventory safety stocks are considered at the production and consumption ports. The 

problem is similar to the one given in [2]. The major differences are related to the varying rates of 
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production/consumption which implies that the mathematical model is based on a discrete time 

horizon. We present and discuss different mathematical formulations for this maritime IRP and outline 

approaches to strengthen the proposed formulations. These approaches include the study of extended 

formulations and the inclusion of valid inequalities [10]. We focus on deriving valid inequalities for 

this particular type of problems, such as, inequalities that impose visits to ports during an interval of 

time, based on the demands, capacity of ports and safety stocks.    

Since the maritime IRP is a general problem that incorporates characteristics from other well-

known intensively studied problems such as the vehicle routing problem [16] and the capacitated lot-

sizing problem [12], the approaches followed explore also the connections between the maritime IRP 

and these other related problems. 

Computational results based on real data will be reported. 
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We consider a short sea fuel oil distribution (SSD) problem occurring in the archipelago at Cape 

Verde. Here, an oil company is responsible for the routing and scheduling of ships between the islands, 

as well as for the management of the inventory of various fuel oil products. 

During the last decade optimization problems in maritime transportation have received a 

clearly increased interest compared to air and land-based transportation problems that have been 

intensively studied for several decades. Christiansen et al. [4] present a recent review on maritime 

transportation, while [3] is devoted to maritime inventory routing problems. Combined routing and 

inventory management within maritime transportation have been present in the literature the last 

decade only. See [1, 2, 6, 7, 8, 9 10, 13, 14, 15]. 

The inter-islands distribution of fuel oil is a real problem of Cape Verde, an archipelago with 

nine inhabited islands. Fuel oil products are imported and delivered to specific islands and stored in 

large supply storage tanks. From these islands, fuel oil products are distributed among all the inhabited 

islands using a small heterogeneous fleet of ships. These products are stored in consumption storage 

tanks. Some ports have both supply and consumption tanks. The inter island distribution plan consists 

of designing routes and schedules for the fleet of ships including the loading and unloading quantity of 

each product at each port. This plan must satisfy the demand of each product at each island per period, 

time window constraints on the operations, and the capacities of the ships, ports and depots. The 
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objective is to minimize the overall cost including sailing costs, a fixed cost for each operation and a 

penalty cost for violation of time windows. 

We consider a short-term distribution problem with a planning horizon of twelve days. The 

input to this problem is the output of a medium-term plan for several weeks (few months). The 

demands correspond to the quantities to be delivered at each port per day determined in the medium-

term plan. Hence, usually the demands at each port follow a pattern where the demands are zero for 

most periods and relatively large in the rest of the periods. By coordinating the distribution of all 

products in all ports during the planning horizon, it might be efficient to deliver the demand in periods 

prior to the specified period by the medium-term plan or in other quantities. This means that we need 

to keep track of the inventory level at the consumption storage tanks for all products in all ports. 

Storage capacities of supply and consumption tanks are taken into account in the medium-term 

planning. In the short-term plan considered here capacities of supply tanks can be ignored, since the 

total consumption of each product from all consumption tanks during the time horizon, is much smaller 

than the capacity of the supply tanks. However, the capacity of the consumption tanks for a particular 

product can be less than the total demand of the product over the planning horizon.  

It is assumed that only one ship can visit a port simultaneously. During a port call for a ship, it 

is possible to load and unload different products. We assume that there is a fixed (un)loading time per 

unit of product (un)loaded. This time may vary for different products and different ports. In addition, 

there is a considerable set up time between (un)loading different products due to coupling and 

decoupling of pipes between tanks in the ship and tanks in port.  

Most of the ports are closed during night and some ports have operational restrictions during 

certain periods of the day. This means that in each period (day), there may be a time window for 

(un)loading. These time windows may vary from port to port. A ship cannot start to operate before the 

beginning of the time window. However, if the operation has begun inside the time window, it can be 

finished outside that time window. In this case, an extra man-power cost is incurred. 

To transport the fuel products between the islands, the planners control a small, heterogeneous 

fleet of ships. Each ship has a specified load capacity, fixed speed and cost structure. The set up time 

and the (un)loading time is independent of the ship. The cargo hold of each ship is separated into 

several cargo tanks. However, we do not consider the allocation of the different fuel products into 

different cargo tanks.  

We propose a mixed integer formulation for the SSD problem. The formulation is related to 

some previous works; see [1, 2, 9, 14]. In [1] and [2] a time continuous model is presented and an 

index indicating the visit number to a particular port is introduced. For both these underlying models it 

is assumed that the production/consumption rate is given and fixed during the planning horizon. In [9] 

and [14] time discrete models are developed to overcome the complicating factors with variable 

production and consumption rates. In the SSD problem, the inventory at the production  side is not 

considered, but we have variable consumption rates during the planning horizon. Hence the 
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mathematical model includes both a continuous and discrete time horizon due to the multiple time 

windows and a daily varying consumption rate of the various products in the different ports. 

It is known that deriving a good model is essential for efficiently solving a mixed integer 

program to optimality [10]. In order to improve the original formulation we derive stronger 

formulations, that is, formulations whose linear relaxation is tighter than the original one. We consider 

three different approaches to strengthen the original formulation based on standard techniques. The 

first one is to tighten the bounds on constraints linking continuous and binary variables. The second 

one is based on a reformulation of the model with the inclusion of additional variables, the arc-load 

flow variables instead of considering the amount of fuel of each product onboard the ship when it is 

leaving a port. The new variables also indicate the next port in the ship route. The inclusion of these 

variables increases the size of the model but it also allows us to derive a tighter model. The last 

improvement is related to the inclusion of valid inequalities. In order to derive valid inequalities we 

consider simpler substructures arising from relaxations of the set of feasible solutions of the model. For 

instance, we identify the fixed charge single node flow set, when aggregating the demand for a set of 

products during a subset of periods in a given subset of islands, and identify other (mixed-) integer sets 

resulting from considering the routing constraints, the inventory constrains, the arc-load flow 

constraints (from the arc-load flow extended formulation) alone. These substructures have been 

intensively studied, from the point of view of the theory of valid inequalities, during the last years. 

From well-known inequalities for these simple (mixed-) integer sets we derive inequalities for our 

model. Since the amount of families of known inequalities for these substructures is very large, an 

extensive computational study of their relevance in solving our instances would be impractical. We 

decide to focus on few well-known families of inequalities that proved to be efficient in solving related 

problems, such as cover type inequalities, see [16], mixed integer rounding inequalities, see [11], etc.. 

Finally, an extensive computational study, based on real data, is reported in order to compare 

different ways of combining the approaches. Based on this computational study we propose a final 

improved formulation which can solve all the tested instances to optimality within a reasonable 

computational time. 
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1 Extended Abstract

Port congestion has been a serious problem for the maritime shipping sector for many decades [1].

Major causes for port congestion include insufficient terminal equipment, inadequate hinterland

infrastructure, labor shortages or conflicts, and poor managerial practices. The widespread utiliza-

tion of antiquated shipping contracts and berthing priority policies also constitutes a major driver

of port congestion.

Standard ocean shipping contracts1 require a chartered vessel to proceed at “utmost despatch”

to its destination, even when it is almost certain that the vessel will have to wait for several days

before being admitted to a berth. The berthing policies at many major ports, which admit vessels

on a first-come, first-served (FCFS) basis, represent an additional incentive for the master to sail

at full speed. The widespread utilization of these legacy contracts and berthing policies constitutes

a major, and arguably unreasonable, driver of harbor congestion and marine fuel consumption.

As was observed during the grounding of the Pasha Bulker at Newcastle, Australia, in 2007

and the grounding of the Full City outside Langesund in 2009, port congestion can constitute a

serious safety issue [2, 3].

Fuel expenses represent up to 50% of voyage costs, and are a major concern to fleet operators.

Given that the rate of fuel consumption of a vessel increases approximately as the cube of the
1Ocean shipping contracts are known as charter party forms, and establish the conditions of carriage, including

dates for loading and unloading, cost of carriage, and penalties for delays. The charter party form is typically a

contract between the vessel owner/operator and the shipper.
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vessel’s speed [4], the aforementioned contracts and policies result in unnecessarily high bunker

fuel consumption.

The maritime transport sector is currently placing much emphasis on the reduction of opera-

tional expenses and carbon emissions. The issue of safety is also paramount amongst responsible

vessel and terminal operators. This motivates us to consider alternative vessel berthing policies

and contractual mechanisms that allow the maritime transport industry as a whole to operate in

a more safe, environmentally responsible, and economical manner. Some of the largest actors in

maritime shipping have expressed strong support for such alternative contractual and coordination

mechanisms. For instance, the virtual arrival initiative – a simple mechanism for reducing vessel

speed and distributing the economic benefits amongst vessel owners and charterers – is backed by

prominent industry associations such as INTERTANKO and OCIMF [5]. Another example is that

of the port of Newcastle, which has recently implemented a new berth allocation system to replace

the traditional first-come-first-served discipline.

The contribution of this paper consists of a methodology to evaluate the benefits that can be

derived from innovative berthing priority policies and ocean shipping contracts. Given the impor-

tance of stochasticity on the performance of maritime transport systems, as well as the need to

represent the scheduling and allocation decisions made by the terminal planner, we propose a dis-

crete event simulation model with an embedded optimization routine as the appropriate framework

to assess new policies.

The simulation model includes seven event types, representing the departure of vessels from

a remote port; a communication event where a vessel may receive sailing instructions from the

terminal planner; arrival of the vessels at the focal harbor; berthing and commencement of loading

or unloading; allocation of land-side equipment (LSE) to the vessel; end of land-side operations

and departure from the focal port; and reoptimization by the terminal planner. A reoptimization

event is triggered whenever a vessel communicates an updated position to the planner, when a

vessel arrives at the harbor, or when a vessel leaves the terminal.

In order to represent the role of the terminal planner, we formulate a fairly detailed mixed

integer program (MIP) that finds feasible assignments of berths and land-side equipment to each

vessel. Our MIP formulation is a substantial extension on the traditional berth assignment problem

(BAP, see e.g. [6, 7]), as we include many issues that are important in a practical setting. For

instance, our model includes the fuel consumption of different vessel types at different speeds,

the compatibility between LSE and different merchandise types, the spatial configuration of the

terminal, and the transfer of demurrage and despatch fees. By modifying a small number of

parameters and sets in the MIP formulation, we can represent different berthing priority and

speed optimization policies.

An interesting feature of the proposed MIP is that it represents the planner’s decisions at
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different levels of precision. The most immediate decisions, those that will be implemented within

the current work shift, are represented using hourly time intervals. The following shift is represented

using two-hour blocks, and the third shift is represented using four-hour blocks. This technique

results in a considerable reduction of the size of the MIP instances, and resembles the rolling

planning horizon often employed in terminal planning activities.

We present a case study where we compare the performance of the simulated transport system

under three policies, namely FCFS, standardized estimated time of arrival (SETA), and global

optimization of speed, berth, and equipment allocation (GOSBEA). Under policy GOSBEA, the

terminal planner dictates the target sailing speed of each vessel, and assigns bething priorities

accordingly. We compare the performance of the policies in terms of average harbor dwell time,

terminal throughput, total fuel consumption, and the balance of despatch credits and demurrage

fees. Furthermore, we compare the three policies under two different market scenarios, resembling

the positive industry outlook of 2008, and the depressed circumstances observed in 2009. We

conduct 120 replications, twenty for each of three policies in each of the two market scenarios.

We conclude that policy GOSBEA is substantially better than SETA and FCFS. In particular,

it appears that policy GOSBEA would lead to significant reductions in fuel consumption, while

simultaneously reducing harbor dwell times, vessel call cancellations, and contractual penalties.

While GOSBEA is clearly beneficial when all parties are considered jointly, we can anticipate

that not every individual vessel operator would benefit from the scheme. For instance, the terminal

planner may request a vessel to sail faster than initially planned, even when the vessel is not at

risk of missing its contractual window for land-side operations. The vessel operator may not be

willing to expend additional fuel for the benefit of other parties. Such cases may well represent

the biggest obstacle to the implementation of GOSBEA or similar policies. Additional contractual

mechanisms must be implemented in order to compensate the ocassional losses that would otherwise

be imposed on individual vessel operators. The precise specification of such mechanisms constitutes

an interesting direction for further research.
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1 Introduction

Seaport container terminals are nowadays very complex systems that require the development of

quantitative methods to support the relevant decisions. Referring to the surveys [1] and [2] on op-

erations research methods applied to container terminals, the developed optimization approaches

can be divided according to the different processes in a seaport terminal: ship planning (i.e. berth

allocation, stowage planning and crane split), storage and stacking planning, and transport opti-

mization (divided in quayside, landside, and crane movements). With respect to this classification,

this work is devoted to landside transport optimization and presents an optimization approach for

the definition of loading plans for trains. As highlighted in [1], a loading plan indicates on which

wagon a container has to be placed; this decision generally depends on the destination, type and

weight of the container, the maximum load of the wagon and the wagon’s position in the train.

Also the container location in the storage area can influence the loading plan. We consider the case

in which this loading plan is performed by the terminal operator with the aim of optimizing both

the pick-up operations in the storage area and the load of each train. In the literature, few research

studies are devoted to the load planning problem and they are referred to landside intermodal ter-

minals rather than to seaports. In [3] the authors propose some models and heuristic methods for

container allocation problems on trains, referring to rail-rail terminals with rapid transfer yards,

whereas in [4] the authors consider a terminal where containers are transferred to and from trucks

on a platform adjacent to the rail tracks provided with a short-term storage area.

The present work addresses the train load planning problem in a container terminal in which

the railway yard works as sketched in Fig. 1. The transfer of containers from the stocking area

(where they are stacked up until the forth tier) to the train is realized as follows: a reach stacker

takes a container from the stocking area and puts it on a tractor; then, the tractor moves it near

the railway tracks where it is taken by an overhead travelling crane that loads it on the train. We

assume to plan the train loading operations over a given planning horizon (e.g. one or more days).
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Figure 1: A sketch of the railway yard.

We are interested in studying the load planning problem either in a seaport terminal or an inland

terminal (such as a dry port) directly connected with the seaport. In the former case, import

containers must be loaded on trains, whereas in the latter case we focus on export containers

directed to ships. Therefore, four different scenarios (of increasing difficulty) could be considered:

1. train load planning of import containers on one track - in the stocking area containers are

stocked following a very simple policy (depending on their weight and length); the destination

of containers is not taken into account in the load planning problem; the overhead travelling

crane is assumed to load containers sequentially, i.e. from the first wagon to the last one;

2. train load planning of import containers on more tracks - the stocking policy is very simple

and the destination of containers is not considered, as in scenario 1; in this case, the loading

sequence of the overhead travelling crane is matter of decision (trains on parallel tracks can

be loaded either sequentially or in parallel);

3. train load planning of export containers on one track - containers are supposed to be stored

according to a specific policy that takes into account more factors as the ship destination,

the weight, size and destination of containers (these aspects will be taken into account in the

planning problem); the overhead travelling crane is assumed to load containers sequentially;

4. train load planning of export containers on more tacks - as in scenario 3, the ship destination

of containers influences both the stocking policy in the storage area and the train load

planning; instead, the loading sequence of the overhead travelling crane is matter of decision.

2 Problem definition

We now consider scenario 1, i.e. train load planning of import containers on one track. In the

optimization problem, we consider C containers, R trains and W wagons; wagons are ordered

such that w = 1, . . . , W1, are wagons of train r = 1 (leaving as first), w = W1 + 1, . . . , W2, are
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wagons of train r = 2 (leaving as second), and so on, until the set of wagons of the last train, i.e.

w = WR−1 + 1, . . . , WR; for notational purposes, we set W0 = 0 and WR = W . Moreover, we

suppose that the position of a container in the stocking area is given by the relevant slot and tier.

To this end, let us denote with S the number of slots and with T the maximum number of tiers for

slot. The data relative to each container c = 1, . . . , C, are the length λc, the weight ωc and the cost

of not loading it, i.e. πc (that takes into account the urgency and importance of the container).

For each wagon w = 1, . . . , W , the input data are the length λw and the weight capacity ωw.

Moreover, Ωr is the weight capacity of train r = 1, . . . R, and γ is a cost term associated with

rehandling one container. The problem decision variables are:

• xc,s,t,w ∈ {0, 1}, equal to 1 if container c placed in slot s, tier t is assigned to wagon w;

• yc,s,t,w ∈ {0, 1}, equal to 1 if container c is placed in slot s, tier t when wagon w is assigned

(quantities yc,s,t,0, equal to 1 if container c is initially placed at tier t of slot s, are known);

• bs,t,w ∈ N, number of occupied slots above slot s, tier t when wagon w is assigned;

• vs,t,w ∈ N, number of occupied slots above slot s, tier t when the container in slot s, tier t is

assigned to wagon w;

• us,w ∈ N, total number of rehandling operations needed when containers in slot s are assigned

to wagon w;

• zc ∈ {0, 1}, equal to 1 if container c is not assigned (i.e. it is not loaded on a train).

The problem is formalized as follows.

min

S∑

s=1

W∑

w=1

γ · us,w +

C∑

c=1

πc · zc (1)

s.t.
S∑

s=1

T∑

t=1

W∑

w=1

xc,s,t,w + zc = 1 c = 1, . . . , C (2)

C∑

c=1

λc ·

S∑

s=1

T∑

t=1

xc,s,t,w ≤ λw w = 1, . . . , W (3)

C∑

c=1

ωc ·

S∑

s=1

T∑

t=1

xc,s,t,w ≤ ωw w = 1, . . . , W (4)

C∑

c=1

Wr∑

w=Wr−1+1

ωc ·
S∑

s=1

T∑

t=1

xc,s,t,w ≤ Ωr r = 1, . . . , R (5)

yc,s,t,w = yc,s,t,w−1 − xc,s,t,w c = 1, . . . C, s = 1, . . . , S, t = 1, . . . , T, w = 1, . . . , W (6)

xc,s,t,w ≤ yc,s,t,w−1 c = 1, . . . C, s = 1, . . . , S, t = 1, . . . , T, w = 1, . . . , W (7)
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bs,t,w =

C∑

c=1

T∑

h=t+1

yc,s,h,w−1 s = 1, . . . , S, t = 1, . . . , T − 1, w = 1, . . . , W (8)

M(1 −

C∑

c=1

xc,s,t,w) + vs,t,w ≥ bs,t,w s = 1, . . . , S, t = 1, . . . , T, w = 1, . . . , W (9)

us,w = max
t=1,...,T

vs,t,w s = 1, . . . , S, w = 1, . . . , W (10)

xc,s,t,w ∈ {0, 1}, yc,s,t,w ∈ {0, 1} c = 1, . . . C, s = 1, . . . , S, t = 1, . . . , T, w = 1, . . . , W (11)

bs,t,w ∈ N, vs,t,w ∈ N s = 1, . . . , S, t = 1, . . . , T, w = 1, . . . , W (12)

us,w ∈ N s = 1, . . . , S, w = 1, . . . , W (13)

zc ∈ {0, 1} c = 1, . . . , C (14)

The cost function (1) includes rehandling costs and penalty costs. Constraints (2) impose that,

if container c is not assigned, the corresponding variable zc is equal to 1. Constraints (3), (4) and

(5) concern the limitations due to wagon length and wagon/train weight capacity. Constraints (6)

and (7) assure the relations between xc,s,t,w and yc,s,t,w variables. Constraints (8) make variables

bs,t,w represent the number of occupied cells above the considered position in the stocking area,

whereas constraints (9) assure that, if a container in a certain position s, t is assigned to wagon

w, the number of rehandled containers is equal to number of above occupied cells. Finally, the

total number of rehandled containers associated with slot s when wagon w is assigned is given

by us,w thanks to constraints (10). Thus, we deal with an integer non linear formulation that

can be solved with mathematical programming solvers for instances of small-medium size. We are

now investigating both new mathematical formulations and solution procedures (such as ad-hoc

heuristic techniques) for solving the train load planning problem.

This work has been developed within the research project “Container import and export flow in terminal

ports: decisional problems and efficiency analysis” PRIN 2007J494P3 005, Italy.
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1 Introduction

Managing the flows of spent products has become a crucial concern for companies seeking to explore

and integrate reverse logistics as a viable business option. To this end, a major concern is the design

of the distribution and collection system for both new and return products respectively. Obviously,

inefficient transportation activities can limit the economic success of reprocessing products, while

several issues and operational constraints emerge for the collection of used-returned products.

Significant developments has been made towards the design of models and optimization methods

to address pick and delivery problems [1, 2]. In this study, the main focus is given on combined

distribution-collection systems, where the same vehicle can be used for both deliveries and collection

services. Clearly, the utilization of vehicles increases significantly when merging products brought

to the customers as well as products brought back to the depot, while the vehicle routing and
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scheduling plans are getting more effective. Several models appear in the literature that embodies

the essence of dealing with both linehaul and backhaul customers on the same vehicle routes.

Among those problem variants with time window restrictions the most well-studied are the so-

called Vehicle Routing Problem with Time Windows and Backhauls (VRPBTW) [3] and the Mixed

Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW) [4].

Given a homogeneous fleet of depot-returning capacitated vehicles the goal of the VRPBTW is

to design a set of vehicle routes in order to satisfy the delivery and collection requirements of a set

of geographically scattered customers. Each customer has a known demand for delivery (linehaul)

or collection (backhaul) and it must be serviced within a predefined time window that models

the earliest and the latest times during the day that service can take place. Furthermore, each

customer must be visited only once by exactly one vehicle, while all linehaul customers of a route

must be serviced before the vehicle starts visiting backhaul customers. Contrary, the MVRPBTW

assumes that the backhaul customers are not prohibited to be visited before linehaul customers.

The primary objective of both problems is to minimize the total number of vehicles required for the

service of all customers, while the secondary objective is to minimize the total distance traveled.

Due to their wide applicability and high complexity, the solution aspects of the VRPBTW

and the MVRPBTW have generated substantial research [7, 8, 5, 9]. In this paper the main

focus is given on the design and development of a novel unified Path-Relinking based Evolutionary

Algorithm to address both problems. Computational experiments on benchmark data sets of the

literature demonstrate the efficiency and effectiveness of the proposed solution method compared to

the current state-of-the-art. Furthermore, new benchmark data sets are generated for the problem

variant with simultaneous pick ups and deliveries and time windows, hereafter abbreviated as

VRPSPDTW. The latter is first introduced by Angelelli et al. [6].

2 Solution Framework

The proposed solution framework adopts an (µ,λ)-evolution strategy to evolve monotonically a

population of individuals [12, 13, 14]. Initiating from a population of µ adequately diversified

individuals, at each generation a new intermediate population of λ individuals is produced via

a novel Path Relinking (PR)[10] recombination mechanism. The µ survivors from the union of

parents and offspring are selected deterministically to form the next generation population.

PR is used to generate trajectories-paths between between two parent solutions from the current

population. For this purpose, several semi-probabilistic strategies are used to select the initial

and guiding solutions, while the mechanism for generating the trajectories adopts simple edge-

exchange neighborhood structures. The main effort is to introduce gradually features and attributes

appearing in the guiding the solution. As such, the trajectories followed are always heading towards
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solutions with reduced Hamming distance w.r.t the guiding solution. To this end, controlled

tunneling is also allowed, assuming that capacity and time window constraints are relaxed.

On the other hand, a subset of promising intermediate solutions (offspring) is selected and

further improved via a route elimination procedure and a memory-based trajectory local search

algorithm. Both algorithms utilize the basic Tabu Search (TS) framework along with long term

memory structures to drive the search process . The primary objective of the former is to reduce

the total number of vehicles using a tailored lexicographic ordering evaluation function for the

exploration of the neighboring space [12], while the latter explores the solution space on the basis

of a Guided Local Search (GLS) [11] algorithm in an effort to reduce the total distance traveled.

3 Computational Experiments

The benchmark data sets found in [3], [5], [4] and [6] are used as the baseline for evaluating the

proposed solution approach, abbreviated hereafter as PREA. Furthermore, new benchmark data

sets are also developed for the VRPSPDTW. Table 1 summarizes the average results obtained

(MNV, MTD and MCT stands for mean number of vehicles, mean traveling distance and mean

computational time respectively). Compared to the current state-of-the-art, PREA proved to be

highly efficient and competitive, producing several new best solutions and improving the best

reported average results with reasonable computational time requirements.

Table 1: Computational Results
Problem Author / Best Known PREA

Variant Data Set MNV MTD MNV MTD MTC (sec)

VRPBTW Gelinas et al. [3] / (R1-100) 17.07 1559.01 17.20 1569.95 165

VRPBTW Thangiah et al. [5] / (250) 36.92 4555.33 36.92 4549.23 510

VRPBTW Thangiah et al. [5] / (500) 56.08 6907.38 55.75 6896.62 1890

MVRPBTW Kontoravdis and Bard [4] (MR-100) 4.00 902.43 4.00 901.75 500

MVRPBTW Kontoravdis and Bard [4] (MRC-100) 4.13 1122.83 4.13 1103.50 500

VRPSPDTW New (R1) 12.33 1276.46 12.33 1276.46 570

VRPSPDTW New (RC1) 12.00 1425.09 12.00 1425.09 597

VRPSPDTW New (R2) 2.82 1040.78 2.82 1040.78 605

VRPSPDTW New (RC2) 3.25 1361.97 3.25 1361.97 622

VRPSPDTW Angelelli and Mansini [6] (R1) 4.5 3863.75 3.83 3976.83 30

VRPSPDTW Angelelli and Mansini [6] (RC1) 4.33 2807.56 4.33 2806.11 75

VRPSPDTW Angelelli and Mansini [6] (C1) 5.00 4338.37 5.00 4338.38 60
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1 Introduction

The problem analyzed in this paper is a combined inventory management, ship routing and schedul-

ing problem describing the distribution of LNG from the liquefaction plants where the natural gas

is cooled down to its liquid state, via the LNG carriers to the regasification terminals where the

LNG is stored, reheated, and fed into pipeline systems to serve the market. The problem can

be classified as a liquefied natural gas inventory routing problem (LNG-IRP), a class of problems

that has not been much studied earlier. The LNG-IRP was defined in [2], where two different

formulations are described and compared. A branch-and-price-and-cut algorithm for the problem

is developed in [3]. The algorithm uses a path based formulation where movements and operations

of the ships are described by schedules covering the whole planning horizon. Valid inequalities

derived from the minimum and maximum number of visits to a port are used to strengthen the

continuous relaxation.

The purpose of this paper is to describe a new decomposition approach for an LNG-IRP. Instead

of describing the movements and operations through schedules, duties are used. A duty covers a

smaller part of the planning horizon, and a sequence of duties now represents the movements

and operations. A branch-and-price-and-cut algorithm has been developed. Advanced branching

schemes and stronger valid inequalities have been implemented.

The outline of the paper is as follows. In Section 2 the problem is presented and the assumptions

made are discussed. The mathematical model is given in Section 3, while the solution approach is

described in Section 4. Section 5 covers computational results.
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2 Problem description

The problem considered is the routing and scheduling of LNG ships between liquefaction plants

and regasification terminals, as well as the production planning and inventory management at the

plants and sales planning and inventory management at the terminals. Each liquefaction plant has

a limited inventory capacity given by an upper and a lower bound. The production rate is variable

and can vary between upper and lower limits. There is a per unit cost of producing LNG, but no

holding costs are incurred. By each plant there is a port with a limited berth capacity where the

LNG ships can load. The loading operation is assumed to take one day, and the ships are always

fully loaded. The fleet of ships is heterogeneous, both considering the capacities and the initial

positions. All ships contain a number of tanks and, when a tank is unloaded, it must be fully

unloaded. This means that the ship can do partial unloading at a regasification terminal, but an

integer number of tanks must be unloaded. A fixed amount of LNG evaporates from the tanks

each day. In order to avoid costly operations of recooling the tanks of the ships, the tanks are not

allowed to be completely empty. This means that a fraction of LNG must be left in the tanks after

unloading, so that the ships have time to sail to a liquefaction plant and start loading before the

tanks are empty. Only operating costs related to the number of sailing days are considered, other

costs are assumed fixed and cannot be affected by the decisions made. Each regasification plant

also has a limited inventory capacity, and the sales rate is regulated by upper and lower limits.

Revenues from selling LNG at the regasification terminals are part of the model, but no holding

costs are incurred. The objective is to maximize the total profit consisting of revenue from selling

LNG and costs of operating the ships and producing LNG.

3 Mathematical formulation

Define the time horizon T , the set of ships V, the set of liquefaction plants P, and the set of

regasification terminals D. For each ship v, a set of duties Rv is defined. A duty consists of a

geographical route specifying the ports visited, a schedule specifying when each port is visited and

an unloading plan specifying the number of tanks and the amount of LNG unloaded at each visit at

a regasification terminal. All duties start at a liquefaction plant where the ship loads, then one or

two regasification terminals are visited before the ship sails to a liquefaction plant to reload. In the

model, ZPvrpt is 1 if duty r for ship v starts in time period t at production port p and 0 otherwise,

ZDvrdτt is 1 if duty r for ship v starting in time period τ unloads at delivery port d in time period

t, and ZPvrpτt 1 if duty r for ship v starting in time period τ ends with a visit at production port

p in time period t.

The loading quantities corresponding to ZPvrpt and the unloading quantities and number of

tanks corresponding to ZDvrdτt are denoted QPvrpt, Q
D
vrdτt, and HD

vrdτt respectively.
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For each liquefaction plant p and time period t upper and lower bounds on production P
P

pt, P
P
pt

and inventory I
P

pt, I
P
pt as well as berth capacities B

P

pt are defined. The corresponding parameters

for a regasification terminal d are: S
D

dt, S
D
dt for the sales limits, I

D

d , IDd for the inventory limits and

B
D

dt for the berth capacities.

The unit cost and revenue for producing and selling LNG are location and time dependent. The

cost of producing one unit of LNG at liquefaction plant p in time period t is CPpt, while the revenue

of selling one unit of LNG at regasification terminal d in time period t is RDdt. The operating cost

of duty r sailed by ship v is CRvr. For each ship v, FVvpt indicates the initial position and the time

when the ship is available and is 1 if ship v is first available at liquefaction plant p in time period

t. Hv denotes the number of tanks of ship v.

For liquefaction plant p, let iPpt and pPpt denote the inventory level and the production in time

period t, respectively. iDdt and sDdt are used for the inventory level and sales at regasification terminal

d in time period t, and xvrt is the fraction of duty r starting in time period t that ship v sails.

max
∑
d∈D

∑
t∈T

RDdts
D
dt −

∑
p∈P

∑
t∈T

CPptp
P
pt −

∑
v∈V

∑
r∈Rv

∑
t∈T

CRvrxvrt (1)

iPpt − pPpt − iPpt−1 +
∑
v∈V

∑
r∈Rv

QPvrptxvrt = 0 p ∈ P, t ∈ T (2)

iDdt + sDdt − iDdt−1 −
∑
v∈V

∑
r∈Rv

∑
τ∈T

QDvrdτtxvrτ = 0 d ∈ D, t ∈ T (3)

∑
v∈V

∑
r∈Rv

ZPvrptxvrt ≤ B
P

pt p ∈ P, t ∈ T (4)

∑
v∈V

∑
r∈Rv

∑
τ∈T

ZDrdτtxvrτ ≤ B
D

dt d ∈ D, t ∈ T (5)

∑
r∈Rv

ZPvrptxvrt −
∑
r∈Rv

∑
τ∈T

ZPvrpτtxvrτ = FVvpt v ∈ V, p ∈ P, t ∈ T (6)

∑
r∈Rv

∑
τ∈T

HD
vrdτtxvrτ ∈ {0, . . . ,Hv} v ∈ V, d ∈ D, t ∈ T (7)

∑
r∈Rv

ZPvrptxvrt ∈ {0, 1} v ∈ V, p ∈ P, t ∈ T (8)

∑
r∈Rv

∑
τ∈T

ZDrdτtxvrτ ∈ {0, 1} v ∈ V, d ∈ D, t ∈ T (9)

IPp ≤ iPpt ≤ I
P

p p ∈ P, t ∈ T (10)

IDd ≤ iDdt ≤ I
D

d d ∈ D, t ∈ T (11)

PPpt ≤ pPpt ≤ P
P

pt p ∈ P, t ∈ T (12)

SDdt ≤ sDdt ≤ S
D

dt d ∈ D, t ∈ T (13)

xvrt ≥ 0 v ∈ V, r ∈ Rv, t ∈ T (14)

The objective function (1) maximizes the total profit consisting of the revenue from selling
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and cost of producing LNG and the operating costs of the ships. Constraints (2) and (3) are the

inventory balance constraints at the liquefaction plants and regasification terminals, respectively.

The number of ships that can load and unload at the same time at a plant or terminal is restricted

by constraints (4) and (5). Constraints (6) are the duty balance constraints. They state that

the number of duties starting at a liquefaction plant a given day is equal to the number of duties

ending at the same plant the same day. The right hand side is 1 for the liquefaction plant and time

period where the ship is first available, making sure that the ship starts a duty from that plant the

given day. The integrality restrictions on the number of tanks unloaded are stated in constraints

(7), and the binary restrictions on the number of visits are imposed by (8) and (9). The upper

and lower bounds on the continuous variables are given in constraints (10) to (13) and (14) are

the non-negativity constraints.

4 Solution approach

A branch-and-price-and-cut algorithm has been developed for the problem. The subproblems are

fairly easy compared to formulations where the movements and operations of the ships are described

by schedules covering the whole planning horizon, and are solved using an enumeration algorithm.

Many different branching entities are used, and the connection between the branching entities and

the possibility to generate strong valid inequalities is utilized. Known valid inequalities have been

generalized to better exploit the structure of the problem and are added during the branch-and-

bound search.

5 Computational results

Computational results comparing this decomposition approach to earlier formulations will be pre-

sented.
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1 Introduction

Let us consider a set of products K := {1, ⋅ ⋅ ⋅ , n} and a set of markets M := {1, ⋅ ⋅ ⋅ ,m} plus a

depot indexed as 0. For each product k a positive discrete demand dk is specified. Each product k

can be purchased in a subset of markets Mk ⊆M at a unit price fki depending on the market i. For

each market i, i ∈Mk, qki units of product k are offered such that
∑

i∈Mk
qki ≥ dk for all k ∈ K.

For each pair i, j of markets and for each market and the depot, a traveling cost cij is known. The

Traveling Purchaser Problem (TPP) can be defined on an undirected graph G = (V,E), where

V := M∪{0} is the vertex set and E := {(i, j) : i, j ∈ V, i < j} is the edge set. The problem looks

for a simple tour in G starting at and ending to the depot by visiting a set of markets so that the

demand for all products is satisfied at the minimum routing and purchasing costs. The problem is

known to be NP-hard in the strong sense and several solution algorithms, both heuristic and exact,

have been proposed to solve it (see [6] and [7] and references therein). Moreover, the problem find

relevant applications either in routing or in scheduling and warehousing contexts (see [3], [4], [5]).

In practical contexts, the markets will receive requests from several different purchasers oper-

ating in the system, so that the quantity one might expect to find in a market is not constant

but depends on the time the market will be visited. To better evaluate how this would affect the

complexity of the problem, we assume here a simple model for the consumption process, where

the quantity made available for each product in each market qki, k ∈ K and i ∈Mk, may linearly

reduce over time according to a consumption rate �ki ≥ 0 depending on the market and on the

33



product.

Thus this problem is dynamic, since data change over time, and is deterministic, as the changes

can be foreseen. The underlying assumption is that the decision maker has information about

the future since he exactly knows how quantities will decrease, i.e. the consumption function is

a known deterministic function. We call this problem the Dynamic Traveling Purchaser Problem

with Deterministic Quantity (DTPPDQ). To the best of our knowledge, this version of the TPP

has never been addressed in the literature before now. We propose a Branch and Cut approach to

solve it.

The TPP has been analyzed in a more general dynamic context in the introductory paper [1]

where heuristic approaches are proposed. Finally, the dynamic TPP with stochastic quantities

can be found in [2] where different operating scenarios characterized by the presence of a planner

who makes decisions and an executor (the traveling purchaser) who is involved with the service in

practice are considered. Each scenario is faced assuming two different type of planners, a stochastic

planner and a deterministic one. The stochastic planner does not know future products availability,

but he does have probabilistic information regarding future consumption events (stochastic model).

The deterministic planner approximates the stochastic model by using a deterministic consumption

function (deterministic model).

Our exact approach provides a tool to compute the optimal solutions for the deterministic

model used in [2].

2 The mathematical formulation

Let xij be a binary variable equal to 1 if edge (i, j) ∈ E is selected in the optimal tour and 0

otherwise. We define as yi a binary variable equal to 1 if market i, i ∈ M, is selected and zero

otherwise, while zki is the integer variable representing the quantity of product k, k ∈ K, purchased

at market i, i ∈ Mk. Variable ti, i ∈ M, represents the time at which market i will be visited.

Finally, variables �ki, k ∈ K, i ∈ M model products exhaustion in the markets. More precisely,

�ki takes value 1 if the product k is depleted in market i and 0 otherwise.

The DTPPDQ can be formulated as an integer linear-programming problem where tij , (i, j) ∈

E, represents the traveling time associated to edge (i, j):

min
∑

(ij)∈E

cijxij +
∑
k∈K

∑
i∈Mk

fkizki (1)

∑
j∈V ∖{i}

xij = yi i ∈ V, (2)

∑
i∈V ∖{j}

xij = yj j ∈ V, (3)
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∑
i∈Mk

zki = dk k ∈ K, (4)

zki ≤ qkiyi k ∈ K, i ∈Mk, (5)

ti + tij ≤ tj +A(1− xij) i ∈ V, j ∈M (6)

zki ≤ qki(1− �ki) k ∈ K, i ∈Mk (7)

zki ≤ qki − �kiti + �kiA�ki k ∈ K, i ∈Mk (8)

t0 = 0, y0 = 1 (9)

xij ∈ {0, 1} (i, j) ∈ E (10)

yi ∈ {0, 1} i ∈M (11)

ti ≥ 0 i ∈M (12)

zki ≥ 0 integer k ∈ K, i ∈Mk (13)

�ki ∈ {0, 1} k ∈ K, i ∈Mk (14)

Objective function represents the minimization of the total traveling and purchasing costs.

Constraints (2) and (3) are assignment constraints and impose that we enter and leave each visited

market exactly once. Equalities (4) guarantee that an amount equal to dk is purchased for each

product k ∈ K and inequalities (5) mean that a product k can be purchased at market i only if the

market is visited in the optimal solution and for an amount not larger than qki. Set of constraints

(6) models arrival times and imposes that if we travel from market i to market j (i.e. xij = 1)

then tj ≥ ti + tij whereas if xij = 0 the constraint is always satisfied since A is a sufficiently

large constant measuring an upper bound on the optimal total traveling time. For each market

i and each product k, constraint (7) forces zki to 0 if the supply is depleted, whereas constraints

(8) model how quantities decrease. More precisely, constraints (8) force �ki to 1 if ti is too large;

otherwise, �ki can be 0 and then zki is bounded by qki − �kiti. Finally, equations (9) impose

that the depot is always visited and its visiting time is equal to 0. Constraints (10)–(14) are non

negativity, integer and binary conditions.

3 Branch and Cut algorithm

We propose a branch and cut algorithm to solve the problem. Different valid inequalities and

branching rules have already been worked out.

Experimental analysis is in progress. Since problem is new we provide a large set of benchmark

instances to test the efficiency of the proposed exact approach. At present, we have already

run some tests to evaluate the effectiveness of alternative branching rules and of different cuts

when directly added to the initial formulation. In these preliminary results bare our approach
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outperforms bare CPLEX, which already runs out of memory with instances with more than 10

markets.
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1 Introduction

Freight intermodal transportation may be defined as the transportation of goods involving at least

two modes of transport, where long distances are generally covered by rail, inland waterway or

vessels, and short distances (initial and final journeys) are covered by road [1]. As highlighted in the

survey [2], the different problems faced in intermodal freight transport can be classified according

to the division among drayage operators (planning and scheduling trucks), terminal operators

(planning transhipment operations at terminals), network operators (planning the infrastructure

and the transport organization) and, finally, intermodal operators (planning the route for shipments

in the intermodal network). The present work can be classified in the forth category, i.e. the

planning of shipment transportation over a certain intermodal network. This is the problem that

each single freight forwarder has to face whenever he has to organize the transportation for his

customers buying the services offered by drayage, terminal and network operators.

The objective of this work is making an aggregate medium-term planning in a general freight

intermodal network involving different transportation modes, such as road, rail and sea. The trans-

portation demand (made of customer orders or forecasts) is known in terms of origin, destination,

quantity (in TEU) and time conditions. The planning problem consists in determining how to sat-

isfy this transportation demand over the considered network and with the available transportation

resources, in order to minimize the overall transportation cost and the delay in delivery of orders.

The decisions will concern the number of products moved by a specific transportation resource on

each network link in each time period. This kind of problem could be considered as an intermedi-

ate approach between a service network design problem (SNDP) and an assignment problem. A

generic SNDP considers a transportation demand expressed as a set of commodities with different

origins and destinations and the decision variables indicate the type of services to be used and the

flows on the network [3]. Our problem is similar as it determines the flows in the network, even
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though our objective is not the design of the network but the determination of how to optimally

use the network and the transportation resources provided. In this sense, our problem is not an

assignment problem since the decisions concern flow variables (and not the specific assignment of

each container of an order to a transportation resource). Moreover, with respect to SNDP, we

consider some time constrains for orders, i.e. release times and deadlines, as well as availability

constraints for transportation resources, i.e. fixed schedules. A similar approach can be found in

[4] where only rail-road services are considered and a time-space network is used to represent the

intermodal operations over the time horizon. Moreover, in [5] an intermodal network is considered

(involving road, rail and maritime links) in which a heuristic multi-objective approach is presented

for both the tactical and the operational planning phase.

The proposed planning procedure is composed of two phases:

1. Path evaluation phase: the objective is to determine all the possible paths (and also the

associated transport resources) available to serve a given order.

2. Planning phase: the objective is to determine the quantities to be transported on each arc

of the network by a specific transportation resource in each time instant (note that split

delivery is allowed for serving orders).

The path evaluation phase consists of two steps. (a) The subset AP(o) of available paths

is chosen to serve a given order o (between the corresponding origin and destination, respectively

denoted as so and eo) on the basis of topological criteria. Specifically, this can be done in two ways:

the available paths in AP(o) are chosen directly by the freight forwarder or they are computed as

the k-shortest paths from so to eo for a given value k, having assigned fixed traveling times for the

network arcs. (b) In the second step, for each order o the temporal feasibility of the available paths

in AP(o) is evaluated assuming that infinite transportation resources are available, but taking into

account the schedules for the involved transportation modes, with a procedure similar to the well-

known one for the critical path computation in project management. The output of this step is

the subset P(o) of paths which are both temporally and topologically feasible for order o, since

they are those paths in AP(o) for which the earliest delivery time is not greater than the order

deadline. This step also selects, for each link in a feasible path associated with a transportation

schedule, the subset of feasible departures in the schedule. Then, the planning phase corresponds

to the solution of an integer programming problem described in the following.

2 Problem formulation

We consider a general intermodal transportation network modeled as a directed graph G = (V ,A)

where V is a set of locations and the arcs a ∈ A correspond to transportation operations allowing
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to move freight between two locations by a specific mode of transport. Locations can be associated

with origins and destinations of orders, exchange nodes, where freight can change the mean of

transport, or finally intermodal nodes, where freight can change the mode of transport. The set

A can include two subsets of arcs, i.e. AC gathering capacity constrained arcs and AS gathering

capacity and schedule constrained arcs. The arcs in AC are associated with road transportation,

whereas the ones in AS with rail or ship transportation.

For each order o ∈ O we assume to know the origin and destination nodes, respectively denoted

so and eo, the number of containers qo (expressed in TEU) to be transported, the release time

ro, i.e., the earliest time from which the containers of o can depart from so, the deadline dlo, i.e.,

the maximum allowed time by which all the containers of o must reach eo, and the due date ddo,

i.e., the time by which the containers should reach eo without incurring in penalty. We consider a

planning horizon of T time steps and we associate the planning decisions with each time step in

t = 0, . . . , T . The set AC can be further partitioned into subsets denoted as AC
g , with g = 1, . . . , G,

depending on the way the transportation resources are associated with arcs a ∈ AC ; for example,

we can group together in AC
g the arcs in AC that are served by a same pool of vehicles of a given

transportation company. Then, we assign a transportation capacity Rg,t (expressed in number

of TEU) to each set of arcs AC
g which represents the maximum number of TEU that can be

transported over all the arcs a ∈ AC
g in the time step t. The arcs in AS represent transportation

modes for which both a departure schedule and an available capacity is given (this is usually the

case of rail or ship transportation). Therefore, for each a ∈ AS a departure schedule Sa is given,

consisting of a set of pairs (Da,v, Ra,v) representing, for each scheduled vehicle v = 1, . . . , Va in the

time horizon, the departure time Da,v and the transportation capacity in TEU Ra,v.

As already described, the outputs of the path evaluation phase are the feasible temporal and

topological transportation alternatives for each order o which are defined in a set of paths P(o).

A path p included in P(o) consists of a sequence of np arcs, each denoted with the pair (p, l), l =

0, . . . np − 1. We use the mapping α(p, l) = a ∈ A to identify the l-th arc in path p. For each

arc α(p, l) ∈ AS such that (p, l) ∈ P(o), the path evaluation phase also determines the non empty

subset of suitable departure schedule denoted as S(p,l) ⊆ Sa. Moreover, TT (p, l) indicates the

transportation time needed to cover the arc α(p, l) ∈ A (note that these time values account also

for loading and unloading operations at nodes).

The planning model can be formulated as an integer programming (IP) problem introducing the

integer variables xo,(p,l),t for each order o, (p, l) ∈ P(o), t = 0, . . . , T , which indicate the number of

TEU of order o transported on arc a = α(p, l) and departed from the tail of a in time step t. The

objective function to be minimized considers transportation costs and tardiness costs, being γo

the tardiness cost for order o and δ(p,l) the unitary transportation cost on arc (p, l). The planning

problem is formulated as follows.
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min
∑

o∈O

T∑

t=ddo+1

γo

qo

· xo,(p,np−1),t−TT (p,np−1) · (t − ddo) +
∑

o∈O

∑

(p,l)∈P(o)

T∑

t=0

δ(p,l) · xo,(p,l),t (1)

s.t.

∑

(p,0)∈P(o)

dlo∑

t=ro

xo,(p,0),t = qo o ∈ O (2)

xo,(p,l),t = xo,(p,l−1),t−TT (p,l−1)

o ∈ O (p, l) ∈ P(o) l = 1, . . . , np − 1 α(p, l) ∈ AC t = ro + 1, . . . , T (3)

xo,(p,l),Da,v
=

Da,v∑

z=Da,v−1+1

xo,(p,l−1),z−TT (p,l−1)

o ∈ O (p, l) ∈ P(o) l = 1, . . . , np − 1 α(p, l) ∈ AS v = 1, . . . , Vα(p,l) (4)
∑

o∈O

∑

(p,l)∈P(o):α(p,l)∈A
C

g

xo,(p,l),t ≤ Rg,t g = 1, . . . , G t = ro + 1, . . . , T (5)

∑

o∈O

∑

(p,l)∈P(o):α(p,l)=a

xo,(p,l),Da,v
≤ Ra,v a ∈ AS v = 1, . . . , Va (6)

Constraints (2) assure the demand satisfaction, whereas (3) and (4) impose the flow conser-

vation, for arcs in AC and in AS (matching schedule), respectively. Finally, (5) and (6) are

capacity constraints for arcs in AC and in AS , respectively. This IP model can be optimally solved

only when the instance dimensions (i.e. the number of orders, paths, the length of paths and

time horizon) are limited; otherwise, a good sub-optimal solution can be generated by means of

an approximation procedure that iteratively solves a sequence of linearly relaxed problems with

additional constraints.
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1 Introduction and Literature Review

The uncapacitated Dial-a-Ride Problem (DARP) on a tree, is defined by a single vehicle of unlim-

ited capacity, a set of object types O = {0, 1, . . . ,m} where 0 is a null object, and a tree T = (V,E),

where V = {1, . . . , n} is the set of vertices and E is the set of edges. Each vertex v is associated

with a pair of object types (s(v), d(v)), where s(v) (d(v)) is the object type supplied (required)

by v. The total supply (demand) of each object type i 6= 0 is one unit. In addition, each edge

(u, v) ∈ E is associated with a cost c((u, v)) ≥ 0. The objective is to design a minimum cost

feasible route that starts and ends at the root of the tree, so that the vehicle while following the

route satisfies the requirements of all the vertices. This problem is known to be NP-hard, see [7].

The DARP is a special case of the Swapping Problem (SP) that was first introduced by Anily

and Hassin [1]. In the SP it is possible to have several units of the same object type, where in

the DARP it is limited to one unit. From that aspect, the DARP is simpler as the destination of

each object type is well defined. Both, the SP and DARP were studied extensively, especially for

capacity one. In the capacitated versions of the problems there is a distinction between preemptive

objects that can be unloaded temporarily at intermediate vertices and non-preemptive objects that

must be shipped directly to their destination. This distinction is not necessary in the uncapacitated

case as preemption is used only for freeing space in the vehicle. Applications of variants of the SP

arise in the optimization of robot arm movements, see [5], and printed circuit board assembly, see

[6]. The Stacker Crane Problem (SCP) proposed by Frederickson [10], is equivalent to the DARP

with capacity one and all objects being non-preemptive.

41



It is easy to show that the unit capacity SP and DARP on general graphs are NP-hard. In

our literature review we focus on graphs that are trees and carriers of unit or unlimited capacity:

Attalah and Kosaraju [5], and Ball and Magazine [6], provide low polynomial algorithms for solving

the preemptive or non-preemptive unit capacity DARP. Anily, Gendreau and Laporte provide in

[2] an O(n2) algorithm for solving the unit capacity SP on a line. Anily and Pfeffer provide in

[4] an O(n) algorithm for the uncapacitated SP on a line. These two papers consider any mix of

objects. The unit capacity SCP (and therefore, the non-preemptive SP) on a tree was shown to be

NP-hard by Frederickson and Guan [9]. The preemptive version of the same problem was shown

to be polynomially solvable by Frederickson and Guan in [8], who designed an O(nm) algorithm.

The unit capacity preemptive SP on a tree was shown to be NP-hard by Anily, Gendreau and

Laporte [3]. The uncapacitated SP and DARP on a tree were shown to be NP-hard by de Paepe,

Lenstra et al. in [7], by a reduction of the Minimum Vertex Feedback Problem, see Karp [11].

We prove some structural properties that any optimal solution for the uncapacitated DARP on

a tree satisfies. Tight lower and upper bounds on the optimal cost are provided, as well as necessary

and sufficient conditions under which the optimal solution coincides with the lower bound. We

develop a dynamic programming formulation that computes the optimal solution in small problems.

Finally, a heuristic whose effectiveness is tested via a computational study is designed.

2 Notations and Preliminary Results

Given the tree T = (V,E) let vertex 1 be its root. For any vertex v ∈ V let CH(v) its set of children

(CH(v) = ∅ if v is a leaf), p(v) its parent vertex, where p(1) = 0, and T (v) = (Vv, Ev) the maximal

subtree rooted at v. For any leaf v assume that s(v) 6= d(v), as otherwise, the leaf and the edge

incident to it can be removed from T . The cost of a subset of edges E′ ⊆ E, denoted by cost(E′),

is the sum of the costs of the edges in E′. Similarly, we use cost(T ) = cost(E) for the total length

of the edges of T . As T is a tree, there exists a single path connecting each pair of vertices. For

u, v ∈ V , u 6= v, denote by [u, v] the path connecting u and v. I.e., [u, v] is the minimal sequence of

edges (u1, u2), (u2, u3), . . . , (uk−1, uk) that covers [u, v], where (u`, u`+1) ∈ E, for ` = 1, . . . , k − 1.

The path [u, v] is said to traverse any of the vertices in {u1, u2, . . . , uk}. For any object i 6= 0

let srce(i) (dest(i)) be the vertex that supplies (demands) i. For any v ∈ V define the subset of

objects O(v) = {i : i ∈ O\{0}, {srce(i), dest(i)} ⊂ Vv\{v} and [srce(i), dest(i)] traverses v}. Thus

a shipment of an object in O(v) must traverse vertex v. The set O(0) = O\ ∪v∈V O(v) contains

the null object and all objects that both their source and destination appear on one path from

the root to one of the leaves. These objects are easy to serve as they can be shipped without any

extra cost by any tour that visits all vertices. Let OPT denote the optimal solution’s cost. The

first lemma provides a lower and an upper bound on OPT .
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Lemma 2.1 2cost(T ) ≤ OPT ≤ 4cost(T ). These two bounds are tight.

Two traversals of each edge is the minimum required for visiting all vertices. For the upper bound

note that two complete traversals of T - while in the first all objects are picked up, and in the

second they are unloaded - is a feasible solution. The upper bound does not imply that each edge

must be traversed at most 4 times by an optimal solution. We have an example where in any

optimal solution and any vertex v with k ≥ 2 children each having a supply and a demand for

non-null object2, then the edge (p(v), v) is traversed exactly 2(k + 1) times.

Next, in order to solve the problem we use auxiliary directed graphs (digraphs). Thus, we

define an arc (u, v) to be a directed edge pointing from u to v. A loop is a directed cycle. A

digraph is said to be simple or a-cyclic if it has no loops. For each v with O(v) 6= ∅ construct a

digraph G(v) = (CH(v), A(v)) where arc (u, w) ∈ A(v) if and only if there exists i ∈ O(v) such

that srce(i) ∈ Vu and dest(i) ∈ Vw. The next theorem identifies cases where the problem is simple.

Theorem 2.1 OPT = 2cost(T ) if and only if for all vertices v ∈ V for which O(v) 6= ∅, all

digraphs G(v) = (CH(v), A(v)) are simple.

Under the theorem’s condition we design an optimal solution for DARP by a depth first scanning

of T , where the order the vertices CH(V ) are visited preserves the partial order defined by G(v).

For general problems we design a heuristic H in which each edge of T is traversed at most 4 times.

A computational test compares the heuristic to the optimal solution, which we compute by either

using an exact dynamic programming that we developed or by an exact integer linear programming

formulation. Currently we are testing the effectiveness of these two formulations while improving

them. We conclude the abstract by describing the heuristic.

The Heuristic H: Initially let ∆0 = 0, and c0(u, w) = c(u, w) for any (u, w) ∈ E. Identify all

leaves v of T where either their supply or demand is in O(0). The edge (p(v), v) is traversed exactly

twice in any optimal solution, therefore set c0(p(v), v) := 0. Similarly, generalize this procedure to

any v ∈ V for which s(u) ∈ O(0) (d(u) ∈ O(0)) for all u ∈ Vv, by setting c0(u′, w′) := 0 for any

(u′, w′) ∈ Ev, and c0(p(v), v) := 0. Scan T by a depth first search where the decision of which child

of v ∈ V to visit, while at v,is determined by using digraph G(v), which is dynamically updated

once one of its vertices is visited. Initially, v := 1. If G(v) contains a vertex u ∈ CH(v) whose

in-degree is 0, then remove u and all arcs exiting u from G(v), and proceed to v := u. Otherwise,

all the remaining vertices in G(v) have an in-degree greater than 1, implying that G(v) contains

at least one loop. Let LOOP (G(v)) be the collection of vertices that form the loops in G(v). We

propose to solve a a minimum weighted feedback vertex set problem on the subgraph induced by

G(v) on the vertices LOOP (G(V )). For that sake assign weights to the vertices in LOOP (G(V )):

for any u ∈ LOOP (G(v)) let the set of edges ST (v, u) to consist of (v, u) and the minimal subtree

of T (u) that spans the vertices w ∈ Vv for which d(w) ∈ O(v). Let α(v, u) be the total length of
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the edges in ST (v, u). Let out(u) be the out-degree of vertex u in G(v), and set price(u) = α(v,u)
out(u)

to be the weight of u. Let u∗ = argmin{price(u) : u ∈ LOOP (G(v))}. In case of ties give priority

to a vertex whose out value is the greatest. In the heuristic H each edge (p(w), w) ∈ ST (v, u)

needs to be traversed twice from p(w) to w. Therefore, set ∆0 := ∆0 +α(v, u∗) and c0(u′, w′) := 0

for any edge (u′, w′) ∈ ST (v, u). Remove from G(v) vertex u∗ and all the arcs incident to u∗. Tag

u∗ and set v =: u∗ and repeat. If all vertices of CH(v) have been tagged or if v is a leaf then set

v := p(v). If p(v) = 0 stop. The cost of the heuristic H is cost(H) = 2cost(T ) + 2∆0.
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Montréal, Canada

M. Grazia Speranza

Department of Quantitative Methods

University of Brescia, Italy

Claudia Archetti

Department of Quantitative Methods

University of Brescia, Contrada Santa Chiara 50, Brescia, Italy

Email: archetti@eco.unibs.it

1 Text

In this paper we consider the problem where a profit and a demand are associated with each edge

of a set of profitable edges, representing customers, of a given graph. A travel time is associated

with each edge of the graph. A fleet of capacitated vehicles is given to serve the profitable edges. A

maximum duration of the route of each vehicle is also given. The profit of an edge can be collected

by one vehicle at most. If the profit is collected, the vehicle also serves the demand of the edge.

The objective of this problem, that is called the Undirected Capacitated Arc Routing Problem

with Profits (UCARPP), is to find a set of routes that satisfy the constraints on the duration of

the route and on the capacity of the vehicle and maximize the total collected profit.

The routing problems with profits have very interesting applications in the context of auctions

in transportation, as support tools to the decisions of the carriers. We focus here only on the

applications of the UCARPP. Consider the case of a truck load carrier that has a fleet of vehicles.

Each customer is represented by an edge of a graph. Serving a customer means traversing the

edge from the origin of the trip to the destination. The same vehicle can serve several customers

but after a maximum time limit has to return to the depot, due for example to constraints on the

driving time of the driver. The carrier has got a set of customers to be served but these customers
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do not completely use the time available for the service of one or more vehicles. Thus, the carrier

is interested in finding new customers that, together with the others, fill the time capacity of

the vehicles. Several databases are available nowadays that contain demands of customers. The

carriers can submit bids to these potential customers. To do so, they must be able to evaluate the

impact of serving one or more of these customers on their fleet. The problem for a carrier becomes

the problem of identifying the subset of the potential customers that maximize the profit collected

by the carrier while satisfying the constraint on the duration of each route. This problem can be

modeled with the UCARPP. In this case there is no demand of the customers and the vehicles are

uncapacitated. The customers that need to be served can be modeled as customers with a very

large profit. The capacitated case arises when sets of potential customers are located along streets,

represented by edges, and can be served by traversing the edge. The collected freight is taken to

the depot where it is then re-organized to be delivered to the destinations.

A formal description of the UCARPP is the following. Consider an undirected graph G = (V,E)

where V = {1, . . . , n} is the set of vertices and E is the set of edges. Vertex 1, the depot, is the

starting and ending point of each tour. A travel time te is associated with each edge e ∈ E. The

travel times satisfy the triangle inequality. Let L ⊂ E be a subset of the edges of the graph, called

profitable edges. A positive profit pe and a demand de are associated with each edge e ∈ L, in

addition to the travel time te. A set of m vehicles is available. Each vehicle has a capacity Q and

is subject to a time limit Tmax on the duration of the route. The profit of each edge e ∈ L can be

collected by one vehicle at most. If the profit is collected by a vehicle, the corresponding demand

has to be served by the same vehicle. The objective of the UCARPP is to find a route for each

of the m vehicles such that the total profit is maximized and each route satisfies the capacity and

time limit constraints on the vehicles.

We first propose a branch and price algorithm to solve the UCARPP exactly. The master

problem reduces to a set packing problem where the objective is to select the m most profitable

routes. The subproblem is instead a variant of the elementary shortest path problem with resource

constraints (ESPPRC) where the resources are related to the capacity and time constraints. A

label-setting algorithm is proposed to solve the subproblem and different acceleration techniques

are introduced to speed-up the process. However, the exact approach is able to solve only relatively

small size instances. Thus, we then propose also three different metaheuristic algorithms to deal

with large size instances: a variable neighborhood search and two tabu search heuristics, one that

explores feasible solutions only and one that allows infeasibility. The main idea of the three heuristic

schemes is that all customers are organized in routes (possibly having a number of routes greater

than m) and only the first m routes contribute to the calculation of the objective function. As a

consequence, at each move the set of ’profitable’ routes can change, and this proved to be helpful

in diversifying the search. The difference between Tabu Search (TS) and Variable Neighborhood
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Search (VNS) schemes is that VNS explores different neighborhoods while TS focuses on a single

neighborhood. For all the metaheuristic algorithms we propose two variants: a slow variant,

with a careful but time-consuming evaluation of the neighborhood, and a fast variant, with an

approximate but fast evaluation of the neighborhood.

Computational tests are made to show the effectiveness of the methods proposed on a set 34

benchmark instances for the arc routing problem proposed by Belenguer and Benavent (2003). For

each instance we consider a fleet of 2, 3 and 4 vehicles, respectively, thus obtaining a first set of

102 instances. This first set of instances proved to be very difficult to be solved by the branch and

price algorithm. Thus, we consider a second set of 102 instances obtained from the instances of

the previous set where the value of the capacity and time limit of each route is decreased. This

allow to obtain shorter routes and thus, makes the instances easier for the branch and price.

The results show that the exact approach can solve instances with up to 97 profitable edges in

few minutes, when the capacity of the vehicles and the duration of the routes do not generate ’long’

routes, while, when the routes are ’long’, one hour is not sufficient to solve exactly instances with 39

profitable edges although some instances with 66 profitable edges were solved. The hardness of the

instances depends on the length of the routes in the optimal solution much more than on the number

of given profitable edges. The variable neighborhood search heuristic is the most effective of the

tested heuristics, with average errors below 1% with respect to the best solution obtained, either

optimal or heuristic. The results also showed that a careful, though time consuming, evaluation

of the quality of the solutions is beneficial with respect to a rough evaluation of the quality of the

solutions in favor of a larger number of iterations.
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1 Motivation and Problem Description

In the past years free newspapers available at subway and tramway stations become more and

more popular. These newspapers are displayed in freely accessible news racks mainly in front of

the entrance of subway stations or in the stopping area of the tramway or the public bus. People on

their way to work, school or university using public transportation have access to these newspapers

already early in the morning.

The production and delivery costs of these newspapers are financed only by the advertising

revenues for publishing advertisements in these newspapers. The prices for the advertisements

depend mainly from the estimated number of readers of the newspapers. For the regular newspapers

sold at newspapers stores the number of readers can easily be determined. The number of sold

newspapers is known and this number is usually multiplied by a certain factor. For the free

newspaper no exact information on the number of readers exist. The produced newspapers have to

be delivered to the news racks in such a way that after the end of the morning rush hour (almost)

all the news racks are empty. The number of produced newspapers is then multiplied by the same

factor for the number of readers and this is the used approximation of the number of readers. To

justify the number of readers the newspapers have to be distributed in that way that all the news

racks are empty after the morning rush hour (at about 9.00 a.m.). To have a high number of

readers is important for the revenues generated by the advertisements.

During the operation start of the public transportation system and the end of the morning

rush hour (about 9.00 a.m.) the passengers should have access to the free newspaper. At the end

of the morning rush hours all the newspaper racks have to be empty. The consumption rate of
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the newspapers is different at every news rack. Also the sizes of the news racks located at the

stations are different. Most of the news racks are accessible from 5 a.m. in the morning - before 5

a.m. the public transportation system does not operate and the subway stations are closed. The

production of the newspaper starts at 1.00 a.m. and ends at 7.00 a.m. 40.000 newspapers per hour

are produced. The batch of the 40.000 newspapers is always available at the end of the hour. In

practice, since the delivery horizon starts at 4.00 am, we begin with an available stock of 120.000

newspapers. In total 240.000 newspapers are produced and the production quantity is fixed.

In order to provide free newspapers to underground and tramway stations, a delivery company

has to perform vehicle routes. The used vehicle fleet is homogeneous. Each of these routes start

from a central depot - the production plant, provides a set of stations with certain amounts of

newspapers, and ends at the same depot. Each vehicle can perform several routes. - which means

that the vehicle can return to the central depot to pickup new batches of newspapers.

Each news rack at the station has a given capacity, and the inventory level at a station should

never exceed its capacity and also no stock-out should occur. In a similar way, each vehicle has a

given capacity. Each station has also a given consumption rate, and the depot or production plant

has a production rate.

The goal of the company is (i) to consume all produced newspapers by distributing them to the

stations, where they are actually consumed, and (ii) to use as few trips as possible. The newspaper

delivery company is paid by the number of trips performed.

As the number of pages of the newspaper can vary and therefore the capacity requirements of

each newspaper varies, therefore also the capacity requirements of the newspapers in the news rack

is different. For different capacity requirements of the newspapers different delivery plans have to

be created.

The planning horizon starts at 4.00 am and ends at 9.00 am. In our solution approach the

planning horizon is divided into periods. The length of each period is 30 minutes. The consumption

of newspapers at the stations starts at 5.00 am. Hence, all the stations should be visited at least

once during 4.00 a.m. and 5.00 a.m., otherwise some consumption is lost. Around 9.00 am all the

newspapers have to be distributed and all the news racks should be empty.

Some stations need to be visited only once. These are typically small stations, mainly far

distant from the depot. Their capacity allows them to handle their total consumption on the

whole horizon. Other stations require two to three visit. Some stations require even up to four

visits.

The objective is to minimise a linear combination of two distinct quantities:

1. The time period at which the latest stockout occurs.

2. The total number of trips.
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The considered problem is closely related to the inventory routing problem [2]. In inventory

routing problems the vendor manages the resupply. Vendor managed inventory is an example

of value creating logistics. Vendors save on distribution cost by being able to better coordinate

deliveries to different customers, and customers do not have to dedicate resources to inventory

management. The differences to the classical inventory routing problem lie in the following aspects:

i) at the end of the planning horizon in all the news racks a stock-out should occur. ii) Furthermore,

all the newspapers are not available when the distribution starts. The production rate and the

availability of the newspapers have to be taken into account. This aspect is related to the integrated

production and transportation scheduling problem with capacity constraints [3]. iv) The main

difference to the classical inventory routing problem is the time aspect. In classical inventory

routing problems in every period delivery routes for the customers are created (see e.g. [4]). In our

problem - as the periods are quite short consisting of intervals of 30 minutes - the routes can last

more than one period. This leads to the following effects: The available capacity of a news rack

can differ when the customer is visited at the beginning of the route or at the end of the route. As

in [3] we consider also a short shelf life product. There is no inventory of the product in process.

The newspaper is produced and immediately delivered.

2 Solution Approach

For approaching this specific inventory routing problem different hybrid solution methods of heuris-

tics and exact solution techniques are developed. We present a solution approach that integrates

heuristic search with optimization by using an integer program to explore promising parts of the

search space. Exact algorithms are guaranteed to find an optimal solution and prove its optimality;

the run-time, however, often increases dramatically with a problem instance’s size, and only small

or moderately sized instances can be practically solved to provable optimality. For larger instances

the only possibility is usually to turn to heuristic algorithms that trade optimality for run-time;

i.e., they are designed to obtain good but not necessarily optimal solutions in acceptable time.

The combination of heuristics and integer programming leads to many different design decisions.

Successful combinations of heuristic search with integer programming are reported in [1].

We propose different decomposition approaches for the considered problem. We decompose our

problem in two phases.

In the first phase, the stations are allocated quantities to be delivered at given periods. We

call this phase the demand fixing phase. The demand fixing phase can easily be solved by using

an exact solver. In this phase different strategies and different objectives for the subproblem are

tested. By using different strategies different problems for the second phase emerge. The different

strategies in the demand fixing phase produce subproblems for the routing phase with different
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batch sizes of newspapers to be delivered at the public transportation stations. The second phase

is called the routing phase.

Within the demand fixing phase vehicle routing problems with time windows are generated.

In the routing phase the vehicle routing problems with time windows, in which each time window

corresponds to a given period, have to be solved. If a given station has to be visited several

times during the horizon, then it will be associated to several different nodes in the generated

vehicle routing problem with time windows, one node per delivery is created. In the second

phase, the vehicle routing problem with time windows is solved with a classical local search based

heuristic solution approaches. One should note that the generated vehicle routing problem with

time windows is more complex than the usual case, since the production schedule has to be taken

also into account: all routes that already left the depot should not use more product than what

has been already produced.
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1 Introduction 
 

This work addresses the problem of optimally coordinating a production-distribution system over a 

horizon with T periods, where a facility production with no capacity constraints produces J items 

which are distributed to a set of N customers by a fleet of V homogeneous vehicles in order to meet 

customers’ demands. Each customer defines its minimum and maximum inventory levels. In each 

period, the production problem involves determining how much to produce of each item, while the 

distribution planning defines when customers should be visited, the amount of each item that should be 

delivered to customers and the vehicle routes. A production fixed cost is incurred every period that an 

item is produced, and a transportation fixed cost is incurred if a vehicle is used at least once in the 

planning horizon. The objective is to minimize the sum of production and inventory costs at the 

facility, inventory costs at the customers and distribution costs. An inventory-routing problem is also 

addressed, where known quantities of items are produced or made available at a supplier, which has to 

plan the distribution to customers as described above. In this case, there is no production planning and 

consequently no production costs, but inventory costs are still taken into account at the supplier. For 

reviews on such problems, see [1], [2], [3], [4] and [5]. 

 Bertazzi et al. [6] deal with the single item version of the production-distribution problem and 

analyze two Vendor-Managed Inventory (VMI) policies: the order-up-to level policy, in which the 

amount of an item that is delivered to a customer is such that it reaches its maximum inventory 

(VMIR-OU) and the fill-fill dump policy, in which the order-up-to level amount is shipped to all but 

the last retailer on each delivery route, while the quantity delivered to the last retailer is the minimum 
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between the order-up-to level quantity and the residual vehicle capacity. A heuristic that decomposes 

the problem in a production subproblem and a distribution subproblem is proposed to minimize the 

total cost subject to the above inventory policies.  

 Bertazzi et al. [7] propose a heuristic for solving a single item, single vehicle inventory-

routing problem subject to the VMIR-OU policy. Archetti et al. [8] develop a branch-and-cut algorithm 

for solving the same problem, subject to three vendor-managed inventory policies. The first policy is 

the VMIR-OU and the second policy allows the delivery of any quantity between the minimum and 

maximum inventory levels (VMIR-ML) The third policy disregards the maximum inventory level and 

any amount can be delivered as long as the inventory does not fall under the minimum inventory level 

(VMIR).  

 In this work, we use the tabu search methodology [9] to solve the production-distribution and 

the inventory-routing problems. Our objective is threefold. First, we show that there is a significant 

cost reduction on the single item instances generated by Bertazzi [6] by applying the VMIR-ML 

strategy as opposed to the VMIR-OU policy. Second, we generate multiple item instances and show 

that the integrated VMIR-ML approach leads to a significant cost reduction relative to the decoupled 

VMIR-ML approach. The third objective is to show that tabu search is able to obtain high quality 

solutions when applied to the single item, single vehicle instances generated and solved to optimality 

by Archetti et al. [8]. 

 
2 Tabu search  
 
The proposed tabu search procedure consists of three phases: construction of an initial solution, short 

term memory and diversification. A solution s is evaluated by a function c(s) + α g(s), where c(s) 

denotes the total cost, g(s) represents the total violation of the capacities of the vehicles and α is a 

positive parameter that is adjusted during the search in order to facilitate the exploration of the search 

space.  

 An initial solution is constructed in three steps: i) the quantity of each item and each customer 

to be delivered in a period is the demand of this period; ii) the delivery routes are constructed by the 

parallel version of the Clarke and Wright [10] algorithm; iii) the production plan for each item is 

determined by the Evans [11] efficient implementation of the Wagner and Whitin [12] algorithm. Such 

a solution is likely to be infeasible with respect to the capacity of the vehicles. 

 The move that defines a neighborhood in the short term memory consists of the following 

three components:  

i) for each customer k determine the maximum quantity of an item j that can be transferred from period 

t to a period t’, t’≠ t, without violating the minimum and maximum inventory levels for item j;  

ii) if customer k is visited in period t’, then we add this quantity to be delivered to customer k and 

maintain the same route, regardless of the vehicle capacity. If customer k is not visited in period t’, we 

insert customer k in all positions of the routes in period t’ and select the cheapest insertion. If there are 
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no routes in period t’, then a new route is created for customer k. If the insertion results in a feasible 

capacity vehicle, we then apply the 2-Opt move to the route from which the customer is removed and 

to the route where the customer is inserted. The implementation of this move follows the strategy of a 

bounded neighbor list of the nearest 20 customers proposed by Johnson and McGeoch [13]. 

iii) determine the new production plan for item j by applying the efficient implementation of the 

Wagner and Whitin algorithm. 

 The composite move is examined for each customer k, all periods t, t’ and each item j, and the 

move that results in the least total cost is executed. The pair (j, t’) associated with such a move is stored 

in a matrix to indicate that the shift of any quantity of item j from period t’ is tabu for γ iterations, 

where γ is selected from an interval [a, b] with uniform distribution. As aspiration criterion we adopt 

the most commonly used: the tabu status of the move is revoked whenever the move leads to a solution 

that is better than the best solution recorded during the search so far. The search procedure terminates 

when it reaches σNJTV iterations or when ηNJTV iterations have elapsed without updating the 

incumbent solution, where σ and η are parameters.  

 

3 Computational results 
 

 The tabu search procedure is tested on a set of instances generated according to the scheme 

proposed Bertazzi et al. (2005). The number of customers, periods and items is {30, 50, 100}, {12, 

24}, {5, 10}, respectively. For each combination of customer, period and item, nine instances were 

created, totalling 108 generated instances. In order to evaluate the cost that results from the integrated 

production-distribution approach, we compare it with the cost of the classical decoupled approach, in 

which first the production planning is obtained by the application of the efficient implementation of the 

Wagner and Whitin algorithm, and then the distribution planning is solved by the above tabu search 

procedure. For 30, 50 and 100 customers the integrated production-distribution approach presents a 

mean reduction cost over 108 instances of 22.76%, 33.01% and 58.97% with respect to the decoupled 

approach. For the 96 single-item instances of Bertazzi et al. [6] with 50 customers and planning 

horizon of 30 periods, the cost reduction of the VMIR-ML strategy relative to the VMIR-OU is nearly 

49%. With relation to the 160 instances generated by Archetti et al. [8] with number of customers 

varying from 5 to 50 and number of periods, 3 and 6, the tabu search obtained a mean cost gap below  

1.6% with respect to the optimal solution cost. 
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Introduction 

A port container terminal, as known, is a complex logistic system in which several, material 

and immaterial, flows interact.  In this context, operations management  requires an appropriate use of 

Information and Communication Technologies as well as Decisions Support Systems.  This problem 

becomes more and more crucial for container terminals using  limited resources in terms of yards, 

quays and equipments.   

This is the case of  the port container terminal located in Naples harbor (Italy)  that we 

analyzed and whose operations and processes we reproduced through a discrete event simulation 

model built on the base of  real data, on the field, collected.  

The performed experiments indicated the suitability of the simulation model to effectively 

represent the current scenario. On this basis, we have implemented and compared different 

management and optimization policies in order to evaluate how they could affect the overall terminal 

performances. 

 

Container Terminals: Generalities 

A container terminal can be represented as a system with four main physical components: (a) 

Quay Side, the marine side interface for berthing/unberthing operations; (b) Container Storage System, 

hosting the yard and the relative cranes for the container stacking and delivery operations; (c)  Transfer 

System, including vehicles for moving containers from/to quay side to/from yard; (d) Gate, the land 

side interface for trucks and trains.   

In a maritime terminal it is possible to distinguish three different container flows: Import flow, 

formed by containers unloaded from a vessel through gantry cranes, transferred to the yard and then 

picked up by road or rail carriers; Export flow, formed by containers entering the terminal through the 

gate, transferred to the yard and then loaded on a ship; Transhipment flow, formed by containers 

unloaded from a vessel, temporarily stored in the yard and then loaded on another vessel. Figure 1 

schematically shows the components of the system and container flows among them.  
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Fig 1. Port container terminal system. 

 

The presence of the physical components and container flows makes a port  terminal a 

complex logistic system in which several operations could be optimized in order to achieve desired 

efficiency and effectiveness. Various decision making problems can be associated with the four 

terminal components. As regards to Quay Side, each berthing vessel has to be assigned to one of the 

available quays. Moreover, gantry cranes have to be assigned to berthed vessels and their 

loading/unloading plans and operations management should be defined. With reference to the Transfer 

system the problem of assigning  vehicles to gantry cranes (or to berthed vessels) occurs. Then in the 

Container Storage System, areas have to be allocated to containers belonging to different flows as well 

as yard cranes have to be assigned to the several areas and, moreover, container storage strategies 

should be defined. Finally, at the Gate, admission and scheduling policies should be arranged.  

The complexity of the occurring decision problems has stimulated a significant recent 

literature about modeling and solving management operational problems. For a detailed review see [3] 

and [4].  

 

Simulation and Container Terminals 

Though there is a wide availability of optimization models and techniques to deal with 

specific operational problems, as the number of the involved parameters is extremely high, and they 

are tied up each other very often according to non-linear patterns, simulation represents a suitable 

approach for analyzing container terminals. 

We thoroughly analyzed international literature, from 1988 to 2008, dealing with container 

terminals’ operations through simulation methods. Many papers (29) regarding specific simulation-

based studies have been retrieved. The most of them (72%) reproduces the container terminal as a 

whole, including, in such a way, some of the above mentioned decision problems, while 78% of papers 

deals with real case studies. In particular, 28% of papers embed optimization approaches within the 

general simulation framework, in order to cope with specific sub-problems. Parola and Sciomachen 

[2], as an example, developed a simulation-based environment to estimate the impact of railway 

capacity expansion on Genova (Italy) terminal performances; Legato and Mazza [1] coped with the 
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berth resources planning problem, including what-if approaches in a simulation environment. Some 

attempts of general purpose port simulation models have been also developed. Among them the 

UNCTAD port model, PORTSIM, and the MIT port simulator [5]. Further indications can be derived 

from [3] and [4].  

A critical analysis of the literature has pointed out that it is quite hard to provide general 

purpose mathematical and/or simulation models for reproducing port container terminals. This is due 

to the fact that each specific case study presents several singularities (i.e., equipments, procedures, 

layout, operational constraints, local factors). For this reason it is very difficult, in general, to adapt 

available proposals to specific case studies. 

 

Some information about Co.Na.Te.Co. Container Terminal 

The Co.Na.Te.Co. container terminal, located in Naples harbor (Italy), has been studied. The 

terminal, one of the top-twenty in the Mediterranean sea, extends over an area of 145.671 square 

meters and with a maximum static storage capacity of 12.000 TEUs. The terminal is characterized by 3 

quays, 6 gantry cranes and 26 yard cranes. The throughput in 2008, before the current economic crisis, 

reached about 420.000 TEUs, while the number of berthed vessels  exceeded 570.   

Due to the limited available resources, the terminal often works under congested conditions 

and, consequently, its performances should be optimized. As a consequence the terminal management 

was interested: (i) in individuating system bottlenecks mainly affecting the performances and (ii) in 

developing possible future scenarios in terms of capacity expansion projects. 

 

The proposed model 

To this aim we have designed a discrete event simulation model in order to reproduce current 

operations and understating critical issues. In Figure 2 the overall scheme of the proposed simulation 

model is shown. Its functioning is based on the interaction between the Vessels to Berth Matrix and the 

Quays State Matrix and on five main procedures regarding: (i) the arrival of a vessel j, (ii) the 

assignment of a quay b to a vessel k, (iii) the loading/unloading operations, (iv) the container storage 

system and  (v) the gate management.  

In order to measure the provided performances we have used as principal key performance 

indicators: the Average roadstead waiting time, i.e. the time a vessel has to wait before its berthing; the 

Quays utilization rate, i.e. the vessels berthed on a quay out of the total number of vessels; the Average 

amount of containers in the storage system.  

The model has been implemented in Rockwell ARENA 11.0.0 environment and was firstly 

used to simulate, on the basis of historical data, current situation. The obtained results, in terms of key 

performance values, confirmed the reliability of the implemented model to reproduce the real 

functioning of the system. As a second step, we have compared optimizing rules in critical points of 

the decisional process (as the berth assignment phase). In this way, interesting indications have been 
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obtained to improve the current performances of the system and, in a long term strategy, to provide 

insights for a better design of terminal operations.  
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Fig 2. Overall scheme of the proposed simulation model. 
 
Conclusions and open research questions 
 

We developed a simulation model to reproduce logistic activities related to Co.Na.Te.Co. port 

container terminal operating in Naples harbor. The considered case is particularly interesting as it 

regards a situation of work  under congested conditions (low yard space, few quays,  limited number of 

cranes). In this case  the optimization of key performance indicators appears to be the only opportunity 

to increase the level and  the quality of the terminal activities. 

As validation tests were satisfactory and the experiments performed indicated a good 

correspondence of the simulation model results with the current scenario, we have implemented 

different management and optimization policies in order to evaluate how they could affect the overall 

terminal performances. 
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1 Introduction

In this paper we address a class of stochastic air traffic flow management problems. We focus on

problems that arise when airspace congestion is predicted, usually because of a weather disturbance,

so that the number of flights passing through a volume of airspace (flow constrained area - FCA)

must be reduced. We formulate an optimization model for the assignment of dispositions to

flights whose preferred flight plans pass through an FCA. For each flight, the disposition can be

either to depart as scheduled but via a secondary route, or to use the originally intended route

but to depart with a controlled (adjusted) departure time and accompanying ground delay. We

model the possibility that the capacity of the FCA may increase at some future time once the

weather activity clears. The model is a two-stage stochastic program that represents the time of

this capacity windfall as a random variable, and determines expected costs given a second-stage
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decision, conditioning on that time. Our model allows the initial reroutes to vary from pessimistic

(initial trajectory avoids weather entirely) to optimistic (initial trajectory assumes weather not

present); included is the possibility of routes that “hedge” between the optimistic and pessimistic

strategies. We conduct experiments allowing a range of such trajectories and draw conclusions

regarding appropriate strategies. While other research [2], considers larger scale (deterministic)

problems with many capacitated elements, this work considers a single capacitated element but

includes models of uncertainty and system dynamics. Our work aligns closely with current air

traffic flow management practice, which defines specific FCA’s and associated traffic management

initiatives.

We model the problem studied as a multi-stage stochastic program that includes a sequence of

decision points over time. A very special structure is employed that leads to a compact scenario

space. Specifically, the required solution should specify an initial plan that assumes a particular

sample path (that a weather disturbance has a particular duration and particular impact on ca-

pacity). Then, there is a sequence of points in time when the weather may clear and a revised

plan put in place. There is a probability associated with each such clearance time. This simple

structure allows the problem to be modeled as a two stage stochastic program where the random

variable realized in the second stage is the clearance time. This model was inspired by Ground

Delay Program (GDP) planning problems [1], where this structure is an accurate representation

of reality. In our case, it is less accurate; nonetheless, we feel it represents a good approximation

and computational studies show it leads to much improved plans when compared to deterministic

models.

We now present an integer programming formulation for the case where rerouting of flights is

not allowed, i.e. the only control action employed is ground delay. This is a complete model for the

GDP planning problem but for airspace problem we must also add variables that represent reroute

options. In our optimization model, we represent the airspace capacity using slots. A slot is a time

window in which a reservation for a flight arrival may be made. A capacity reduction reduces the

number available slots and a capacity increase, increases the number of slots. x variables represent

the initial plan and y variables the plan under each weather clearance scenario. Each clearance

scenario has a larger number of slots (than the base case associated with the initial plan) with

earlier clearance times having more slots than later clearance times.

k, i/j, t : flight, slot and scenario indexes (respectively)

qt : probability of scenario (clearance time) t

ak : earliest time (slot) that flight k can reach the FCA or airport

last(k, j, t) : the latest stage 1 (k-to-i) assignment that can be reallocated to slot j in scenario t

xk,i = 1 if flight k is assigned to slot i under initial plan
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0 if not.

yk,j,t = 1 if flight k is assigned to slot j under scenario t

0 if not.

min f(y) =
∑

k

∑

j

∑
t

(qt(j − ak)yk,j,t)

subject to
∑

i

xk,i = 1 for each flight k (1)

∑

k

xk,i ≤ 1 for each slot i (2)

∑

j

yk,j,t = 1 for each k, t (3)

∑

k

yk,j,t ≤ 1 for each j, t (4)

∑

i|i>last(k,j−1,t);i≤last(k,j,t);i≥ak

xk,i ≥
∑

j′|last(k,j′,t)=last(k,j,t)

yk,j′,t for each k, j, t (5)

xk,i, yk,j,t ∈ {0, 1} for all k, j, t (6)

Note that the constraints for the initial plan: (1), (2), or for the plan under a given scenario (t):

(3), (4), represent a simple assignment problem. However, the connecting constraints (5) result in

a more complex integer program. Nonetheless we are able to show that the LP relaxation of this

problem always has an integer solution. The underlying polyhedron does have non-integer extreme

points, which implies that this result depends on the structure of the objective function.

Our integer programming model for the more general problem with reroute variables is more

complex. Figure 1 gives a simplified view of the geometry of routing options. The most direct

(zero-angle) route corresponds to the flight proceeding along the horizontal axis at the bottom

of the Figure. Alternatively, a flight might proceed around the weather disturbance (maximum

angle route) proceeding along the outer edge of the triangle. We call the zero-angle route the

optimistic route because a flight might proceed along this route even if the weather had not yet

cleared. If the weather does clear before the flight reaches the FCA then the flight can stay on

this route. Otherwise, it would fly along the edge of the storm and possibly then turn directly to

the destination, e.g. at point 2, if the weather clears. Alternatively, a flight might start on the

maximum angle (pessimistic) route and, if the weather clears early, then the flight can turn directly

to the destination, e.g. at point 5. There are also conditions under which “hedging” represents the

best strategy; this is illustrated by the middle angle route. These various route options represent

input data for the more complex integer program. It then determines the best options for each

flight taking into account the geometry illustrated in the Figure, the appropriate costs and also

the weather clearance probabilities.
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Figure 1: Route Options

We have been able to solve problems of realistic size, e.g. with up to 500 flights and 6 clearance

time scenarios, using commercial integer programming solvers. Further, in a variety of simulations

we have shown that our models produce substantially improved decisions that lead to significant

delay reductions.
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Time dependent origin to destination, OD, matrices are the key input to dynamic traffic models, mainly 

to simulation models, micro as well as mesoscopic.  Dynamic Traffic Models, DTM, are one of the 

major components of the Advanced Traffic Management Systems and Advanced Traffic Information 

Systems. DTM play a crucial role in estimating the current traffic state and forecasting its short term 

evolution. The quality of the results that they provide depends, not only on the quality of the models, 

but also on the accuracy and reliability of the inputs and, therefore, on the quality of the time 

dependent OD matrices as part of that input. These matrices have usually been estimated by procedures 

exogenous to the traffic simulation model, based typically on heuristic procedures adapted from static 

matrix adjustments from link flow counts. Recently dynamic approach based on Kalman Filtering, [1], 

[2], have been proposed, they explicitly assume that a dynamic assignment procedure is available. The 

quality and reliability of the measurements produced by inductive loop detectors, is not usually the one 

required by real-time applications, therefore one wonders what could be expected from the new ICT 

technologies as for example Automatic Vehicle Location, License Plate Recognition, detection of 

mobile devices and so on, in particular those equipped with Bluetooth technology, that are becoming 

pervasive data sources. Once the privacy concerns are overcome, tracking mobile devices associated 

uniquely to vehicles becomes a rich source of new traffic related data from which infer time dependent 

mobility patterns. Better results should be expected when V2I technologies are taken into account 

making possible paths reconstructions and from them the estimation of origin to destination matrices 

for each time period. The research reported in this paper explores two complementary issues for 
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estimating OD matrices: the exploitation of travel time measurements provided by sensors detecting 

Bluetooth devices equipping vehicles (Tom-Tom, Parrot, hands free...) combined with input-output 

flow measurement at entry and exit ramps on a motorway; and the use of data supplied by V2I 

technologies (i.e. positions and speeds) that allow tracking vehicles and estimate direct samples which 

combined with a path reconstruction process allow to estimate  the OD. The first approach, suited only 

to Motorways or Freeways, is based in an ad hoc adaptation of Kalman-Filter, combining elements 

from [5] and [6]; while the second, more appropriate for networks,  uses elements from [3] 

generalizing  methods for OD estimation based on license plate recognition. 

In the first case a simulation experiment has been conducted, prior to the deployment of the 

technology in a forthcoming pilot project. The simulation emulates the logging and time stamping of a 

sample of equipped vehicles. Since data from equipped vehicles constitute a random sample of traffic 

data of significant size, the measured travel times can be used as real-time estimates of travel times for 

the whole population of vehicles.  The availability of real-time travel time estimates makes possible a 

more efficient use of Kalman Filtering for OD estimates, simplifying the equations and replacing state 

variables by real-time measurements. We focused our attention on dynamic OD estimation in linear 

congested corridors where no route choice strategy is considered since there exists a unique path 

connecting each OD pair, but the travel time between each OD pair is considered and affected by 

congestion.  We propose a space-state formulation for dynamic OD matrix estimation in corridors 

considering congestion that combines elements of Chang and Wu [6] and Van Der Zijpp and 

Hamerslag [5] proposals. A linear Kalman-based filter approach is implemented for recursive state 

variables estimation. Tracking the vehicles is assumed by processing Bluetoooth and WiFi signals by 

sensors located at the entry ramps (mandatory), in the main section (as many as possible) and the off-

ramps (as many as possible). Traffic counts for every sensor and OD travel time from each entry ramp 

to the other sensors (main section and ramps) are available for any selected interval of length higher 

than 1 second. Then travel time delays between OD pairs or between each entry and sensor location are 

directly provided by the detection layout and should no longer be state variables but measurements 

simplifying the approach and making it more reliable. A basic hypothesis that requires a statistic 

contrast for real test site applications is that equipped and non equipped vehicles follow a common OD 

pattern. The state variables ( )kbij , defined in terms of   proportions of trips between OD pairs (i,j),  

are assumed to be stochastic in nature and evolve according with an  independent random walk process 

whose state equation is: ( ) ( ) ( )kwkDb1kb +=+ b(k) is the column vector of  all feasible OD pairs 

(i,j), ordered by entry ramp, and ( )kw ij ’s are independent Gaussian white noise sequences with zero 

mean and covariance matrix Q . The state variables should additionally satisfy the structural 

constraints               
( )

( ) I1i
J

1j
1kijb

J1jI,1i0kijb

K

KK

=∑
=

=

==≥
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Let’s denote by: qi(k) number of equipped vehicles entering the freeway from on-ramp i during 

interval k and i=1,...I; sj(k) number of equipped vehicles leaving the freeway by off-ramp j during 

interval k and j=1,...,J; yp(k) number of equipped vehicles crossing main section sensor p and p=1,...,P; 

Gij(k) number of vehicles entering the freeway at on-ramp i during interval k with destination  to off-

ramp j; gij(k) number of equipped vehicles entering the freeway from ramp i during interval k that are 

headed  towards off-ramp j; IJ = IxJ, number of feasible OD pairs depending on entry/exit ramp 

topology in the corridor; tij(k) average measured travel time for equipped vehicles entering from entry i 

and leaving by off-ramp j during interval k; tip(k) average measured travel time for equipped vehicles 

entering from entry i and crossing sensor p during interval k; bij(k)=gij(k)/qi(k) the proportion of 

equipped vehicles entering the freeway from ramp i during interval k that are destined to off-ramp j; 

e(k)=e a colum vector of dimension I containing ones; z(k) vector of observation variables during 

interval k; i.e. a column vector of dimension I+J+P, whose structure is  z(k)T=[s(k), y(k), e(k)]T. Let’s 

define ( )kh
ijqU = 1 if the average measured time-varying travel time during interval k to traverse the 

freeway section from entry i to sensor q takes h time intervals,  h = 1,...,M and q = 1,...Q and Q = J+P 

(the total number of main section and off-ramp sensors), and M the maximum number of time intervals 

required by vehicles to traverse the entire freeway section considering a high congestion scenario; the 

value is 0 otherwise. Let’s also define: 

 
E : Matrix of row dimension I containing 0 for columns related to state variables in time 

intervals  Mkk −− ,,1K  and B for time interval k .  
B : Matrix of dimension I x IJ defining equality constraints (sum to 1 in OD proportions for 

each entry) for state variable in time interval k. 
F(k)  : Matrix of dimensions (1+M)IJ x (1+M)IJ consisting on diagonal matrices 

( )Mkfkf −,),( K  containing input on-ramp volumes. This applies to each OD pair 
and time interval. Each (.)f is a squared diagonal matrix of dimension IJ. 

( )kg  : Column vector of OD flows of equipped vehicles for time intervals Mkkk −− ,,1, K  
A : Matrix of dimensions (J+P) x (1+M)(J+P) that adds up for a given sensor q (main section 

or off-ramp) traffic flows from any previous on-ramps arriving to sensor at interval k 
assuming their travel times are ( )ktiq  

 

Defining the measurement equation as ( ) v(k)
(k)v

kz +=







+








= R(k)b(k)b(k)

E
H(k)

0
'

 where 

( )kv ij' ’s are independent Gaussian white noise sequences with zero mean and covariance matrix 'R . 
 

The Kalman-Filter algorithm for the dynamic estimation of OD matrices in Motorway is: 

KF Algorithm : Let K be the total number of time intervals for estimation purposes and M 
maximum number of time intervals for the longest trip 

Initialization : k=0; Build constant matrices and vectors: e, A, B, D, E, R, W  
where each time interval and each row is set to the maximum 

indetermination proportion iJ1  

)b(b 0=k
k
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[ ]b(0)VPk
k =  

Prediction Step : k
k

k
1k Dbb =+  

WDDPP Tk
k

k
1k +=+  

Kalman gain 
computation 

: Get observations of counts and travel times: 
1)(kt1)(kt1),y(k1),s(k1),q(k ipij +++++  . 

Build ( )1kz + , ( )1kF + , ( )1kU + . 

Build ( )1kRR 1k +=+ . 

Compute ( )−++++++ += RRPRRPG T
1k

k
1k1k

T
1k

k
1k1k (where ( )−. denotes the 

pseudoinverse) 

Filtering : 
Compute ( )( )k

1k1k1k1k bRGd ++++ −+= 1kz filter for state variables and 

errors ( )( )k
1k1k1k bRε +++ −+= 1kz  

Search maximum step length 10 ≤≤α  such that 01 ≥+= ++
+
+ 1k

k
k

1k
1k dbb α  

( ) k
1k1k1k

1k
1k PRGIP +++
+
+ −=  

Iteration : k=k+1 
if k=K EXIT otherwise GOTO Prediction Step 

Exit : Print results 
 

In a benchmark conducted at a Toll Plaza of the Motorway Site the number of Bluetooth 

devices associated with vehicles was in average the 27.67%, that determined the significance of the 

sample used in the experiments. The increasing penetration of the technologiy guarantees larger 

samples in the near future. A pending task planned for the near future will be to determine the 

influence of the sample size in the accuracy of the results. A Set of computational experiments has 

been conducted with time sliced OD flows with time horizon split in four time intervals of 15 minutes 

and the demand accordingly distributed to account for the 15%, 25%, 35% and 25% of the total 

demand in each interval. The results can be summarized as follows: for time intervals where traffic 

flow varies from free flow to dense but not yet saturation conditions the filtering approach works as 

expected and its performance seems not affected as traffic flows become congested. RMSE values are 

of a similar order of magnitude, ranging in the interval [0.63, 6.35] (x10-2). The convergence to the true 

values is quite satisfactory as prove the computational results in the full paper.   

The second approach, intended for more general networks, has been based on the use of 

disaggregated flows, as in the case of the license plate recognition, [3]. The procedure works as 

follows: given a sample of equipped vehicles in the V2I scenario, their positions are tagged along their 

paths, there will be various classes, trips crossing the scenario at entry and exit tagged points as well as 

at intermediate positions, trips starting outside by a tagged entry point and ending inside, trips starting 

inside, leaving by a tagged exit point and ending a a destination outside the scenario, and finally trips 

starting and ending within the scenario, whose pats are tagged at intermediate points. 

In all cases we have assumed that vehicles interact with the infrastructure at V2I sensors located in 

the border tagging all entries and exits and that there is a sensor layout in the network tagging the 
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vehicles at intermediate points in their routes. From the point of view of the observability, defined in 

terms of identifying if a set of available measurements is sufficient to estimate the state of a system [2], 

in the first approach the detection layout has been set up in such way that intercepts flows for all OD 

pairs in the Motorway section, and therefore satisfies the observability conditions. While in the second 

case it is guaranteed by a suitable design of the sensor layout [7], determined by the network topology 

and the identification of the most likely used paths between origins and destinations.  This layout 

allows to collect a sample of the OD matrix, for each time interval, that can be expanded to the whole 

population as a function of a initial OD matrix and the rate of penetration of the technology. 

Computational results will be included in the full version. 
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1 Introduction 
 

In this work, we study a variant of the very well known Traveling Salesman Problem (TSP), the Multi 

Depot Multiple Traveling Salesman Problem (MDMTSP) in which an unlimited number of salesmen 

have to visit a set of customers using routes that can be based in one of several available depots.  

We study the polyhedron associated to the MDMTSP and present new valid inequalities that 

could be useful for other multi-depot problems. We introduce in Section 3 an integer formulation of 

the problem, the associated polyhedron and some results that allow obtaining facet inducing 

inequalities for the MDMTSP from certain facet inducing inequalities for the TSP polyhedron. Section 

4 contains the main facet inducing inequalities for the MDMTSP, including two new families of 

inequalities that are specific for multi depot problems and have shown to be very effective in a cutting 

plane algorithm. This partial knowledge of the polyhedron is used to implement a Branch-and-Cut 

algorithm, presented in Section 5, which is able to solve instances with up to 279 customers and 25 

depots. 
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2. The MDMTSP and related problems 
 

Let  be a set of vertices representing customers and  a set of vertices representing possible depots. 

For each pair of vertices  such that , we are given a travel cost (e.g. distance) . 

Distances are symmetric and are assumed to satisfy the triangular inequality.  The MDMTSP consists 

of finding a set of routes such that each route contains exactly one depot, each customer belongs to one 

route and the total cost of the routes is minimized. A consequence of assuming the triangular inequality 

is that, although solutions with more than one route per depot are allowed, each depot will be 

contained in at most one route in any optimal solution. Therefore, the MDMTSP with only one depot is 

equivalent to the TSP, thus proving that the MDMTSP is NP-hard. Kara and Betkas [1] and Yadlapalli 

et al. [3] study some variants of the MDTSP but, as far as we know, no polyhedral study has been 

proposed for this problem. 

Other multi depot problems include the Multi Depot Vehicle Routing Problem (MDVRP) and 

the Location Routing Problem (LRP), a much more general problem than the MDMTSP, which 

includes opening costs for the depots, and capacitated vehicles. A vast literature exists on the LRP, a 

recent survey is [2]. 

 

 

3. Formulation and first results on the polyhedron of the MDMTSP 
 

The MDMTSP is formulated as an integer program using the following variables: for any , 

  if edge  is used in the solution and  otherwise; for any ,  is the 

number of times that the edge  is used  in the solution, where the value  represents the case 

where a route based on depot i contains only customer j. Then the MDMTSP can be formulated as: 

 Min     

s.t.  

         (1) 

        (2) 

  

         (3) 

      (4) 

             (5) 

        (6) 

 

As usual, given a subset ,  denotes the set of edges with both extremes in , and  denotes 

the set of edges with only one extreme in S. Then, (2) are the degree constraints for the customers, (3) 

are the subtour elimination constraints, (3) and (4) avoid the existence of a path starting at one depot 

and ending at a different depot and are called path elimination constraints, and finally (5) and (6) are 

the integrality constraints. 
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The polyhedron associated to the MDMTSP, denoted , is defined as the convex hull 

of the vectors x that represent feasible solutions of the MDMTSP. We have shown that the only 

equalities satisfied by all the points of  are the degree constraints (1), thus determining the 

dimension of the polyhedron. All the trivial inequalities, with the exception of inequalities 

, induce facets of . 

Given a valid constraint for the TSP satisfying a mild condition, an extended constraint for the 

MDMTSP can be generated. Roughly speaking the extension consists of substituting a node by the set 

of depots. We show that if the TSP constraint is written in Tight Triangular form then the extended 

constraint is valid for the MDMTSP and that, if the TSP constraint is facet inducing for the TSP 

polyhedron, then the extended constraint is also facet inducing for , given that it is valid. This 

result provides a large number of facet inducing constraints for  that come from the very well 

studied polyhedron of the TSP. Nevertheless, it should be remarked that all the depots are essentially 

treated as a single vertex in these constraints. 

We also present a depot lifting theorem that allows to substitute a single depot by a set of 

depots in a facet inducing inequality for the , under certain conditions.  

 

 

4. Facets of the  
 

Using the extended constraints mentioned in the preceding Section, it can be shown that the subtour 

elimination constraints (2) and the very well known comb constraints for the TSP are facet inducing 

for . Comb constraints, in particular, lead to several families of facet inducing inequalities for 

 depending on where the set of depots are located: outside the comb, in the intersection of a 

tooth and the handle, in a tooth outside the handle, or inside the handle but not in any tooth. 

Path elimination constraints (3) and (4) are also facet inducing of . Finally, we have 

introduced two new families of constraints for  that can be called multi-depot comb 

constraints because their structure is similar to that of the TSP combs but are specific for multi-depot 

problems. In these constraints, not all the depots are located in the same part of the comb structure. 

Thus, in the first family, some depots are inside the handle but outside any tooth, and some depots are 

outside the comb. In the second family, the handle contains no depot but each tooth contains at least 

one depot. The number of teeth can be even in these last inequalities. These multi-depot combs have 

been shown to be facet inducing for the  and they have been very useful in the Branch-and-

Cut algorithm described below. They cut some undesirable fractional solutions where some depots 

have very small positive degree (note that, if a depot is used, its degree must be at least equal to two).  
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4. Branch-and Cut 
 

We have implemented a Branch-and-Cut algorithm to solve the MDMTSP based on the linear 

relaxation of formulation of the problem and the families of valid constraints presented in the 

preceding Section. The separation procedures used to identify constraints violated by the current 

fractional solution are as follows. Subtour and TSP comb constraints are separated using some 

common procedures also used in the TSP; for the path elimination constraints, we have used a very 

simple heuristic; finally, some heuristic procedures have been implemented to separate multi-depot 

comb constraints. We have used the LP solver Cplex 9.0 and the strong branching strategy to explore 

the branch-and-cut tree. 

The Branch-and-Cut algorithm was tried on two sets of instances. The first set contains 30 

instances taken from the LRP literature discarding the capacities and opening costs of the depots; this 

set contains instances with up to 200 customers and 10 depots. All the instances in this set were solved 

to optimality in less than one minute except for the instances with 200 customers, which were solved in 

a few minutes. It is also remarkable that 18 instances were solved at the root node. The second set of 

eight instances was generated from two large TSP instances, with 127 and 280 customers respectively, 

by substituting by depots some randomly selected customers. From each TSP instance, four MDMTSP 

instances were generated with 1, 5, 10 and 25 depots, respectively. The results obtained with these 

instances were similar to the preceding ones but one instance with 255 customers and 25 depots could 

not be solved with a time limit of 30 minutes. 
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Extended Abstract

Introduction
The science of choice modelling has flourished in the last years as more and more studies are made in order to 

better understand human decision making. Discrete choice models form a major part in econometric studies in 

general and travel based studies in particular. Econometric random utility based discrete-choice models are still 

regarded as the main workhorse for most travel related behavioural modelling. Consequently, random utility 

models (RUM) have been developed considerably in the past three decades [1]. The wide RUM family includes 

three main sub-family types: The Multinomial Logit Model (MNL) and its applications, The GEV (General 

Extreme Value) models and the different mixed models. Despite the improvements in more sophisticated 

modelling specifications, MNL and the family of GEV models are still those most frequently applied in practical 

applications involving planning, forecasting and feasibility assessments. However, GEV models are based on a 

set of specific mathematical properties one of which is non-negativity in unobserved correlations. In reality, 

there is no fundamental reason why non-positive correlations should not occur.

The generalized extreme value (GEV) theory was, developed by [2] to accommodate these deficiencies of MNL. 

This general theorem consists of a large family of specifications that includes in addition to MNL itself, also the 

different nest-based logit models:  nested logit (NL), pair combinatorial logit (PCL), cross-nested logit (CNL) 

and generalized nested logit (GNL) models. GEV models are derived under a set of several restricting 

assumptions. These conditions are sufficient to observe a continuous multivariate extreme value distribution 

function. However, as noted by [3], these constraints also imply that the correlations in unobserved factors (or 

error terms) reproduced by a GEV model are necessarily always positive.

The inherited assumption of non-negative correlations is brought about by mathematical necessities. However, 

from a behavioural perspective, within elaborate nested structures, there is no apparent reason why this 

assumption must always hold. Therefore, we decided to put this to the test by creating artificial correlation 
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structures by generating synthetic data and estimating GEV models – NL (Experiment I) and CNL (Experiment 

II) to measure the obtained bias between estimated parameters and true parameters. In this context it is 

appropriate to use synthetic data generated with a postulated model, since the true parameter values are known 

in advance. As explained in the next subsection, in order to validate the results, the same models were also 

estimated using a Multinomial Probit (MNP) specification. 

Experiment Design
In Experiment 1, a sample of 100 files (runs) each with 10,000 synthetic choice observations was created using 

MATLAB. The sample was created separately for two choice problems: a choice between three alternative  and 

a choice between four alternatives. Each file contained the deterministic utility for each alternative  and the error 

components. The synthetic utilities – both the deterministic and stochastic parts were computed using a random 

normal distribution. 21 artificial 'true' correlation values (ρk) were assumed ranging from -0.95 to +0.95. For 

each correlation (ρk), a variance-covariance matrix was computed. For the three-alternative case the covariance 

matrix is:
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To create the correlation between alternatives the vector of errors was multiplied by the Cholesky factor of each 

of the 21 covariance matrices. This procedure created the vectors of correlated error terms. The chosen 

alternative was the one with the maximum utility. In this way, a corresponding vector of choices was matched 

for each 'true' correlation value and in total 21 choice vectors in each file.

NL models were estimated with BIOGEME 1.4 [4] for each of the 21 choice vectors in each of the 100 data sets 

(in total - 2100 models).  The NL model had a common nest which included all alternatives apart for one. The 

estimated correlations of the NL models were compared to the estimated values of an equivalent MNP model. 

The MNP model was estimated with GAUSS software using numeric integration procedures. The restrictions 

imposed on MNP model included setting the variance of all the alternatives equal to 1. 

In experiment 2 the choice was only between three alternatives. The artificial correlations were derived from the 

combinations of the values (0.75, 0.25, -0.25, 0.75) in groups of three. In total k=20 combinations were created. 

For example the combination (0.75, 0.75, 0.75) is the first, (0.75, 0.75, 0.25) the second, etc.  The covariance 

matrix was defined as:
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Since In five out of the 20 combinations the matrix is not semi positive-definite, the Cholesky factorization is 

invalid. This fact reduced the number of combinations from 20 to 15. The choice vectors were then obtained in 

the same manner as experiment 1. A CNL model was estimated with BIOGEME 1.4 [4] for each of the 15 

choice vectors in each of the 100 data sets (in total – 1,500 models). The CNL model had a PCL specification of 

three alternatives, whereby each alternative has a shared nest with each of the other two alternatives.  In order to 

facilitate the computations, the estimated correlations of the CNL model were computed using Papola's 

approximation [5]. We note the correct computation is provided by [6] but its estimation requires simulation. 

However, Papola's approximation provides a conservative estimate. The estimated correlations of the CNL 

model were also compared to the estimates of an equivalent MNP model. 

Results
In both experiments the estimated correlations for the MNP model were basically identical to the true values. In 

experiment 1, for three-alternatives - no real difference could be seen between the estimate (average of 100 data 

sets) and the true value. A t-test for difference confirms these results. For four-alternatives - a different picture 

can be seen compared to the results of the three-alternative model. For positive correlations there appears no real 

difference between the results of the NL model and the true values. However, for negative correlations there is a 

gap between the true values and the estimation. This difference is statistically significant.  

In experiment 2, the PCL model did not provide comparable results to the MNP. We can differentiate between 

several cases. First, when the true correlations are equal and positive the PCL model is identified and the 

correlations are also equal. However the estimates are biased.  Second, when the true correlations are unequal 

and positive, the PCL model is identified. Although the estimated correlations are still biased the relative sizes 

are comparable.  Third, when the true correlation is negative but the correlation of utility differences remains 

positive the PCL is identified. However, the model over estimates the positive correlation, while the negative 

correlation always has a positive estimate. Fourth, when the correlations are equal and negative, the correlation 

of utility differences is also positive. However, the PCL model estimates the correlations as positive and the 

estimates are similar to the first case. Fifth, when the correlation of utility differences has a negative true value, 

the PCL model is not identified. 

Remarkably despite the bias in the estimated correlations, in both experiments no bias was observed for the 

coefficients of the utility functions and the alternative specific constants. A fact also corroborated by the MNP 

estimates which were almost identical. 

Conclusions
These results are not surprising but the fact that most modelers are ambiguous or unaware to the severity of the 

problem requires rethinking of the almost automatic adoption of GEV-based specifications to choice modeling 

problems. Caution should be used and if possible it is recommended that more flexible models specifications 

should be applied, particularly when the level of uncertainty regarding the used data is high. In practical rather 

then research endeavors,  there is still limited use of flexible modeling specifications like MNP or the family of 

Mixed Models like Mixed Logit [7-10]. Hopefully this limited study which elucidates some of the problematic 

features in commonly used discrete choice models, will motivate more research into this seemingly overlooked 

issue in the choice modeling community.
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Since the pioneering paper by Harris (1913) [8], several optimization models facing the integra-

tion of different types of logistic costs have been proposed. One of the most common problems is

the one in which both transportation and inventory costs are taken into account. The aim is to

determine shipping policies that allow to minimize the sum of these two costs. This is an inter-

esting problem as the transportation cost raises and the inventory cost drops when shipments are

performed frequently, while the contrary happens when shipments are rare over time.

From a mathematical modeling point of view, the integration of vehicle routing with inventory

control problems has led to the development of the so-called inventory routing models, that have

been proposed and analyzed in different papers. For an in-depth overview of this area of research,

the reader is referred to [7], [5], [6], [12] and [4]. Few papers have been devoted to inventory routing

problems with stochastic demand. [9] study the repeated distribution of a commodity over a long

time horizon to several customers. Several satellite facilities can be visited by the drivers to refill

their vehicles. In case of stockout, a direct delivery is made and a penalty cost is incurred. An

incremental cost approximation in a rolling horizon framework is proposed to minimize the total

expected delivery costs. [10] and [11] formulate the inventory routing problem as a Markov decision

process and propose approximation methods to find good solutions with reasonable computational

effort. [1] propose a new approach that approximates the future costs of current actions using

optimal dual prices of a linear program.
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In this work, we study an inventory routing problem, in which each retailer defines a maximum

inventory level and has to satisfy either a deterministic or a stochastic demand over a given time

horizon. An order-up-to level policy is applied, i.e. the quantity sent to each retailer is such that

its inventory level reaches the maximum level, whenever the retailer is served. This policy has

been introduced for the case with deterministic demand by [3]. An inventory cost is charged if

the inventory level is positive. Instead, whenever the inventory level is negative, a penalty cost is

charged and the excess demand is not backlogged. Shipments from the supplier to the retailers

can be performed by one vehicle of given capacity at each discrete time instant. The problem is to

determine a shipping policy that minimizes the total cost, given by the sum of the total inventory

cost at the retailers and of the total routing cost.

We first study the deterministic version of this problem, which is a generalization of the problem

studied in [2], as no stock–out at the retailers is allowed and a deterministic supply is assumed at the

supplier in that paper. We formulate a mixed–integer linear programming model and implement

a branch–and–cut algorithm. Since for each time instant not only the set of retailers to serve, but

also the set of retailers with stock–out have to be selected, the model is very different from the one

in [2] and more difficult to solve. We propose a set of new valid inequalities to solve instances of

comparable dimension.

This deterministic version of the problem is used to compute a benchmark policy for the

stochastic version of the problem, by setting the demand equal to the average demand. Then, a

dynamic programming formulation of the problem with stochastic demand and a rollout algorithm

for the solution of this problem are proposed. Rollout algorithms are a class of heuristic algorithms

that can be used to solve deterministic and stochastic dynamic programming problems. The basic

idea is to use the cost obtained by applying a heuristic, called base policy, to approximate the value

of the optimal cost-to-go in a one-step lookahead policy. These algorithms are very appealing from

the practical point of view, as they are easy to be implemented and guarantee a no worse, and

usually much better, performance than the corresponding base policy. The rollout algorithm we

propose is based on an approximate cost–to–go, an approximate Q-factor and an approximate set

of controls. The approximate cost–to–go is obtained as follows: For each state at each time, we

fix the future demands of each retailer to the corresponding average value. Then, we compute the

approximate cost–to–go by solving the deterministic problem from the next time instant to the

end of the time horizon. The approximate Q-factor is computed by generating a given number of

different trajectories of demand. Each trajectory is obtained by generating the current demand of

each retailer from the corresponding probability distribution and by setting the demand of each

retailer from the next time instant to the end of the time horizon equal to the corresponding average

value. For each different trajectory, we compute the total cost and the frequency at which it occurs

and we set the probability of the trajectory equal to the corresponding relative frequency. Finally,
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we normalize the probabilities and compute the approximate Q–factor by taking the expectation

over the different trajectories. The approximate set of controls associated to each state at each

time is built by an iterative procedure in which the deterministic problem is solved.

The performance of the branch-and–cut and the rollout algorithms is evaluated on the basis of

a large set of problem instances. The computational results show that, although the problem is

more difficult than the one in [2], the branch–and–cut algorithm is effective and that the rollout

algorithm significantly outperforms its base policy.
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1 Extended abstract

In most of the routing problems addressed in the literature, the set of customers to serve is known in

advance [9]. Only recently, among the researchers, it is growing up the interest for routing problems

where a non-negative value is associated with each customer and gained when the customer is

visited. In these problems, called routing problems with profits, it is necessary to select the subset

of customers to visit which allows us to optimize the objective function while satisfying the given

constraints. In general, two conflicting objectives should be taken into account: the maximization

of the collected profit and the minimization of the traveled distance. Nevertheless, a very few works

in the literature consider the true bicriteria objective of the problems, whereas, in the greatest part

of the studies, these problems are addressed in a single-criterion version. See [8] for a recent survey

on routing problems with profits.

In this work, we consider the Capacitated Team Orienteering Problem (CTOP). In particular,
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here we investigate a variant of the problem arising when split deliveries, that is possible multiple

visits to customers, are allowed. Split deliveries have been first taken into account in [6, 7] while

addressing the classical Vehicle Routing Problem (VRP). Then, in these very last years, the Split

Delivery Vehicle Routing Problem (SDVRP) has received a lot of attention, mainly due to the

savings that can be achieved performing split deliveries, savings that can reach 50% of the cost

[3]. Allowing splitting the deliveries could have an impact also on the CTOP, an interesting issue

to study both from a theoretical and a computational point of view.

Let us first recall the Capacitated Team Orienteering Problem. The problem can be defined

over a complete directed graph G = (V,A), where V = {0, . . . , n} is the set of vertices and A is

the set of arcs. Vertex 0 is the starting and ending point of each route and vertices i ∈ V ′ =

V \ {0} = {1, . . . , n} represent potential customers. An arc (i, j) ∈ A represents the possibility

to travel from vertex i ∈ V to vertex j ∈ V . With each customer i ∈ V ′ a non-negative profit pi

and a non-negative demand di are associated. A travel time tij is given for each arc (i, j) ∈ A.

The travel time matrix (tij) is supposed to satisfy the triangular inequality. A fleet of m identical

vehicles is available to serve the customers. Each vehicle has a limited capacity Q, starts and ends

its route at vertex 0 and can visit any subset of the customers within a given time limit Tmax.

The profit of each customer i ∈ V ′ can be collected by one vehicle at most. The objective is to

maximize the total collected profit while satisfying the time limit and the capacity constraints for

each vehicle. This problem has been recently studyed in [2] where the authors proposed an exact

method as well as effective heuristic procedures.

The Split Delivery Capacitated Team Orienteering Problem (SDCTOP) is a relaxation of the

CTOP where a customer may be served by one or several vehicles. At each visit to a customer

i ∈ V ′, an amount d̄i ≤ di can be delivered to the customer and a proportional part of the profit

(pid̄i) is collected (with respect to the notation previously introduced, here pi has to be interpreted

as a unitary profit). The sum of the partial amounts delivered to a customer cannot be greater

than the demand.

Based on the concept of k-split cycle defined in [6], some important properties can be proved

to hold for an optimal solution to the SDCTOP. In particular, if the travel time matrix satisfies

the triangular inequality, then it can be shown there exists an optimal solution where no two

routes have more than one customer in common. In turn, this implies that there exists an optimal

solution such that at most one arc is traversed for each pair of reverse arcs between two customers.

Moreover, a property can be proved which allows us to relate the number of splits to the number

of routes in an optimal solution. Let ni be the number of routes that visit customer i ∈ V ′. We

say that customer i ∈ V ′ receives a split delivery if ni > 1, with ni − 1 equal to the number of

splits at customer i. If the cost matrix satisfies the triangular inequality, then it can be shown

there exists an optimal solution to the SDCTOP where the total number of splits (
∑

i∈V ′ ni − 1)
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is less than the number of routes.

Concerning the gain that can be achieved by allowing split deliveries, let z(P) denote the

optimal value of problem P. It can be seen how the gain results to be unbounded when di > Q

for some i ∈ V ′, whereas, given the properties previously outlined, if di ≤ Q for all i ∈ V ′, then
z(SDCTOP)

z(CTOP) ≤ 2 can be proved, and the bound can be shown to be tight.

In order to solve the problem and to experimentally evaluate the impact of allowing split

deliveries, an exact approach, based on column generation, is devised. The approach is similar

to the one proposed in [1] for the SDVRP. Differences come firstly from the presence of global

constraints which impose an upper bound on the quantity deliverable to each customer. Thus,

when a branching rule is applied enforcing the visit of a customer, attention must be paid in

order to constraint the customer to be fully served. Then, the capacity cut constraints considered

in [1] to separate an optimal fractional solution, are no more valid here and the exact approach

reduces to a pure branch-and-price algorithm. Finally, the speed of convergence of the column

generation process has been accelerated improving the heuristic methods used to address the

pricing subproblem.

The algorithm is tested on a new set of benchmark instances derived from some VRP instances

presented in [5], the same considered in [2]. The technique adopted to define the new instances is

the one used in [4] to derive benchmark instances for the SDVRP. For each initial VRP instance

we generate six new instances in which the coordinates, the fleet size and the vehicle capacity are

kept unchanged, whereas the customer demand is generated according to six scenarios ([0.01−0.1],

[0.1 − 0.3], [0.1 − 0.5], [0.1 − 0.9], [0.3 − 0.7], [0.7 − 0.9]). The demand of a customer in scenario

[α − β] is randomly generated from a uniform distribution on the interval [αQ, βQ]. Bounding

and non-bounding values for Tmax are considered. Preliminary computational results show the

effectiveness of the solution approach and give an empirically evidence that splitting the deliveries

can yield substantial gain.
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1 Introduction

Hazardous materials (hazmats) transportation presents extremely typical characteristics due to the

risk associated with its accidental release during a trip. Due to the potential destructive effect of

accidents related to this kind of transportation, the public opinion is very sensitive to the possible

dangers of hazmat shipments. Consequently, the governments in the different countries recently

have put much more attention to this problem than in the past and have encouraged research on

this field.

In particular, one of the main stream of research in hazmat transportation focus on shipments

planning ([4]). A main aspect of this problem is the routing of hazmat shipments, that involves

a selection among the alternative paths between origin-destination pairs. From the carrier’s per-

spective, shipment contracts can be considered independently and a routing decision needs to be

made for each shipment, on the basis of the cost associated to the transportation. At the macro

level, hazmat routing is a “many to many” routing problem with multiple origins and destinations:

the global route planning must be under the jurisdiction of a government authority, that keeps

into account the risk induced by hazmat transportation over the population and the environment.

For example, an authority should aim at the minimization of the total risk and/or promote equity

in the spatial distribution of risk. The latter becomes crucial when certain populated zones are

exposed to intolerable levels of risk as a result of the carriers’ routing decisions.

Typically, a government authority does not have the right to impose specific routes to individual

carriers. In literature, two main approaches have been proposed in order to control the hazmat

flows. The first stream of research assumes that the government has the authority to close certain

road segments to hazmat vehicles or to limit the amount of hazmat traffic flow on the links, and
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this leads to the study of hazmat transportation network design (see, e.g., [5, 2, 3, 8, 1]).

Recently, in [6] a different approach has been proposed. The authors assume that the authority

controls the hazmat flows on the network by introducing tolls on the network links in such a way

to force the carriers to choose routes that minimize the total risk on the network. In this work, as

in [6], we use the toll setting as an instrument to control the behavior of the carriers. However, our

model not only aims to minimize the total risk on the network but also to descourage congestion

on some links, in such a way to keep into account risk equity.

To achieve this result, we assume that the toll on a certain link depends on the total risk on

that link and this implies an influence of the choices of all the carriers on the cost of the single

carrier, and this naturally leads to a Nash game. Next, we give a formal description of the proposed

model to implement the previous idea.

2 Model description

Given a road transportation network where hazmat is shipped, let it be represented by a directed

graph G = (V, A) where V is the set of n nodes and A is the set of m arcs (links) of the network.

We consider the following scenario: there are N carriers and each carrier k = 1, . . . , N transports

one hazardous material h(k) ∈ H, with H being the set of hazardous materials shipped by the

carriers. We assume that each carrier has to satisfy a single shipment order, so that carrier k

has a single commodity and a single origin-destination pair (sk, tk), and has variables xk
a equal

to the amount of material sent on the arc a ∈ A of the network. The total amount of material

that carrier k has to ship is denoted by rk. Given the transportation cost ck
a per unit amount of

hazmat shipped by carrier k on arc a, each carrier aims at minimizing his own transportation cost
∑

a∈A ck
axk

a. Therefore, given the network, the subproblem of each carrier k is a minimum cost

single commodity flow problem that reduces to find the minimum cost route from sk to tk. If the

risk was not considered each carrier could choose therefore independently his own (minimum cost)

route. However, shipping an amount xk
a of hazmat h(k) induces a risk on arc a that we assume

equal to ρ
h(k)
a xk

a, where ρ
h(k)
a is the risk induced on arc a by a single unit of material h(k). Therefore

the total risk on arc a is equal to
∑N

l=1 ρ
h(l)
a xl

a. We assume that the authority imposes to carrier k a

toll for shipping hazmat h(k) along arc a, which is proportional to the risk ρ
h(k)
a xk

a induced on a by

the amount xk
a of hazmat h(k) that carrier k transports along that arc. The unitary toll imposed

by the authority on arc a ∈ A depends on the hazmat h(k) shipped by carrier k, and is a function

τ
h(k)
a

(∑N
l=1 ρ

h(l)
a xl

a

)
of the amount of the total risk on that arc: in particular, we assume that τ

h(k)
a

is a linear function of the total risk on the arch, i.e., τ
h(k)
a

(∑N
l=1 ρ

h(l)
a xl

a

)
= t

h(k)
a +d

h(k)
a

N∑

l=1

ρh(l)
a xl

a,

where t
h(k)
a and d

h(k)
a are the coefficients of the linear function, and are controlled by the authority.

Hence, the additional toll cost for carrier k on arc a depends also on the amount of hazmat shipped

87



by the other carriers along that arc, since the toll depends on the arc total risk. Therefore, the

carriers’ problem constitutes a Nash game (see, e.g., [7]) where each carrier k is a player and his

subproblem has the following form

min
∑

a∈A

ck
axk

a +
∑

a∈A

th(k)
a ρh(k)

a xk
a +

∑

a∈A

dh(k)
a

(
N∑

l=1

ρh(l)
a xl

a

)
ρh(k)

a xk
a

∑

a∈A+(i)

xk
a −

∑

a∈A−(i)

xk
a =





rk i = sk

0 ∀i ∈ V \ {sk, tk}
−rk i = tk

xk
a ≥ 0 ∀a ∈ A,

(1)

where A+(i) = {(i, j) ∈ A : j ∈ V } and A−(i) = {(j, i) ∈ A : j ∈ V } are the set of outgoing arcs

and the set of incoming arcs, respectively, of node i.

We study theoretical properties of this model, i.e., the existence of an equilibrium, and the

conditions on the unitary toll functions τ
h(k)
a

(∑N
l=1 ρ

h(l)
a xl

a

)
ensuring the uniqueness of the equi-

librium. Moreover, we propose a technique to evaluate the minimum toll level that the authority

has to impose to the carriers in order to achieve a given target level of the network total risk and

enforcing also risk equity.

The complete model is a bi-level optimization problem, where we assume that there is a leader

(the authority) that chooses the coefficients t
h(k)
a and d

h(k)
a of the unitary toll functions on each

arc in order to minimize a combination of risk magnitude and carrier travel cost, and the followers

(the carriers) are the players of the game, where each player k (with k = 1, . . . , N) aims to solve

subproblem (1). In particular the leader aims to minimize the risk magnitude by minimizing the

total risk of the network, and the maximum total link risk φ on the arcs of the network. In this

situation, we get the following mathematical programming with equilibrium constraint (MPEC)

problem:

min
th
a ,dh

a ,φ

{
α

N∑

k=1

∑

a∈A

ρh(k)
a xk

a + β · φ+

γ

(
N∑

k=1

∑

a∈A

(ck
a + th(k)

a ρh(k)
a )xk

a +
N∑

k=1

∑

a∈A

dh(k)
a

(
N∑

l=1

ρh(l)
a xl

a

)
ρh(k)

a xk
a

)}

N∑

l=1

ρh(l)
a xl

a ≤ φ, ∀a ∈ A

tha ≥ 0, dh
a ≥ 0, ∀a ∈ A, ∀h ∈ H

s.t. x is a Nash Equilibrium of (1)

(2)

where α, β and γ are weights measuring the relative importance of total network risk, maximum

total link risk and total (carriers’) cost.
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3 Experimenting the model

We study the properties of this model, reformulate it as a single optimization problem by using the

optimality conditions for problem (1), and define a heuristic algorithm for solving it. We test the

proposed model on some real instances, and, in order to evaluate the obtained results, we compare

our solution with the one found by the method defined in [6], The aim of the comparison is to

emphasize the ability of our model to optimize risk equity, although guaranteeing a comparable

level of total risk on the network.
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1 Introduction 
   

The improvement of accessibility to services of general interest, such as education, health care, public 

safety, and justice, is a typical objective of regional development plans. Two types of actions may be 

used to tackle this objective. The first is to redefine the level of hierarchy assigned to the urban centers 

of the region under study. This can be done through the location of facilities where these services are 

offered to the population, with a class of facilities associated with each level of hierarchy. For instance, 

in a three-level hierarchy, facilities such as elementary schools or basic health care units could be 

associated with first-level centers, whereas high schools and local hospitals could be associated with 

second-level centers, and universities and central hospitals with third-level centers. The second is to 

redesign the transportation network of the region. In this case, the aim is to select which links of the 

transportation network should be improved (or which new links should be built). The transportation 

network is also a hierarchical system because different levels of links are characterized with different 

travel conditions (in terms of speed, safety, comfort, etc.). 

With very few exceptions (e.g. [1] and [2]), the two subjects – urban hierarchy and 

transportation network planning – have been addressed separately in the optimization literature. In this 

article, we present an optimization model for integrated urban hierarchy and transportation network 

planning. The aim of the model is to answer the following question: which urban centers and which 

transportation links of a given region should be promoted to a new level of hierarchy so as to maximize 

the accessibility of population to the services of all levels available in the region? 

  

2 Optimization model 
  

The optimization model developed to represent integrated urban hierarchy and transportation network 

planning problems is as follows: 
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where 

Sets: N - set of urban centers, N = {1, … , NC}; NC - number of urban centers in the region; 

NS - set of nodes (urban centers + a sink node, S), NS = {1, … , NC+1}; L - set of higher-level services, 

L = {2, … , NL}; NL - number of levels of service (or urban hierarchy levels); M - set of link levels, 

M = {1, … , NM}, NM - number of link levels; I1 - set of links (i,j), I1 = {1, … ,NI}, NI - number of 

undirected links connecting the centers; I2 – set of links (j,i), I2 = {NI+1, … ,2×NI}; I3 - set of links 

(i,S), I3 = {2×NI+1, … ,2×NI+NC}; I - set of all links, I = I1 + I2 + I3. 

Parameters: ui - population residing in center I; Yl - number of centers to be promoted to 

level-l; W - maximum length of transportation network improvements (expressed in length reference 

units); k
ijmt  - aggregate travel time of demand at center k in level-m link (i,j). 

Decision variables: yil = 1 if center i is designated as level-l center, yil = 0 otherwise; rijm = 1 

if the undirected link {i,j} is designated as level-m link, rijm = 0 otherwise; k
ijlmx - fraction of flow from 

center k using level-m link (i,j) en route to obtaining level-l service. 

The objective-function (1) of this mixed-integer optimization model expresses the 

minimization of the total (or demand-weighted) travel time. This automatically implies that demand for 
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level-l service is satisfied at the closest level-l center. Constraints (2) guarantee that the flow from any 

center k reaches the sink node (which is equivalent to saying that the demand from k must be satisfied 

at some center i). Constraints (3) state that the total flow into node j must equal the total flow out of 

node j, either to the sink node (first term on the right-hand side) or to any center i (last term on the 

right-hand side). Please note that the demand from any center k travels to the closest center offering 

level-l service. Unless there are ties, the values of the variables k
ijlmx  will be either 0 or 1. Constraints 

(4a) force the fraction of flow from any demand center k in level-m link (i,j) to be zero if level-m link 

{i,j} is not part of the network. Constraints (14b) are identical but with respect to flow (j,i). Constraints 

(15) state that demand for level-l service from center k can only be satisfied at center i if this center is 

designated as level-l center. Constraints (6) ensure that a maximum of Yl urban centers are designated 

as level-l centers. Constraints (7) enforce that if center i provides level-l service, then it provides all 

lower-level services as well. Constraints (8) state that the link between center i and center j can be 

improved to one level only. Constraint (9) guarantees that the maximum length for link improvements 

is not exceeded. Expressions (10) and (11) specify the domain of the decision variables. 
  

3 Model application 
  

The optimization model presented in the previous section was used to analyze possible decisions 

regarding the evolution of the urban hierarchy and the transportation network of the Centro Region of 

Portugal (Figure 1). The region has an area of approximately 28,000 km2 and a population of 2.3 

million. The territory is organized in two levels – municipality (lower-level) and district (higher-level). 

There are 100 municipality main towns in the Centro Region, six of which are district capitals. The 

road network shown in the figure consists of the 2000 Road Network Plan (Decree-Law 222/98) and 

the additional projects that have been announced by the Portuguese government since the plan was 

adopted (MOPTC, 2008). This road network is expected to be completed by 2015. It is classified in 

three hierarchical levels according to design speed – 60, 90, and 120 kph. 

In the analysis, we considered three scenarios, A, B, and C, and favored the less developed 

off-coast areas of the Centro Region (the Interior) from the more developed coastal areas (the 

“Litoral”). The scenarios were as follows: A - upgrade of six lower-level centers to a new, sub-regional 

level (that is, Y2 = 12) and improvement of roads for an amount of 200 length-equivalent units  

(W = 200); B - Y2 = 12, W = 400; C - Y2 = 18, W = 200. For favoring the Interior, we considered hLit = 

0.33 and hInt = 0.66 in the objective-function: 

k
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where α
k
 = 1 when center k is located in the Litoral and α

k
 = 0 otherwise; hLit is the accessibility weight 

for the Litoral and hInt is accessibility weight for the Interior.. 

The results obtained through the application of the model are illustrated in Figure 2 (for 

Scenario A) and Table 1 (for the three scenarios). They provide a clear picture of the implications for 
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the Centro Region of alternative decisions regarding the urban hierarchy and the transportation 

network. 
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Figure 1: Current urban hierarchy 

and transportation network of the 

Centro Region

Figure 2: Optimum urban hierarchy and 

transportation network of the Centro Region 

for Scenario A  

 

Table 1: Summary of results for the three scenarios 

Sub-regional 

(level-2)

District cap. 

(level-3)
90 kph 120 kph

to level-2 

services

to level-3 

services

to level-4 

services

to all levels of 

service

Litoral 1 3 0% 27% - - - -

Interior 5 3 4% 69% - - - -

Region 6 6 4% 96% - - - -

Litoral 1 3 0% 27% -4% -4% - -4%

Interior 5 3 3% 70% -8% -5% - -6%

Region 6 6 3% 97% -5% -5% - -5%

Litoral 5 3 0% 16% -41% 2% - -14%

Interior 7 3 0% 84% -18% -1% - -7%

Region 12 6 0% 100% -32% 0% - -11%

AreaScenario

B

C

A

Number of centers
Road improvements                                            

(% of total)
Travel time (comparison with the base scenario)
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1 Introduction

The Fleet Assignment Problem consists in assigning a particular �eet type and therefore a seat

capacity to each �ight leg in an airline schedule. The objective is to minimize the assignment costs

and maximize the revenue subject to the available number of aircraft and di�erent operational

limitations. This is an upstream step of the airline planning process, that takes place a year prior

to operations.

Di�erent solution approaches have been proposed to solve this problem. The "Basic or Leg

Based Fleet Assignment Model" [1] assumes a leg or �ight based demand, independent to the

demand for the other legs. However, demands are based on itineraries, or combinations of legs,

rather than legs. This is the foundation of the alternative "Itinerary Based Fleet Assignment

Models or IFAM" [2].

The basic models do not capture the network e�ects of the �eeting decisions. For a major US

carrier, researchers [3] report that �eet assignments using network-based models with passenger

itineraries enhance �eeting solutions signi�cantly, with estimated savings ranging from 30 million

to over 100 million dollars annually. Despite the bene�ts of the itinerary based models, these are

subject to the excessive granularity of itinerary based demand and the di�culty of forecasting

them one year before the day of operations. These weaknesses are even more signi�cant for airlines

with large networks and high connectivity.

This paper proposes to consolidate itinerary demands into clusters to take advantage of the fact

that airlines are better able to make forecasts on itinerary aggregates [4], such as region to region

tra�c rather than origin to destination tra�c. Through this demand consolidation, a more robust

�eet assignment solution approach is achieved and the airline planning process is less a�ected

by itinerary demand volatility. The proposed model and the clustering approach are presented,

followed by comparison approach and computational results. Conclusion and future directions

close this paper.
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2 Cluster based �eet assignment model (CFAM)

The present proposal is based on the assumption of a pure Hub and Spoke network. All �ights

take-o� or land at the hub, and the airline has one single hub.

Notations:

Let A be the set of airports, F the set of �eets, L the set of legs indexed by l or adt where

a, d ∈ A represent the origin and the destination and t the departure time, C the set of itinerary

clusters, and C(l) the set of itinerary clusters using leg l. For the time horizon, T is the set of all

events at all airports, where t0 is the chosen moment of the day to check the �eet size and O(f)

the set of �ight arcs of the �eet f . N the set of nodes of the network enumerated by {fat} with

f ∈ F, a ∈ A and t a time of takeo� or landing at a.

Parameters

Dc: the unconstrained demand of cluster c

cf,l: assignment cost of �eet f to leg l

f̃arec: the average fare for demand cluster c

SEATS(f): seat capacity on aircraft of �eet type f

Size(f): the size of �eet type f

Variables

Xf,l: binary variable equal to one if �eet f is assigned to leg l, 0 otherwise

Yf,a,t+ , Yf,a,t− : the number of aircraft of �eet type f ∈ F that remain on the ground at airport

a ∈ A within the time interval [t, t+] or [t−, t]

sc: the spill or the part of the not stis�ed demand of the cluster c

Min
∑

l∈L,f∈F

cf,l Xf,l +
∑
c∈C

f̃arec sc (1)

∑
f∈F

Xf,l = 1 ∀l ∈ L (2)

∑
d∈A

Xf,dat + Yf,a,t− =
∑
d∈A

Xf,adt + Yf,a,t+ ∀fat ∈ N, ∀f ∈ F,∀a ∈ A (3)∑
l∈O(f)

Xf,l +
∑
a∈A

Yf,a,t0 ≤ Size(f) ∀f ∈ F (4)

∑
c∈C(l)

Dc −
∑

c∈C(l)

sc ≤
∑
f∈F

Xf,l.SEATS(f) ∀l ∈M (5)

sc ≤ Dc ∀c ∈ C (6)

The objective function (1) minimizes the total operations cost plus the cost related to cluster

spilled passengers. The latter corresponds to the revenue maximization. Constraints (2) are the

classical constraints of legs coverage. The �ow conservation at each airport of the network is ensured

95



thanks to constraints (3). The limited size of each �eet f must be respected, constraints (4).

The key di�erence with the Itinerary Based FAM is that the leg capacity constraints (5) are

based on itinerary cluster demands rather than itineraries. As such, the approach makes seat

capacity allocation and spill decisions based on itinerary clusters, for which the airline is in a

position to make reliable demand forecasts. We should underline here that each local leg demand

(one-leg itinerary) is considered as a speci�c cluster demand. For each leg l, the sum of the

unconstrained cluster demands using that leg minus the sum of the spill for each cluster using leg l

cannot exceed the capacity of this leg. Constraints (6) state that for each cluster, the spill for that

cluster cannot exceed its demand.

3 Cluster building

The model should be fed by unconstrained cluster demands, which do not exist. These have to

be built based on the available itinerary demand information, and a clustering method. Such a

clustering method relies on a metric that measures itineraries against one another, and drives the

decision to have two itineraries in the same cluster or not.

Two metrics were evaluated, based on two distinct clustering approaches, that were both driven

by the need to achieve reduced demand volatility

First an intuitive geographic metric is proposed, based on the distance between airports. With

such a metric, itineraries originating within a de�ned geographical region are grouped together.

A distance matrix is computed providing the distance between each airport pair. A distance

threshold determines airports which are grouped together. Such that the itineraries originating at

those airports are then found in the same itinerary cluster. The appropriate threshold is found

with extensive simulations.

The second metric re�ects, for two origin stations, their similarity in terms of destinations

served by their respective itineraries. The resulting clusters can contain airports that are not

necessarily close considering the geographical distance, but from where passengers travel to the

same destinations. For a couple of airports their distance is calculated based on their respective

list of destinations that are compared. The more similar the destinations, the closer to zero is

the distance, conversely, if the lists are completely di�erent the distance is 1. Here again, several

simulations were necessary to �nd a good threshold.

4 Comparison approach

Once the Itinerary Clustering settled, the estimated cluster demands built by the demand forecaster

are fed to the CFAM model which provides a CFAM based �eeted schedule. In parallel, the original

estimated itineraries demands are fed to the traditional IFAM model [2], which provides an IFAM
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based �eeted schedule. Several sets of demand realizations scenarii are generated based on varying

itinerary demand volatility assumptions. For each set, and for each scenario within the set, the

CFAM based �eeted schedule and the IFAM based �eeted schedule are compared, by computing

the assignment cost and the revenue generated by each �eeted schedule.

5 Computational results

The �eet assignment models were implemented in C++ and solved using COIN-OR solver. A mid

size European carrier's network has been used for this study.

Overall, the simulations show that the cluster based approach is more robust and gives better

results compared to the itinerary based approach. However, in some cases with low demand volatil-

ity, the itinerary based approach is unsurprisingly better. The metrics used were also compared.

The results of the destination metric are better than the geographical metric. This is due to the

fact that the destination metric better takes into account the passenger �ows.

6 Conclusion and future directions

In this paper, a new model for the �eet assignement problem is proposed. The introduction of

the itinerary clusters improves the robustness of the �eet assignment model compared to itinerary

based �eet assignment. The future directions involve the evaluation of alternative metrics, the

extension to non pure hub and spoke networks, and the feed of the model by pure cluster based

forecasts.
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1 Introduction

Static user equilibrium traffic assignment lies at the core of a variety of transportation planning and

operations models. When a large number of alternatives are considered, a frequent practice is to

use a sketch network containing a specific region of interest, while assuming unchanged conditions

elsewhere. This allows a very large number of alternatives to be compared in short order, but taking

the ceteris paribus assumption loses important global diversion/attraction effects which occur due

to local changes, and makes it difficult to evaluate the large-scale impacts of the alternatives.

Network contraction provides an alternate approach for rapid equilibrium sensitivity analysis.

The idea is to replace a large transportation network with a smaller one which responds similarly

to changes in input flow. A simple example is compressing two links which are in series into a

single link by simply adding their cost functions. It is often useful to keep a portion of the network

uncontracted (to “zoom in” on an area of particular interest) while contracting the remainder of

the network to reduce computation time.

These transformations, derived formally in the next section, closely resemble techniques used

in the analysis of electric circuits and, indeed, the formulas bear much similarity although derived

from first principles here. Two important distinctions between these two domains are that (1) the

difference in electric potential between two nodes must be the same among all paths, whereas the

travel cost between two nodes must be equal only among used paths; and (2) in transportation

networks, travelers departing different origins are distinct and may see different “potentials.” This

distinction vanishes if we consider a single origin at a time, and restrict attention to the set of

minimum-cost paths rooted at that origin. More precisely, given an origin u, we only consider the

subgraph Bu = (N,Au) where Au = {(i, j) ∈ A : tij − (πj −πi) = 0 and π is a set of shortest-path
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node potentials from u. Following Dial (2006), we term this an equilibrium bush.

Within an origin’s equilibrium bush, all paths between two nodes have equal travel cost, and

we seek to analyze how the equilibrium travel cost will change between each origin and destination

either as a function of the input flows, or as a function of changes in link parameters in uncontracted

regions of the graph. We assume that (1) the equilibrium bush remains unchanged throughout the

range of input demands, and (2) the network is planar.

2 Network Transformations

1 2

3

1 2

3

*

Figure 1: Schematic of the delta-Y and Y-delta transforms.

The following notation is used: let

tij(xij) represent the travel time on

link (i, j) when the demand for travel

on this link is xij , and let Tij(Xij)

represent the equilibrium travel cost

between any two nodes among all

paths connecting these nodes, as a

function of the total demand for travel between these nodes (regardless of destination). In par-

ticular, we are interested in the derivatives T ′ij(Xij); if we have a “base” equilibrium solution,

we know Xij and Tij , and can make the approximation Tij(X) ≈ Tij(Xij) + T ′ij(Xij)(X − Xij).

Higher-order approximations naturally follow if further derivatives are known. Our goal, therefore,

is to derive T ′ij for a variety of network configurations. This necessarily involves calculating the

derivatives in equilibrium link flows αk` ≡ dxk`/dXij as demand between i and j varies.

Series Consider two links (i, j) and (j, k) in series, with cost functions tij(xij) and tjk(xjk), and

let x be the demand for travel between i and k. Then xij = xjk = x, and the equilibrium

travel time Tik between i and k is clearly (tij + tjk)(Xik), so T ′ik = (t′ij + t′jk)(Xik). From

this point on, dependence of link travel times on flows is suppressed for brevity.

Parallel Consider two links (i, j)1 and (i, j)2 in parallel, with cost functions t1ij and t2ijBecause

the bush is in equilibrium we have t1ij = t2ij . Furthermore, as Xij changes, x1ij and x2ij will

change such that the equilibrium is preserved, that is,

dTij
dXij

=
dt1ij
dXij

=
dt2ij
dXij

⇐⇒
dt1ij
dx1ij

α1
ij =

dt2ij
dx1ij

α2
ij (1)

Furthermore, by conservation of flow we have α1
ij + α2

ij = 1, so by substitution α1
ij =

(t2ij)
′/[(t1ij)

′ + (t2ij)
′] and

dTij
dx

=
(t1ij)

′(t2ij)
′

(t1ij)
′ + (t2ij)

′ (2)
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Delta-Y Consider an undirected cycle of three nodes with an empty interior (Figure 1). Without

loss of generality let these be nodes 1, 2, and 3, and let their node potentials satisfy π1 ≤

π2 ≤ π3. The arc orientations must then be as indicated as in the figure. For brevity,

let ∆1, ∆2, and ∆3 represent the marginal inflow to the cycle; that is, α12 + α13 = ∆1,

−α12 + α23 = ∆2, and −α13 − α32 = ∆3. These equations are linearly dependent, as flow

conservation demands. However, the requirement that the bush remain at equilibrium also

requires α13t
′
13 = α12t

′
12 + α23t

′
23. This provides a third, linearly independent equation to

solve for α12, α13, and α23. Omitting the details, we have

α12 =
t′13∆1 − t′23∆2

t′12 + t′13 + t′23
α13 =

t′12∆1 − t′23∆3

t′12 + t′13 + t′23
α23 =

t′12∆2 − t′13∆3

t′12 + t′13 + t′23

with a pleasing symmetry. Thus, the differential change in equilibrium costs are given by

dT12 = t′12
t′13∆1 − t′23∆2

t′12 + t′13 + t′23
dT13 = t′13

t′12∆1 − t′23∆3

t′12 + t′13 + t′23
dT23 = t′23

t′12∆2 − t′13∆3

t′12 + t′13 + t′23

Now, consider the Y junction in Figure 1. The geometry of this junction forces α1∗ = ∆1,

α2∗ = ∆2, and α∗3 = −∆3. If we choose delay functions t1∗, t2∗, and t∗3 such that

t′1∗ =
t′12t
′
13

t′12 + t′13 + t′23
t′2∗ =

t′12t
′
23

t′12 + t′13 + t′23
t′∗3 =

t′13t
′
23

t′12 + t′13 + t′23

it is easily seen that the change in equilibrium costs is identical to that in the delta.

Y-Delta The delta-Y equations can be inverted to reverse the previous transformation, allowing

one to replace a three-pronged intersection with an equivalent triangular component. The

reader can verify that the following equations indeed accomplish this inversion.

t′12 =
t′1∗t
′
2∗ + t′1∗t

′
∗3 + t′2∗t

′
∗3

t′∗3
t′13 =

t′1∗t
′
2∗ + t′1∗t

′
∗3 + t′2∗t

′
∗3

t′∗2
t′23 =

t′1∗t
′
2∗ + t′1∗t

′
∗3 + t′2∗t

′
∗3

t′∗1

3 Demonstration

This section demonstrates the above procedure on the well-known Braess network as portrayed in

Sheffi (1985). Figure 2 shows iteratively how the contraction is performed: panel (a) shows the

equilibrium solution on the initial network with a travel demand of 6 between nodes 1 and 4, along

with link travel times and travel time derivatives. Panel (b) shows the link travel time derivatives

alone; panel (c) shows the derivatives after applying a delta-Y transform to nodes 2, 3, and 4;

panel (d) shows the result of series transformations to nodes 1, 2, and * and 1, 3, and *; panel (e)

shows the result of a parallel transformation among nodes 1 and *; and panel (f) shows the result

after a final series contraction (note that Feo and Provan (1993) show that reduction to a single

link is always possible, as long as there is just one origin and one destination), demonstrating that

the derivative of the equilibrium travel time between nodes 1 and 4, with respect to travel demand,

is 31/13. To verify this, Figure 3 plots the equilibrium travel time for a variety of travel demand
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Figure 2: Application to the Braess network.

values; the resulting graph is piecewise linear due to the cost functions used in this network. When

travel demand lies in the interval between 40/11 and 100/9, the approximation is exact. More

comprehensive demonstrations, including multiple origins and destinations, is included in the full

paper.
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Figure 3: Application to the Braess network.
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1 Introduction 
The Vehicle Routing Problem (VRP) is at the heart of distribution problems as it addresses how the 

demand of customers can be satisfied at minimal cost by homogeneous vehicles located at the 

intermediate storage facility. This paper addresses two of the most common extensions of the VRP 

occurring in practice: the presence of service time windows at customers and the use of heterogeneous 

vehicles. The objective of the so-called Fleet Size and Mix Vehicle Routing Problem with Time 

Windows (FSMVRPTW) is therefore to find a fleet composition and a corresponding routing plan that 

minimizes the sum of routing and vehicle costs. For recent literature, see [1], [2], [3], [4]. Here we 

describe a new approximate search strategy that is combined with recent threshold accepting 

metaheuristic by [4]. 

 
2 Solution Method 
The applied heuristic solution method consists of three phases and a pre-processing step. The pre-

processing step is used to define a limiting value for each customer point, specifying a radius 

(distance) in which the c closest customers are located.  

In the first phase, a single initial solution is generated with a modification of the savings 

heuristic [5]. To save computation time, the search is restricted at two levels. First, the mergers are 

limited to the p closest routes only. The geographical proximity of the routes is based on the Euclidean 

distance of the average X and Y coordinates of the customers in the routes. Second, only the c 

customers from route R2 that are closest to the endpoints of route R1 are considered for insertion of 

merging points.  

In the second phase, the route elimination procedure (ELIM) is used to reduce the number of 

routes in the initial solution. ELIM considers all routes of the incumbent solution for depletion in 

random order, until no more improvements can be found with respect to the total cost objective. For a 

given route, ELIM removes all customers, and tries to insert them one by one in the remaining routes. 

Removed customers are reinserted in the p geographically closest neighbouring routes. For a given 
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customer v and geographically close route R2, only insertion positions adjacent to one of the c closest 

customers with regard to customer v are considered. 

In the third phase the search is based on the Threshold Accepting (TA) metaheuristic [6] . The 

basic idea of TA is to allow also local search moves that worsen the objective value, as long as the 

worsening is within the current value of the threshold limit. The TA procedure starts with threshold T 

= 0 (no worsening allowed) and is repeated with that value until a local minimum is reached. If no 

more improvements have been found for a given number of iterations, the threshold is set to a 

maximum value and the search is restarted from the current best solution. At each non-improving 

iteration, the threshold is reduced by TD  units until zero is reached again. 

In each restart, the size of the maximum threshold is controlled depending on the search 

phase. More precisely, in the beginning of the search we allow for potentially large worsenings of the 

objective functions, but this maximum threshold is reduced as the search progresses. After resetting T 

ten times, moves resulting in large worsenings of the objective function are again attempted. In 

addition to the threshold value that controls the acceptance of individual moves, we also control the 

total relative worsening of the solution quality with respect to the current best solution to avoid 

allowing for too many worsening moves. 

To avoid cycling and to speed up the search, we included a simple Tabu Search (TS) method 

that is juxtapositioned with the TA. Within the TS scheme, we record as tabu the arcs connecting the 

first nodes of the route segments of improving local search moves. The tabu status of these arcs forces 

keeping them for a given number of iterations, even if changing them would enable further 

improvements (i.e. no aspiration criteria are used). 

The applied local search operators include a route splitting operator called SPLIT, new 

variants of  ICROSS and IOPT operators and ELIM method described above. The SPLIT 

neighbourhood consists of all solutions that result from splitting a single route in the current solution 

into two parts at any point. We employ the method here in a greedy first-accept fashion. ICROSS 

relocates or exchanges segments of consecutive customers between two separate routes and IOPT 

intra-tour operator is a generalization of Or-opt.  

To speed up ICROSS and IOPT, only geographically close routes and only segments that 

involve the geographically closest customer pairs in the two routes are considered. Instead of 

considering a fixed number of close routes, p, for a given route R1, an analysis step is made in the 

beginning of Phase 3 and after each successful SPLIT move. In the analysis step, ICROSS is applied to 

the p closest routes of each route, starting from the closest and we record to each route the information 

that how many of its closest routes should be considered to find improvements. 

Instead of the traditional first- or best-accept rules based on the objective function only, we 

keep track of the arc frequencies in the obtained solutions during the search. Every time when 

evaluating a new move, we calculate both the total cost value and the sum of the frequencies of the 

new arcs created by the move. This is repeated for all feasible moves of a given neighbourhood. Then, 

the feasible move that improves the total cost value and has the lowest total arc frequency is selected. 
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3  Approximate Search Strategy 
As in most local search based hill-climbing metaheuristics, in the above described method the most 

time-consuming part is the evaluation of the local search moves. To obtain good solutions it often 

requires hundreds or even thousands of iterations. In most of these iterations, worsening of the 

objective function value is allowed. The goal of these worsening moves is to diversify the search and 

escape local minima.  

The suggested approximate search strategy is based on the claim that there is no need to 

evaluate exactly the objective function value of the hill-climbing moves. It even does not matter if 

some improving move is evaluated occasionally as a worsening move or vice versa. It is enough to 

calculate the approximate impact of each move on the objective function value. However, in the 

improvement stage, when T=0, one must evaluate the moves exactly. 

The basic idea of the suggested approximate search strategy is that when T=0, the moves are 

evaluated exactly. Just before setting T to its new maximum value, all local search moves and their 

feasibility are evaluated and the information is stored to memory using a priority queue data structure. 

The objective function values are picked from the queue during the entire hill-climbing phase. To 

avoid moving points that are already relocated, each point is allowed to be moved to another route only 

once during the hill-climbing phase. The feasibility checks are calculated exactly also during the hill-

climbing phase in case the associated routes have changed.  

 

4 Computational Experiments 
The computational experiments are carried out with the benchmark problems suggested by [2]. In 

contrast to Liu and Shen [1], who minimized the sum of all vehicle costs and en route time, we 

consider the sum of all vehicle costs and total distance as optimization objective. The benchmark set 

consists of 768 problems with varying fleet costs, time windows, spatial structure etc. The key issue is 

to demonstrate the impact of the suggested approximation strategy on speed and solution quality. The 

preliminary results indicate that the suggested approach outperforms previous methods with respect to 

both time and solution quality. This indicates that the suggested approximation strategy may well be 

combined also with other metaheuristics and applied to other problems. 
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Shippers, such as industrial or trading companies, regularly use framework agreements in order to

contract out their transportation tasks to motor carriers. In a framework agreement the shipper

arranges with the freight carrier which transportation services he is to take over on what level of

service and at what cost they are to be carried out. In this case, a framework agreement (denoted

as contract in the remainder) comprises the transportation (typically repeated) of a volume of

goods from a pickup point to a delivery point.

The placing of transport contracts by a shipper typically is carried out within a tender. In

practice, such tenders are used to contract out up to 5,000 transport contracts valued up to 700

millon US-$ [3, p. 543]. The process for tendering transportation contracts is carried out, as a rule,

in three steps [3, p. 542]: In the qualification stage (pre-auction stage) the shipper chooses the

carriers that can provide transportation services at a minimum specified quality level. Regularly

applied quality criteria are, for example, solid financial ratios, suitable IT systems for a smooth

exchange of data, a vehicle fleet that is suitable for transporting the goods, or the reliable adherence

to delivery deadlines ([3], [2]). Freight carriers that were able to pass the qualification stage are

allowed to take part in the bidding stage (auction stage). In this stage the qualified carriers submit

bids for the tendered transportation contracts. After that, in the allocation stage (post auction
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stage) the shipper assigns the contracts to carriers based on the bids received and in accordance

with previously established criteria.

In our contribution, we focus on the allocation stage. The outlined scenario inhibits two special

features. Firstly, from the point of view of the carriers participating in the auction, there are

valuation interdependencies between transport contracts. The costs of a contract for a bidder

strictly depend on which other contracts he is awarded in the allocation stage. Complementary

and substitutional interdependencies can be distinguished. If two contracts are complementary,

e.g. because they can be combined to make a busy route, then the costs of the combined execution

of both contracts are less than the sum of the costs that result for each of the contracts when

executed separately (cost subadditivity). As a second feature, the shipper faces a multi-criteria

decision making situation when determining the winning bids. While some of these criteria can

be formulated in a tolerable approximation of practical custom as side constraints, other criteria

are to be considered explicitly as minimization or maximization objectives in order to adequately

reflect practical requirements. Along with the common objective of minimizing total costs, this

contains the goal of achieving the highest possible overall performance quality in carrying out

the contracts. Beyond assuring a minimium level of service within the qualification stage, an

improvement of transportation quality (perhaps at the disadvantage of higher total procurement

costs) can be considered in the allocation stage. The joint consideration of both features in a

simultaneous approach is up to now missing in the literature. A review of existing approaches for

modelling and solving winner determination problems is given by [1]. Among others, [4] as well as

[3] especially deal with winner determination in the transportation domain.

This contribution addresses this gap. In doing so, it proposes a winner determination model

which simultaneously considers interdependent valuations of contracts and multiple decision cri-

teria. This problem, called ”bi-objective winner determination problem of a combinatorial pro-

curement auction based on a set covering formulation” (2WDP-SC), is based on the well-known

NP-hard set covering problem. To express cost-interdependent valuations between contracts, car-

riers are allowed to submit so-called bundle-bids. A bundle-bid comprises one or more transport

contracts. A bundle-bid is indivisible, i.e., a bidder is awarded all of the contracts in a bundle-bid

or none of them. From the set of all submitted bundle-bids, the shipper has to select a subset of

bundle-bids, in a way that every contract is part of at least one selected bundle-bid. The total

procurement costs are to be minimized (first objective function) and the total service quality level

of all contracts is to be maximized (second objective function). With respect to the latter objective

it is assumed, that for each combination of a contract and a carrier a service quality value is given.

This value denotes, how well the respective carrier can execute the according contract.
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To solve the 2WDP-SC, a GRASP-based Pareto-solver is introduced. The proposed algorithm

uses the Pareto dominance principle to determine a set of non dominated solutions. For this reason,

a transformation of the two objective 2WDP-SC into a single objective optimization problem,

e.g., through weighting the objective functions, intendedly needs not be considered. Thus, the

algorithm does not require any individual preference information of the shipper. This appears

especially advantageous in the light of the transportation scenario at hand, since elicitating the

preferences of the shipper is one of the most challenging and most time-consuming activities in the

tendering process [4, p. 249]. To conclude the allocation phase, the shipper finally needs to select

a best solution according to his subjective preferences – however this issue is not treated in the

current contribution. Nevertheless, solution approaches to this problem are already known in the

literature (e.g. [5]).

To assess the performance of the proposed GRASP-based Pareto solver numerical benchmark

tests are performed with the aid of specifically generated test instances. An extension of test

instances known in the literature, e.g., for the set covering problem, seemed inappropriate, as

these instances do not reflect some major economic features of the scenario. The GRASP-based

Pareto solver is compared to a genetic algorithm and an exact branch-and-bound approach.
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1 Introduction

Debris is the waste generated after the strike of a natural or man-made disaster, such as hurricanes,

earthquakes, terrorist attacks, etc. The amount of debris generated by some large-scale disasters is

equivalent in volume to years of normal solid waste production in the affected areas [7]. Hurricane

Katrina (2005) generated the greatest amount of debris than any other disaster in the United States,

more than 100 million cubic yards (CY) (previously, Hurricane Andrew (1992) had generated 43

million CY) [2]. More recently, Hurricane Ike (2008) generated 19 million CY, enough to fill a

football field stacked 2 miles high [5].

Debris removal is costly and it is often a long and complicated process requiring the careful

consideration of both short term and long term effects on people’s health and safety, and the

environment. In the short term, the main consideration is the clearance of debris to allow for the

transportation of relief resources (health care workers, personnel from relief agencies, relief items,

etc.) and access to disaster areas or critical facilities for lifesaving activities [2]. Given that the

debris may contain toxic or hazardous waste, one needs to weigh the benefits of rapid clearing with

the long term impact “to ensure that their management (e.g., landfilling) would not pose a future

threat to human health or the environment” [2].

With the goal of enabling the rapid deployment of relief efforts and at the same time diminishing
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the long term impacts of post-disaster generated debris, a debris management plan that considers

debris clearance, collection, and disposal operations should be developed. In the aftermath of

Hurricane Katrina, the Federal Emergency Management Agency (FEMA) recognized the need for

developing new strategies and plans for debris removal and management [4] and made available

the main guidelines for such a plan through its Public Assistance Debris Management Guide [3].

However, FEMA Debris Management Guide focuses on ‘what’ to do, rather than on ‘how’ to do

it. Hence, models and decision support tools are needed to assist agencies and communities in

planning for and executing debris clearance missions.

Most of the literature debris management focuses on high level process-related aspects. [7]

provides general guidelines, similar to those from FEMA, including allocation of responsibilities,

public policy definitions, administrative procedures, etc. [6] discusses the development of strategic

management for earthquake debris in the city of Tehran, carries out a SWOT (Strengths, Weak-

nesses, Opportunities, and Threats) analysis to assess the actual and potential debris management

capacity, and prioritizes strategies for debris forecast estimation, proper design of construction,

recycling and reuse of debris, etc. [1] provides a survey of disaster related research and identifies

debris cleanup as a major logistics recovery problem and an important future research direction.

Debris related operations is a complex problem with multiple interrelated sub-problems. FEMA

classifies debris operations as follows: debris forecasting, sourcing strategy, debris management sites

(DMS) planning and operation, debris collection during disaster response and recovery phases, and

debris reduce/recycle and final disposal. FEMA develops guidelines for how to handle a disaster

situation, but it is the responsibility of the local governments to carry out those guidelines into

strategic plans and operations. Agencies such as the United States Army Corps of Engineers

(USACE) have developed tools for debris forecasting for natural disasters, implemented some

common sourcing contracts, and designed DMS layouts [3]. Local authorities often contract with

private firms to ensure the availability of adequate resources for the timely clearance and removal of

debris in their areas. They also maintain monitors in the field as eyes and ears for the operation and

make tactical and operational decisions, for example, by assigning regions to different contractors,

choosing the DMS sites, and providing road priorities for clearance.

Our research in this area has three main components: (i) debris clearance, (ii) debris collection,

and (iii) debris disposal, which correspond to the response, recovery, and the post-recovery phases

of the disaster timeline. We also study the interactions between these three components. Next, we

provide a summary of our current models and results.
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2 Debris Clearance - Response

The response operations during a disaster comprise all the activities which take place during, or

immediately after, a catastrophe occurs and which are aimed to provide relief or prevent additional

damage. Such operations include the mobilization of search and rescue teams, ambulances, fire

trucks, etc. for rescuing trapped people, transporting injured individuals to receive medical atten-

tion and so on; the transportation of relief supplies (food, water, clothes, etc.) to people in need;

and the clearance of debris to reduce its impact on transportation and access to critical facilities

(by clearing routes) in disaster areas.

One of the main decisions in debris clearance is to find the best sequence of roads/areas to

clear in order to facilitate the flows of relief supplies and search and rescue crews throughout the

network and to enable access to critical facilities such as hospitals and fire stations. We showed that

even the simplest special cases of the problem, on planar, single stage, uncapacitated networks,

are NP-Hard (by reductions from the knapsack problem). Hence, identifying strong lower and

upper bounds on the objective function value is a challenging but important task. Generalizations

(e.g., with the addition of fairness constraints) or multistage extensions of related combinatorial

optimization problems (such as prize collecting steiner tree) are not well studied.

We model this problem as a multi-period network capacity expansion problem, which takes as

input an estimation of the current capacity and the condition of the roads (blocked or clear), as

well as the available supply and required demand of relief items. Note that, demand and supply

are not as well defined as in a regular network problem, where for instance demand is related to

the expected sales of a product, and supply capacity is related to a production capacity. In our

preliminary model we use the number of vehicles as a common unit for measuring and matching

demand, supply, and arc (i.e., road and street) capacities. We assign a penalty for each unit of

unmet relief demand during each period of time. This penalty could vary with the type of relief,

location of the demand, and the time when the demand is unmet. This has the purpose of reflecting

the relative importance of demand, as in the case of route prioritization during the current debris

collection planning process. The objective of the model is to minimize a penalty function for unmet

relief demand. For every period, the model decides which of the remaining blocked road segments

to clear from debris.

New demand and supply could arrive dynamically at any period and we consider two generic

types of demand based on their accumulation pattern. The first type is the demand that accumu-

lates through time, i.e., if it is not met completely during the period where it originates, it carries

over to the next period; the second type is the demand that does not accumulate. Examples of

the first case are medicines or medical attention, while the second case include food and water.

After developing a mixed integer program (MIP) for the above problem, we have explored the

results obtained from the linear programming (LP) relaxation of our model using some randomly
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generated instances as well as an instance based on real world data. Furthermore, we developed

heuristics and compared their performances. Finally we tested the effect of policy alternatives on

the efficiency of the operations.

3 Debris Collection - Recovery

Debris related recovery operations begin “after the emergency access routes are cleared and the

residents return to their homes and begin to bring debris to the public rights-of-way” [3]. Recovery

operations often utilize a combination of own force and equipment, and contractor services. Gener-

ally, price unit contracts are used, which establish a fixed cost for each unit (ton, truckload, cubic

yard, etc.) of a particular debris collected, and they are executed through a load ticket system,

i.e., keeping detailed track of each loading task executed by a registered truck. Hazardous waste

and white goods are the two most common types of debris that need special handling, requiring

specialized trucks and contractors.

In contrast with the clearance stage, where the activities are driven mostly by the urgency of

enabling the emergency operations, during the collection stage the focus is on collecting debris

efficiently, i.e., minimizing the costs and time of the overall operations. Much of the work in this

stage is done by a variety of contractors, and their main cost relates to the travel distances between

pick up sites and debris collection sites. The contractors are reimbursed based on the quantity

and the content of the debris they collect. Hence, assigning collection zones to contractors to

assure that the profits are fairly balanced across contractors, while maintaining efficiency, is an

important consideration. By the beginning of this stage the roads have been cleared and there

has been time to accumulate greater information on the debris through first hand accounts from

contractors. We develop a decision tool to be used by local authorities for identifying the location

of the debris collection sites and allocating the affected area among the contractors in a fair manner

while ensuring the timely removal of the debris. Here the fairness to the contractors is equivalent

to ensuring that the revenue they generate minus the cost they incur due to moving their assets

for collecting the debris is similar for each contractor per asset they provide for the operation.

4 Debris Disposal

Debris disposal refers to the activity of taking the collected debris from collection sites to its

final destination. Landfills are common final destinations; however, since the debris quantity may

be large and landfill capacities are limited, reduction, recycling, and recently reuse strategies are

considered as well. Through mathematical models, we analyze the effect of the decisions made in

the first two stages on disposal operations.
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1 Extended Abstract 
 

In this paper, in the land use and transport interaction framework, the type of link (a correlation or 

causality) between the built environment and the travel behavior has been investigated: the relationship 

between neighborhood characteristics and travel behavior is taken into account to understand if 

attitudes and neighborhood preferences influence the residential location choices and travel behavior. 

It could be useful to examine, whether neighborhood design influences travel behavior or whether 

travel preferences influence the choice of neighborhood. This could lead to better understand the effect 

of the transport policies. A lot of studies (Hansen 1959, Lowry 1964, Nuzzolo 2006, Cao, Mokhtarian 

and Handy 2008) have verified that a suitable transport planning leads to an urban economics 

development well-matched with the land use aims (e.g. Road Pricing, Congestion Charge and Eco-

pass). The literature in transport research underlines the tools to catch the energetic sustainable town; 

these tools can be divided into 2 different objectives:  

1) minimize the total travel time on the road network (in other terms shorten home-work distance)  

2) maximize the modal split on behalf of public transport.  

In literature it is still not fully known which are the attitudes for the residential location choice (R.L.C.) 

and if between these attitudes even the travel preferences are included, and how this influences the 

R.L.C.. To investigate if there is a casuality or an effect between the two choices (R.L.C. and Travel 

choice) a survey in order to calibrate a nested logit model in the Rome metropolitan region has been 

conducted. In the paper, after a literature review of the land use transport models, the Experimental 

Design Theory will be presented and the main effect of a good survey will de discussed. It will be 

shown how to investigate the problem and which are the main attitudes in travel behavior and 
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residential location choice in Rome. The Fig.1 marks the sub-area of the land use and transport system 

and how they are in connection. 

 

Fig.1 – Land Use Transport interaction. 

 

The cities in Italy are changing according to the decentralization criteria even for the 

household economic constraint, assuming a feature as different as possible from the old compact urban 

centre; new roads grow up; the buildings and the blocks are divided by streets of more than two lanes 

per direction and this gives an increase of the total travel time on the network for the home-work 

transfer. It’s easy to prove  that the residential and activities replacing follows the accessibility increase 

or decrease. The aim of the paper is to individuate the main attributes of the utility function of the 

R.L.C. to evaluate the different transport policies measure to build the town to serve with an optimal 

transport solution. In order to obtain a result it will be necessary to make a survey on the population 

with an optimal experimental design - efficient designs - in order to understand the behavior of the 3 

millions Roman residents with the minimum sample and with the minimum error. 

Through the survey it is possible to explore the connections among residential accessibility, 

employment, income, and auto ownership and it will be possible to focus the attention on the potential 

discrete choice model which will be able to predict the residential choice function of the different 

transport policies. A first survey has been made and the first results are shown in tab.1 and tab. 2: 

Tab.1 

Age Age of House buyer in 

Rome 

Number of interviews made in respect of the 

latent class 

18 – 29 16,33% (119)      

30 – 39 53,06% (364)      

40 – 49 18,37% (126)      

50 – 60 8,16% (56)     

oltre 60 4,08% (35)  
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Tab.2 

 

Ranking Predominant attributes for the R.L.C.  Average μ 1-10 σ s.d. Respondents 

1 House Price  8 2,453  602 (86%) 

3 House Size 7 2,145  546 (78%)  

6 Distance from the city centre  7 2,468  448 (64%) 

5 Distance from the work place 7 1,856  462 (66%) 

8 Distance from the subway 8 1,414  392 (56%) 

10 Shops in the neighborhood  7 2,006  350 (50%) 

7 Public Services in the neighborhood  8 1,317  420 (60%) 

4 Parking available in the neighborhood 8 1,749  476 (68%) 

2  Neighborhood security  9 2,063  546 (78%) 

9 Park in the neighborhood 8 1,600  364 (52%) 

11 Distance from the parents house 5 2,375  266 (38%) 

12 Privacy 8 1,499  252 (36%) 

13 Other 4 2,600  28 (4%) 

 

With the results of this pre-survey a choice tasks survey is calibrated through the 

Experimental Design Theory. Later through the “Biogeme” software, the nested utility model 

parameters  are calibrated and with the statistical test the validity of the results are estimated. For this 

study a Nested Logit Model is used (Fig.2). 

Fig.2 – the structure model            Fig.3 – Johnson distribution  
 

 

 

 

 

 

 

 

 

 
In Fig. 3 the hypothetical distribution of the parameters after the calibration with biogeme is 

shown. For the parameters calibration even the normal, log-normal and Johnson distribution for the 

latent class are taken into account in order to view the differences between the outputs and underline 

which distribution better represents the real R.L.C., even trying to build a Mixed Nested Logit Model.  

 
From these considerations  it is possible to understand that the paper is focused on the ability 

to understand if the first level of the nested logit model is the travel behavior or the Residential 

Location Choice. In the first case the problem is more complicated to investigate because it is strictly 

necessary to know the travel behavior attitudes and this is only possible by making a longitudinal 

survey over the population (a survey from t=t0 to t=t1). In this case the survey should be made on a 

sample of people that are changing their home in order to catch the differences between the pre-travel 

 )](/[)](/[][ rarpjajpjp
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behavior and the post travel one. If this difference in every case  is not over a sure amount, it means 

that the travel behavior attitudes are more strong than the residential location choice. At this point it is 

easy to see that the paper tries to understand if the predominant model is the first or the second one.  

 

If it is possible to know through a first longitudinal survey,  if it is true the first or the second 

model; and through a second survey to find the values of the Θ, then it will be possible to calibrate the 

model and  to predict the behavior of the house buyer and to build the environment in order to 

minimize the bad effect in terms of total travel time on the network and pollution in the environment. 

More attention have to be paid  on the Θ study: a) in order to realize a nested logit model, it will be 

possible to have a single value cross the population (in this case the number of surveys will be small);  

b) in order to realize a mixed nested logit model it is necessary to carry out a large survey because a 

continue function across the population will be given on the Θ. 
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1 Introduction

Nowadays, in a context of deregulation, overcapacity, increased competition and higher costs,

companies need to apply a good pricing to their products or services. However, this is one of the

most complex decisions any company is facing. First, customers play an important role in that

process, because they react to prices by purchasing - or not - the products. They are looking

for good products at lowest prices. But the reaction of competitors is also important. Indeed, as

they influence customer choice, they impose practical limitations on pricing alternatives. Hence,

companies have to find the best possible prices, low enough so that a large number of customers

buy their products, and at the same time high enough to generate large revenues.

We deal with a particular case of a pricing problem, that we call the Product Pricing Problem

(PPP), and that consists in determining the prices for a set of new products to be introduced in

the market, while taking into account the prices of similar products already present on the market.

Each consumer will either buy one of the company products, either go to the competition. In

terms of formulation this problem is equivalent to the Network Pricing Problem with Connected

Toll Arcs (GCT-NPP), used among other in highway pricing. Indeed, (GCT-NPP) consists of

finding the tolls that the company should impose on the highway such as to maximize its revenues.

Then, reacting to the tolls, the network users travel on shortest paths from their origins to their

respective destinations, i.e. a sub-path of the highway or the toll free path. As one doesn’t assume

that tolls are additive, each toll sub-path can be priced as independent product (see [3]). This

problem has been studied in [1], [2], [3], [4], [5], and it has been shown to be NP-hard ([5], [2]).

Unfortunately, until now numerical results show that the bad quality of the linear relaxation and

the huge number of variables imply that no commercial solver is able to solve big size instances.
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In this paper we propose a column generation method based on an non linear formulation of

(PPP). After a judicious Dantzig-Wolfe decomposition, we deal with a linear reformulation of the

problem and we propose a polynomial algorithm for solving method for the sub-problem.

2 (Re)formulations and column generation

Pricing problems can easily be formulated thanks to bilevel programming. However, as shown in

[4], we can reformulate (PPP) as a one-level mixed integer program. The formulation given below

is the one from which we obtain the Dantzig-Wolf reformulation and start the column generation.

As (PPP) is equivalent to (GCT-NPP), we can transpose this problem in a network where

products are represented by toll arcs and consumers by commodities that have to choose between

using one of the toll arcs (a product of the company) or using a toll free path (representing the

competition or a reservation price). Consider a multi-commodity network defined by a set of nodes

N , a set of arcs A ∪ B and a set of commodities K, each endowed with a demand ηk. Let A be

the subset of arcs a on which tolls ta can be added to the original fixed costs vector c. Let B be

the complementary subset of toll free arcs, for which the fixed cost vector c is also given. The cost

vector c represents here the "penality" (or cost in a liberal sense) that each commodity attributes

to each product. We assume that for a given taxation policy t = (ta)a∈A, the commodities travel on

the shortest paths (it means the path minimizing the penality of the chosen product) with respect

to the tolls and fixed costs on the arcs . Ever since, (PPP) consists in finding a taxation policy t

maximizing the revenue of the company. Beyond the variables (ta)a∈A, we introduce the variables

xk = (xk
a)k∈K,a∈A which specify the flow of each commodity (i.e. xk

a = 1 if the commodity k uses

the toll arc a, 0 otherwise), leading to the following non linear formulation, denoted by (HPNL) :

max
∑

k∈K

∑

a∈A

ηkxk
ata (1a)

∑

a∈A

(ta + (ck
a − ck

od))x
k
a ≤ tb + (ck

b − ck
od) ∀k ∈ K, ∀b ∈ A (1b)

∑

a∈A

xk
a ≤ 1 ∀k ∈ K (1c)

(ta + ck
a)xk

a ≤ ck
odx

k
a ∀k ∈ K, ∀a ∈ A (1d)

xk
a ∈ {0, 1} ∀k ∈ K, ∀a ∈ A (1e)

ta ∈ [0, Na] ∀a ∈ A (1f)

where Na = maxk{Mk
a } with Mk

a = max{0, ck
od − ck

a}. Mk
a represents the maximum toll that the

company can add on the arc a such that it stays attractive for the commodity k. Na is then the

maximum toll on arc a to stay attractive for at least one commodity. The objective function (1a)

imposes to maximize the company revenue. With the group of constraints (1c), we impose that each

commodity chooses exactly one path (one of the toll arcs a or the toll free path okdk). The shortest

path constraints (1b) come from
∑

a∈A(ta + ck
a)xk

a + ck
odx

k
od ≤ tb + ck

b where xk
od = 1 −∑

a∈A xk
a.

These constraints impose that the path chosen by the commodity k is the shortest one. Note
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that constraints (1d) are redundant but are useful when solving the sub-problem in the column

generation process. At last, (1e) and (1f) specify the variables domains.

In this work, we propose a column generation approach for this formulation. The particularity

of our developments resides in the fact that we apply such a solving method to an non linear

formulation. Our choice of Dantzig-Wolfe decomposition allows us to reformulate the problem as

a linear program (the master problem) using convex combination coefficients as new variables.

Let us define Xa = {(xk
a, ta) : (1d), (1e), (1f)}, ∀a ∈ A. Then, if we denote by (xk,j

a , tja)j=1,...,J

the vertices defining Xa, we can see the variables vector as a convex combination of them :

∀a ∈ A :


xk

a

ta


 =

∑

j

λj
a


xk,j

a

tja


 = λ1

a


xk,1

a

t1a


 + λ2

a


xk,2

a

t2a


 + ... + λJ

a


xk,J

a

tJa




with
∑

j=1,...,J λ
j

a = 1 and λj
a ∈ [0, 1], ∀j ∈ {1, ..., J}. This leads us to the following reformulation :

max
∑

k∈K

∑

a∈A

∑

j

λj
aηkxk,j

a tja

∑

a∈A

∑

j

λj
a(tja + (ck

a − ck
od))x

k,j
a ≤

∑

j

λj
bt

j
b + (ck

b − ck
od) ∀k ∈ K, ∀b ∈ A ↔ δk

b ≥ 0

∑

a∈A

∑

j

λj
axk,j

a ≤ 1 ∀k ∈ K ↔ γk ≥ 0

∑

j

λ
j

a = 1 ∀a ∈ A ↔ µa ∈ R

λj
a ∈ [0, 1] ∀j, ∀a ∈ A

Afterwards, we apply a column generation on the linear relaxation of this reformulation (LRMP),

called Master Problem (MP). The corresponding Sub-Problem, aiming at maximizing the reduce

cost at each iteration of the Simplex when solving (PM), can be decomposed by arc, is denoted by

(SPa) and is the following, where δk
b , γk et µa are the dual variables of (LRMP).

max
∑

k∈K

ηkxk
ata −

[ ∑

k∈K

∑

b∈A

(ta + (ck
a − ck

od))x
k
aδk

b −
∑

k∈K

δk
ata +

∑

k∈K

xk
aγk + µa

]

(ta + ck
a)xk

a ≤ ck
odx

k
a ∀k ∈ K (3a)

xk
a ∈ {0, 1} ∀k ∈ K (3b)

ta ∈ [0, Na] (3c)
In the following, we propose a polynomial method to solve (SPa). It sums up to find the maximum

of a sum of piecewise linear functions with a finite number of breakpoints. Indeed, after rearranging

of the terms and omission of the index a, (SPa) becomes :

sa = max

z︷ ︸︸ ︷( ∑

k∈K

xk
[
dkt− ek

]
+ fkt

︸ ︷︷ ︸
zk

)
−µ

(ta + ck
a)xk

a ≤ ck
odx

k
a ∀k ∈ K (4a)

xk
a ∈ {0, 1} ∀k ∈ K (4b)

ta ∈ [0, Na] (4c)

where we define dk = ηk−∑
b∈A δk

b , ek = (ck
a−ck

od)
∑

b∈A δk
b +γk, fk = δk

a , µ = µa. Then dk, ek, µ ∈
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R, fk ≥ 0. When solving (SPa), a new column will be added in (LRMP) if and only if z > µ (i.e.

iff the reduce cost sa is positive). We derive a polynomial algorithm to compute the optimal

value of z which is described below and which is based on the observation that zk are piecewise

linear functions. Indeed, if t > Mk
a , the arc a is more expensive than the toll free path for the

commodity k, then xk
a = 0. Hence zk = fkt, which is an increasing function in t going through

(0,0). Reversly, if t ≤ Mk
a , the arc a is interesting with respect to the toll free path. We have to

find maxxk∈{0,1}[xk(dkt− ek)] + fkt. The value of xk
a will then depend on the sign of (dkt− ek). If

it is positive, we have an interest to put xk
a = 1, otherwise, xk

a = 0. More precisely, if t > ek

dk , xk
a = 1

and zk = (dkt− ek)] + fkt, which is a linear (increasing or decreasing) function in t going through

(0,−ek). Otherwise, xk
a = 0 and zk = fkt, which leads us to the same case as t > Mk

a .

The function z =
∑

k∈K zk is then also a piecewize linear function whose breakpoints are all

those of the functions zk, that is a subset of {0, ( ek

dk )k∈K , (Mk
a )a∈A,k∈K , Na}. Moreover, we know

that the maximum of such a function is reached at one of it breakpoints. The solving algorithm is

then the following one :

step 1 For each k ∈ K, compute the set of zk-breakpoints Bk, where |Bk| ≤ 4.

step 2 Compute the set of z-breakpoints B =
⋃

k Bk and remove the possible duplicates.

step 3 For each b ∈ B and for each k ∈ K, compute zk(b) and add this value to z(b).

step 4 The optimal value of t = argmaxb{z(b)} and the optimal value of xk is known thanks to

the definition of the function zk.
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1 Introduction

In Europe, each Air Navigation Service Provider (ANSP) finances its activities by charging all

airlines using its airspace. In particular, it imposes to each flight the ‘en route charges’ which,

according to European regulation EC 1794/2006, are calculated as the product of the distance

flown by the flight within its national territory, the Maximum Take-Off Weight of the aircraft

performing the flight, and a national Unit Rate which is annually fixed by it. As these charges

usually account for around 10-20% of the cost of a flight, they can influence the route choice:

airlines may decide to fly longer to avoid countries with high Unit Rates [2]. Currently in most

states the Unit Rate is set to allow the ANSP to completely recover all the costs it incurs. However

in the next years ANSPs, which nowadays are mostly public service agencies, are likely to move

toward becoming private service providing companies [1]. In this case, an ANSP would like to fix

its Unit Rate to maximize its revenues.

In this paper we show that this optimal Unit Rate value can be identified through a Network

Pricing Problem (NPP) formulation in the form of Bilevel Programming (see [3]) where the leader

(i.e., the ANSP) owns a set of arcs (the airways in its national airspace) and charges the commodi-

ties (i.e., flights) passing through them. Flights have a rational behavior and look for the minimum

cost path through the network. As Unit Rate values are decided once per year (in November) and

are valid for the following year, here we analyze the strategic airline route choices, i.e.,when short-

term unexpected events like weather conditions or airspace congestion are not yet considered. We
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prove that the NPP approach to fix the charge on a single toll arc (see, e.g., [3]) can be extended

to our case where the charge on each arc is proportional to a constant. In fact, as the Unit Rate

is unique for each country and the charge to be paid on an arc linearly depends on it, the leader

has to decide on this single value only. Our preliminary findings show that flight travel choices do

depend on the Unit Rate value set by the ANSP and identify the revenue-maximizing Unit Rate

value.

2 Mathematical Model and Computational Results

We consider the set A of toll arcs, i.e., a flight is charged by the ANSP when passing through any

arc of A. Let N be the set of all endpoints of the arcs in A. We denote as (i, j) ∈ A the generic

toll arc where both i and j belong to N . If K is the set of all the commodities, the charge or toll

to be paid by the generic flight k ∈ K is equal to the product of the Unit Rate T fixed by the

ANSP, the distance li,j of the arc (i, j) and the factor wk depending on the Maximum Take-Off

Weight of the aircraft performing the flight. If ok and dk are the origin and destination points of

flight k ∈ K, respectively, we denote as d(ok, i) the minimum cost path from origin ok to node

i for all i, k ∈ N × K and as d(j, dk) the minimum cost path from node j to destination dk for

all j, k ∈ N × K. In this way we represent the portion of flight which is performed outside the

airspace controlled by the ANSP. In addition we consider the possibility for each flight to reach

its destination without crossing any arc in A. This toll free path should exist for each commodity

to guarantee an upper bound of the Unit Rate that the leader can impose on its arcs. We denote

as rk the cost of the minimum cost toll free path. We finally denote as ck the unit cost of flight

k which takes into account all other flight-related costs (e.g., fuel, maintenance and crew costs)

besides the en route charges.

The Route Charges Pricing Problem (RCCP) can be written as:

max
T,x

T ∗
[∑

k

∑
i,j

xk
i,j li,j wk

]
(1)

T ≥ 0

argmin
x,y

∑

k

{∑
i,j

[
d(ok, i) + li,j(c

k + Twk) + d(j, dk)
]
xk
i,j + rkyk

}
(2)

∑
i,j

xk
i,j + yk = 1 ∀k ∈ K (3)

xk
i,j ∈ {0, 1} ∀i, j, k ∈ N ×N ×K

yk ∈ {0, 1} ∀k ∈ K

where T is the nonnegative decision variable representing the Unit Rate fixed by the leader and

holding on all toll arcs, xk
i,j is a set of binary variables equal to 1 if arc (i, j) is chosen by commodity

k and 0 otherwise, and yk is a set of binary variables equal to 1 if the toll free path with cost rk is

chosen by commodity k, 0 otherwise. The leader chooses the Unit Rate value T which maximizes
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its revenue (Equation 1), and knows the reaction of the followers: each commodity considers all

possible paths between its origin and destination, and chooses the minimum cost path (Equations

2 and 3). As there is just one decision variable T at the leader level, the bilevel problem can be

solved through the following procedure:

1. For each commodity, we calculate the costs for all possible path between its origin and its

destination (Equation 2). As the costs of the toll arcs depend on T , we identify the values of

T where the commodity has convenience in changing its path choice. We obtain a piecewise

linear concave function, bounded at the upper limit by the toll free path rk, Figure 1(a).

2. The leader’s revenue for a single commodity is a non-continuous function, linear in each

interval of T previously determined, Figure 1(b).

3. The above steps are repeated for each commodity to find all significant T values. Finally

for each T , the leader’s total revenue is determined as the sum of the revenues from each

commodity, Figure 1(c). It is then straightforward to identify the Unit Rate value which

maximizes the leader’s revenues.

(a) Cost for one commodity (b) Leader’s revenue for one comm (c) Total leader’s revenue

Figure 1: Computational procedure - Functions on T

We delineate a preliminary case study considering a few commodities flying over a central Eu-

ropean country. The network topology and arc distances for 10 Origin/Destination pairs have

been extracted with the aid of the ‘System for traffic Assignment and Analysis at a Macroscopic

level’ (SAAM) software relying on actual flight data from 29 June 2007. We choose seven different

types of aircraft, which are commonly used for European flights. We then derive all other flight

cost data from standard figures publicly available. We finally solve the RCCP as previously de-

scribed. Based on the available commodities, Figure 2 displays the revenue function for this central

European ANSP and spots the Unit Rate value which maximizes its revenues.

3 Conclusions

This paper formulates a Network Pricing Problem addressing the case where an authority con-

trolling a set of arcs fixes a unique value such that any commodity traversing these arcs has to
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Figure 2: Preliminary example - Revenue of the ANSP

pay a toll proportional to this common value. This framework depicts the way most European

ANSPs are likely to behave in the near future when they determine the Unit Rate values which

maximize their revenues. In fact, an airline flying through an airway under the responsibility of a

given ANSP has to pay to it the so-called en route charges, and according to European regulations

these charges are proportional to the Unit Rate set by the ANSP. By exploiting the structure of

the problem, we propose an exact algorithm to compute the optimal Unit Rate relying on real air

traffic data and realistic flight cost figures. The algorithm is polynomial except for the first step,

which enumerates all possible paths in the network for a given origin/destination pair. However,

the air network has a fairly simple topology, meaning there are only a few different routes possible

for each flight. Our results also suggest that the Unit Rate can indeed be an instrument for an

ANSP to modify the path choice of commodities.

We are currently addressing the ‘competition’ between more ANSPs, as they simultaneously

fix their Unit Rates. In this case we face a bilevel problem with multiple leaders. Thus we are

investigating whether an equilibrium can be reached, and if cooperation could bring advantages.

Finally, the analysis should be carried out on a larger data set and on accurate information on

exact airline costs and preferences.
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1 Introduction

Mathematical programming models and algorithms have been successfully used for decades to

optimize operations in distribution logistics: typical examples concern freight carriers, mail services

and on-demand pick-up and delivery services.

A more recent field of investigation concerns the application of similar techniques to the opti-

mization of logistics operations in health care systems and emergency management. These sectors

are characterized by a larger dependency on “human factors”, such as the behavior of the customers

(which is often unpredictable), fairness in service provision (which is not an issue in industrial lo-

gistics) and lack of reliable historical data (because of the uniqueness of the events considered,

especially in case of emergency management).

In this paper we present some preliminary studies on the development of exact optimization

algorithms for a variation of the vehicle routing problem (VRP) arising in the context of the

distribution of vaccines and anti-viral drugs in case of a pandemic outbreak. The problem requires
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a fleet of vehicles to reach the maximum number of citizens within a specified time limit. We

present an algorithm based on column generation, where the pricing subproblem is solved through

advanced dynamic programming techniques.

We also consider the effect of combining the strategy of delivering the drugs at citizens’ homes

with the strategy of establishing distribution points where the citizens go by their own means to

receive treatments or drugs.

The starting point for our study is a model by Shen et al. [8], who presented a stochastic VRP

model which is then reformulated and solved as a deterministic VRP with a tabu search algorithm.

Two objectives are considered in a hierarchical way: the most important requires to minimize the

fraction of population which is not visited in time; the second objective requires to minimize the

arrival time at the distribution points. The number of available vehicles is given and there are no

capacity constraints, because the goods to be transported are small, both in weight and in volume.

The binding constraint is a deadline within which the distribution points must be visited, as far

as possible.

2 A mathematical programming formulation

Our column generation algorithm is based on a set partitioning reformulation of the problem. We

do not include any source of non-determinism in this model. The model is as follows.

max
∑
i∈N

∑
k∈K

diaikzk (1)

s.t.
∑
k∈K

aikzk ≤ 1 ∀i ∈ N (2)

∑
k∈K

zk ≤ V (3)

zk binary ∀k ∈ K (4)

where N is the set of sites to be visited, di is the number of persons served when site i ∈ N is

visited, K is the set of feasible routes for the vehicles, aik is equal to 1 if and only if site i ∈ N

is visited in route k ∈ K and zk is a binary variable corresponding to route k ∈ K. We refer to

(1)-(4) as the master problem.

The problem turns out to be a special case of the Team Orienteering Problem, because the

minimization of the fraction of population that is not visited is equivalent to maximize a “profit”

from visiting a subset of the sites. Exact algorithms for the Team Orienteering Problem have been

proposed by Boussier et al. [3]. Recent heuristics are those of Tang and Miller-Hooks [9], Archetti

et al. [1] and Ke et al. [4].

Since the model above has an exponential number of columns, its linear relaxation is solved by

column generation. The pricing problem consists of finding columns with negative reduced cost.
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The expression of the reduced costs is as follows:∑
i

diaik −
∑

i

πixi − µ (5)

where π is the vector of dual variables corresponding to constraints (2) and µ is the scalar dual

variable corresponding to constraint (3). The constraints of the pricing problem require that:

• the route is elementary;

• the route must start at the depot (but is not required to go back to it within the deadline);

• all sites along the route must be visited within a specified deadline.

Pricing algorithms. Pricing is the most time-consuming part in the branch-and-price exact

algorithm relying upon the previous formulation. To speed up the pricing phase we rely on both

heuristic and exact pricing algorithms. Exact pricing is done by bi-directional dynamic program-

ming with decremental state space relaxation, following the approach described in Righini and

Salani [5] [6] [7]. Heuristic pricing relies on greedy algorithms and dynamic programming with

relaxed dominance conditions.

3 Extensions

The model presented above can be extended in several ways to capture more details of a real

logistics system for drug distribution. This can be done by including more features at either

pricing or master level.

First, we consider more complex logistic networks, including the management of several de-

pots with different stock capacities or heterogeneous fleets of vehicles [2]. This can be done by

partitioning set K into different sets of feasible routes for each vehicle type and for each depot.

Second, we tackle the problem of providing service for the same persons in different places (at

home, at their workplace, at school). In a similar way, since some people may not be found at their

homes when the vehicle visits it, multiple visits to the same sites might be imposed; in this case

we consider the worst-case scenario in which each person is found only during the last visit. This

can be done by modifications to extension rules and resource consumption rules in the dynamic

programming algorithm which is used for pricing columns.

Third, we consider a more detailed management of service time and served demand, involving

hard and soft time windows and site demand split. These features require further adaptations of

the pricing algorithms.

Furthermore additional advanced features, like management of non-determinism in travel time

and demand, or success in finding people at each visit, can be taken into account by including

special purpose recourse strategies in our framework.
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Finally, we discuss alternative and hybrid distribution strategies. In particular, we consider the

option of providing goods by means of either distribution centers or door-to-door delivery. This

can be modeled by a master problem with two types of columns, generated by two independent

pricing algorithms.
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1 Introduction  
 

Metropolitan areas have accounted for the majority of increases in population and economic growth in 

recent decades. China’s phenomenal economic development has been fuelled by growth in the major 

cities, many of which has over 5 million in population. Metropolitan areas account for over half of the 

population, and a significant majority of the GDP, of the United States. As the geographical size and 

population of major metropolitan areas have increased, much economic activity remain focussed in the 

central business districts of the metropolises, thus the average travel distances for work have not 

decreased as expected. The average commuting distance for London is over 10 kilometres. The need to 

travel by the populace has placed significant burden on the transport systems of metropolitan areas, 

leading to increased traffic congestion and attendant safety and environmental concerns. 

Development of transport infrastructure and public transit services have not kept apace with the 

swell and sprawl of metropolitan areas, with serious congestion occurring in central business districts 

and insufficient coverage in peripheral areas. In metropolises where public transit services are provided 

by private firms in a relatively free market, operators tend to focus on high-profit routes and outlying 

smaller communities are under-served. In Hong Kong, the already congested Central business district 

is often jammed with half-empty double-decker buses from all the bus operators, while bus services to 

satellite communities in the New Territories are very infrequent and expensive. 

In this paper, we discuss some game-theoretic models that can be used to investigate the 

competitive situation when several service providers offer public transit services, and study the impact 

on the total set of services offered to the public and the resultant level of ridership of the system. The 

competition among the operators can be modelled by a class of games called potential games. We 

discuss mathematical programmes that can be used to find the Nash equilibria for these games. By 
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examining the equilibria solutions, we can examine the relative merits and tradeoffs for different 

structures of the transit networks, and the interplay between the services offered and the overall 

ridership of the system. We hope that our modelling and analysis may provide some insight on the 

types and bundling of routes being offered by operators, and the locations for transportation 

interchanges and hubs. 

 

2 Background  

Whilst not explicitly acknowledged, concepts of game theory have been pervasively used in traffic 

studies. As Fisk (1984) pointed out, the famous Wardrop's (1952) user-equilibrium principle is 

essentially the condition for a Nash (1950) game-theoretic equilibrium among road-users, since no 

driver can reduce his/her travel time by switching to a different route choice. Wardrop's principle has 

been a cornerstone in road traffic research for decades. For an overview of traffic equilibrium models, 

see Patriksson and Labbe (2004). 

Other researchers have developed specific game-theoretic models for transport-related 

problems. Bell (2000) investigates network reliability by studying a zero-sum game between a cost-

minimising driver and a ‘demon’ that sets the link costs. This game is a ‘concept’ game in the sense 

that the demon is not a real player, and is used to explore the worst-case scenarios faced by the driver. 

Other researchers have also explored concept games among road users. James (1998) studies a game 

among n road-users where any player's utility of using the road segment decreases when there are more 

users. Levinson (2005) also studies congestion by investigating a game where the players (drivers) 

choose their departure times. Pedersen (2003) investigates road safety by a game where players choose 

the behavioural level of driving aggression. All these games study the competition among road users. 

Holland and Prashker (2006) give an excellent review of recent literature on non-cooperative games in 

transport research. 

Surprisingly, studies on the competitive situation amongst public transit operators have 

received little attention from transport researchers. Castell et al. (2004) modelled a Stackelberg game 

between two authorities (one determining flow, and the other capacities) in a freight transport network, 

which is different to a passenger transit network since the route choice is not determined by the 

transportee (freight). According to Holland and Prashker (2006), the “small number of such games is 

surprising, considering that NCGT [non-cooperative game theory] seems a natural tool for analysing 

relations between authorities. ... Trends such as tendering and privatisation, that have a vital role on 

today's transport agenda, also seem apt to be modelled through games between authorities”. 

Surprisingly, there has been very little research along this line. 

Some researchers have studied games between authorities and travellers. Fisk (1984) 

investigates a Stackelberg game between the authority that sets traffic signals and all travellers who 

then finds the user-equilibrium solution. Chen and Ben-Akiva (1998) investigates a similar game in a 

dynamic setting. Reyniers (1992) studies a game between the railway operators who sets the capacities 
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for different fare classes and the passengers who chooses which class to use. Hollander et al. (2006) 

studies a game between the parking authority and travellers to explore the incentives for public 

transport ridership. All these games, however, only involve one operator/authority. Only few 

researchers have investigated games with several operators and passengers. Van Zuylen and Taale 

(2004) studies a game with two authorities (one for urban roads and one for ring roads) and the driving 

public. None of the previous research have studied the strategic competition among public transit 

operators. 

 

3 Preliminary Results   

We have made some preliminary investigation into the strategic gaming situation among competing 

public transit service providers. In our first-cut model, we assume that all the operators have the same 

cost and price structure, and that the total ridership between each origin-destination pair is equally 

divided among all the operators that service that particular route. In this setting, a player of the game is 

the service provider, and its strategy is the set of routes that it chooses to offer service. Each player 

tries to maximize its total profit, and a Nash equilibrium occurs when no player can improve its profit 

by unilaterally changing the set of routes it services. 

We can show that this game can be modelled as what is known as a potential game (first 

introduced by Rosenthal, 1973) where the equilibrium can be computed by solving an auxiliary 

mathematical programme with a ‘potential’ function as a surrogate objective. The solvability for the 

Nash equilibrium allows us to make some comparisons between the competitive equilibrium and a 

centralised monopolistic operation and draw some insights. 

Using this initial framework, we have also explored the impact of the network structure on the 

profit for the service providers. We consider a service area with n townships and compared the 

equilibrium solution for a network structure where direct point-to-point services are offered between 

every pair of townships, to the equilibrium for a hub-and-spoke network where every route between 

any two townships involves an interchange via a central hub. In the second network structure, the 

routes offered are between a township and the central hub, and the total ridership from each origin (to 

all destinations) is consolidated into the ridership from the origin to the central hub. For each service 

provider, the profit from a route depends on the operating cost of offering the service, the total revenue 

due to the ridership and the number of competitors also servicing that route. For the simplistic case 

where the ridership between every pair of townships are the same and all fixed operating costs are the 

same, the overall profits depends on the ratio of ridership to route operating cost.  

A more realistic model would allow for ridership to depend on origin-destination pairs, on the 

network infrastructure and also on the set of transet services available. This may lead to a bi-level 

model where not only do operators compete with each other but the passengers preferences and 

patronage depends on the set of services offered by the transit operators. 
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1 Introduction

Accurate network travel time estimation is today one of the most challenging problems in traffic

theory. The mainstream research on travel time estimation concentrates on the estimation of

mean route travel time or some measures of travel time reliability (ie. 10th and 90th percentiles).

However, given the growing detail in travel time measurements it is also possible to estimate route

travel time distributions. This serves a broader spectrum of applications and provides more usefull

information. For this goal, this research presents a method to calculate the travel time histogram

of a route, based on link travel time observations.

The aim of this new method is to allow the development of an advanced route planner that

is able to optimize route choice reliability. The notion of reliability is defined by the end-user

of the route planner and highly depends on the properties of the route travel time distribution.

Central in the development of the route planner is the distinction between (cheap) off-line storage

and computations and (expensive) on-line computations. For that it is important to minimize the

on-line computational effort of calculating a route travel time histogram. The method described in

this study can be deployed beyond route planning applications and the field of traffic management.

Other applications can be for instance the location optimization of logistic hubs (ie. airports,

packaging services, . . . ) or public services (ie. hospitals, firestations, . . . ) and the evaluation of

network performance.
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2 Conceptual framework

The focal point of this study is the on-line calculation of a route travel time histogram based on

historical link travel time observations. In solving this problem two cases can be distinguished:

• ad hoc: the histogram of route travel times is calculated while searching a route

• ex post: the route is already know when calculating the histogram

The ad hoc calculation of the route travel time histogram has the advantage that a route can be

optimized based on full route statistics. More specifically, the statistics of several sections of a

route can be compared to select a route over which for example the variance of the travel time

distribution is minimized. This advantage is not present in the ex post calculation of a histogram

of route travel times. The ex post calculation of the histogram is in this way a simpler problem,

but is non-trivial when on-line computational efficiency is an issue. In this paper we focus on the

procedure to derive these histograms, not on the routing procedure. For this reason we will refer

mainly to the ex-post case.

In this section two different approaches to the ex post calculation are discussed. For both

approaches it is assumed that there are n links li in the network, and m travel time observations

TTij , made on m different times tj for each link li. The route contains h network links and the

resulting histogram is made up of k bins.

A first straightforward approach is to take the sum of the instantaneous travel times TTij over

all links li contained in the route for each tj . The route travel time histogram is then calculated

from these sums. Neglecting the calculation of the histogram, the computational complexity of

this approach is of order h×m. Considering that in practical applications this has to be done for

all relevant routes in a network and for different times of the day, it is easy to understand that it

would not be a feasible approach for an on-line application.

It is possible to enhance the computational efficiency by pre-processing the travel time data off-

line and using clustering techniques. This is investigated in the second approach. In this approach

the travel time histograms of each individual link li are calculated off-line. This changes the

amount of data per link from m to k in the on-line calculation of the route travel time histogram.

However the calculation of the route travel time histogram is no longer a summation of the data

of each individual link, but is the convolution of the link histograms. The problem is that the

calculation of a density function of the sum of two stochastic variables by convoluting their density

functions requires that these variables are statistically independent. This is often not the case for

the observed travel times of two different links in a network. This statistical dependence can be

due to, for instance, congestion spillback over links, similar road conditions, or other structural

similarities. The dependencies between link travel time statistics are in our approach removed

by redefining the network. This is done off-line by means of a clustering algorithm which defines
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new links as a combination of links that have correlated travel time fluctuations. The travel time

histogram of each cluster of links, denoted by clusterlinks in the remainder, is calculated off-line

by making use of the first approach. As a result the travel time statistics of the clusterlinks in the

resulting network are statistically independent. Because a clusterlink is the combination of 1 or

more links, the length of the route is reduced to g ≤ h clusterlinks. To cope efficiently with the

convolutions, the histograms are stored as fourier transformations (FT) off-line. The advantage of

using the FT of the histograms is that the route travel time histogram is obtained as the inverse

FT of the multiplication of the FT-ed link histograms instead to their convolution. For that the

complexity of the on-line computation is of order h×m + g (k −m) + k log (k), with the k log (k)

term due to the inverse FT.

The difference between the two approaches is illustrated by a numerical expample. Suppose the

route contains h = g = 50 links, the histogram contains k = 100 bins and that there are m = 2500

travel times observations for each link.

It is found that the second approach (order 6.103) outperforms the first approach (order 1.105).

This is because in this test case g (k −m)+k log (k) < 0. The performance of the second approach

is also improved as g < h. Only if k
g (g + log (k)) ≥ m the first approach has equal or better

performance than the second approach. This is generally not the case since m must be sufficiently

large to obtain reliable travel time statistics.

3 The clustering algorithm

To identify clusters in the network the following heuristic is proposed. The clustering algorithm

restructures the network such that the travel time statistics of any 2 subsequent links in the

resulting network are linearly independent. This is done by combining successive links based on

the correlation of their travel time statistics. The clustering algorithm considers all links li in

the network and calculates the correlation r with each successive link lk (temporal propagation of

travel time fluctuations are not considered explicitely). The correlation r is tested according to

the hypothesis H0: r = 0 in a way that minimizes the probability of a Type II error. This means

that Pr(H0 is accepted |r 6= 0) is reduced to some specified value 0 ≤ p ≤ 1.

Link li and lk are combined into a cluster of links if H0 is rejected (ie. it is possible that r 6= 0).

The statistics of this new clusterlink are obtained as the sum of the instantaneous travel times

of both links for each tj . Each such combination of links is added to the network and expanded

until H0 cannot be rejected (ie. no links can be added to the cluster of links). Links that have

become redundant due to the clustering are removed from the network. In this way the network is

restructured to guarantee that the statistics of each 2 subsequent links in the network are linearly

independent. The result of the clustering algorithm is illustrated in figure 1.
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Figure 1: Fundamental clustering diagramme of 3 nodes and 2 correlated links. Depending on the

properties of node 2, the clustering of links results in diagramme A, B, C, D or E with cluster C1

of links 1 and 2 . A: Traffic can only pass by node 2. B: Traffic can enter the network at node 2.

C: Traffic can exit the network at node 2. D: Traffic can both enter/exit the network at node 2.

E: Traffic can enter/exit the network at node 2 but cannot pass over it, links are not clustered.

4 Discussion

Currently the clutering method is tested on a the complete Belgian road network. The main

question to be answered is whether the clustering of links significantly improves the quality of the

histogram with respect to the histogram obtained without clustering. Also the expansion of the

size of the network due to additon of the clusters of links to the network is being investigated.

The first results look promising, both for the quality of the histograms as for the computational

efficiency of the method. The results will be presented in the full paper.
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Extended Abstract 
 

The goals of a transportation agency have shifted over the past few decades from systems optimization 

to dynamic strategic planning.  Dynamic strategic planning focuses on two primary aspects: the need to 

account for uncertainties, and the need to account for decision-makers [1]. Many of the available 

analytical tools have evolved to reflect this trend, particularly network design models ([2], [3]).  There 

is an abundant literature dealing with uncertainty in the many areas of network design, although most 

are based on stationary stochastic variables rather than time dependent ones.  This is especially the 

case for bi-level problems in which static decisions are made at a single point in time ([4], [5], [6]). 

Ignoring the time dependent aspect of the problems limits the extent that flexibility (defined in this 

context as “the ability of a system to adapt to external changes, while maintaining satisfactory system 

performance” [7]) can be considered.  However,the existing literature suggests that flexibility can be 

used to address network design models under uncertainty.  It also reveals the complexity of such 

problems, especially the urban problems with a bi-level structure.   

In corporate finance the concept of real options has grown significantly in the last few years 

as a tool for extending flexibility to projects under uncertainty.  The value of options as a tool for 

hedging risk comes when uncertainty is introduced [8].  In real life strategic planning, a decision-

maker does not make static decisions and follow through with them regardless of intermediate 

outcomes.  Instead, they incorporate flexibility into their planning by using current information to 
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adjust their plans over time.  Besides the different types of options that have been derived to model 

different management strategies for dealing with uncertainty [9], real option analysis has been applied 

to a number of transportation-related problems ([6], [10], [11]). However, no solution methodology 

based on real options has been proposed for multi-period urban network design problems with 

uncertainty.  In a network setting, there are interdependencies in performance due to the interrelated 

stochastic flows that cannot be ignored.  

The simplest approach to considering network design as a real option is to assume that the 

design solution is an investment and to compute a deferral option value with the link designs treated as 

exogenous variables.  A standard Bellman equation for the option valuation and a network design 

problem are combined to obtain the hierarchical network investment deferral option (NIDO) model.  

The model maximizes the decision to defer or invest in a network design that has been solved for 

expected demand [12].   

The formulation has a subtle implication on a network design over time.  The NIDO model is 

shown to be a combination of the static NPV, the basic deferral premium, and the network design 

premium which includes the flexibility to redesign the network.  In other words, the option value can 

be expressed as Φ = NPV+FD+FN for network designs, where FD is the premium from deferral only and 

FN is the premium from the flexibility of re-designing a network.   

Two significant conclusions can be drawn from this network design premium.  First, it is 

prudent to incorporate flexibility into the planning process for transportation agencies by not 

committing to “preferred alternatives” and to use “conditional alternatives” instead.  Second, deferral 

options based on fixed designs can serve as lower bounds for flexible design options since the network 

design premium is non-negative.  This is crucial for the following two new models, which can be too 

complex to solve as flexible designs but are feasible as fixed design options. 

The existing numerical methods for solving real options can generally be categorized into 

three classes: finite difference, binomial lattice methods, or Monte Carlo simulation.  Due to multi-

dimensionality and computational cost requirements, the Least Squares Monte Carlo (LSM) method 

([13], [14]) is chosen for solving the NIDO value.  The method provides a pathwise approximation to 

the optimal stopping rule for maximizing the value of an American option and is the most 

computationally efficient in terms of the number of function evaluations. 

A second model involves maximizing the option value with the network design as the set of 

decision variables.  The network option design problem (NODP) maximizes the option value as a 

function of a committed network design.  While the optimal design is for maximizing the fixed design 

option value, it can be interpreted as a lower bound to the value of the option under a flexible design 

setting. 

As an option maximization model with fixed network design decision variables, the problem 

can be solved using global heuristics for network design problems.  Fast converging global heuristics 

are necessary because of the computational cost of one evaluation function.  A heuristic for solving the 
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NODP with continuous network design variables is demonstrated with a Metric Stochastic Response 

Surface (MSRS) method.  MSRS is a global stochastic optimization approach that can use radial basis 

functions (RBF’s) to intelligently guess the next point to evaluate using interpolation (MSRBF), and 

has been shown to work better than the genetic algorithm for network design problems with up to 31 

dimensional variables for the Anaheim, CA network [15].   

For fixed discrete network designs, real options can be incorporated in a third model, the Link 

Investment Deferral Option Set (LIDOS).  If each link investment is considered a separate investment 

option, then the network design can be treated as a set of interacting options.  By modeling the 

individual link or projects as separate options, the decision-maker has the flexibility to decouple their 

design investment with staging strategies.  For example, a design composed of two projects would be 

evaluated as a bundle with NIDO, but with LIDOS there may be greater value from investing in project 

A and deferring project B.  This is essentially a project selection problem under uncertainty.    

As formulated, the LIDOS appears to be a backward dynamic program with forward 

elements, making it seem unsolvable.  However, it is possible to solve the model by re-formulating it 

into one that can be solved by the multi-option LSM solution approach from [14].  The multi-option 

LSM method can only handle purely compound options where one option depends on whether the 

prior option is exercised.  These dependencies imply that the LIDOS problem needs to be constrained 

so that decision-maker cannot change the order of investment in the future.  The Ordered Link 

Investment Deferral Option Set (OLIDOS) is solved by enumerating each ordered staging of link 

investments and solving using mulit-option LSM, then choosing the ordered set that maximizes the 

option value.  By doing so, it is possible to solve a lower bound of LIDOS with the multi-option LSM 

approach.  

The numerical tests for all three models are conducted with the Sioux Falls test network.  The 

first model is tested for sensitivity to demand volatility, time horizon, and standard error for a given 

number of simulation paths in the LSM algorithm.  The second model is compared to the results of the 

fixed design solution for the first model to note the change in option value and design solution when 

optimizing the fixed design option directly as a function of the network design variables.  The last 

model takes the results of the second model and obtains an optimal staging for each individual link 

design solution, and the option value is compared with the other two models.  We will discuss the 

performance of each of these models and examine their potential for solving problems of more realistic 

size.  A more detailed discussion of all of these models is presented in [16]. 
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Introduction  
 

Several methods have been developed to allow bus priority with respect to general traffic in urban 

areas. Among these, signal priority strategies attempt to reduce delay in two ways: by reducing the 

probability of a transit vehicle encountering a red signal, and, if this does occur, by reducing the wait 

time until the green signal. The objective of this study is modeling and simulating a mathematical 

procedure to provide bus priority along a synchronization arterial, through the combination of passive 

and active bus priority strategies. 

 
 
1 State of the art 

 

Passive priority is defined as the use of static signal settings to reduce delay for transit vehicles. Such 

strategies can be as simple as allocating more green time to the street with the transit route by 

increasing the split for the phase in which the transit vehicle has right of way. Signal coordination is 

another strategy that can be used to benefit transit vehicles. Arterial progression, for example, can be 

designed to favor transit vehicles by timing the green band at the average transit vehicle speed instead 

of the average automobile speed, which is typically faster [1]. More effective coordination strategies 
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can combine the maximum green bandwidth and minimum delay problems. Several examples are 

available in the literature [2][3][4]. Another approach aims at optimizing an objective function that 

expresses the network performance. Different non convex optimization algorithms are applied to this 

goal. As an example, the well known Transyt program uses hill climbing and genetic algorithm [5]. 

However, it has been observed that passive strategies have limited value in order to improve the global 

transport performances [6]. 

Active strategies address these limitations of passive strategies by altering signal settings 

dynamically and only when necessary, making adjustments in real-time to the signal timing in order to 

minimize delay to an approaching transit vehicle. Several studies have been performed to apply active 

priority strategies: Liao and Davis [7] take advantage of the already equipped Global Positioning 

System on buses to develop an adaptive signal priority strategy that could consider bus schedule 

adherence, number of passengers, location and speed; Stevanovich et alii [8] present a genetic 

algorithm formulation that optimizes four basic signal timing parameters and transit priority settings 

using VISSIM microsimulation as the evaluation environment. 

A bus priority algorithm could also be integrated into an adaptive network signal control 

model. For example, the SCOOT [9] system has a number of facilities that can be used to provide 

priority to buses or other public transport vehicles; the signal timings are optimized to benefit the 

buses, either by extending a current green signal (an extension) or causing succeeding stages to occur 

early (a recall). Priority facilities are also available in the UTOPIA [10] system, in which optimal 

strategies are determined at the higher level on the basis of area traffic prediction, whilst traffic light 

control is actuated at the local level according to traffic conditions at individual intersections. The aim 

of the control strategies is to minimize the total time lost by private vehicles, whilst ensuring that 

public transport vehicles are not stopped at intersections with traffic signals. 

 
 
2 Methodology 
 

The proposed model is a hybrid model of signal coordination optimization of a urban arterial and bus 

priority by the application of passive and active strategies. The arterial synchronization is set by 

optimizing an objective function that considers the road traffic and transit passengers. A simulative 

approach is followed to optimize pre timed signal settings (passive bus priority, applied as reference 

timing plan) and to take into account also different active bus priority strategies. It is so possible to 

assess time varying traffic signal performances during the simulation. Private cars are modeled as 

platoons that run along the arterial and may be delayed at nodes depending on their arrival time, the 

signal settings and the number of queued vehicles, if any.  

Buses are modeled individually; the model computes the number of passengers, the dwell 

time and the vehicle position in queue, if any, for each bus at each bus stop. Buses arriving during the 

same signal cycle are moved as platoons along downstream link. The procedure is used to evaluate 
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new priority acknowledgement rules that consider several components like bus schedule adherence , 

number of the passengers on the bus, traffic flow on cross streets, green split, predicted headway 

between two following priority requests. 

 

 

3 Optimization Algorithm 
 

In this study an algorithm has been developed to optimize the signal synchronization by taking into 

account the delay of both the public and private traffic. The algorithm combines the search for a global 

minimum by a genetic algorithm and a local refinement procedure with predefined steps (similar to the 

hill-climbing used in Transyt) around the tentative solution point. The objective function (or fitness 

function) is defined as a linear combination of different components of total delays on the artery, 

calculated as follows. 
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with: 

- D(1)i the total delay at node i in direction 1 

- D(2)i the total delay at node i in direction 2 

- D(t)i the total delay at node i of queue h in lateral approach t 

- D(p)b the total delay of passengers in bus b 

- w1 the weight of delay in direction 1 

- wt the weight of the delay at lateral approaches 

- wp the weight of delay for transit passengers 

 

Genetic coding is composed by the signal variables at each intersection, that is: cycle length, 

green split rates in the direction 1 and 2, offsets. 

The Genetic Algorithm (GA) uses the roulette wheel method to apply the well known genetic 

operators of crossover and mutation. The probability of mutation, in the absence of improvements in 

the objective function, varies linearly from γmin to γmax in a given number of iterations. This strategy 

is used to avoid a deadlock into a local minimum. The GA also uses the feature of elitism to keep a 

quota η of the solutions ordered according to their fitness. 

The local adjustment algorithm applies a strategy similar to the Hill-Climbing method used by 

Transyt. It performs a series of trials sequentially to increase and then decrease the design variables: 

cycle length, green rate splits and offsets. The algorithm trials for each variable, 3 step lengths s1 > s2  

> s3 > 0 and apply them if the improvements are obtained. Execution ends when there are no more 

improvements.  
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5 Applications 
 

The model  is able to simulate: 

- private traffic flow; 

- flow of public transport on bus lanes with queuing or overtaking at the bus stops; 

- active strategies with anticipation, extension and signal recovery of the green; 

- passive strategy of synchronization; 

- priority acknowledgement rules that depend on the timetable, the number of passengers and 

the saturation degree. 

The procedure described here has been completed and applied to simulate the road traffic in two 

real cases in Rome. The software program to simulate the  bus priority strategies is being finalized and 

in the final paper will be applied to a urban arterial in Rome, namely Via Tiburtina. 
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1 Introduction

Hub Location Problems (HLPs) lie at the heart of network design in transportation systems, es-

pecially in the airline and trucking industries. The performance of these systems can be improved

by using transshipment points (hubs), where the flows between O/D pairs are consolidated and

rerouted to their destinations, sometimes via another hub. Thus, the locations of the hubs as well

as the paths for sending the flows between the O/D pairs have to be determined. HLPs consist of

locating hubs on a network so as to minimize the total transportation cost.

Over the last decades, several variants of HLPs have been studied (see [1] for a recent survey).

Given the inherent difficulty of HLPs, only small to medium-size instances (10-50 nodes) are nor-

mally solved to optimality and approximate procedures need to be used to approach larger size

instances. In fact, it is only very recently that instances with up to 200 nodes could be solved

optimally (see [2, 3]). In this paper, we propose a Benders decomposition algorithm specifically

designed to approach large-scale instances of the classical Uncapacitated Hub Location Problem

with Multiple Assignment (UHLPMA). Moreover, we introduce a new challenging set of bench-

mark instances ranging from 10 to 400 nodes to test the proposed methodology. Computational

experiments assess the efficiency of the algorithm. On the one hand, it is able to speed-up by at
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least one order of magnitude the current best algorithm given in [2]. On the other hand, it is able

to solve optimally instances with up to 400 nodes within reasonable computational times.

The paper is organized as follows. Section 2 describes the problem and presents a MIP formu-

lation. The basic Benders decomposition is presented in Section 3. Section 4, introduces several

algorithmic features that improve the convergence and efficiency of the algorithm.

2 Problem Definition

Let H be a set of potential hub locations and K be the set of commodities. Let Wk denote the

amount of commodity k. For each node i ∈ H, fi denotes the fixed installation cost for locating a

hub at node i. Let E = {L ⊆ H : 1 ≤ |L| ≤ 2} be a set of subsets of H containing one or two hubs.

The undirected transportation cost for each e ∈ E and k ∈ K is denoted as Fek. The UHLPMA

consists of selecting a set of hubs to be established and the routing of flow through the network,

with the objective of minimizing installation and transportation costs. We define location variables

zi, i ∈ H, that are equal to 1 if a hub is located at node i, and 0 otherwise. We also define the

routing variables xek, k ∈ K and e ∈ E, that are equal to 1 if commodity k goes via hub edge e,

and 0 otherwise. The UHLPMA can be stated as (see [4]),

minimize
∑
i∈H

fizi +
∑
e∈E

∑
k∈K

Fekxek

subject to
∑
e∈E

xek = 1 ∀ k ∈ K (1)∑
{e∈E : i∈e}

xek ≤ zi ∀ i ∈ H,∀ k ∈ K (2)

zi ∈ {0, 1} ∀ i ∈ H (3)

xek ≥ 0 ∀ e ∈ E,∀ k ∈ K. (4)

Constraints (1) guarantee that for each commodity there is a single path connecting its origin and

destination nodes. Constraints (2) prohibit commodities from being routed via a node that is not

a hub. Finally, constraints (3) and (4) are the classical integrality and non-negativity constraints.

3 Benders Decomposition

At iteration t of the Benders decomposition algorithm, if we fix the integer variables z = zt we

obtain the following primal linear subproblem,

(SPP ) minimize st +
∑
e∈E

∑
k∈K

Fekxek

subject to (1), (4),∑
{e∈E : i∈e}

xek ≤ zt
i ∀ i ∈ H,∀ k ∈ K, (5)
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where st =
∑

i∈H fiz
t
i is the installation cost associated to solution zt. Let αk and uik be the dual

variables associated to constraints (1) and (5), respectively. Then, the dual problem of SPP at

iteration t can be stated as follows:

(SPD) maximize
∑
k∈K

αk −
∑
i∈H

∑
k∈K

zt
iuik (6)

subject to αk − ue1k − ue2k ≤ Fek ∀k ∈ K,∀e ∈ E, |e| = 2 (7)

αk − ue1k ≤ Fek ∀k ∈ K,∀e ∈ E, |e| = 1. (8)

For a given iteration t, from the dual objective function (6) we obtain the optimality cut

η ≥
∑

k∈K αt
k −

∑
i∈H(

∑
k∈K ut

ik)zi, where αt
k and ut

ik are the optimal value of the dual variables

obtained by solving SPD at iteration t, and η is a continuous variable for the estimation of the

overall transportation cost. We thus can formulate the following master problem:

(MP ) minimize
∑
i∈H

fizi + η

subject to η ≥
∑
k∈K

αt
k −

∑
i∈H

(
∑
k∈K

ut
ik)zi t = 1, . . . , T (9)∑

i∈H

zi ≥ 1 (10)

zi ∈ {0, 1} ∀ i ∈ H, (11)

where T is the current number of iterations. Constraint (10) ensures that at least one hub facility

is open in the optimal solution of MP and thus avoids the generation of feasibility cuts.

4 Algorithmic Refinements

4.1 Multiple Benders cuts

One way to improve the convergence of the Benders algorithm is to exploit the decomposable

structure of the subproblem to generate several feasibility cuts at each iteration. Instead of adding

a single cut per iteration, we can rather separate the information obtained by the SP to generate

a set of feasibility cuts associated to subsets of commodities at each iteration. Let Ki ⊂ K be the

subset of commodities whose origin node is i. We thus can generate the following set of cuts:

ηi ≥
∑

k∈Ki

αt
k −

∑
i∈H

(
∑

k∈Ki

ut
ik)zi ∀i ∈ H. (12)

4.2 Pareto-optimal Cuts

Another way to improve the convergence of the Benders algorithm is by constructing stronger,

undominated cuts. These non-dominated cuts are known as Pareto-optimal cuts (see [5]). Let Q

be the polyhedron defined by (10), impose 0 ≤ zi ≤ 1 for all i ∈ H, and let ri(Q) denote the
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relative interior of Q. To identify a dual optimal solution to SPD that yields a Pareto-optimal cut,

we must solve the following problem:

(PO) maximize
∑
k∈K

αk −
∑
i∈H

∑
k∈K

z0
i uik (13)

subject to (7)− (8),

αk −
∑
i∈H

zt
iuik = α̂k ∀k ∈ K, (14)

where z0 ∈ ri(Q) and α̂k is the optimal solution value of the k subproblem. Constraints (14)

ensure that a dual optimal solution from the set of optimal solutions of SPD is selected.

4.3 Generating Initial Cuts for the Master Problem

Although the Benders decomposition algorithm can be initialized from an empty set of optimality

cuts, the choice of this initial set could greatly affect its convergence. Given that optimality cuts

are obtained from feasible solutions, we can use some heuristic procedure to obtain a promising

initial set of optimality cuts to improve the overall convergence of the Benders decomposition.

4.4 Elimination Tests

Another way to improve the efficiency of the Benders decomposition algorithm is by reducing the

size of the model. This can be done by developing some reduction tests capable of eliminating

several variables and constraints and thus, making the solution of both the master problem and

the subproblem more efficient. These tests use the lower bounds obtained at the inner iterations

of the algorithm to close some hub nodes that do not appear in an optimal solution.
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1 Introduction

Routing Problems look for routes that serve demand customers at minimum cost. In Arc Routing

Problems (ARPs) customers with demand are represented by a subset of edges or arcs of a given

graph and it is usually assumed that all demand customers have to be served. Few problems

consider the case where a profit is associated with each demand edge, and a decision must be made

to jointly determine a subset of demand edges to be served and a route to serve them. Some of

these problems have been studied in [8] and [4]. In Prize-collecting Arc Routing Problems (PARPs)

it is assumed that the profit of each serviced demand edge is collected once, independently of the

number of times it is traversed. PARPs were introduced in [3] and an algorithm to solve the

Prize-collecting Rural Postman Problem was presented in [2]. A further PARP which has been

recently studied in [9] and [1] is the Clustered Prize-collecting Arc Routing Problem (CPARP). In

the CPARP the connected components defined by demand edges are considered, and it is required

that if a demand edge is serviced, then all the demand edges of its component are also serviced.

That is, for each component either all or none of its demand edges are serviced.
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Many ARPs have been studied on windy graphs. In a windy graph there are two non-negative

values associated with each edge, representing the costs of traversing the edge in each direction.

Windy ARPs constitute an important class of problems, as the windy version of an ARP is a

generalization of its undirected, directed and mixed versions. A global overview of the Windy

General Routing Problem which contains as particular cases most of the studied windy ARPs with

uncapacitated vehicles is given in [6].

To the best of our knowledge no arc routing problem with profits has been studied on a windy

graph. In this work we present the Windy Clustered Prize-collecting Arc Routing Problem (WC-

PARP). First, we describe the problem, and give a mathematical programming formulation. Then,

we present some polyhedral results, including some families of valid and facet defining inequalities.

2 The problem

Let G = (V,E) be a connected undirected graph with a distinguished vertex vd ∈ V , the depot,

and let D ⊂ E denote the subset of edges with demand. We assume G has been simplified as in

[5, 7], so that V is the set of vertices incident with edges in D plus the depot, and E contains

the edges in D plus some other representing shortest paths in the original graph. The connected

components of GD = (V,D) are denoted Ck = (Vk, Dk) (k ∈ K) and referred to as clusters. We

assume vd ∈ V1. Let b be a non-negative profit function on D. Associated with each edge (i, j) ∈ E

there are two non-negative costs, cij and cji, representing the cost of traversing it from i to j and

from j to i, respectively.

Feasible solutions to the WCPARP are tours going through vd such that for each Ck (k ∈

K) either all its edges are serviced or none of its edges is serviced. The cost of a tour T is∑
(i,j)∈T (tijcij + tjicji), where tij (resp. tji) is the number of times edge (i, j) ∈ E is traversed

in T in the direction from i to j (resp. j to i). Each serviced edge e ∈ E produces a profit be,

which does not depend on the direction of its traversal and is collected once, independently of the

number of times e is traversed. Thus, the gross profit of each serviced cluster is pk =
∑

e∈Dk
be.

The WCPARP is to find a set of clusters K∗ ⊆ K, and a tour T ∗, passing through vd, that serves

all the edges in
⋃

k∈K∗ Dk, but none of the edges in D \
⋃

k∈K∗ Dk, of maximum net profit∑
k∈K∗

pk −
∑

(i,j)∈T ∗

(tijcij + tjicji).

The WCPARP is NP-hard as its undirected version CPARP is already NP-hard [1].

To formulate the WCPARP, for each edge e = (i, j) ∈ E we define two decision variables xij , xji

representing the number of times edge e is traversed from i to j and from j to i, respectively. In

addition, we have |K| binary variables zk (k ∈ K), that take value one iff component k is serviced.

Then, the WCPARP can be formulated as follows:
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max
∑

k∈K

pkzk −
∑

e∈E

(cijxij + cjixji) (1)

xij + xji ≥ zk (i, j) ∈ Dk, k ∈ K (2)∑
(i,j)∈δ(i)

(xij − xji) = 0 i ∈ V (3)

x(δ(S)) ≥ 2zk S ⊆ V \ {vd}, k ∈ K s.t. Vk ⊆ S (4)

xij , xji ≥ 0 and integer (i, j) ∈ E (5)

zk ∈ {0, 1} k ∈ K (6)

Inequalities (2) force the route to traverse all the demand edges of the clusters it serves, equa-

tions (3) force the route to be symmetric, whereas inequalities (4) ensure that the route connect

the clusters it serves and the depot.

3 Polyhedral results

Next we present some polyhedral results for the polyhedron defined by the feasible solutions to

(2)-(6). Due to space limitations we give the results without a formal proof.

Theorem 3.1 Consider the polyhedron P = conv{(x, z) ∈ Z2|E|+|K||(x, z) satisfies (2)− (6)}.

• If G is connected, dim(P ) = 2|E|+ |K| − |V |+ 1.

• The following inequalities define facets of P :

[F1] Inequalities xij ≥ 0, xji ≥ 0 and xij + xji ≥ zk, if e = (i, j) ∈ E is not a bridge of G,

where k ∈ K is such that e ∈ Dk.

[F2] Inequalities zk ≥ 0 and zk ≤ 1, for all k ∈ K.

[F3] The connectivity inequalities x(δ(S)) ≥ 2zk +
∑

r∈Ko(|Fr| − 1)zr +
∑

r∈Ke(|Fr| − 2)zr,

where S ⊂ V \ {vd}, k ∈ K s.t. Vk ⊆ S, Fr = δ(S) ∩ Dr (r ∈ K), Ko = {r ∈ K :

|Fr| odd}, and Ke = {r ∈ K : |Fr| ≥ 2 and even}.

[F4] The inequalities x(δ(S)) ≥ 1 − r +
∑

k∈K |Fk|zk +
∑

k∈Ko zk, where S ⊂ V \ {vd},

F ⊆ δ(S), |F | odd, such that F =
⋃

k∈K

Fk with Fk ⊆ Dk (k ∈ K), Ko ⊆ K the subset

of indices such that |Fk| is odd, and r = |Ko|.

• The following inequalities are valid for P :

[V1] The inequalities x(δ(S)) ≥ 1 − |F | + 2
∑

k∈K

|Fk|zk, where S ⊂ V , F ⊆ δ(S), |F | odd,

such that F =
⋃

k∈K

Fk, with Fk ⊆ Dk (k ∈ K).

[V2] The K-C inequalities (see [6]), which can be adapted to the WCPARP.
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Some of the above families of inequalities have a size which is exponential on |V |, namely

inequalities F3, F4, V1 and V2. Facets F3 have as particular case those connectivity inequalities

(4) with S =
⋃

k∈Q

Vk, Q ⊆ K \ {1} and k ∈ Q. These can be separated exactly in polynomial time

although, for a higher computational efficiency, we use heuristic separation first. A heuristic is also

used for the general case. Inequalities V1 can be separated exactly in polynomial time, although

they are dominated by facets F4 whose exact separation requires the solution of a linear integer

problem. We use the exact separation algorithm for inequalities V1 as a heuristic for the separation

of inequalities F4. As usual, K-C inequalities are separated by means of an ad-hoc heuristic.

Preliminary computational experiments on a set of 118 benchmark instances of various sizes

produce satisfactory numerical results. These results indicate that approximately 75% of the

instances can be solved optimally making use of an iterative Linear Programming (LP) based

algorithm in which violated inequalities are separated and incorporated to the initial formulation.
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1 Introduction

The Maximum Benefit Chinese Postman Problem (MBCPP) is a generalization of the CPP
in which not all the edges have to be traversed, and, associated with each edge of the graph,
a cost for its traversal with service, a deadhead cost for its traversal with no service and a
set of benefits are considered. A benefit is derived from every traversal with service of an
edge. The objective is to find a closed walk (tour) starting and ending at the depot with
maximum net benefit. Applications of the MBCPP include the routing of street cleaners
and the construction of street snow-plowing and snow-salting tours. An additional benefit
is derived when a street is plowed multiple times and the benefit may depend upon whether
the link represents an arterial or a low-traffic neighborhood street. Unlike the classical CPP,
this problem allows us to obtain solutions that do not traverse some edges while other edges
can be traversed multiple times.

More precisely, the Maximum Benefit Chinese Postman Problem can be defined as follows.
Let G = (V, E) be an undirected connected graph, where vertex 1 ∈ V represents the depot.
Each edge e ∈ E has two types of costs associated: cs

e and cd
e , which we expect cs

e ≥ cd
e . The

first one represents the cost of traversing and servicing at the same time edge e, while the
second one corresponds to the cost of just traversing without servicing that edge (deadhead
cost). Moreover, each edge e ∈ E has ne benefits, b1

e ≥ b2
e ≥ · · · ≥ bne

e > 0, giving the gross
benefit of servicing the edge for the first, second,. . ., ne-th time. Therefore, the net benefit of
traversing and servicing edge e for the t-th time is given by bt

e− cs
e for t = 1, . . . , ne, while the

net benefit of deadheading an edge is −cd
e . Each traversal of an edge incident with nodes i
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and j can be represented by a different parallel edge between nodes i and j, and an additional
parallel edge is included representing deadheading. Then, the MBCPP consists of finding a
tour, starting from the depot, traversing a subset of edges in E and returning to the same
depot with the maximum total net benefit. This problem is NP-Hard because it contains the
Rural Postman Problem as a special case.

In the literature of routing problems we can find several attempts at studying this prob-
lem. Malandraki and Daskin [8] introduce the MBCPP defined on directed graphs. They
show that this problem can be formulated as a minimum cost flow problem together with
subtour elimination constraints. Based on this formulation, a branch-and-bound procedure
is developed to solve the problem. On undirected graphs, Pearn and Wang [10] present a
heuristic algorithm to solve the MBCPP approximately. Other heuristics are proposed in [9].
Up to our knowledge no other result on the MBCPP has been published.

However, some special cases have also been subject of study. For instance, the Prize-
Collecting Arc Routing Problem (also called the Privatized Rural Postman Problem) in which,
as in other prize-collecting routing problems, it is assumed that the benefit of each serviced
edge is collected once, independently of the number of times it is traversed. This problem is
introduced in Aráoz et al. [3], where a 0-1 formulation with an exponential number of inequal-
ities is provided. In [2], an iterative algorithm to solve the problem defined on undirected
graphs is proposed. A related problem, the Clustered Prize-collecting Arc Routing Problem,
has been recently studied by Franquesa [7] and Aráoz et al. [1]. In this last problem, the
connected components defined by the edges with net benefit (demand edges) are considered,
and for each component either all or none of its demand edges have to be serviced. The
same problem defined on a ‘windy’ graph is studied in [5]. Other arc routing problems with
benefits are studied in [6] and [4]. In the first paper, the objective is to find a set of cycles
in the graph that maximizes the net benefit subject to constraints limiting the number of
times that the benefit is available on arcs and the maximal length of the cycles. To solve
this problem a branch-and-price algorithm is proposed. In the second one, authors propose a
branch-and-price algorithm and several heuristics for the Capacitated Arc Routing Problem
with benefits.

2 Problem formulation

In the MBCPP each edge e ∈ E has ne +1 net benefits associated, b
t
e = bt

e−cs
e, corresponding

to the successive traversals servicing the edge, t = 1, . . . , ne, and b
ne+1
e = −cd

e associated with
deadheading e. Since we are assuming cs

e ≥ cd
e and b1

e ≥ b2
e ≥ · · · ≥ bne

e > 0, we have
b
1
e ≥ b

2
e ≥ · · · ≥ b

ne

e .

Let M = max{ne + 1, e ∈ E}. For each edge e, we can assume without loss of generality
that there are M copies of this edge, each one with associated net benefit b

t
e, t = 1, . . . ,M .

If, for a given edge, f ∈ E, nf + 1 < M , the M − nf − 1 extra copies would have assigned
net benefit b

nf+1
f . In this way, we can consider we are working on a graph with M edges in

parallel associated with each edge in the original graph.
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We now define

bodd
e = max

{
k∑

`=1

b
`
e : k odd with k ≤ M

}

beven
e = max

{
k∑

`=1

b
`
e : k even with k ≤ M

}
− bodd

e .

It is not difficult to see that solving the MBCPP on the graph with M parallel edges for
each original edge is equivalent to work on a smaller graph having only two parallel edges for
each edge in the original graph. Or, equivalently, to work on the original graph G, in which
the first traversal of edge e has net benefit bodd

e , while beven
e is the benefit associated with its

second traversal. Note that to get the net benefit beven
e traversing edge e, we need first to

traverse it with net benefit bodd
e . In this way, the MBCPP can be formulated as follows.

For each e = (i, j) ∈ E we define two binary variables xe and ye. Variable xe takes value
1 if e is traversed and 0 if e is not traversed, while variable ye takes value 1 if e is traversed
twice and 0 otherwise. In other words, variables xe and ye represent the first and second
traversal of edge e, respectively. We have the following formulation for the MBCPP:

Maximize
∑

e∈E

(
bodd
e xe + beven

e ye

)

s.t.:
∑

e∈δ(i)

(
xe + ye

) ≡ 0 (mod 2), ∀i∈V (1)

∑

e∈δ(S)

(
xe + ye

) ≥ 2xf , ∀S⊂V \ {1}, ∀f ∈ E(S) (2)

xe ≥ ye ∀e∈E (3)
xe, ye ∈ {0, 1} ∀e∈E (4)

Constraints (1) force the vertices to be of even degree in the solution, its connectivity is
assured with conditions (2), and constraints (3) guarantee that a second traversal of an edge
can occur only if it has previously traversed.

3 MBCPP Polyhedron

Let us call MBCPP tour to each vector (x, y) ∈ {0, 1}2|E| satisfying (1) to (4) and let
MBCPP(G) be the convex hull of all MBCPP tours. It is obviously a polytope. We have
proved that MBCPP(G) is a full-dimensional polyhedron if, and only if, G is 3-edge con-
nected. Hence, in the following, we will assume that graph G is 3-edge connected.

In what refers to the facial description of the MBCPP polyhedron, we have proved that,
under several conditions, the following sets of inequalities define facets of MBCPP(G):

• Inequalities yuv ≥ 0, for each edge (u, v) ∈ E.

158



• Inequalities xuv ≤ 1, for each edge (u, v) ∈ E.

• Inequalities xuv ≥ yuv for each edge (u, v)∈E.

• Connectivity inequalities
∑

e∈δ(S)

(
xe + ye

) ≥ 2xf for each set S⊂V \ {1} and for each
edge f ∈ E(S).

Conditions (1) are not linear inequalities. In order to force the solution to satisfy these
parity conditions, we can use the following linear inequalities:

x(δ(S)\F )−y(δ(S)\F ) ≥ x(F )−y(F )−|F |+1, ∀S⊂V, ∀F ⊂δ(S) with |F | odd. (5)

Parity inequalities above are valid and facet-inducing for MBCPP(G).

At this moment, we are working on new types of facet inducing inequalities for the
MBCPP, and in the design and implementation of a branch-and-cut algorithm for its ex-
act resolution.
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Abstract
Railway timetables define routes, orders and timings for all trains running in the network.

Usually, timetables provide good connectivity between different train services for a number of

origins and destinations. For each pair of connected train services, the waiting train is scheduled

to depart sufficiently later with respect to its feeder train in order to allow the movement of

passengers from one train to the other.

During operations, train traffic can be seriously disturbed by delays, accidents or technical

problems. Major disturbances cause primary delays that propagate as consecutive delays to other

trains in the network, thus requiring short-term adjustments to the timetable in order to limit

delay propagation. This real-time problem is known as Conflict Detection and Resolution (CDR).

Keeping transfer connections when solving the CDR problem increases delay propagation [5],

therefore one of the possible dispatching countermeasures to handle disturbances is the cancellation

of some scheduled connections. This action reduces overall train delays but has a negative impact

on passenger satisfaction for the passengers affected by the missed connection. Train operating

companies are therefore interested in keeping as many connections as possible even in the presence

of disturbed traffic conditions, while infrastructure managers are mainly interested in limiting

train delays. In fact, infrastructure managers discuss with train operating companies on which
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connections must be kept when regulating railway traffic. To support this negotiation process, in

this paper we deal with a Bi-objective Conflict Detection and Resolution (BCDR) problem, i.e.,

the problem of finding a set of feasible schedules with a good trade-off between the minimization

of train delays and the maximization of respected transfer connections.

The BCDR problem is closely related to the Delay Management (DM) problem introduced by

Schöbel [4]. The latter problem adopts a passenger point of view, and aims at the minimization of

the sum of all delays over all passengers at their final destination. In this paper we choose a train

point of view. A value is associated to each connection (e.g., expressed in terms of the number

of passengers who get the connection) and one objective function is the maximization of the total

value of respected connections. A further difference is that the DM problem does not take into

account the limited capacity of the railway network (i.e., does not deal with the CDR problem),

which is the main issue of this paper.

We model the BCDR problem as a special bi-objective job shop scheduling problem, which can

be formulated with an alternative graph [2]. A node i ∈ N of the alternative graph is associated to

the starting time ti of the i-th relevant event. The set F of fixed arcs is used to represent precedences

between events. The set A of alternative arcs is used to represent sequencing decisions. A further

set C of connection arcs represents connections enforcement.

min
(
tn ; −

∑
(i,j)∈C vijδ(tj − ti − wij)

)

s.t. tj − ti ≥ wij (i, j) ∈ F

(tj − ti ≥ wij) ∨ (−) (i, j) ∈ C

(tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i) ((σ(i), j), (σ(j), i)) ∈ A

(1)

σ(i) is the operation which follows i on the route of the associated train, and the precedence

relation tj − ti ≥ wij ensures that j starts after ti plus a time lag wij, as described in [1]. There

are two objective functions: the minimization of the maximum consecutive delay tn and the maxi-

mization of the total value of all connections enforced. The function δ(x) is equal to 1 if x ≥ 0 and

is equal to 0 if x < 0. δ(x) is used to take into account the value vij of each connection tj ≥ ti +wij

kept.

The solution procedure consists of estimating the Pareto front of non-dominated solutions for

the BCDR problem. The solution strategy adopted in this paper consists of iteratively solving

the CDR problem (with fixed connections) and then searching for a different set of connections

to be enforced. For the selection of the connections to be enforced, we develop and test two new

algorithms for the BCDR problem, called Add and Remove, based on the metaheuristic framework

proposed by Paquete and Stützle [3]. Both algorithms use the branch and bound described in [1] to

solve the CDR problem and maintain an archive Z of non-dominated solutions which is returned at

the end of the search. In what follows, C is the set of all transfer connections to keep or drop and

SC ⊆ C is the set of enforced transfer connections. We let D(SC ) be the maximum consecutive
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delay associated to an optimal solution to the CDR problem for a given set SC . We also let V (SC )

be the total value of the connections satisfied in this solution. The pair [V (SC ), D(SC )] is the

associated point in the plane of the two objective functions for the BCDR problem. Figure 1

shows the sketch of Algorithm Add.

Algorithm Add
Set SC = ∅ and compute D(SC)
Initialize archive Z with element SC = ∅ and attributes [0,D(SC)] and visited flag f(SC) = 0

while there is at least an element in the archive with f(SC) = 0 do
Select an element SC with f(SC) = 0 from the archive Z
for all connections j ∈ C − SC do

Generate a neighbor ŜC = SC ∪ {j}
if the set ŜC is not in Z do

Compute V (ŜC) and D(ŜC)

Append ŜC to Z with [V (ŜC), D(ŜC)] and f(ŜC) = 0
end if

end for
Set f(SC) = 1
Remove from Z all the dominated elements

end while

Figure 1: Pseudocode of the Add algorithm.

Each solution in the archive is characterized by the set SC with attributes [V (SC ), D(SC )] and

a visited flag f(SC ) initially set to 0. This flag is used during the search to keep track of the

already visited solutions (with f(SC ) = 1). Initially, a starting solution is inserted in the archive

depending on the chosen algorithm (SC = ∅ for the Add algorithm and SC = C for the Remove

algorithm). A neighbor ŜC is the set obtained by adding to SC a single connection in C − SC

(algorithm Add) or removing a single connection from SC (algorithm Remove).

The computational study is based on the railway network around the main station of Utrecht,

in the Netherlands. We use a peak hour of the 2008 timetable with 79 trains, mostly passenger

trains and a few freight trains, and 451 resources, either block sections or platforms. The resulting

alternative graph has |N | = 1847 nodes, |F | = 2156 arcs, |A| = 4773 pairs of alternative arcs.

As for the set C of connections, we analyze two scenarios. The first one includes 12 passenger

connections and 7 non-relaxable rolling stock connections. The second, more challenging, scenario

includes 24 relaxable connections.

For each scenario, a set of 25 perturbation instances is generated for different values of train

delays. Entrance delays range from 0 to a maximum of 1313 seconds, with an average of 181.6

seconds. About 25% of all trains are delayed at their entrance into the area by more than 5 min-

utes. For each perturbed situation, non-dominated solutions to the BCDR problem are computed.

Table 1 reports on the Pareto front generated by the Add and Remove algorithms. For the first

scenario we also compare the performance of the two algorithms with the Pareto front computed

by enumerating all possible combinations of enforced connections. For each algorithm, we report

on the average number of instances of the CDR problem that have to be solved for an instance of
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the BCDR problem, on the average time required to compute the Pareto front, on the number of

non-dominated solutions, on the Pareto front area, and on the percentage of times the branch and

bound code reaches the time limit before proving the optimality of the solution found.

Table 1: Average results of the Pareto front algorithms.

Scenario Algorithm Scheduler Total # of P. F. P. F. Time Limits

Calls Time (s) Solutions Area (%) BB (%)

First Remove 36 283 3.32 26 18

Add 20 166 3.32 26 23

Exhaustive 4096 33504 3.32 26 20

Second Remove 91 705 4.04 28 18

Add 36 309 4.00 27 25

Both algorithms are very effective in generating the Pareto front. For the first scenario, Add

and Remove find the same Pareto front of the exhaustive search within less than 1% of computation

time. For the second scenario, the number of non-dominated solutions found by Add algorithm

is only 1% less than Remove. Algorithm Add is quite more efficient than algorithm Remove, its

computation time being only 58% [respectively 44%] than the computation time of Remove for the

first [the second] scenario. Overall, these results demonstrate that finding a compromise solution

between delay minimization and connection satisfaction deserves a high potential for advanced

performance management.
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1 Introduction 
 

Carsharing systems are an alternative to private vehicle ownership. Instead of owning a vehicle, a person 

accesses a fleet of shared-use autos, benefiting from choosing the one that best fits his/her needs for a 

specific objective [1]. 

Carsharing began in Europe in the 1940s. One of the earliest European experiences is that of a 

cooperative known as Sefage, in Zurich, Switzerland, in 1948 [2]. In the US it started with the Mobility 

Enterprise program in 1983, evolving through field experiments into successful carsharing services [2]. 

Carsharing schemes span from community-level to national organizations with thousands of 

members. Some schemes are non-profit making, while others are commercial ventures. The concept of 

carsharing may vary, and has been divided in two different types: “Station-Cars” and “Carsharing”. This 

division derives from the location of carsharing depots: in the first case they are placed at transit stations 

and in the second they are distributed independently of transit stations [3]. In the second case the service 

maybe divided in one-way carsharing and round-trip carsharing. 

Carsharing systems developed mostly in the two-way modality, also known as “car clubs”, and 

are currently an expanding market in USA. The one-way sharing mode has not been a priority in the 

meanwhile [4].  In a survey reported in 2006, vendors who sell technology to carsharing programs in the 

US believed “that carsharing operators are not likely to introduce innovative features such as one-way 

rentals because of added management complexities” [4]. Moreover, a discouraging experiment happened 

recently. One of the most innovative carsharing services in the world, offered in Singapore by Honda 

was terminated after six years [5]. It offered one-way trips between any one of 21 depots with no 

reservation required and no return time needing to be specified. The service had 2,500 members with 

access to 100 vehicles. As membership grew the company was not able to maintain the service quality 

which was set initially.  
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Recently, carsharing problems started to be addressed from an optimization perspective. Wei et 

al. [6] addressed the fleet management problem by formulating a stochastic linear integer model for 

vehicle allocation and best trip selection for maximizing profit, taking vehicle relocation costs into 

account. Kek et al. [7] went further and addressed the management of a team of people for relocating the 

vehicles when these operations need to be done by staff members. 

Despite the effort, techniques have not considered real OD matrices, nor have addressed the 

issue of location of carsharing depots and its influence in profit maximization. The article to be 

presented takes the previous formulations and expands them considering OD matrices and addressing 

the issue of depot location and size. 

 

2 Mixed Integer Programming Formulation 
 

The one-way carsharing depot location and size problem can be stated as follows: “given a set of 

geographically scattered sites where depots can be located, with each depot being small, medium or 

large size (number of parking spaces), and customer pick-up and return matrices,  the objective is to 

determine the location and size of depots as well as allocating trips and relocation operations as to 

maximize the profit of running the one-way carsharing operation in an average working day”. 

Consider the following notation: 

Sets: � = �1, . . , �� set of available sites for one-way carsharing depots, where � is the 

maximum number of depot locations; S=�	
���, ����
, ������ set of possible sites for depot 

location;  � = �1�, … , ����, �� , ����, … , ��� representing all the � × � nodes with T as the limit for the 

optimization period. 

Decision variables: �� : Binary variable for the existence of one depot located in i of type k  

∀ � ∈ � and ' ∈ 	; (�)*)+,-. : Continuous variable for the number of trips between depot � and / from 

time step 0 to 0 + δ34; 5�)�)+,-. : Number of relocated vehicles between depot � and / from from time step 

0 to 0 + 6�*; ��) : Number of unused vehicles at depot � in instant 0. 

Parameters: A matrix of travel times between each depot is given by 6�*, the matrix of distances 

is given by 7�*, and the demand matrices for carsharing vehicles at time instant 0 is given by ��*) . The 

known constants are: 8: Income per km driven by a client; 9:: Cost of maintaining one parking 

space per day; 9;: Cost of relocating a vehicle per km driven; 9<: Cost of rejecting the demand of 

one customer-vehicle trip; 9>: Cost of the depreciation of one vehicle per day; ? 
: Number of 

parking spaces for each depot size k; and  as the maximum number of vehicles to be relocated in each 

instant for each depot. 

 

Using this notation, the objective function can be written as: 
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�@ABC = 8 D (�)*)+,-. 7�*�)∈E − 9; D 5�)*)+,-. 7�*�)∈E − 9< D G��*) − (�)*)+,-. H − 9: D �� � �I J, ∈K ?  �)∈E
− 9> D ��L� ∈ M, ∈K   

This function maximizes the total profit (P), taking into consideration as income the number of 

km driven by the customers, and as costs the relocation expenses, rejecting demand, costs for 

maintaining each depot according to their size and cost of owning the vehicles. 

Subject to, 

ND (*)O,-.�)*)∈E + D 5*)O,-.�)*)∈E P − ND (�)*)+,-.*)∈E + D 5�)*)+,-.*)∈E P + ��) = ��)+L ∀ �� ∈ � 
Ensures the conservation of flows at each node at �� and updates the available number of 

vehicles at each depot from time step 0 to 0 + 1; 

D (�L*L+,-.*∈M + D 5�L*L+,-.*∈M ≤ ��L  ∀ � ∈ � 
Guarantees that at the first instant there are only flows of vehicles getting out of each depot and 

that the total flow has to be lower than the available number of vehicles at instant 0 = 1; 

(�)*)+,-. ≤ ��*) × D ��  ∈K  ∀ �� , /� ∈ � 
Ensures that the number of accepted trips between � and / must be lower than the actual trips, 

and it is constrained to be zero when there is no depot in the ��Rsite; 

(�)*)+,-. ≤ ��*) × D �*  ∈K  ∀ �� , /� ∈ � 
Forces the accepted trips between � and / to be zero when there is no depot in the /�Rsite; 

D 5�)*)+,-. ≤ *)∈E D ��  ∈K ∀ �� ∈ � 

Ensures that the relocations will not exceed the M limit for each node �� and must only apply to 

existing depots at ��R site; 

D 5�)*)+,-. ≤ �)∈E D �*  ∈K ∀ /� ∈ � 

Guarantees that the relocations will not exceed the M limit for each node /� and must only 

apply to existing depots at /�R location; 

D ��  ∈K ≤ 1 ∀ � ∈ � 

Ensures that in a given site there will be a small, medium or large depot, or no depot; 

��) ≤ D ��   ∈S ? ∀ � ∈ � 

Forces the number of idle vehicles in each depot � to be less than the depot’s capacity; �� = A0,1C  ∀  ' ∈ �  
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��) , (�)*)+,-. , 5�)*)+,-. ≥ 0  ∀  ��   ∈   �  
 

3 Applying the formulation for the Lisbon Metropolitan Area (LMA) 

Some initial experiments have been conducted using the Lisbon Metropolitan Area (LMA) as case-

study. A geocoded origin-destination survey allowed to obtain OD matrices considering depot coverage 

areas in a buffer for each possible site. 

 In these experiments, 20 possible sites were used for sub-areas of the LMA with diversified trip 

patterns. Tentative results using mean value parameters for the one-way carsharing business point to 

different potentials from sub-area to sub-area following the natural balance /unbalance of the enclosed 

trips. 

 For the cases where commuter trips were not linked to other trips, tentative results indicate that 

this system is economically disadvantageous, as vehicles have to stay idle for most of their time waiting 

to be picked up again to return home. Hence depot location appears to be determinant for influencing the 

viability of one-way carsharing schemes. 
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1 Introduction

A major goal in many traffic networks is to provide cost effective means to establish the flow from

a set of sources to a set of destinations.

Consider a complete graph and assume that for each pair of nodes there is a bidirectional flow

to be sent between them. In practice, for efficiency purposes and in order to reduce costs, some

nodes of the network are selected to become hubs and are used as consolidation and redistribution

points that together process more efficiently the flow in the network. Accordingly, hubs are nodes

that receive traffic (passengers, phone calls, mail, etc) from different origins (nodes) and redirect

this traffic directly to the destination nodes (when a link exists) or to other hubs. With the

concentration of traffic in the hubs and its shipment to other hubs it is possible also to take

advantages of economies of scale, which leads to a natural decrease in the overall cost. The

problem of deciding which nodes in a network should become hubs and how the flow should be

consolidated and redistributed defines the basic setting of a hub location problem (see Campbell

et al. [3]). When a non-hub node must have its traffic routed via exactly one hub we have a

single-allocation hub location problem.

Capacitated hub location problems have applications in many areas such as cargo delivery sys-
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tems, telecommunication networks and public transportation networks among others (see Alumur

and Kara [1] for further details).

In this work we propose an extension to the capacitated single-allocation hub location problem

in which the capacities of the hubs are part of the decision making process. We propose and

compare two sets of mixed-integer programming formulations for the problem. We also propose

several valid inequalities and preprocessing tests. The results of the computational tests performed

to evaluate the different models and enhancements proposed are reported.

2 Problem description

In its basic setting, the capacitated single-allocation hub location problem (CSAHLP) has the

following features (For further details and literature on this problem see Campbell et al. [3] and

Alumur and Kara [1]):

• The inter-hub network is a clique.

This has been considered in many hub location problems supported by practical requirements

although in some works this feature has been relaxed (e.g. Alumur and Kara [2] and Nickel

et al. [4]).

• No direct links are created between non-hub nodes.

Accordingly, the only consolidation points should be the hubs. All traffic originated in each

node should be routed via at least one hub.

• The hubs are capacitated.

We assume that the capacity only constrains the incoming flow (see Campbell et al. [3] for

further details on the practical motivations behind this assumption).

• The decisions to be made comprise: i) which nodes should be selected to become hubs; ii)

how to allocate the non-hub nodes to the hubs.

• The costs involved in the problem are the set-up costs for the hubs and the costs associated

with the flow. In the latter case, three cost components can be distinguished: collection cost

(from the non-hub nodes to the hubs, distribution cost (from the hubs to the non-hubs) and

discount costs (between hubs).

• The objective is to minimize the overall cost for building and operating the network.

We extend the problem above by considering the capacity of the hubs as part of the decision

making process. This is motivated by the fact that often, hubs are large structural facilities

requiring several strategic decisions to be made in addition to the location decisions. One such

decision is exactly their dimension/capacity for processing flow. For each potential hub we consider
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a set of available capacity levels among which at most one can be chosen. Each capacity level

determines a capacity for the incoming flow and incurs a specific fixed set-up cost. Economies

of scale are assumed for these costs. In addition to the decisions listed above, we consider the

capacity level at which each hub should operate.

In order to illustrate the flexibility in the network design process and the advantages in terms of

the overall cost that can be obtained with the extension just proposed, consider a problem with 9

nodes depicted in figure 1. Assume that each square in the grid has a unitary length. Additionally

assume that i) each node should send 2 units of flow/traffic to every other node (thus, each node

originates 16 units of flow); ii) the cost for sending a unit of flow between two hubs is equal to 0.75

times the distance between the hubs; iii) the cost for sending one unit of flow between a non-hub

node and a hub as well as between a hub and a non-hub is equal to the distance between the nodes

involved; iv) the distance between two nodes in the network is given by the euclidean distance.

Figure 2a represents the optimal solution (with value 546 + 54
√

2) ≈ 622.4) for the situation

in which i) a hub can be installed in every node with a set-up cost equal to 100 for nodes 2, 5 and

7 and equal to 500 for the other nodes; ii) the flow consolidation capacity of each potential hub is

equal to 50 (maximum flow/traffic that a hub can receive from the nodes connected to it);

Figure 2b represents the optimal solution to the problem (with value 552 + 32
√

2 ≈ 597.3)

assuming that it is possible to make a decision about the capacity of a hub to be installed in nodes

2 or 5. In particular, assume that one additional capacity level equal to 80 is available in each of

these nodes, with a set-up cost of 120.

3
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4

5 6

78 9

Figure 1: A set of nodes defining a CSAHLP.
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(b)

Figure 2: Flexibility in the network design arising from the existence of different capacity levels.

In this small example we can see that with the introduction of capacity choices more flexibility

is given to the network design decisions and a lower cost is obtained.
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3 Methodology for approaching the problem

The new hub location problem we are considering can be easily formulated by adapting to the

new situation several well-known MIP formulations for the CSAHLP. Nevertheless, other possible

MIP formulations can be considered. This is the case when we consider allocation variables (of the

non-hub nodes to the hubs) indexed in the different capacity choices that exist for the potential

hubs. We propose such formulations.

The interesting question arising is how the formulations compare with each other theoretically

and how far is it possible to go with them from a computational point of view. Note that we are

working with an NP-hard problem (the new problem has the CSAHLP problem as a particular

case), so an exact approach is expected to be successful only for small or medium size instances.

We make a theoretical comparison between the formulations proposed namely in terms of the

bounds provided by their linear relaxations. We also propose a set of valid inequalities to enhance

the models. Several preprocessing tests are also proposed aiming at reducing the size of the models

considered.

We run a series of computational tests in order to evaluate the performance of the different

models proposed as well as of their enhancements. For doing so and taking into account that

no benchmark instances exist for the new problem, we considered benchmark instances for the

CSAHLP and generated the necessary data to obtain instances for the new problem. The results

emphasize the superiority of one specific model when a general solver was considered for solving

the problem to the optimality. The results also show the superiority of a different model in terms

of the bound provided by the linear relaxation.
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1 Introduction 

 

In dynamic traffic assignment (DTA) problems, reliability is increasingly acknowledged as an 

important factor influencing the decisions of travellers (such as modal choice, departure time choice 

and route choice). Several studies have tried to estimate the contribution of reliability to the choice 

behaviour of travellers, and to determine how and to what extent it is to be considered in choice 

models in DTA (e.g. [1], [2], [3], [4], [5]). However, before variability itself and the respons of drivers 

can be adequatly modeled by DTA models, several problems have to be overcome (see also [6]): 

- Despite various studies (e.g. [1]-[5]), an agreement on the valuation and measure of 

variability to be used in generalised cost funtions in choice models (determing route choice,  

departure time choice and – in multimodal models – modal choice) is still to be reached.  
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- State-of-the-art Dynamic Network Loading (DNL) models used in DTA to propagate traffic 

over networks are deterministic by nature. With these models, the variability of traffic states 

and travel times from day to day can only be quantified by performing a large number of 

Monte-Carlo simulations with varying input (such as demand, route choice and capacity). Due 

to high computation times, this approach is unfeasible with state-of-the-art dynamic models. 

Thus, efficient algorithms are to be developped to produce – most likely in an approximate 

way - probability distributions of traffic states and route travel times, rather than a one-shot 

deterministic prediction. Recently, some first steps have been taken towards the development 

of such stochastic DNL models ([7],[8],[9]). 

- Introducing variability may necessitate a reformulation of the DTA framework. It is 

questionnable if feeding DNL models with a route choice that is fully determined prior to 

departure – even if this route accounts for the influence of variability – and iterating towards a 

dynamic user equilibrium, sufficiently represents reality. Drivers may respond to variability 

not by a priori choosing a reliable route, but by opting for the fastest – not necessarily reliable 

– route and rerouting in case of above average congestion. This strategy is aided by various 

information systems available to drivers pre- and en-route. How and to what extent different 

levels of choice need to be considered in DTA to capture the dynamic character of traffic - 

this may differ depending on the application - is an open issue for future research and debate 

[10].  

 

2 Including en-route rerouting in the Marginal Incident 

Computation model  

 

In [11], we introduced the Marginal Incident Computation (MIC) model, a highly efficient 

algorithm that approximately quantifies congestion spillback and the corresponding travel time 

increase due to incidents. The MIC model superimposes the effect of every incident onto the outcome 

of a single base DNL without incidents. This base simulation can be obtained from any existing DNL 

model. The output needed from the base DNL consist of the curves of the cumulative vehicle numbers, 

which consequently serves as input to the MIC model. The base cumulative curves of the links where 

the traffic flows are influenced are altered according to the additional constraint imposed by the 

incident. This is done according to Newell’s simplified first-order kinematic wave theory [12].  Since 

only the additional congestion due to an incident is calculated, computational effort is limited to a 

fraction of all links and time intervals. Computation time can be reduced to less than 0.1% compared to 

a full, explicit simulation of each incident case (depending on the network size). Thus, the MIC model 

renders extensive Monte-Carlo sampling feasible, allowing fine sampling of incident duration, 

severity, and starting times. In [9], the usefulness of the MIC model in the context of a stochastic DNL 
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is demonstrated. By accounting for incident induced variability, an onset of a (partial) answer to the 

second question formulated in Section 1 is provided.  

A rather stringent assumption of the MIC model as presented in [11] was that drivers make 

the same journey in case of an incident as they do in the base simulation. In this paper, an approximate 

procedure is added to the MIC model to account for en-route rerouting. This procedure is based on the 

hybrid route choice modeling introduced in [13]. Herein, a route choice model defines pre-trip route 

choice for all drivers. However, during the DNL, the pre-trip computed route flow rates are updated at 

every network node. This allows drivers to re-evaluate the pre-trip route choice and possibly deviate to 

an alternative route. An additional term (weighted with one single parameter ω ) is introduced into the 

cost functions of the logit route choice model to express drivers’ reluctance to move away from their 

initial route.  

En-route rerouting is incorporated into the MIC model in the following way. At every node 

that the queue spilling back from the incident reaches, a k-shortest path logit route choice model is run. 

This route choice is performed between each initial route that passes through this node into the link 

from which congestion spills back and the k alternatives from this node towards the destination of the 

initial route. The cost function used in the logit route choice model contains the instantaneous route 

travel times and, for the alternative routes, the additional term to account for drivers’ reluctance to 

reroute (as in [13]). In reality, drivers will have incomplete – and possibly incorrect - information 

about current and future traffic conditions and travel times. In any case, this route choice is not an 

equilibrium since this cannot be reached under unexpected traffic conditions. Here, drivers are 

assumed to base their en-route route choice on instantaneous travel times, which is probably more 

realistic than using experienced travel times, since these are unknown to drivers. At each node, the en-

route route choice model determines how many people reroute and thus how the turning fractions 

(determining the proportion of traffic in each downstream direction) change. Due to rerouting, a higher 

proportion of drivers is directed towards non-congested downstream links and thus the outflow of each 

incoming link of the node will increase. As a result, the incident congestion will spill back slower and 

reach less far.  
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Cargo is moved for a large part by consolidation-based carriers: railroad, less-than-truckload mo-

tor carriers, container ships, regular and express-currier services, etc. The fundamental idea of

consolidation-based transportation is to group loads of different shippers, with possibly different

origins and destinations, and to load them into the same vehicles for efficient long-haul transporta-

tion. The performance and profitability of such a system depend for a large part on efficient and

coordinated terminal and long-haul transport operations. A set of regular, often scheduled, trans-

portation services is the result of these operations and constitutes the offer of service the carrier

proposes to its potential customers. The tactical planning process producing this transportation

plan is generally known as the service network design problem [2].

Rail carriers generally implement a double consolidation policy: loaded and empty cars are

grouped into so-called blocks, which are then grouped again to make up the trains. Cars with

different origins and destinations being present simultaneously in the same yard (a major terminal

suitably equipped) are thus sorted and grouped into a block, which is moved as a single unit by a

series of trains until its destination, where it is broken down, the cars being either delivered to their

final consignees or sorted for inclusion into new blocks. The associated operations and policies are
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denoted car classification (sorting), blocking, block transfer (from one train to another), and train

make up.

Tactical planning aims to select the train services to operate over the contemplated schedule

length (e.g., the week) and their frequencies or schedules (time tables), the blocks that will make

up each train, the blocks to be built in each yard, and the routing of the cars loaded with the

customers’ freight using these services and blocks (empty-car movements are also considered).

A rich literature exists on models and methods addressing these issues (two surveys: [1, 2]).

Most either address a single or a limited number of issues, or make significantly simplifying hy-

potheses. At the best knowledge of the authors, in fact, no model currently available in the

literature addresses in an integrated, comprehensive formulation all the tactical planning issues.

Our goal is to answer this challenge and present an integrated scheduled service network design

methodology for rail freight transportation.

1 Problem Setting

Railroads are complex transportation systems where several major components interact and com-

pete for resources. The infrastructure of the system is made up of a large number of stations

where freight originates and terminates, and yards where cars are sorted and blocks and trains

are built and taken apart, and rail tracks linking them. To simplify the presentation, we focus on

the main-line network and assume all stations operate as yards. Yard operations are constrained

by their capacity (with respect to a given time period) in terms of number of cars that may be

classified, number of blocks that may be built (number of classification tracks), number of trains

that may be made up or stop. Inter-yard movements are also constrained by the capacity of the

rail tracks in terms of number of trains that can be accommodated simultaneously.

Service is provided by trains. A train service is made up at an origin yard, follows a given route

stopping, eventually, at a series of intermediary terminals, and is broken down at its destination

yard. Its schedule indicates arrival and departure times at each one of these yards. Each train

service is also characterized by its power and speed, which determine its capacity (for simplicity,

we assume it is measured in number of cars) and travel time, respectively. At each station, the

train picks up and delivers blocks of cars.

Each customer demand consists of cars of particular types to be moved from their respective

origins to their destinations, within their temporal requirements: availability at origin, due-time

at destination. At the origin yards, cars are classified and grouped with cars of other customers

(and empty cars) into a block, which will be put on a train formed in the same yard or on a train

stopping at the yard. They will be then delivered to the final destination by a series of trains and

blocks, each block being possibly moved by several trains.
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Given forecast customer demand and sets of potential services (train departures) and blocks,

the scheduled service network design problem we address simultaneously selects services, the blocks

to be built at each yard, and the itineraries - the series of blocks and trains - for each demand, to

minimize the total cost of the system.

2 Modelling Framework

Let G = (V,E) denote the physical rail network, where the node set V represents the yards and

the set of links E stands for the possible directional movements on track sections between adjacent

yards. Let T be the length of the cyclic schedule, divided into time periods {0, · · · , T − 1}, where

period 0 follows period T − 1.

We build a three-layer time-space structure to represent the possible decisions and activities

making up the schedule and related to services, blocks, and cars, respectively [3]. The time-space

network of each layer is made up of nodes representing the yards at each time period and a number

of arcs connecting these nodes and standing for the specific activities and delays, within yards and

movements between them, associated to the layer. Let A stand for the links of the car and block

layers (on which cars may move or wait in yards). Inter-layer links represent the consolidation (and

de-consolidation) operations - cars into blocks, blocks into trains - and complete the time-space

network. Each demand p is associated to an origin node and period in the car layer, a maximum

delivery time, a destination yard, and a number of cars of particular type.

Three sets of decision variables are defined:

yb ∈ {0, 1} Block selection: yb = 1 if block b ∈ B is selected, 0 otherwise;

zl ∈ {0, 1} Service selection: zl = 1 if service l ∈ L is selected, 0 otherwise;

xp
a ≥ 0 Number of cars of traffic class p traveling on link a ∈ A.

The Scheduled Service Network Design Problem may then be formulated as

min
∑
p∈P

∑
a∈A

c(p, a) · xp
a +

∑
b∈B

cf (b) · yb+
∑
l∈L

cf (l) · zl (1)

s.t.
∑

a∈A+(n)

xp
a −

∑
a∈A−(n)

xp
a = wp

n ∀n ∈ N, ∀p ∈ P ; (2)

∑
p∈P

xp
a ≤ ua ∀a ∈ Ac; (3)

∑
l∈L(e,t)

zl ≤ ue ∀e ∈ E,∀t ∈ {0, · · · ,T− 1}; (4)

∑
f∈F (l)|a∈Av(f)

∑
b∈B|f∈F (b)

∑
p∈P

xp
b ≤ zlul ∀a ∈ Av, l ∈ L; (5)

∑
b∈B(a)

yb ≤ uv(a) ∀a ∈ Ah; (6)
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∑
p∈P

xp
b ≤ ybub ∀b ∈ B; (7)

∑
f∈F (l)

∑
b∈B|f∈F (b)

yb ≤ zlul|Av(l)|∀l ∈ L; (8)

xp
a ≥ 0 ∀a ∈ A,∀p ∈ P ; (9)

yb ∈ {0, 1} ∀b ∈ B; (10)

zl ∈ {0, 1} ∀l ∈ L. (11)

The objective function (1) sums operating costs on all layers, where cf (l) and cf (b) are the

service and block fixed costs, respectively, and c(p, a) is the unit flow cost for demand p on link a.

Equations (2) enforce the car flow conservation constraints at all nodes for all demands. Relations

(3) - (6) enforce capacity constraints on the numbers of cars on yard classification links, trains

on rail tracks, cars on trains, and blocks formed in yards, respectively. Linking constraints (7)

and (8) ensure logical feasibility, i.e., cars are assigned to selected blocks, and blocks are moved

by selected trains, respectively, as well as the capacity restrictions of blocks (number of cars) and

trains (number of blocks).

The dimension of the resulting mix-integer formulation grows rapidly with the size of the

rail network, the density of potential services and blocks, and the length of the schedule. In

the presentation, we will discuss the application of this modelling approach to the case of direct

services, as well as to the general case of services with intermediary stops. We will also present

the meta-heuristics we developed for these cases, based on tabu search and slope scaling ideas,

respectively. Numerical results on several classes of test problems, including some derived from

actual applications, will also be presented and analyzed.
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Multi-Echelon distribution systems are broadly used in practice and have been widely studied

in the literature, but attention was mainly focused on flow assignment issues, while the routing

of vehicles supporting the flows was generally not considered in the optimization process. Multi-

Echelon Vehicle Routing Problems encompass this issue. They address the management of the
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fleets required to provide transportation among the different echelons, and the integrated planning

of the associated routes. The goal of the system is to deliver at minimum cost goods from one

or more depots to customers by consolidating and routing through intermediate depots, called

satellites.

In this paper we study the single depot Two-Echelon Vehicle Routing Problem, from now on

2E-VRP, made up of two levels of routing activities. At the first level, goods are delivered by a

first-level fleet, from the depot to a set of intermediate depots, named satellites, where they are

consolidated into second-level vehicles for delivery to customers. These two routing problems are

strongly interdependent and are connected by the customer-satellite assignment problem. Service

at each level is provided by an homogeneous fleet. We consider constraints on the maximum number

of available vehicles for both levels, and on the satellites capacity, which is expressed as number

of vehicles starting from a satellite. Satellites capacity may vary among the satellite. The goal

is to serve customers minimizing the total transportation cost of the two-echelon system, without

violating the capacity constraints of the vehicles. We consider a single depot and a fixed number

of capacitated satellites. All customer demands, fixed and known in advance, must be satisfied.

This problem is faced very frequently in real life applications, both at the strategic level (long

term planning) and at the operational one (real-time optimization). Methods which can be applied

at both levels must be accurate and, at the same time, very fast. In fact, in long term planning, the

2E-VRP is part of a simulation framework, that means it must be solved a lot of times during the

optimization process and for that reason, computational times should be short. At the operational

level, real-time optimization problems, for which a feasible solution is needed in a short time, are

often faced. On the other hand, accuracy of the solution, is much important, because, on real

applications, even a small gain on the objective function could yield a great saving of money for

the transportation company.

A formulation for the 2E-VRP has been presented in [4], where instances up to 32 customers

were solved to optimality. In the same paper, the authors derived two math-heuristics able to

address instances up to 50 customers. Both are based on the LP model presented in the paper and

work on the customer-to-satellite assignment variables. The first math-heuristic, called Diving,

considers a continuous relaxation of the model and apply a diving procedure on the customer-to-

satellite assignment variables which are not integer. To recover possible infeasibilities due to the

variables fixing, a restarting procedure is incorporated. The second one, named Semi-continuous,

considers the arc usage variables as continuous, while the assignment variable are still considered

as integer. The method solves this relaxed problem and uses the values of the assignment variables

obtained to build a feasible solution for the 2E-VRP. A general time-dependent formulation with

fleet synchronization and customer time windows has been introduced in [1] in the context of two-

echelon City Logistics systems. The authors indicated promising algorithmic directions, but no
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implementation has been reported.

We present two fast and accurate heuristics based on separating the depot-to-satellite transfer

and the satellite-to customer delivery by solving iteratively the two resulting routing subproblems,

while adjusting the satellite workloads linking them. The first one is a clustering based heuristics,

the second one is based on a path-relinking procedure.

Both methods are based on a common idea. We split the problem into two routing subproblems,

one at each level. The second level problem can be further decomposed into n Vehicle Routing

Problems (VRPs), being n the number of satellites, one for each satellite. In every VRP we

consider as depot a satellite and as customers only those which have been assigned to it. The

customer-to-satellite assignment problem plays a crucial role in the problem solving. In fact, if we

suppose to know the optimal assignment, an optimal solution can be easily obtained by solving

to optimality the VRP related to each satellite, and the resultant VRP at the first level, in which

we consider as customers the satellite with a demand equal to the sum of customer assigned to

it. The 2E-VRP can be treated as an assignment problem in which the objective function is given

by the solution of n+1 VRPs. Since the computational time is mostly due to the routing solving,

we cannot neglect this information while developing a fast heuristic method. In fact, methods

involving large neighborhood exploration are not suitable for solving this problem, because of the

computational time needed to analyze each solution of the assignment problem. For developing

a fast heuristic we need a mechanism which can guide us, inside the solution space, to promising

solutions, and allow us to obtain good results without exploring a high number of solutions.

The first heuristic we present, named Clustering Improvement (CI), is a clustering based heuris-

tic which aims to improve the assignment given by an initial solution following a local search ap-

proach. The local search is a first improvement in which the order according to which we explore

the neighborhood is given by a distance based rule. The neighborhood is defined as the set of

assignments in which only one assignment is different from the current solution. Being the size of

the neighborhood small, we can explore it in a quite short time. The initial solution is obtained

by applying the First Clustering (FC), a rule which assigns each customer to the nearest avail-

able satellite (some assignments may not be feasible because of satellites and vehicles capacity

constraints). The order in which we explore the neighborhood is given by the following rule: we

create a list of customers ordered, in non-decreasing order, by the difference between the distances

from the satellite to which it has been assigned and its second nearest satellite. We scan the list

to determine which customer will be assigned to its second nearest satellite. We refer the reader

to [3] for a complete description of this method, and to [2] for an analysis of instances layout on

the global transportation cost, in which FC and CI have been applied.

The second method we develop is a path-relinking based heuristic (PR) in which we start from

an Elite Set which is made only by the initial solution obtained by FC, we create perturbed solution,
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which are quite far in the solution space (high Hamming distance between the two corresponding

assignment vectors), and we relink them to the initial one, following a path composed by solutions

in which we change at each step one and only one customer-to-satellite assignment. Two different

perturbed solution generation methods, both based on a distance rule, are proposed. In the first

one a strong random component is taken into consideration in the assignment perturbation, while,

in the second one the random component effect is reduced. Three different relinking methods have

been adopted. In the first two methods, the choice of the customer to be reassigned at each step

is random, but, while in the first method we start from the initial solution, in the second one we

start from the perturbed one. The third method, instead, follows a deterministic distance based

rule for determining the customer to be reassigned.

We present computational results on a wide set of instances up to 50 customers and 5 satellites

and compare it with results from literature. Our methods outperform the existing methods, both

in efficiency and effectiveness.
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1 Introduction

We study a problem faced by a maritime container shipping company, which has to meet trucking

transportation requests arising in the landside. The shipping company must deliver loaded con-

tainers to import customers and provide empties for exporters and is requested to determine the

routes of trucks in order to serve customers. Trucks can carry more than one container and are

requested to wait containers emptied by some import customers becoming available to satisfy the

demand of export customers.

A number of papers have been proposed to address the pick-up and the delivery of containers

[1, 2, 3, 4, 5]. These formulations assume, however, that each truck carries one container only,

which may lead to highly suboptimal decisions in our setting. Moreover, the combined vehicle and

container routing issue is very seldom addressed. We propose an optimization model to address

this gap.
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2 The Case Study

Consider a shipping company operating a fleet of trucks based at a port location to serve a poten-

tially different set of customers each day. There are two main types of transportation requests: the

delivery of loaded containers from the port to importers (deliveries), and the shipment of loaded

containers from exporters to the port (pick ups). Notice that the total number of pick up and

delivery requests is generally different. In import-dominant regions the number of containers de-

livered to importers is larger than the number of containers requested for exports and, thus, empty

containers must be moved from importers to the port for future transportation opportunities. The

opposite activity must be performed in export-dominant regions, where empty containers must be

moved from the port to exporters in order to meet all transportation requests.

Due to the constrained customer facilities, containers stay on trucks during loading and un-

loading operations. As a result, drivers are requested to wait for the conclusion of these operations

before moving to other customers. When importers and exporters are located close together, the

direct allocation of empty containers from an importer to an exporter may be a valuable oppor-

tunity to reduce the total travelled distance. In the current setting, all containers returned by

importers can be used to meet the requests of exporters. The fleet of trucks is heterogeneous, each

truck can serve any customer, and routing costs depend both on the distance between customers

and on the vehicles performing the distribution. For example, some trucks can carry more than

one container, but they generate higher operating costs than trucks carrying one container only.

Containers must be used and moved by trucks to serve all customers. The objective is then to

determine a set of trucking routes, starting and ending at the port, of minimum total cost, such

that all importer and exporter requests are served, a minimum number of containers are used, all

deliveries are performed before any pick up, and truck capacity restrictions are not violated.

3 Optimization Model

We consider a port p, a set I of importers, a set E of exporters, and a set K of different trucks,

each with capacity uk. Consider a direct graph G = (N,A), where N = {p ∪ I ∪ E} and the set

of arcs A includes all possible ways to move containers between two nodes in N . Since importer

nodes must precede exporter ones, we consider a set Ā ⊆ A, which does not include arcs from

exporters to importers. The set Ā is defined as Ā = A1 ∪ A2, where

A1 = {(i, j) ∈ A|i ∈ I ∪ p, j ∈ N}

A2 = {(i, j) ∈ A|i ∈ E, j ∈ E ∪ p}

The operation cost ckij for truck k ∈ K on arc (i, j) ∈ Ā is supposed to be nonnegative. Let hk
pj

be the nonnegative cost of loading a container on truck k in port p for shipment to node j. An
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integer demand of di ≥ 0 containers is associated with each customer i ∈ I ∪ E.

The following decision variables are defined:

• xk
ij : Routing selection variable equal to 1 if arc (i, j) ∈ Ā is traversed by truck k ∈ K, and 0

otherwise;

• ykij : Integer variable representing the number of loaded containers moved along arc (i, j) ∈ Ā

by truck k ∈ K;

• zkij : Integer variable representing the number of empty containers moved along arc (i, j) ∈ Ā

by truck k ∈ K.

The problem can be formulated as follows:

min
∑

k∈K

⎡

⎣
∑

(i,j)∈Ā

ckijx
k
ij +

∑

j∈N

hk
pj(y

k
pj + zkpj)

⎤

⎦ (1)

s.t.
∑

k∈K

∑

j∈p∪I

ykji ≥ di ∀i ∈ I (2)

∑

k∈K

∑

l∈N

ykil =
∑

k∈K

∑

j∈p∪I

ykji − di ∀i ∈ I (3)

∑

k∈K

∑

l∈N

zkil =
∑

k∈K

∑

j∈p∪I

zkji + di ∀i ∈ I (4)

∑

k∈K

∑

j∈N

zkji ≥ di ∀i ∈ E (5)

∑

k∈K

∑

l∈p∪E

ykil =
∑

k∈K

∑

j∈N

ykji + di ∀i ∈ E (6)

∑

k∈K

∑

l∈p∪E

zkil =
∑

k∈K

∑

j∈N

zkji − di ∀i ∈ E (7)

ykij + zkij ≤ ukx
k
ij ∀(i, j) ∈ Ā, ∀k ∈ K (8)

∑

j|(j,i)∈Ā

xk
ji −

∑

l|(i,l)∈Ā

xk
il = 0 ∀i ∈ N, ∀k ∈ K (9)

∑

k∈K

∑

i∈I∪E

zkip −
∑

k∈K

∑

i∈I∪E

zkpi =
∑

i∈I

di −
∑

i∈E

di (10)

Container loading and truck operating costs are minimized in the objective function (1). Con-

straints (2), (3), and (4) concern the movement of containers to importers. According to constraints

(2), each importer node must receive at least a number of loaded containers equal to its demand.

When this constraint is not tight, a number of loaded containers is kept on trucks for delivery

to other importers. Constraints (3) and (4) are the flow conservation constraints of loaded and

empty containers respectively at each importer node. Constraints (5), (6), and (7) concern the

allocation of containers to exporters. Constraints (5) ensure that each exporter node receives at
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least a number of empty containers equal to its demand. When this constraint is not tight, a

number of empty containers is kept on trucks to serve other exporters. Constraints (6) and (7) are

the flow conservation constraints of loaded and empty containers, respectively, for each exporter

node. Constraints (8) impose that the number of containers moved by each truck does not exceed

its capacity. Constraints (9) are the flow conservation constraints for trucks at each node. Finally,

constraints (10) represent the flow conservation of empty containers at port p.

4 Conclusion

A number of artificial instances have been effectively solved using cplex. The results on a number

of real instances will be presented at the conference, together with comparisons to the decisions of

the corresponding shipping company in terms of both decision time and total travelled distance.
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1. Problem description and literature review 
 
Planning the container allocation of storage in a maritime container terminal is linked to the handling 

efficiency of the terminal. This research is concerned with the planning of container allocation of 

storage in a new automatic handling system using optimization technologies. The objective of the 

research is to determine an optimized allocation and storage plan for arriving/departing containers in 

this new configuration of automatic container terminal in order to equilibrate the workload of handling 

equipments and thus achieve a high performance in the time necessary to execute the loading and 

unloading import/export operations of vessels over a planning horizon. This problem is recognized as a 

key factor of the global performance of a maritime terminal and there is a need for developing efficient 

methods for applications of industrial size. As a matter of fact, repositioning containers in the storage 

area is necessary and generates unproductive moves. 

The system studied here (inspired from the technology proposed by Shanghai Zhenhua Port Machine 

Co. Ltd, applied to the Port of Shanghaï) is characterized by original features, leading to new 

constraints in the storage problem. The equipments can handle two 40’ containers (or four 20’) 

simultaneously and several types of moves are considered: Inbound (I/B) unloading containers (ULC) 

from imports or transit are transferred from the Quay Cranes (QC) to the storage area by elevated 

distribution vehicles transporting them in front of their storage bay; these containers are then taken 
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down by lifting cranes (LC) in front of each bay; then shuttle vehicles, moving at high speed, transport 

them in front of their storage place where rail mounted gantry cranes (RMGC) store them at their 

assigned position. They are then sent out of the terminal by trucks. On the other way round, the 

receiving (RCC) export outbound containers (O/B) arrive by trucks and are stored at their assigned 

place. These and the transit containers become loading containers (LDC) and are transported from the 

storage areas to the quay cranes by the handling equipments in the reverse way. 

 

Decision problems at container terminals are comprehensively described by Iris and de Koster[1] and 

in Steenken et al. [4] which classify the main logistics processes and operations in container terminals 

and present a survey of methods for their optimization. For the storage space allocation problem, the 

main focus is to suggest a method of pre- allocating storage spaces for import and export containers so 

that the re-handle process could be minimized, thus maximum efficiency in the loading and unloading 

operations areachieved. The process of determining the storage locations can usually be decomposed 

into two stages: the space allocation stage and the stage of locating individual containers. Kim and 

Park [3] deal with the space allocation problem in the first stage for the export containers. A mixed 

integer model is developed and two heuristic methods are proposed. Kim et al. [2] focus on the stage of 

locating individual container by determining the storage location of an export container in a pre-

assigned yard bay in a way that reduces the expected relocation movement during loading operations. 

Zhang et al. [5] solve the problem using a rolling-horizon approach, and decompose the problem on 

two levels: the allocation of the different types of containers to the blocks and then the determination 

of the exact locations. We adapt the method of Zhang et al. to our particular problem (possibility to 

handle 1 or 2 containers at a time, containers of 20’ or 40’, particular configuration of the terminal). 

 

2. General solution approach 
 
A container terminal operates continuously. To be able to solve the problem, it is necessary to fix a 

planning period and generate the solution on a rolling horizon. We propose to solve the problem by a 

hierarchical approach in two stages: 

(1) Global allocation plan: At this level, a gross allocation plan will be developed in order to determine 

a storage area for each incoming container from export customers or arriving vessels at imports. The 

main input for this stage includes the vessel berth allocation plan and yard storage initial status. 

 (2) Detailed allocation plan: Considering the global allocation plan, a detailed storage plan for each 

container will be elaborated in order to maximize the efficiency of yard cranes operations under the 

constraints of satisfying the quay cranes operationx schedule, with the goal of minimizing the 

makespan under the constraints generated by the global plan. 

We propose a mathematical optimization model for solving the first problem. For each container type, 

storage area  and period of time for unloading and loading, integer decision variables refer to the 

number of inbound, transit or outbound containers that are stored in each block, or loaded or unloaded 
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by the handling equipments, as well as to the level of inventory at the each period of time. Binary 

variables refer to the location of lifting cranes (LC) for ascent or descent moves for each storage block 

and time period. 

The goal of the problem is to dispatch the loading and discharging containers related to a vessel among 

the active, or reserved storage blocks of the terminal, in order to balance the workload of the handling 

equipments in each period of time. The modelled objective function is a nonlinear expression 

minimizing the weigthed sum for all time periods of the planning horizon and container types of two 

terms measuring the imbalance of the vessel related number of operations for containers in block i 

during period t. The weights are adjusted according to the relative importance of the vessel related 

containers within the total number of containers in the terminal. Several roups of linear constraints are 

introduced into the model to ensure the practical feasibility of the solution: container flow conservation 

constraints, constraints on inbound, outbound and transit containers handling, block density 

constraints, constraints on determination of the location of the lifting crane, and nteger conditions on 

allocation variables The model described above may be converted to a mixed integer linear 

programming problem using usual techniques.  

The second problem (detailed allocation plan of the containers in each block) can be formulated as an 

allocation problem on a bipartite graph, to minimize a cost expressing the travel distance of the 

handling equipments between the quay side and the storage blocks. 

 

3. Experimentation 
 
We have used the standard optimizer (Xpress-MP) to solve the problem on data sets provided by the 

Shanghai Zhenhua Port Machine Co. Ltd. We consider a system with 7 blocks in the storage area, 5 

dispatching lines, 4 quay cranes, from 8 to 14 lifting cranes (LC), 2 RMGC by block. We define a 

planning horizon of three days, each day divided into six 4-hour periods. The containers distributions 

are obtained from data given by the Shanghai Port Statistic Committee.We study the variation of the 

weights for quayside workload and total workload, total number of handling container number, number 

of the lifting cranes. The assumption made at the design of  the handling system is to use 14 LCs., for a 

total of 6000 handled containers during the planning period. The result shows that the variation of the 

weight for quayside workload and total workload, the variation of the total handling number during 

research period have no significative influence on the optimal objective value; by opposition, the 

variation of the container type has greatly influence on the objective function. Our results illustrates he 

balance achieved in the number of the containers between blocks during 180 days planning period. We 

have also studied he variation of the objective function (container imbalance betwwen blocks) in terms 

of the number of the lifting cranes. 
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4. Conclusions 
 

In this conference we present a new concept of fully automated maritime multi-type container terminal 

proposed and currently experimented at a prototype terminal od the Port of Shanghaï. In order to 

optimize the assignement of containers in the terminal and the movements of handling equipments, we 

have proposed an optimization model to determine the storage areas of the different types of terminals. 

The model aims at balancing the storage of containers among the storage blocks and limiting the 

routing of containers between quayside and storage areas, thus ensuring an efficient utilization of the 

handling equipments. This policy favors an efficient handling of the loading and unloading operations 

for a given vessel, thus minimizing the makespan. The nonlinear optimization model can be converted 

to a mixed integer programming model and solved by a commercial solver in combination with an 

allocation model. Experiments carried on real data within the framework of a rolling horizon procedure 

provide encouraging results in terms of logistics efficiency and computer running time. The model can 

be used for operational purposes but also at a strategic level to determine the optimal number of 

handling equipments to use. Further research will consist in developping a scheduling model for the 

movements of the different types of  handling equipments, as well as s simulation model for the global 

validation of the procedures. 
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1 Introduction 
 

There is a large body of field and experimental evidence that choices are best explained by assuming 

that carriers of utility are not states but gains and losses relative to a reference point; in addition, losses 

are valued more heavily than gains, the so-called loss aversion. This has led Tversky and Kahenman to 

propose new theories of choice: prospect theory [5], which has evolved into cumulative prospect 

theory [9], which considers risky choices, and reference-dependent theory [8], which considers riskless 

choices.  

Models of route choice are a component of network equilibrium models. Uncertainty in travel 

time differs from uncertainty in perception captured in conventional stochastic user equilibrium (SUE) 

since uncertainty on the supply side requires modelling the attitude of users towards risk. Network 

equilibrium models capturing uncertainty in travel time are found in [6] and in more recent papers 

which have considered the application of cumulative prospect theory [1, 3].  

The riskless case considered in reference-dependent theory is also of interest for equilibrium 

problems. This theory considers riskless choices where alternatives are characterised by n attributes. In 

this sense it extends prospect theory which is restricted to consideration of one attribute only (travel 

time). Reference-dependent route choice models allow to consider loss aversion effects in the trade-off 

between travel time and money, which is of practical relevance in tolling policies. However, the 

extension of SUE to consideration of reference-dependent route choice, which hereafter we call 

RDSUE, has received less attention in the literature. 

Given this context the paper addresses RDSUE with two aims. The first aim is theoretical and 

consists in deriving desirable properties for RDSUE. In addition to existence and uniqueness, the 

property of reflexivity is considered. The idea of reflexive equilibrium is taken from theoretical 

economics where it has been proposed for economic equilibria [7]. The second aim is practical and 
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consists in examining the implications for tolling policies of the consideration of loss aversion in the 

trade-off between travel time and money. The analysis is carried out for a two-link network. 

 
 

2 SUE under reference-dependent route choice 
 

We consider a network with two route/link alternatives. We assume that route choice is modelled 

according to the following hypotheses: (i) utility U depends on gains G and losses L defined relative to 

a reference point R0; (ii) utility is linear and steeper for losses than for gains; (iii) utility depends on 

two attributes: travel time T and money spent  M. Thus we formulate the following random utility 

model (as in [4]): 

 

 

(1) 

 

  

 

where β  are the coefficients and ε  the disturbances. Loss aversion is satisfied if GL ββ > . 

Under the usual iid Gumbel assumption on the disturbances we obtain an asymmetric version of 

multinomial logit. We next consider RDSUE, which is the version of SUE with reference-dependent 

route choice modelled with (1). It is assumed that users adopt as reference point the status quo. Given a 

change in supply, choices and network state change to RDSUE. When RDSUE is set, each user 

chooses the route with the highest utility defined relative to previous choice and network state.  

A RDSUE is reflexive if, for each user, the link with maximum utility defined relative to 

previous choice and network state is also the link with maximum utility defined relative to current 

choice and network state. The property of reflexivity is of interest because, having assumed that users 

always adopt as reference point the status quo, i.e. the current choice, it means that nobody has 

convenience to change choice when the reference point is updated after the RDSUE is set. 

Proposition. In a two-link network: (i) the RDSUE exists and is unique if the time-flow 

functions are continuous and separable strictly-increasing; (ii) the RDSUE is reflexive if the 

coefficients in (1) satisfy loss aversion for both travel time and money. 

Proof. Existence and uniqueness follow from an application of fixed point theorems for 

conventional multi-class SUE [2]. For reflexivity consider, for a given RDSUE network state, the two 

sets: 
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3 Application: the town bypass case 
 

A reference-dependent route choice model has been estimated based on data from a 2007 stated 

preference survey in Rome (Table 1). Statistical significance of loss aversion results from a t-test on 

the difference in absolute values of the gain and loss coefficients (10% significance level, one-tailed). 

Model specification has been tested in comparison with a basic logit without asymmetry; the null 

hypothesis that the basic model is the correct specification is rejected.  

This route choice model has been used to calculate the RDSUE in a two-link network 

representing a town centre route and a bypass route. BPR time-flow functions derived empirically for 

similar routes are used (in hours): ( ) ]800/1[057.0 2.5fT +=  and ( ) ]1230/68.01[045.0 6.4fT += .  

In a do-nothing scenario there is only the town centre route. The intervention scenario consists 

in the construction of a bypass. The aim of the application is to assess tolling policies for the bypass. 

Two policies are compared. The first (P1) consists in opening the bypass and, at the same time, 

charging a toll of 1 € for its use. The second (P2) consists in a two-stage policy. In stage 1 the bypass is 

opened and nothing is charged. Only in stage 2 a toll of 1 € is charged on the bypass.  

Given reference-dependence the equilibrium resulting from P1 is different from the one at the 

end of stage 2 of P2. Table 2 shows that P2 is, at the end, superior both in terms of toll revenues 

(which are higher than in P1) and of total travel time spent (which is lower). In P2 the number of users 

choosing the bypass at the end of stage 2 is higher than the number of users who would choose it if it 

were opened and simultaneously a toll were charged. The result is consequence of loss aversion 

embodied in the route choice model. The town-centre route is relatively less preferred in P2 because in 

stage 2 of P2 it offers a loss in time for users of both routes, while it offers a gain in time in P1. The 

analysis of the sensitivity to the degree of loss aversion in time, represented by the ratio GL ββ / , 

shows that the higher this degree the more significant the relative superiority of P2 on P1. 

 
 

4 Conclusion 
 

The paper has investigated the theoretical properties of existence, uniqueness and reflexivity for 

RDSUE in a two-link network. Insights are provided on how loss aversion affects tolling policies in 

the town bypass case. Future research will extend the model here to networks of general topology and 

non-linear utility functions displaying diminishing sensitivity. 
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Table 1. Estimation results for route choice model 

 coefficient t-stat t-stat for difference in absolute values 

time gain (min) 0.10545 9.521 -1.5318 
time loss -0.12270 -9.827  
money gain (€) 1.25287 9.481 -3.302 
money loss -1.67346 -14.075  

summary statistics: 1068 observations; adj2ρ =0.439 

 

Table 2. RDSUE results in the town bypass case 

 town centre route bypass route 

 flow (veh/h) time (min) flow (veh/h) time (min) 

time spent 
(veh-h) 

toll revenues 
(€) 

do-nothing scenario 
 1200 31.6 - - 632 0 

policy scenario P1: bypass opened with toll=1€ 
 879 9.0 321 2.7 146 321 

policy scenario P2: bypass opened without toll (stage 1) + toll=1€ on bypass (stage 2) 
stage 1 563 4.0 637 2.8 67 0 
stage 2 867 8.6 333 2.7 139 333 
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1 Introduction

The travel time estimation has always been an important part of intelligent transportation systems

(ITS) research domain. An accurate real-time prediction of travel times can be a crucial part of

the driver information or the traffic management system.

The travel time estimation based on the real-time floating car data is also especially important

for personal car navigation or route guidance systems. The aim of these systems is to guide their

users with an optimal route to a chosen destination. Such a system can help, for example, in

avoiding the traffic jams. The further consequence can be a reduction of traffic congestion in

general, which itself is related to lowering fuel costs and air pollution, etc..

The benefits mentioned above are not the hypothetical ones, since the personal navigation

systems are becoming more popular, particularly those that use mobile phones equipped with

built-in GPS. These kinds of devices can guide the drivers by using the real-time data from the

traffic network.

Travel time estimation in the above context is the main concern of this paper.

2 Research purpose

Given a static black box prediction model based on historical data, the aim of the research is to

improve the performance of this model by a dynamic counterpart utilizing real-time GPS floating

car data generated by the users of the car navigation system. The system also needs to be simple
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and efficient for easy practical implementation and deployment.

The predictions of the model are then to be used in an algorithm for searching the shortest

path between any two points in the network. Therefore the prediction must be done separately for

a very large number of short segments of the roads.

3 Related Work

The analyzed problem belongs to the field of travel time prediction based on data (as opposed to

flow simulation methods or similar). Studies based on similar input exist in the literature [5], but

our problem has a few specific features that make it different from most other research in the area.

The scope of the predication covers the entire road network. Some similar global approaches

can be found [2], however, the majority of the methods focus on single paths [4, 5], freeways [3, 4],

or consider some urban arterial roads only [5]. In these cases, information is usually provided by

the loop detectors [4] or other stationary sensors [1].

The introduced model predicts the travel time for each of the segments of the road network.

Similar approaches can be found [1], however, the prediction for longer paths is considered more

often.

4 Applied methods

Formally, the problem can be defined as learning of a function f(x) to be a good prediction of the

unknown value yit. In this case, yit is the travel time on the i-th segment at the time t. Thus, the

estimate of yit is:
ŷit = f(x),

where x is a set of features being travel times collected from the entire road network. These can

be considered as time series for each of the segments. The goal is to fit f(x) in order to reduce the

square-error loss:
L(yit, ŷit) = (yit − ŷit)2.

We considered the Gaussian process model and the exponential smoothing applied independently

to each of the road segments. One can extend this simple model by assuming dependencies between

different segments. We applied two such extensions. The first one is based on the data, and relies

on computing correlations. The second one is based on domain-knowledge — the travel times are

smoothed by averaging over the segment constituting the longer paths of the main roads.

4.1 Gaussian process model and exponential smoothing

Gaussian process model and exponential smoothing belong to the field of stochastic process mod-

eling and time series analysis. They try to predict the travel time on a road segment based on
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previous values of the same type. Gaussian process model is based on the assumption that the time

series is a Gaussian process with known covariance function, observed at the points of the series.

The prediction is then made by calculating the expectation of the conditional distribution given

the previous data, at the point for which value needs to be predicted. Exponential smoothing per-

forms a prediction which is a weighted average of previous observations, with weights decaying at

exponential rate with respect to the time difference between the prediction and observation times.

Of the two methods, the exponential smoothing can be considered the simpler and computationally

more efficient one, but potentially yielding inferior (less accurate) results.

4.2 Linear correlations

The linear correlation is used for modeling the relations between different segments. It becomes

a measure of similarity of simultaneous (in a defined time window) travel time changes — e.g.

showing a tendency for some segments to be congested at the same time. The time series methods

are then extended by using observations from the most correlated segments.

4.3 Smoothing by road segments aggregation

Smoothing by road segments aggregation uses the expert rules (based on map structure) to deter-

mine longer parts of main roads that are used to smooth the input data — vehicles passing the

path are treated as having a constant velocity along the segments. The above method should be

equivalent to a prediction based on longer road parts. This can lead to a slightly more complicated

routing process, but potentially reduces the prediction noise.

5 Experiments

5.1 Data and methodology

The data was delivered by a Polish company, NaviExpert, that provides a commercial on-line

navigation system. We obtained the GPS floating car data that had already been map-matched,

i.e. it had a form of velocity and event time bound to a passage of a specific road segment in a

given direction. The data was also quite sparse and unevenly distributed among time and space.

It covered two large Polish cities with broad surroundings over a few months.

5.2 Results

In the first experiment, the Gaussian process model have shown a slight improvement over the

black box model. The second analysis has shown that the results obtained by the exponential

smoothing were virtually indistinguishable from the previous model.
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In the next experiment, a simulation (through selection) of more dense input data was conducted

and a large improvement was observed.

The further analysis consisted of applying a smoothing filter to the data, which was expected

to be an equivalent of a prediction model based on longer parts on main roads (defined through

expert rules). Again, a large improvement was discovered.

Lastly, calculating linear correlations between segments and including them in the exponential

smoothing also yielded an improvement over the base time series method.

6 Conclusions

The main conclusion arising from the obtained results can be summarized in the following points:

• it is possible to create a simple, yet meaningful system for improving the travel time prediction

covering the whole roads network, using possibly sparse floating car data,

• the exponential smoothing is a good and fast substitute of the Gaussian process model for

the above purpose,

• the quality of the time prediction depends strongly on the density of the available data —

denser input yields a better prediction,

• where possible — prediction on longer paths (as opposed to short road segments) may be

desirable, due to less noise and better prediction quality,

• the linear correlations that indicate the dependencies between different segments of the road

network, can also be used for improving the prediction.
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1 Problem statement

Propane distributors are faced on a daily basis with the planning problem of determining the

routes of their vehicles for the next day T such that their customers always have propane at

hand (customer inventories are vendor-managed). These routes must satisfy various operational

constraints, including customer time windows and predetermined driver schedules. We assume a

single product and a homogeneous set of capacitated vehicles distributed among several depots.

En-route replenishment at different locations is possible. Customers are divided into two categories:

mandatory customers that must be visited on day T to avoid stock-out on day T + 1 and optional

customers (no stock-out forecasted before day T + 2) that can also be visited on day T to save the

marginal cost of visiting them later. The delivery policy is to fill up the customer demand at each

visit, which is assumed to be known with high accuracy.

This propane delivery problem can be formally stated as follows. Given a set K of depots, sets

Dk and Vk of driver work shifts and vehicles (all identical with a fixed capacity) for each depot k,

a set of replenishment stations, a set M of mandatory customers with known demands and time

windows, and a set O of optional customers with known demands, time windows and marginal

cost savings (si) for servicing them (equal to estimates of the marginal costs for servicing them

later), the problem consists of building feasible vehicle routes such that they can be assigned to

the work shifts (at most one per driver), all mandatory customers are serviced, and total net costs

(costs minus savings) are minimized. A route is composed of a sequence of customers interspersed
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by visits to replenishment stations. It is feasible if it can be assigned to a shift, it starts and ends

at the corresponding depot, and it satisfies the visited customers’ time windows as well as the

vehicle capacity between the replenishments. The costs include travel costs, driver fixed costs that

depend on the shift length, and vehicle fixed costs that is charged once for the day, not for each

route assigned to the vehicle.

In the literature (see the survey of Dror [1]), this problem has been treated as a stochastic

inventory routing problem where the delivery date for each customer as well as the vehicle routes

for each day of a planning horizon must be determined. Such a stochastic approach is necessary

when demand forecasts are not accurate. Nowadays, forecasting tools have significantly improved

and we can assume highly accurate forecasts, yielding deterministic demands. Such demands were

considered in early works. In particular, Dror et al. [2] proposed two generalized assignment mod-

els (customers are assigned to delivery dates and vehicles or only to delivery dates) yielding two

different algorithmic decompositions. Our model is similar to their first model but it considers

a single delivery date and more complex operational constraints. Furthermore, our solution ap-

proach is integrated (that is, not decomposed into two separate steps) and relies on state-of-the-art

methodologies.

2 Mathematical model

The propane delivery problem can be modeled as a set partitioning problem with side constraints

that relies on the following sets and parameters: Rd is the set of all feasible routes for driver d; cd
r

is the cost of route r for driver d, including the driver fixed cost; ari is a binary parameter equal

to 1 if route r visits customer i and 0 otherwise; Hk is the set of times at which the number of

vehicles used can vary at depot k (that is, the shift start and end times); `d
h is a binary parameter

equal to 1 if the shift of driver d includes time h; and f is the fixed cost for using a vehicle.

The model uses the following three types of variables: Y d
r is a binary variable that takes value 1

if route r is assigned to driver d and 0 otherwise; Ei is a binary slack variable that takes value 1

if optional customer i is not serviced and 0 otherwise; V k is an integer variable indicating the

number of vehicles used at depot k.

The proposed set partitioning type model is as follows:

Minimize
∑
k∈K

∑
d∈Dk

∑
r∈Rd

cd
rY

d
r + f

∑
k∈K

V k +
∑
i∈O

siEi (1)

subject to:
∑
k∈K

∑
d∈Dk

∑
r∈Rd

ariY
d
r = 1, ∀ i ∈M (2)

∑
k∈K

∑
d∈Dk

∑
r∈Rd

ariY
d
r + Ei = 1, ∀ i ∈ O (3)
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∑
r∈Rd

Y d
r ≤ 1, ∀ k ∈ K, d ∈ Dk (4)

∑
d∈Dk

∑
r∈Rd

`d
hY d

r ≤ V k, ∀ k ∈ K, h ∈ Hk (5)

Y d
r binary, ∀ k ∈ K, d ∈ Dk, r ∈ Rd. (6)

The objective function (1) aims at minimizing the total net costs, that is, the total route costs

(which include travel costs and driver fixed costs), the vehicle fixed costs, and the optional customer

savings not realized. Set partitioning constraints (2) and (3) guarantee that each mandatory

customer is visited once and each optional customer at most once. Constraints (4) limit to one

the number of routes assigned to each driver. Finally, constraints (5) allow to count the number of

vehicles used. Note that vehicle availability constraints are not required because the driver shifts

were designed to ensure their satisfaction.

3 Large neighborhood search heuristics

In practice, large-sized instances involve up to 30 drivers and 1000 customers, that is, a route visits

on average more than 30 customers and two or three replenishment stations. For these instances,

model (1)–(6) contains a huge number of variables. To overcome this difficulty, a branch-and-

price heuristic can be used. Furthermore, as introduced in Prescott-Gagnon et al. [4] for the

vehicle routing problem with time windows, we embed such a branch-and-price heuristic into a

large neighborhood search (LNS) framework.

LNS is an iterative method that starts from an initial solution. At each iteration, it first defines

a neighborhood by applying a destruction operator that destroys parts of the current solution and

then uses a construction operator to explore this neighborhood and, hopefully, find an improved

solution. In our case, the initial solution is built using a greedy algorithm and the method stops

once a predetermined number of iterations is reached. To ensure diversification during the search,

four destruction procedures (operators) are available at each iteration. Each procedure releases

iteratively customers from their current route and stops when a fixed number of customers is

selected. They differ by their selection strategy that is based on customer proximity, the detour

yielded by each customer, the visiting time of each customer, or randomness. At each iteration

of the LNS method, the destruction operator is selected using a roulette wheel procedure that

favors the operators that yielded the best results in the previous iterations. The construction

operator is a branch-and-price heuristic. Branch-and-price consists of a column generation method

that computes lower bounds at the nodes of a branch-and-bound tree. For the propane delivery

problem, the column generation subproblems (one for each driver) are NP-hard elementary shortest

path problems with resource constraints (see Irnich and Desaulniers [3]). To solve them rapidly,
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we use a tabu search algorithm as in Prescott-Gagnon et al. [4]. The search tree is limited to a

single branch. One decision is imposed at each node: the Y d
r variable with the largest fractional

value is set to one. This overall heuristic is denoted LNS-BP for LNS with branch-and-price.

For comparison purposes, we also developed another LNS method that is identical to LNS-

BP, except that it relies on a completely different construction operator, namely, a tabu search

algorithm. This tabu search algorithm relies on various move types: move a customer from one

route to another, insert or remove an optional customer, insert or remove a replenishment, change

the location of a replenishment, and, for diversification, exchange the routes of two drivers. This

algorithm allows intermediate infeasible solutions with respect to customer time windows and

vehicle capacity. It stops after a predefined number of iterations, allowing to control the time

spent in each LNS iteration. This second LNS heuristic is denoted LNS-Tabu.

4 Computational experiments

Results of computational experiments obtained by both LNS-BP and LNS-Tabu heuristics on

medium- to large-sized instances (with up to 600 customers) derived from real-world data sets will

be reported at the conference. For the moment, preliminary tests on randomly generated instances

show that the LNS-Tabu heuristic can produce good-quality solutions in less than one hour of

computational time for instances involving up to 450 customers.
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1 Introduction 

 

Dantzig-Wolfe decomposition and column generation embedded into a branch-and-bound scheme are 

established as leading solution methodologies for many large-scale integer programming problems, 

especially in the areas of vehicle routing and crew scheduling applications. The proposed talk is an 

extension of two recent researches in the solution of set partitioning problems by column generation and of 

linear programs by the primal simplex method. 

 

2 Constraints Aggregation 

 

In the past few years, the concept of constraints aggregation for set partitioning problems has been 

developed [1], [2], [3]. This type of formulation appears in many vehicle routing and crew scheduling 

applications where each row represents a task to cover while each column provides a feasible vehicle 

itinerary or crew schedule. Binary parameter aij of a column takes value 1 if task i is covered by itinerary or 

schedule j, 0 otherwise. In some applications, it is natural that several tasks be aggregated to form a single 

task. For example, a pilot usually follows its aircraft so that, if we already know the aircraft itineraries, 

some of the consecutive flight legs assigned to an aircraft can tentatively be grouped together, hence 

reducing the number of tasks to be covered by the pilots in the set partitioning formulation of the airline 

crew scheduling problem.  

 

The reduction of the number of constraints for a set partitioning formulation of size M N is done 

by removing the M-m degenerate (zero value) variables of a basic solution. The remaining m non-zero 

basic variables are represented by m columns for which M-m rows are removed.  An m m reduced basis is 

used for the rest of the optimization process where the size m of the basis is dynamically updated. The 

implementation in GENCOL software system allows reducing by a factor of 50 to 100 the solution times 
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for problems with 2000 constraints and 50% to 60% degenerate basic variables. The CPU reduction is a 

combination of many factors: smaller master problem, reduced number of degenerate pivots, smaller sub-

problems (the task aggregation is also done at that level), smaller number of column generation iterations, 

less fractional linear programming relaxation, and smaller branch-and-bound tree. 

 

3 Improved Primal Simplex 

 

The second research area is the generalization of the above mentioned method to linear programs. Given a 

degenerate solution to a linear program, we first identify a reduced basis and a reduced problem. The IPS 

method (Improved Primal Simplex method) contains two main ideas. (1) A variable is compatible with the 

current reduced basis and selected to be part of the current reduced problem if the objective value strictly 

decreases when this variable enters the basis: this is a non-degenerate pivot. A criterion for identifying the 

compatible variables during the pricing process has been developed for linear programs. (2) When the 

reduced cost of all the compatible variables is zero or greater than a specified threshold, a complementary 

pricing problem is solved to select a convex combination of non-compatible variables such that the 

objective value strictly decreases when they all enter into the current reduced problem. In this case, the size 

of the reduced problem is modified in terms of the number of rows. 

 

Although the comparisons with CPLEX were done in a very simple manner, that is, an external 

loop choosing the entering variables, CPU reduction factors of 4 and 12 were obtained for the linear 

programming solution of bus driver scheduling and aircraft routing problems, respectively [4, 5]. Taking 

also advantage of degenerate variables not only at zero but at their upper bounds, CPU times were reduced 

by a factor of 32 compared to CPLEX on fleet assignment problems with bounded variables (multi-

commodity flow problems with 5000 constraints and 25 000 variables) for which an upper bound of 1 on 

arc flow variables was explicitly imposed [6]. 

Constraint aggregation for set partitioning problems and the improved primal simplex method can 

be compared in the following way. In the first method, when the degenerate variables are removed from the 

basis, several rows become identical and only one representative row is kept for each set of identical rows, 

therefore row-reducing the size of the restricted master problem. In the second method for linear programs, 

when the degenerate variables are removed from the basis, several rows become linearly dependant such 

that we only keep a set of independent ones to construct the current reduced problem. Geometrically 

speaking, for both methods, at a given degenerate extreme point of the linear problem, all but one basis is 

kept and the next iteration moves to a different extreme point. 
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4 Improved Column Generation 

 

Since the solution by column generation of a Dantzig-Wolfe reformulation of a compact formulation is 

essentially an adaptation of the primal simplex method, we propose an adaptation of IPS and its upper 

bounded version to this decomposition scheme. This has already been partly done in the above mentioned 

constraints aggregation method for set partitioning problems and it can be generalized to linear and integer 

linear programs solved by column generation as follows.  

 

The classical restricted master problem of the column generation method does not contain all the 

variables and these are generated as needed by the solution of a pricing sub-problem. In this presentation, 

we show how to use a dynamic row-reduced restricted master problem to solve the linear relaxation of the 

master problem. Two types of sub-problems are needed: one to generate columns compatible with the 

current reduced basis and one to generate columns that are not compatible with that reduced basis. 

 

The first type of sub-problem, i.e., the sub-problem generating columns compatible with the 

current reduced basis, is the original sub-problem augmented with a set of linear constraints imposing 

compatibility requirements. This pricing sub-problem selects compatible columns as long as they are useful 

for non-degenerate pivots in the row-reduced restricted master problem. When the reduced cost of all the 

compatible columns is zero or greater than a specified threshold, a complementary pricing sub-problem 

must be solved to select a convex combination of non-compatible columns such that the objective value of 

the master problem strictly decreases when they all enter into the current reduced problem. In this case, the 

row-size of the reduced master problem is dynamically modified. 

 

5 Conclusion 

 

The classical column generation method works with a restricted master problem, that is, a subset of the 

columns. The improved column generation method works with a reduced restricted master problem, that is, 

it additionally reduces the size of the current basis. As already shown for the above mentioned constraints 

aggregation on set partitioning problems where CPU times are reduced by a factor of 50 to 100 for some 

vehicle routing and crew scheduling applications, this additional row reduction of the master problem 

should have a large impact on the solution time of degenerate linear and integer programs solved by 

column generation. 
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1 Introduction

The punctuality, that measures the percentage of trains that arrive within 3 minutes after their

planned arrival time, is currently the main quality indicator for the Dutch railway system. There is

one important aspect of railway operations that is not taken into account by this quality measure:

the passengers who have to transfer at intermediate stations. When a passenger has to transfer

from one train to another, even a small delay of the feeder train can make it impossible for the

passenger to catch the connecting one. When a connection is missed, the passenger has to wait for

the next train in the same direction. This may increase the travel time of that passenger severely.

The unreliability of the connections is one of the major complaints about the Dutch railway

system. Since the privatization of public transport in Europe, customer satisfaction has become an

important objective for the railway operators. Increasing the number of maintained connections is

one way to improve the service that an operator delivers to its passengers. Netherlands Railways,

the largest operator in the Netherlands, has recently introduced the quality indicator passenger

punctuality, which is defined as the percentage of passengers who reach their destination within

3 minutes after the planned time. If the passenger punctuality can be increased, the customer

satisfaction will be higher as well.
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Delay management is the field in railway operation control that deals with connections between

trains. When one train has a small delay, it might be beneficial for the transferring passengers

to delay another train slightly as well, to allow the passengers to transfer to the second train.

However, by delaying the connecting train, the travel time for the passengers already in that train

will be enlarged. Furthermore, there might be connections from that train to others at subsequent

stations that have to be considered. This makes delay management a complex problem, especially

in dense railway networks such as in the Netherlands. Delaying trains to maintain connections

for passengers is currently done manually by dispatchers of the infrastructure manager and the

operators. We feel that decision support systems can be helpful for them to reduce the nuisance

in case of delays.

As most European railway operators, Netherlands Railways operates a cyclic timetable. In

a cyclic timetable, the operations are repeated after every cycle time T . The first approaches

to model the delay management problem assume that the delay for a passenger who misses a

connection equals the cycle time: if a connection is dropped, passengers have to wait for the next

train on the same line (see [2] and [3]). In practice, this assumption will not be valid. There can be

many train lines between two stations, and therefore there can be a train on a different line that

goes in the same direction. To model the behavior of the passengers more realistically, a model

is proposed that takes the routes of the passengers into account explicitly (see [1]). In particular,

the model allows the passengers to adjust their route in case of delays. Although some numerical

results are presented, it turns out that the size of the integer program is far too large for practical

applications.

In the current research, we present an alternative formulation for the delay management prob-

lem with passenger re-routing. By limiting the re-routing possibilities in case of delays, we are able

to solve practical problems much faster. Furthermore, we will exploit the structure of the problem

to develop faster algorithms that solve the delay management problem exactly. Finally, we will

compare the performance of the various solution methods.

The remainder of this document is structured as follows. In Section 2 we will briefly discuss

the original model for the delay management problem and its extension to deal with passenger

re-routing. In Section 3 we discuss an alternative formulation and some techniques to speed up

the solution process.

2 Delay Management Models

We will now first present the original delay management model. Then we will discuss its extension

that incorporates passenger re-routing.

The original delay management problem can be modeled as an event-activity network N =

209



(E ,A), in which the nodes represent events that have to be scheduled and the arcs correspond

to activities that connect these events (see [3]). The events that are to be scheduled are the

departures and arrivals of the trains. There are two types of activities. First, driving from one

station to the next and allowing the passengers to get on and off the train are operational activities.

These operational activities put physical restrictions on the timetable. Second, passengers who

want to transfer from one train to another are represented as transfer activities. Note that these

activities can be dropped in case of delays. If a connection is maintained, the departure of the

connecting train should be scheduled after the arrival of the feeder train. The main question in delay

management is which connections to maintain. If a connection is maintained, the connecting train

should wait for the feeder train. This introduces a delay for all passengers already in the connecting

train. On the other hand, if the connection is not maintained, all connecting passengers have to

wait for the next train. It is assumed in the original models that the delay for such passengers

equals the cycle time T .

To model the behavior of the passengers more realistically, one should incorporate the possibility

to adjust the route of a passenger in case of delays. We will briefly describe how to take passenger

re-routing into account. A route corresponds to a path in the event-activity network. To allow

passenger re-routing, we add for every group of passengers with the same origin and destination a

source and a sink to the event-activity network. We refer to the sources as origin events in the event-

activity network and to the sinks as destination events. These origin and destination events are then

connected to the departures and arrival events of trains, respectively, at the corresponding stations.

A route through the railway network now corresponds to a path in the event-activity network.

Finding the shortest path from an origin to a destination event for each group of passengers is

then part of the optimization. Given the path for a group of passengers, the exact delay for those

passengers can be found.

To model the shortest path problems for the passengers in the integer program, a binary variable

has to be introduced for every arc in the event-activity network and every passenger group. For

practical instances, this leads to a huge number of binary variables. Therefore, solving the problem

with standard solvers is impossible. Especially if the approach is to be implemented in practice, a

solution should be available on a very short notice, because the dispatchers should be able to react

to delays almost instantaneously.

3 Speeding up the solution process

The extended model for the delay management problem that allows for passenger re-routing is

very flexible: every path through the event-activity network serves as a possible route for the

passengers. This means that passengers can even change their route through the railway network.
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Indeed, in some cases the optimal routes travel via different stations than the original ones. To use

these optimal routes, passengers should have a global knowledge of the timetable and of transfer

times at other stations. More importantly, it is crucial to forecast the arrival times of the trains

at later stations correctly. In reality, this information is not available. Instead, passengers will

leave the feeder train, note that the connecting train has left already and take the first train in the

same direction. This observation can be used to reduce the size of the integer program. Instead of

including all possible routes for the passengers, we will only allow for the most reasonable ones.

The previous approach restricts the possible routes for the passengers statically . One can also

determine the possible routes dynamically using column generation. In this approach, one starts

with a small set of possible routes for each passenger group. During the optimization process,

alternative routes for passengers with large delays have to be found, and these possible routes

should be added. In this way, the program can be kept small on one hand, but on the other hand

a large number of routes can be considered for passengers with large delays.

We have implemented the above approaches to solve the delay management problem and applied

them to solve practical instances that are obtained from Netherlands Railways. We will compare

both the quality and the running times of these approaches, to single out which method finds the

best solution within the short amount of time that is available in the dispatching process.
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Extended Abstract 

 

It is reported that Expo 2010 Shanghai will attract 70 millions visitors during the whole 184 days 

duration, namely 400,000 visitors daily and 800,000 visitors in peak day[1]. Considering the location of 

the Expo Park is in the city center of Shanghai, this mega-event is regarded by many experts as one of 

the great, world-wide transport and logistics challenges. The large number of visitors expected to be 

carried, combined with the congested urban road network and limited parking spaces, will make it 

difficult for individual transport to be used during the Expo; as such, high rates of utilization of public 

transport will be necessary. Hence, exploring the trip mode choice behavior of Expo visitors is the 

keystone for traffic planning of Expo 2010 Shanghai, especially for efficiency assessment of different 

traffic policies. 

Over the past few decades, research interest on the link between potential travel choice 

behavior and contribution of the independent variables has blossomed and a substantial amount of 
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research on this field falls into the category of stated preference (SP) techniques [2,3,4]. More recently, 

discrete choice models based on SP methods have become popular among academics, governments and 

consulting companies to explore many aspects of transportation, including mode choice behaviour 

under different traffic management policies, urban forms, levels of service, prices and so on 

[5,6,7,8,9,10]. Considering the above features of tourists, the traditional analysis models for a certain 

homogeneous travellers are not suitable for the trip choice behaviour of tourists. There are many 

strategies have been proposed for distinguishing among groups of travellers, including ones based on 

attribute cutoffs, clusters of travel attitudes, motivations or preferences, behavioural repertoires for 

different activities and hierarchical information integration [11,12,13,14,15,16]. 

The objective of this paper is to investigate the differences in trip mode choice behaviour 

among potential Expo visitor groups to support the effect analysis of traffic management policies for 

Expo 2010 Shanghai. Because of the differences in Expo visitor departure areas and the influence of 

the various types of departure areas on trip mode behaviour, a two-stage gradual stated preference 

survey method was used to develop variable multinomial logit models for local and out-of-town Expo 

visitors. Sensibility analysis method based on point-elasticity and cross-elasticity was applied to 

acquier the efficient transport management policies and control measures for reducing the proportion of 

private transport modes. 

Because of the range of visitors to Expo 2010 Shanghai and their various attributes, it will 

obviously be difficult to obtain satisfactory results taking all Expo visitors as one group for analysis 

and modelling. In addition, as the World Expo has not previously been held in China, there is no 

reference to aid in the understanding or prediction of visitor trip mode choice behaviour over the 

duration of this mega-event. Given such a backdrop, this paper developed a two-stage gradual stated 

preference survey method for the in-depth study of Expo visitor trip mode choice behaviour. Stage 1 

Survey is of multi-scenario-comparison choice behavior, mainly aiming at development of trip choice 

model for Expo visitors, in depth studying influence of parking costs, walking time and travel time on 

trip mode choice, and supporting forecast of traffic demands of each means of transport to Expo and 

analysis of various traffic policies for the Expo, so as to promote effective shift from private-transport 

trip to public-transport trip. Stage 2 SP survey is designed to gain the results of travelers’ choice of trip 

mode on the basis of the Stage 1 Survey’s conclusion, by selecting characteristics variable and 

determining variable level in accordance with characteristics of visitors from different departure areas, 
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and under the situation of combination of different variable levels, so as to model choice behavior, 

study sharing ratio of various trip modes and time value of different groups, and determine influence of 

policy adjustment on trip mode share.  

Based on the results of the Stage 1 survey, this paper considers those variables that 

significantly influence trip mode choice, including time, cost and departure area. The survey data 

reveal that visitor departure area greatly influences trip mode choice; however, it is difficult to model 

such influence as a quantifiable factor. This paper takes influence as a basis for model classification 

and standardises it in accordance with the respective source areas, namely, source areas are represented 

by fixed-effect dummy variables in the model. Four kinds of models were tested in this paper. 

Based on the choice of the abovementioned variables, the multinomial logit model choice 

utility function for Expo trip mode choice was determined as 

1 2 3+in i i i iV A x y z    
,                          (1) 

where: 

iA  — Constant for trip mode, 01 A ; 

ix — Walking time; 

iy  — Travel time, including waiting and riding time; 

iz — Travel cost; and 

i  — Coefficients for variables ix , iy  and iz . 

The trip mode choice set of this model is C = {i = 1 (Taxi); i = 2 (Subway); i = 3 (Expo shuttle 

bus); i = 4 (Private car)}. 

The sensitivity analysis formulas for point-elasticity and cross-elasticity were deduced and 

shouwn as following:  
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where: 
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kX  —External factors on trip mode choise behaviors, including walking time, travel time 

and travel cost; 

in

ink

P
XE — Point elasticity of variable kX  on trip mode i; 

jn

ink

P
XE — Cross-elasticity of variable kX  on trip mode j; 

k  — Coefficients for variables kX ; and 

iP  — Share of trip mode i. 

These sensitivity analysis formulas were applied to evaluate the effect of various influencing 

factors on Expo visitor trip choice result. Meanwhile, three traffic management policies: (a) 

establishing a restricted traffic zone, (b) increasing parking rates around Expo Park and decreasing 

those at the park and ride Expo shuttle bus transfer points outside the urban area of Shanghai, and (c) 

providing Expo shuttle bus priority lanes and giving these buses signal priority, are discussed to 

promote the switch from individual transport modeso public transport mode. 

On the basis of the detailed analysis of abundant survey data and the in-depth exploration of 

external factors on trip mode choice behaviour of Expo 2010 Shanghai, we offer the following main 

conclusions. 

1) For a case such as Expo 2010 Shanghai, which involves diverse visitor groups, a 

single-level SP survey is insufficient to separate the variables and obtain a standardised model. 

Considering differences in departure area trip chain characteristics, there versions multinomial logit 

models for local visitors, out-of-town one-day-trip visitors and out-of-town lodging visitors are 

developed in this paper. 

2) The sensitivity analysis results show that that travel time, walking time and travel cost are 

all effective influencing factors but differ in utility among the various groups. Local visitors are more 

sensitive to walking time and total expenses, out-of-town one-day-trip visitors are more concerned 

about total travel time and out-of-town lodging visitors are highly sensitive to walking time and total 

travel time.  

3) Establishing a restricted traffic zone, adjusting parking rates and giving Expo shuttle buses 

priority could attract some private transport users to switch to public transport, but the effect of these 

policies differs among the visitor groups and traffic modes. The implementation of the policies in 
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combination can effectively control the proportion of private transport use to within 10% but has a 

negative influence on subway use, which is an issue that needs to be addressed. 

 

Acknowledgments 

This paper is based on the results of a research project that was supported by a research grant 

(60804048) from the National Natural Science Foundation of China (NSFC) and a research grant 

(NCET-08-0407) from the New Century Excellent Talents in University. The authors take sole 

responsibility for all views and opinions expressed in the paper. The authors would like to acknowledge 

the following colleagues from the Traffic Police Office in Shanghai and the University of Hong Kong 

for their support, contributions and ideas that made this work possible: Mr Li Yin, Mr Xia Haiping, Dr 

Zhou Xiaopeng, Ms Xiao Bin and Professor Wong SC. 

 

References 

1. Yin Rui, Li Keping, Yu Jie, 2007. Traffic forecast for visitiors in World expo 2010 Shanghai arena. 

Journal of Tongji University (Natural Science) 35(8), 1053-1058 

2. Davidson, J. D., 1973. Forecasting traffic on STOL. Operation Research Quarterly, 24(4), 

561-569. 

3. Rowley, G., and Wilson, S., 1975. The analysis of housing and travel preferences: a gaming 

approach, Environment and Planning, A-7A,171-177 

4. Adler J. and Ben-Akiva M, 1976. Joint-choice model for frequency, destination, and travel mode 

for shopping trips. Transportation research record. 569,136-150. 

5. Fowkey Tony and Preston John, 1991. NOVEL APPROACHES TO FORECASTING THE 

DEMAND FOR NEW LOCAL RAIL SERVICES. Transportation Research Part A, 25(4) 

209-218.  

6. Bhat CR, 1997. Work travel mode choice and number of non-work commute stops. Transportation 

Research Part B, 31(1) 41-54. 

216



7. Bhat, CR, 2008. The multiple discrete-continuous extreme value (MDCEV) model: Role of utility 

function parameters, identification considerations, and model extensions. Transportation 

Research Part B 42(3), 274-303. 

8. Johansson, M.V., Heldt, T., Johansson, P., 2006. The effects of attitudes and personality traits on 

mode choice. Transportation Research Part A 40 (6), 507–525. 

9. McMillan TE, 2007. The relative influence of urban form on a child's travel mode to school. 

Transportation Research Part A, 41(1) 69-79. 

10. Lu Jin-Long, Peeta Srinivas, 2009. Analysis of the factors that influence the relationship between 

business air travel and videoconferencing. Transportation Research Part A 43 (8) 709-721 

11. Swait, JD, 2001. A non-compensatory choice model incorporating attribute cutoffs. Transportation 

Research: Part B 35(10), 903-928. 

12. Steg, L., 2005. Car use: lust and must. Instrumental, symbolic and affective motives for car use. 

Transportation Research Part A 39(2-3), 147-162. 

13. Van Exel, N. J. A., de Graaf, G., Rietveld, P., 2005. Getting from A to B: operant approaches to 

travel decision making. Operant Subjectivity 27(4), 194-216. 

14. Anable, J., 2005. Complacent car addicts or aspiring environmentalists? Identifying travel 

behaviour segments using attitude theory. Transport Policy 12, 65-78. 

15. Tam, M. L., Lam, W. H. K., Lo, H. P., 2008. Modeling air passenger travel behavior on airport 

ground access mode choices. Transportmetrica 4(2), 135-153. 

16. Molin, E. J. E., Timmermans, H. J. P., 2009. Hierarchical information integration experiments and 

integrated choice experiments. Transport Reviews 29(5), 635-655. 

217



Robust optimization of bulk gas distribution

Hugues Dubedout

Nicoleta Neagu

Claude Delorme Research Center, Air Liquide

78354 Jouy en Josas - France

Hugues.Dubedout@Airliquide.com

Nicoleta.Neagu@Airliquide.com

Optimization models for transportation/distribution and supply chain problems are generally

treated under certainty assumption whereas all the data about the problem is know with certitude

prior to its solving. As a consequence, when uncertain events happen the ‘optimized solutions’

may become less optimal or even infeasible, which may induce extra costs. Moreover, large part of

real world optimization problems are subject to uncertainties occurring in the problem data and

parameters. Gas distribution problems at Air Liquide are particularly concerned by the presence

of uncertainty in their data (e.g., unplanned plant outage, resources availability, and demand

fluctuations).

The key objective of this research work is to increase the robustness of optimization solutions

for bulk gas distribution relatively to uncertain events such as unexpected plant outages. Thus,

in this work we investigate new optimization models and methods to build robust routing and

scheduling for the distribution of gas in bulk. The optimized methods include in a proactive

manner assumptions about unexpected plant outages while searching for solutions. According to

some previous studies at Air Liquide the outages at production plants have an important impact

on the distribution cost and thus, these unexpected events should not be neglected. The major

final goal is to identify robust solutions which have a good trade off between reliability to plant

outages and the induced extra cost.

Using robust solutions allows Air Liquide to improve its distribution in multiple ways:

• better performance by integrating risk: optimized solutions despite risk and uncertain events.

• reducing the environmental impact by decreasing carbon foot print.

• better working environment for employees by avoiding emergency situations.

• better quality of service for the clients.
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Problem Statement

We consider the bulk gas distribution problem in a real life context. The considered bulk dis-

tribution problem consists of the following main elements: customers’ orders, transport equipment

availability, non periodical production and demand forecast, inventory levels (at both plants and

customers locations), and driver and power unit availability. The bulk gas is produced at the pro-

duction plants and the products are distributed from stocks of these plants to customers locations

by means of vehicles starting form ”bases” and routed to deliver the products to the customers.

The customer delivery must be planned over several days to avoid breaking stock at customer and

is based on a system of inventory management and customer forecasting models.

This problem is know in the literature as the Inventory Routing Problem with Vendor Manage-

ment Inventory (IRP-VMI)[1]. The distribution is made either based on the forecast for the VMI

customers or based on customers’ order, and obeys several constraints, including geographical and

temporal. It takes place in a multi period on a rolling time horizon of about two weeks. It is

based on the quality of demand forecasts and stock availability of products at plants’ stocks, but

it appears under uncertainty due to plant outages. The problem is large scale in nature and needs

to be treated under uncertainty assumptions related to plant inventories which are often affected

by outages.

A study conducted since 2003 identified the plant outage uncertainty as one of the major

planning disruption causes, increasing the global distribution cost by several millions of dollars

each year in the united states alone. Creating more robust schedule often leads to an increase of

the schedule cost. The goal of our research was to generate schedule with only a small increase in

cost but with a high gain in robustness.

Robust Discrete Optimization Approach

The IRP problem model represents customers, sources and bases at their geographical positions.

For a determined time horizon in the future, a forecasted consumption and/or known orders are

given for each customer. A production profile is defined for each source. The model defines the

variables for the construction of the scheduling shifts for the transportation of gas from sources to

customer so as to avoid customer run-outs. The dependencies between the variables are defined

through business and physical constraints. The constraints are relative to the feasibility of the

schedules of operations in terms of travel time, customer opening hours, etc. The objective function

of the model represents the minimization of the distribution costs while avoiding customers’ runouts

and missing orders.

The solution method we propose for solving the IRP problem under uncertainty assumptions

for plant outages is based on the work of Kouvelis and Yu [4]. It uses a scenario based approach to

generate a more robust schedule. We define a generic framework for using discrete robust optimiza-

tion applied to large scale IRP under uncertainty. In developing the robust discrete optimization
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framework we pursue the following main steps:

1. The first step define multiple future realization of the key parameters, so called scenarios.

Based on statistic study of historic outage data, we are able to generate a set of scenarios

representing the plausible plant outage possibilities.

2. The second step is to generate a set of feasible solutions to the distribution problem. The

feasibility of each solution has to be independent of the parameters modified in the scenarios,

so that each solution generated is feasible when applied to any of the scenarios. We generate

the solutions using a classic local search algorithm with different parameters tuning, which

allows us to obtain different solution with good objective function value. We proposed a new

search strategy based on inventory criteria which can identify more reliable/robust solutions

of the IRP problem.

3. Lastly we compute the cost of each solution applied to each scenario and use a classical min

max regret and min max deviation evaluation method to compute the robustness of each

solution. Then the solution with the best cost versus robustness trade off is selected.

We apply our approach to several real life test cases and show that the proposed approach

manages to generate solutions that are better that the current solution in both and also more

robust. We also propose a parallelization method to greatly reduce the computation time necessary

to generate the solutions.

Conclusions

We proposed a framework for robust decision making under uncertainty for the logistic opti-

mization of AIR LIQUIDE bulk distribution. We modified the model of the discrete IRP problem

to take into account uncertainty aspects generated by plant outages. We then used a scenario

based approach which allowed us to optimize the distribution regarding multiple possible future

realization of the uncertainty variable. We proposed different methods to generate scenarios, each

one of them performing differently. We implemented this framework regarding plant outage and

managed to obtain good results on four real-life test cases. In two of the test cases we obtained

solution with both a lower cost and a better reliability than the optimization tool currently used in

production which ignores possible plant outages when generating routing and scheduling solutions.
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1 Introduction

Consider a city which must sweep both sides of all of its streets in two days. Both sides of any

street cannot be closed for sweeping on the same day because of a necessity for some parking spaces

to be available on each street at all times. There are currently parking signs which indicate which

side of the street is to be swept on “even” days and which side of the street is to be swept on “odd”

days. What closed path should the street sweeper take on each day to minimize total distance

traveled while satisfying all the constraints?

This problem can be represented as a Directed Rural Postman Problem which is stated as

follows: Given a directed graph G = (V,E), subset ER ⊆ E of required edges, and non-negative

costs associated with each edge of G, determine a closed path with minimum total cost traversing
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the links ER at least once. Thus, each day is treated separately. On even (resp. odd) days, the

required subsets are exactly those sides of the streets that must be swept on even (resp. odd) days

as indicated by the street signs.

We are motivated by the following variant introduced recently in a major U.S. city: Suppose a

city decides to redo all of its parking signs. How should the city schedule the closing of each side of

each street so that the length of the optimal sweeping path is minimized while ensuring that both

sides of any street are not closed on the same day? It is clear that the relaxing of the schedule

can only improve the objective. Each schedule induces an optimal sweeping route for both days,

making the determination of an optimal schedule the focus of the problem.

We generalize the problem to “Variant 1” which allows for more parking restrictions. For

example, we allow for the possibility that a street does not require parking or does not require

sweeping. In particular, this allows for the setting to be changed from sweeping an “entire” city

to the more realistic scenario of sweeping a non-connected subset of a city.

We extend further to “Variant 2” which supposes a city has an existing set of street signs. How

can the city minimally change these street signs to allow for a schedule with a maximum decrease

in distance traveled by the street sweeper? This problem is a natural extension of Variant 1. There

is a cost for changing a street sign because it confuses those residents who are familiar with the

existing one. Thus, it could be desirable to achieve a significant fraction of the benefit of redoing

all the signs at a reduced cost of inconvenience.

2 Literature Review

The generic street sweeping problem can be described at a Directed Rural Postman Problem, for

which Christofides et al. [3] give a heuristic and mathematical programming formulation. Using

their heuristic, the authors solved twenty-three instances within 1.3% of optimality.

Bodin and Kursh [1], [2], describe a computer-assisted system for scheduling and routing of

multiple street sweepers. Their model, like ours, deals with urban settings that involve one-way

streets and parking constraints. The required edges are directed, a subset of the entire considered

graph, and not necessarily connected. Unlike our work, Bodin and Kursh do not have multi-period

parking constraints and instead regard parking constraints on a street as time-window constraints

during a single day. Their algorithm seeks to assign streets to sweepers and route the sweepers,

while obeying parking regulations, balancing workload, and minimizing deadhead distance. The

authors apply the algorithms to pilot studies in New York City and Washington, D.C.

Eglese and Murdock [4] describe their street sweeping application in Lancashire County Council

in England. Their work differs from [1] and [2] in that there are no parking considerations to be

made and streets can be regarded as bidirectional because, in rural areas, street sweepers are
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allowed to traverse a street against traffic.

3 Genetic Algorithm

We employed a genetic algorithm heuristic to generate good solutions in a short amount of time.

It acts on a population of feasible schedules and uses a heuristic for the Directed Rural Postman

Problem to return a tour whose length serves as the fitness function.

There are several hurdles to overcome in the implementation. First, it is necessary for the

required edges to be contained in a strongly connected graph. In our context, the required sides

of streets are contained in a city which is assumed to be strongly connected. However, the city

may be much larger than the required sweeping area, resulting in an overly large state space of

schedules that dictates sweeping constraints on every street. We reduce the state space so that

schedules are not concerned with unnecessary streets, greatly reducing running time.

Second, the Directed Rural Postman Problem is an NP-hard problem and its objective value is

used as a fitness function which is computationally expensive. Thus, our heuristic for the Directed

Rural Postman Problem is carefully chosen for fast running times and good solutions in the context

of our problem.

Third, a naive breeding of schedules would be to simply swap components of the schedules in

a random fashion. However, one can see that the induced route of a schedule is very sensitive to

small changes in the schedule. Requiring sweeping on an edge on an even day rather than an odd

day could result in very large detours being required to satisfy the other travel requirements of the

schedule. As a result, breeding two good schedules haphazardly will often destroy the good solution

structure. We construct a novel breeding process that preserves good solutions while introducing

the variety required for a genetic algorithm.

Finally, there are no existing test instances, so we construct algorithms for generating random

instances and random instances modeling a city. We also test our methods on actual city data for

Washington, D.C.

4 Results

We compare our genetic algorithm against a CPLEX implementation and a local search proce-

dure. Our genetic algorithm performs very well, very nearly matching CPLEX on small instances.

However, on only moderately larger instances, CPLEX computation time performance degrades

very quickly and CPLEX often fails to find a feasible solution in a reasonable amount of time. Our

genetic algorithm performs consistently, obtaining good solutions in far less time with respect to

the local search method for realistic and large sized instances.
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1 Introduction

In the modern society, the demand for transportation, of goods and people, is constantly increasing

in terms of volume and distance. In particular, as the fastest transportation mode for mid and long

distances, airline transportation develops at an impressive rate. Due to the competition between

the airlines, many of them use operations research techniques to schedule their operations. This

allows to keep prices low and thus attract customers while making profit. Airlines have to deal

with irregular events, called disruptions, making the schedule unfeasible. The process of repairing

a disrupted schedule is known as the recovery problem. It aims at retrieving the initial schedule

as quickly as possible while minimizing the recovery costs incurred by recovery decisions (typically

delaying or canceling flights).

A major drawback of optimized schedules is that they are sensitive to perturbations. Small

disruptions propagate through the whole schedule, and may have a huge impact.

The focus of this study is to implicitly consider the occurrence of future disruptions at the

planing phase in order to ameliorate two properties of the schedule, namely:

1. the robustness: the ability of the schedule to remain feasible in the presence of small disrup-

tions;

2. the recoverability : the average performance of the recovery algorithm when the schedule is

disrupted.
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At the planing phase, we solve the Maintenance Routing Problem (MRP), which aims at finding

a feasible route for each aircraft and a departure time for each flight minimizing the loss of revenue

as a metric which depends on the deviation from a desired schedule.

On the day of operation, the problem of recovering the planed schedule from a disrupted state

is the Aircraft Recovery Problem (ARP) given the original schedule and the current disrupted

state. The recovery costs are mainly delay and cancelation costs.

The originality of the proposed algorithms is the absence of any explicit predictive model

of possible disruptions for the scheduling problem. Uncertainty Features capture implicitly the

uncertainty the problem is due to. An additional budget constraint ensures that the obtained

solution is not too far from the original deterministic optimum, and the computational complexity

is similar to the original deterministic problem.

We solve the MRP by applying the Uncertainty Feature Optimization (UFO) framework of

Eggenberg et al. (2009) on a real case study and we present computational results for different

MRPs using public instances of the ROADEF Challenge 2009. Recovery statistics are obtained

with the recovery algorithm presented by Eggenberg et al. (2010, to appear).

1.1 Methodology

Eggenberg et al. (2009) introduce the Uncertainty Feature Optimization (UFO) framework. It

modifies the original deterministic optimization problem, relaxing the optimality with respect to

the original objective in order to maximize structural properties, called Uncertainty Features (UF).

The underlying assumption is that solutions with higher UF values have higher robustness and/or

recoverability.

In the context of airline scheduling, it has been shown that solutions with additional slack,

higher number of possible aircraft swaps or increased number of short cycles increase the robustness

and the recoverability of a schedule (Ageeva, Y., 2000, Ehrgott and Ryan, 2000, Rosenberger et al.,

2004, Lan et al., 2004, Smith and Johnson, 2006, Yen and Birge, 2006, Burke et al., forthcoming,

Gao et al., 2009).

Our methodology is therefore to modify existing schedules such as to maximize four different

UFs:

1. IT: the total slack in the schedule

2. MIT: the sum of each aircraft’s minimum slack

3. CROSS: the number of aircraft crossings (possible aircraft swaps)

4. PCON: the total slack for all existing passenger connections

The UFs are maximized using a Column Generation algorithm based on the constraint-specific

recovery networks of Eggenberg et al. (2010, to appear), allowing for flight retiming. We use two
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restriction levels: on a disaggregate level, we ensure each fight is moved by at most 60 minutes, and

on the aggregate level, we ensure that the total deviation (in minutes) is bounded by a constant

C.

1.2 Sample of the Simulation Results

In our simulations, we compare the efficiency of different schedules obtained by modifying an

original schedule coming from the ROADEF Challenge 20091. We then use a recovery algorithm

to solve the aircraft recovery problem for each instance and each modified solution. The solutions

are then evaluated using the cost checker provided by the ROADEF Challenge.

Figure 1 shows the performance profile Dolan, E.D and Moré, J.J (2002) of some of the most

efficient models used to derive new schedules.
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Figure 1: Evolution of the performance curves for different models used to modify the original
schedule.

Figure 1 shows that the solutions obtained by model MIT 20000, i.e. maximizing the sum of

each aircraft’s minimum idle time using an upper bound C = 20, 000 minutes, leads to the solution

with lowest recovery costs in 6 instances out of 8. When it does not have the lowest recovery

cost, the solution is however less than 1.1 times higher than the best found solution. Compared

to the original schedule, model MIT 20000 always has lower recovery costs. In the best instance,

MIT 20000 allows to save up to 3,82 Mio e, i.e. a reduction of the original recovery costs of 68.5%;

the highest reduction relative to the original recovery costs is of 93%, corresponding to 1,28 Mioe.

1.3 Conclusion

The drawback of deterministically optimized airline schedules is their sensitivity with respect to

disruptions. We show that by modifying the original schedule, we are able to mitigate the sensi-

tivity to disruptions and therefore reduce recovery costs when recovery is required.

1http://challenge.roadef.org/2009/index.en.htm
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1 Introduction 

 
Traffic congestion is a feature of road transport in most countries of the world. Sometimes the 

congestion is caused by an unexpected event such as an accident which blocks the smooth flow of 

traffic. But much congestion is the result of the volume of traffic on a restricted road network and the 

resulting reductions in average speeds on different roads and at different times follow patterns that tend 

to be followed on a regular basis. Traffic information is now collected in a variety of ways so the 

speeds of vehicles on roads at different times can be estimated from the speeds observed in the past. 

Such information can then be used to find the shortest time paths between places. These shortest time 

paths may change depending on the time when the journey is started. Eglese et al. [1] show how a 

Road Timetable
TM

 may be constructed that records the times and paths between a set of customers and 

a depot for use in planning deliveries for a vehicle fleet. 

Maden et al. [2] describes a vehicle routing and scheduling algorithm called LANTIME that is 

able to use the information in  the Road Timetable
TM

 to produce a set of vehicle routes and schedules 

for a vehicle fleet that will take the predicted congestion into account and produce routes and schedules 

based on when and where patterns of traffic congestion occur. The paper goes on to describe the 

effects of using LANTIME in an initial case study. 

In this paper two further case studies will be described and the effects of using the LANTIME 

algorithm will be analysed and contrasted with the first case study. The cases cover different types of 

distribution for different companies in different parts of the U.K. In each case the traffic information 

has been supplied by ITIS Holdings who collect data on the position and speed of vehicles in their 

Floating Vehicle Database. Each vehicle that has been fitted with the appropriate technology is able to 

transmit its position and speed at regular intervals while it is being used. This data can then be collated 

to provide a distribution of speeds in any time interval on any road in the network. 
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2 Related Work 

 
There are a relatively small number of papers that carry out vehicle routing and scheduling using time-

dependent travel times. Examples include Fleischmann et al. [3], Ichoua et al. [4] and van Woensel et 

al. [5].  

There have also been related developments in dynamic vehicle routing and scheduling where 

vehicle routes are modified in real time as they react to observed traffic conditions. Ichoua et al. (2006) 

[6] and Taniguchi and Shimamoto [7] provide examples. However for applications such as the three 

case studies described in this paper, the customers to be served by each vehicle must be determined 

when the vehicles are loaded at the depot based on expected travel times. 

These papers evaluate their methods in terms of times and economic costs, but the analysis of 

the case studies presented in this paper will also consider the effect on Greenhouse Gas emissions.  

 

3 The First Case Study  
 

The first case study is based on the distribution of electrical goods. These are items ordered by 

electricians for carrying out their work and include cables, switches and tools etc. The case study 

considers just one part of the supply chain operation where items are taken from a regional distribution 

centre in Avonmouth, near Bristol, to customers located throughout the South West of the UK, 

including South Wales. The operation is carried out on a daily basis Monday to Friday. The vehicles 

used are all 3.5 tonne GVW box vans, so there are no restrictions on the roads on which they may 

travel. As the items of electrical equipment are relatively small and light there are no effective 

constraints on the capacity of the vans. However each driver is available only for a maximum 10 hour 

working day including the statutory breaks for driving time and working time. There are no time 

window constraints for the deliveries, other than that they must all be delivered on a particular day.  

For this part of the operation, about seven vans were normally required, though additional 

vans and drivers were available if needed. If a schedule did not require a van and driver for the whole 

day, then there were other parts of the operation where the driver could be used. The number of 

customers per day varied between 40 and 64 over the nine days when data were collected.  

Road Timetables were constructed based on a three-month period at the same time of year in 

the previous year and used 15-minute time bins covering the day.  

Vehicle routes and schedules for each day were first constructed using conventional vehicle 

routing and scheduling methods where the speeds of the vehicles on each type of road were input as 

the expected speeds when the roads were uncongested and the free-flowing speeds could be used. 

These routes and schedules were then examined using the observed vehicle speeds at different times of 

day taken from the Road Timetable. It showed that many routes took longer than the planned figures 

due to road congestion and in some cases led to overtime being needed to complete the routes. 
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However the LANTIME algorithm was able to construct routes and schedules which complied with all 

the time constraints.  

 

4 The Second Case Study  
 

The second case study concerns a company that distributes fruit and vegetables in London and the 

South East of England from the main wholesale market in Spitalfields. The customers of this company 

are typically restaurants and kitchens for catering outlets providing meals for schools and hospitals. 

The company again use vans for their deliveries and most deliveries are made during the early morning 

Mondays to Fridays. The mix of customers varies each day. Some customers may need daily deliveries 

but many of them require deliveries less frequently. The average number of customer drops per day is 

130 and the number of vehicles is about 14.   

The road network over which these vehicles travel includes roads in the centre of London as 

well as motorways and main roads outside the main urban area. 

 

5 The Third Case Study 
 

The third case study is based on supermarket deliveries for a company with 26 supermarkets based in 

the North of England. The deliveries are mainly food and are packed into cages which are then loaded 

into heavy goods vehicles. The vehicles are driven from a central distribution depot and taken to the 

stores. After delivering goods, the vehicles may also be used to transport waste or material for 

recycling from the stores back to the central depot and may also be used to pick up supplies from one 

of the local producers and backhaul it to the central depot. The company operate with a fleet of about 

20 vehicles. 

The road network for this case study includes motorway and major trunk roads for travel 

between cities and towns, but also includes town and city centre road networks that must be used to 

access the stores. 

 

6 Conclusions 

 

Analysis of the first case study shows that conventional methods that do not take time-varying speeds 

into account, except for an overall contingency allowance, may still lead to some routes taking longer 

than the time allowed. The LANTIME approach produces more reliable route times and leads to 

savings in CO2 emissions of about 7% for the sample analysed.  

The second and third case studies will be analysed in a similar way to examine whether the 

results from different types of operations over different road networks produce similar benefits. 
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1 Motivation 
 

This paper is about efficient and reliable vehicle routing in city logistics. We consider telematics based 

data collection, data processing and data utilization in order to provide efficient information models as 

input for time-dependent vehicle routing in urban areas. 

In city logistics, concepts for fast and reliable transportation of goods in terms of efficient and 

environmentally acceptable pickup and delivery routes are discussed. Nowadays, service providers 

have to consider dynamics within logistics planning processes, e.g., shorter delivery time, higher 

schedule reliability and delivery flexibility [1]. Furthermore, city logistics service providers compete 

against other road users for the scarce traffic space of inner cities. In conurbations, traffic infrastructure 

is often used to capacity, resulting in traffic jams. This leads to lower service quality and higher costs 

for service providers [2]. 

Efficient time-dependent vehicle routing in urban areas is based on empirical traffic data that 

can be utilized in time-dependent problem formulations. Thus, varying traffic flows and customer time 

windows have to be considered. Varying traffic flows can be approximated by time-dependent travel 

time estimates. Recently, such data arises from telematics based vehicular communication networks. 

Travel time estimates are then integrated into time-dependent routing approaches that meet customer 

windows. Whereas common vehicle routing is well studied, time-dependent vehicle routing is still a 

field of potential research due to the substantial efforts in data processing and the resulting complexity 

in routing algorithms [3]. In particular, the provision and integration of time-dependent information 

models into appropriate routing formulations is rarely focused. Recent work on time-dependent vehicle 

routing can be found in [2],[3],[4]. 

In this contribution, a time-dependent optimization framework for vehicle routing in urban 

areas is designed. Therefore, key issues of traffic data collection are presented. The appropriate 

transformation from raw traffic data into time-dependent information models is discussed (Section 2). 

Then, the information models are utilized in time-dependent routing approaches (Section 3). Several 
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time-dependent routing heuristics are compared regarding efforts in data provision, running times and 

quality of travel time estimation. Computational results arise from a case study based on large amounts 

of real traffic data from Stuttgart, Germany (Section 4). Here, customer time windows are considered. 

 

2 From empirical traffic data to information models 
 

Time-dependent vehicle routing requires empirical traffic data as a key input. Reliable decisions must 

be derived from this data. Therefore, empirical traffic data has to be transformed into efficient time-

dependent information models. The corresponding data processing, ranging from GPS based data 

collection of raw traffic data to the provision of time-dependent information models, is mainly based 

on two aggregation steps [5].  

Within first level aggregation, empirical traffic data is cleaned, integrated into a central 

database and precalculated in terms of time-dependent aggregation. The result is a mean speed for 

every link and every time interval considered. Corresponding to common analysis methods from the 

area of traffic research (e.g. [6]), we establish 24 time intervals per weekday, resulting in 168 planning 

intervals in total. 

Within second level aggregation, we refer to data mining in order to reduce the data input for 

vehicle routing algorithms. The time-dependent aggregates from first level aggregation are normalized 

and links are then clustered, leading to a compact representation of time-dependent travel time 

estimates in terms of discount factors. The discount factors represent the typical speed variation for a 

group of links on a specific day of the week. The main idea is to look up a time-dependent discount 

factor and then weight a link’s robust speed figure (e.g. average speed) for time-dependent route 

calculation instead of using a considerable amount of travel time estimates for handling time 

dependency. 

The resulting information models differ in the volume of input data for routing algorithms and 

thus in the complexity of data structures to be considered. Whereas a common digital roadmap consists 

of about 100,000 travel time estimates for a typical large city in Germany (one travel time estimate per 

link), time-dependent data from first level aggregation leads to 16.8 million travel time estimates to be 

considered (24 x 7 per link). After reduction by second level aggregation, only 1.01 travel time 

estimates per link have to be handled, still maintaining planning reliability by consideration of time 

dependency, but keeping complexity of data structures low. Comprehensive computational 

experiments with empirical traffic data from Stuttgart, Germany have shown the superiority of 

information models from second level aggregation regarding efficiency and reliability of route 

planning in contrast to route planning based on static travel time estimates from a digital roadmap [7]. 
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3 Integration of information models in time-dependent vehicle 
routing 
  
Efficient vehicle routing depends on the calculation of distances between customers. In contrast to 

static vehicle routing formulations, varying travel time estimates for each edge must be considered in 

time-dependent approaches, inducing time-dependent distance matrices. Usually, an edge’s travel time 

is modeled as a function of its departure time.  

Travel time functions can be modeled in a discrete or continuous way [8]. Due to the structure 

of the information models presented, we refer to the discrete case and approximate the travel time 

estimates by piecewise-linear travel time functions. Therefore, the time horizon is partitioned into a 

number of time intervals corresponding to the data delivered by the information models. 

The information models presented lead to piecewise-linear travel time functions, ignoring the 

FIFO property. In FIFO networks, vehicles arrive in the order they commence an edge [9]. In non-

FIFO networks, the travel time function “jumps” between two time intervals. Thus, passing may occur 

if the travel time decreases, leading to inconsistencies in common shortest path algorithms. We solve 

this problem by utilizing a “smoothed” travel time function that transforms non-FIFO edges into FIFO 

edges [3].  

The FIFO adapted information models can be used for time-dependent shortest path 

calculation in terms of modified label-setting or label-correcting static shortest path algorithms. They 

provide data for time-dependent traveling salesman and vehicle routing heuristics. 

  
4 Computational experiments 
 

The applicability and the benefit of the time-dependent information models are demonstrated 

by computational experiments. We investigate a scenario of a city logistics service provider that serves 

20 customers with one vehicle from a central depot in the area of Stuttgart, Germany. Therefore, a 

large amount of telematics based traffic data from this area is analyzed, which serves as input for the 

determination of the time-dependent information models presented. The corresponding traveling 

salesman problem is then solved heuristically. Results are improved by a time-dependent 2-opt 

approach. 

In particular, we implement and instantiate the time-dependent optimization framework and 

compare memory requirements as well as the computational efforts in route calculation, which strongly 

depend on the information model used. A common digital roadmap serves as a benchmark and is then 

extended by the time-dependent information models presented so far. The information models are 

utilized in order to provide travel time estimates for a variety of time-dependent vehicle routing 

heuristics. Optimization is conducted by Nearest Neighbor, Route Construction and Savings 

approaches, which are adapted to the time-dependent setting. The start time of a tour is modified to 

illustrate the influence of varying traffic flows on vehicle routing. Several types of customer time 
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windows are introduced and results are compared to the case without time windows. Results are 

compared regarding computational effort for data provision, route calculation and precision in travel 

time estimation.  

Time-dependent information models represent typical travel times. Due to the stochastic 

traffic process, the consideration of time dependency is only one important step for maintaining the 

reliability of delivery tours. Thus, we utilize the information models presented for calculation of robust 

tours. Here, resulting tours are expected to comprise only a minimum of links with high variance in 

travel times. Several levels of reliability are compared to each other as well as to the time-dependent 

and to the static case. 
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1 Introduction

The toll design problem (TDP) is that of finding optimal toll locations and levels in a congestion

pricing scheme, with the objective to maximize the social surplus given by the Marshallian measure.

The TDP is in general non-convex and therefore difficult to solve for a global optimum. A similar

problem to the TDP is the continuous network design problem (CNDP), and in [1] the CNDP for

fixed demand networks is approximated by a mixed integer linear program (MILP), for which a

global optimum can be obtained. The approximation used for the CNDP however relies on the set

of used paths to be known in advance.

In this paper we extend the ideas from [1], to the TDP for elastic demand traffic assignment. A

link based formulation is adopted which does not rely on the set of used paths being known a

priori. Also, when performing the approximation we will ensure that the solution to the MILP will

give an upper bound of the objective function value to the TDP.
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2 The toll design problem

The traffic network is modeled by a set of links A and a set of origin destination (OD) pairs I.
Let v be the vector of link flows, with va denoting the flow on link a. Furthermore, let xi be the

vector of link flows disaggregated by OD pair i ∈ I. The set of feasible link flows and demands

can then be formulated as

Ω =

{
v : v =

∑

i∈I

xi, Axi = biqi, qi ≥ 0, xi ≥ 0 ∀i ∈ I

}
,

where A is the link-node incidence matrix for the network. The vector bi has length equal to the

number of nodes, and defines the origin and destination nodes in OD pair i, with the element

at the position of the origin node equal to −1 and that of the destination node equal to 1. The

link travel time is assumed to be a monotonically non-decreasing function ta of va. The cost of

traveling on link a is made up of both the link travel time and the link toll, τa, and is expressed as

ca(τa, va) = αta(va) + τa, where α is the value of time. The relationship between travel cost and

demand in each OD pair i is given by the inverse travel demand function D−1
i , which is assumed

to be a convex function of travel demand qi, and gives the travel cost in OD pair i.

In each OD pair the road users are assumed to choose routes according to a user equilibrium (UE).

A variational inequality formulation (VI) is adopted to describe the UE with elastic demand [2].

The VI is defined for all feasible demand-link flow vectors (q̃, ṽ) in Ω. For the UE, Ω can be

assumed to be a bounded polyhedron with a finite number, S, of extreme points, (q̂s, v̂s) [3]. We

can thus formulate the VI as:

∑

a∈A
ca(τa, va)(va − v̂sa)−

∑

i∈I
D−1

i (qi)(qi − q̂si ) ≤ 0, s ∈ 1..S.

Now, the TDP can be formulated as a mathematical program with the VI as constraints, and ga

as the cost of collecting a toll on link a. The TDP is:

max
τ,q,v,y

F (τ, q, v, y) =
∑

i∈I

∫ qi

0

D−1
i (w)dw − α

∑

a∈A

ta(va)va −
∑

a∈A
gava (1a)

subject to
∑

a∈A
(αta(va) + τa) (va − v̂sa)−

∑

i∈I

D−1
i (qi)(qi − q̂si ) ≤ 0, s ∈ 1...S (1b)

τa ≤ yaτ̄a, a ∈ A (1c)

ya ∈ {0, 1}, a ∈ A (1d)

v ∈ Ω, (1e)

where the first sum in the objective function is the user benefits, the second sum is the total travel

time, and the last sum is the cost of collecting the tolls. The variable ya is equal to one if a toll is
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located on link a, and zero otherwise, and τ̄a is an upper bound (possibly zero) on the toll level of

link a. By fixing the y-variables to either one or zero, we will only search for optimal toll levels.

3 The MILP approximation

The TDP is a mixed integer non-linear problem since there are non-linear functions in both the

objective and the constraints. If the non-linear functions are approximated by piecewise linear

ones, the problem becomes a mixed integer linear program (MILP). The MILP approximation is

still non-convex due to the integer variables, but can be solved efficiently by known methods, such

as branch and bound, to the global optimal solution.

The piecewise linear approximations will be done by linearizing the non-linear functions in given

points. For all the functions but the link travel times and the link toll revenues, the piecewise

linear functions can be modeled as linear inequalities. For the approximation of the link travel

time we however need to add a set of constraints and integer variables for each link, to describe

which linear segment that is active at the current link flow. The link toll revenue, which is a

bilinear term, can be underestimated by its convex envelope. To improve the underestimation, the

link flow toll level is divided into different segments, where each segment is specified by a lower

and upper bound on the link flow and toll level respectively. These lower and upper bounds are

combined into four points in the link flow-toll-space, which are used to define each convex envelope.

To determine which segments that are active, i.e. which convex envelope that is to be used for the

underestimation, a set of linear inequalities and integer variables needs to be added for each link.

The optimal objective function value of the MILP will be an upper bound estimation of the optimal

objective function value of the TDP if the link travel cost ta(va), the total OD travel cost qiD
−1
i (qi),

and the user benefits
∫ qi
0

D−1
i (w)dw are overestimated, and the total link travel cost vata(va), the

link toll revenues vaτa, and the inverse travel demand D−1
i (qi) are underestimated.

The MILP has the following structure:

max
τ,dinv,dUB,dTC ,r,t,t̄,q,v,y

FMILP(d
UB , t̄, v, y) =

∑

i∈I
dUB
i −

∑

a∈A
αt̄a −

∑

a∈A
ga(va, ya) (2a)

subject to
∑

a∈A
(αt̄a + ra − (αta + τa) v̂

s
a)−

∑

i∈I

(
dTC
i − dinvi q̂si

) ≤ 0, s ∈ 1...S (2b)

and constraints (1b)-(1e),

where t, t̄ and ra are variables that correspond to the piecewise linearization of the link travel

time, the total link travel time, and the link toll revenue functions respectively. The variables dinv ,

dTC and dUB are given by the piecewise linearization of the inverse travel demand function, the

total OD travel cost, and the user benefit functions respectively. Note that additional constraints
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and integer variables are needed to give the relationship between these variables and the piecewise

linear functions.

The MILP formulation relies on the complete set of extreme points s ∈ 1...S to be known a

priori, and it is burdensome even for a small network to find them all. The MILP can however be

formulated with a reduced number, R, of extreme points, referred to as MILP-EX, by replacing

the complete set of extreme points 1...S in (2b) with 1...R.

Let (dinv
∗
, dTC∗

, r∗, t∗, t̄∗, τ∗) be the optimal solution to MILP-EX. If all variables are kept fixed,

the search for an additional VI-constraint which is violated by the current solution, can be formu-

lated as the linear program

LP-EX: max
(q̄,v̄)∈Ω

FLP(q̄, v̄) =
∑

a∈A
(αt̄∗a + r∗a)−

∑

i∈I
dTC∗
i −

∑

a∈A
(αt∗a + τ∗a ) v̄a +

∑

i∈I
dinv

∗
i q̄i,

with optimal solution (q̄∗, v̄∗).

If FLP(q̄
∗, v̄∗) ≤ 0 then there exists no additional constraint which would make the current solution

to MILP-EX infeasible, and the current solution is thus an optimal solution to the MILP. On the

other hand, if FLP(q̄
∗, v̄∗) > 0 there exist an extreme point equal to (q̄∗, v̄∗), which violates the

VI-constraint. By repeatedly solving MILP-EX and LP-EX an iterative solution algorithm can be

constructed, in which LP-EX will either indicate that that optimum has been reached, or identify

a new VI-constraint.

The MILP approximation approach has been evaluated on a small network with 12 links, and 8

OD pairs, where the link travel time functions and inverse travel demand functions are all linear.

The total link travel time, OD travel cost, and user benefits are approximated by about 20 linear

segments each. For the link toll revenues, the link flow and toll levels are divided into ten segments

each. The results give that the MILP overestimates the TDP by about 0.1%. When the optimal

tolls from the MILP solution are applied to the TDP, the improvement in social surplus are within

0.9% and 2.3%, of the known optimal solution.
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Issmail El Hallaoui
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1 The Log-Truck Scheduling Problem

Forest-based industries represent a major economic sector in Canada and in several other countries

around the world. In many of these, transportation activities account for a large portion of the

costs incurred to exploit forests. For instance, in Quebec, the average distance between forest

areas where wood is collected and mills to which this wood is transported is around 150 km, and

transportation represents more than 30% of the cost of provisioning for wood transformation mills.

Transport activities between forest areas and mills should therefore be organized as effectively

as possible. Significant attention has thus been devoted in recent years to transportation-related

scheduling problems, mainly for economic and environmental reasons.

In this presentation, we consider the problem of supplying several woodmills (demand points)

from a number of forest areas (supply points). Volumes of wood are expressed in units of truckloads

at both supply and demand points. In the case at hand, there are no time windows at forest areas
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and woodmills, but the trucks that transport wood between these points and the log-loaders that

load trucks in the forest and unload them at woodmills must be synchronised as much as possible to

avoid waiting time. Demand at woodmills is given on a daily basis, whereas routes and schedules

of trucks must be determined on a weekly basis. Another constraint is that each truck should

visit a single forest area and a single mill in any given trip. We also assume that there is a single

log-loader at each supply or demand point. Finally, there are constraints on the stocks of wood at

mills, which require integrating transportation schedules over several days.

This Log-Truck Scheduling Problem (LTSP) is closely related to routing problems encountered

in other settings, in particular, pick-up and delivery problems. In general, LTSP is more complex

than classical pick-up and delivery problems, the main difference coming from fact that in the

LTSP one must synchronise trucks and log-loaders.

Several models and methods have been proposed in the literature to solve the LTSP. Among

these, the heuristic-based approach of (ASICAM) [6] has been used successfully since 1990 to pro-

duce daily plans for trucks in Chile. Palmgren et al. [5] have proposed more recently a column-based

routing model, which is solved using a branch-and-price procedure. Flisberg et al. [3] presented

a two-phase solution approach, in which the LTSP is transformed into a standard vehicle routing

problem with time windows. Gronalt and Hirsch [4] applied a tabu search algorithm to solve a

restricted variant of the LTSP in which the number of trips between each forest area and each

mill is given. The same assumption is used by El Hachemi et al. [1] who develop a hybrid method

combining Integer Programming (IP) and Constraint Programming (CP): the IP model generates

optimal routes in term of deadheading, while CP deals with the scheduling part. Recently, the

same authors [2] have presented a novel two-phase approach for solving the weekly variant of the

LTSP, in which inventories at woodmills must be taken into consideration. In the first phase, a

“tactical” IP model, which is solved approximately by a tabu search heuristic, handles stock and

inventory constraints at each demand and supply point. This first phase yields seven daily schedul-

ing problems. For each daily problem, there is a fixed set of transportation requests to perform.

The daily problems are solved sequentially, with only one element linking successive days: the

location at which a truck finishes a day must be its starting location for the following day. For the

second phase, they use a hybrid method that integrates a CP model and a constraint-based local

search model (CBLS) for the daily log-truck scheduling problem.

The main contribution of this paper is the integration in the problem definition of important

practical considerations, such as the scheduling of lunch breaks, additional supply constraints and

the home bases of trucks. This leads to the definition of a new IP model for the daily problem.

Both the weekly and the daily IP models are now solved directly with CPLEX 11, which yields

excellent results for a reasonable computational effort.
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2 Solution Approach

In this paper, we apply the general two-phase approach proposed in [2]. In the first phase, we

solve an extended version of the “tactical model” of [2]. This IP model now takes into account the

fact that different wood products must be shipped to woodmills. These multi-products demand

constraints arise from the fact that many woodmills order logs from given species in specific lengths

and diameters to produce given final products. Logs are thus sorted into different assortments that

depend on species, usage, quality and dimension. Each supply point consists of a given assortment

group (up to 3 products in our case) and each demand point presents a requirement for a given

assortment group. In general, the inventory is known at the beginning of the week since it is the

stock associated with the last day of the previous week. When demands at woodmills and supplies

at forest areas remain constant during a long period covering many weeks, it may be desirable

to generate a weekly solution that can be repeated over the whole period. This is achieved by

imposing that the inventory at the end of the week be equal to the starting inventory. This phase

yields seven daily LTSPs, in which there is a fixed set of transportation requests to perform.

To tackle the daily LTSPs, we propose a new flow-based IP model. In this model, each com-

ponent (activity) of a truck trip (deadhead, loading, loaded travel, unloading) is modeled as an

arc in a time-space network. We assume that trucks are assigned to a given number of “regional

bases” from which they start and to which they must return, and that the fleet is homogeneous.

The objective function is to minimize the sum of the costs associated with truck deadheads and

with waiting times of trucks and forest log-loaders. Constraints enforce the availability of trucks

for each “regional fleet”, the fulfillment of daily transportation requests coming from the tactical

model, and structural relationships. Furthermore, since forest companies have expressed the need

to ensure for each truck a one-hour break between 11 AM and 3 PM at any woodmill, where

drivers can have lunch and trucks can be refueled, we divide the network into two parts at wood-

mills nodes, one before the break and one after. The arcs linking both parts represent the break

activities of trucks and have a duration of one hour as specified by the forest companies. The daily

model being based on a time-space network, a key issue in the model definition is the specification

of an appropriate time step. An important observation in this regard is that loading and unloading

times are approximatively equal and take around 20 minutes (in practice, loading takes a little bit

more time than unloading). Choosing the loading time as the basic time step greatly simplifies the

model, in particular, the constraints that limit log-loaders to serving only one truck at any time.

While this daily model is a network model, it does not correspond to a simple flow problem and

it must therefore be solved as an IP with branch-and-bound. After trying the default branching

strategy of CPLEX 11, we developed our own branching strategy aimed at fixing the activities of

log-loaders, because there are relatively fewer of them and because their waiting time cost is about

twice as expensive as for trucks; they thus have more impact on the objective.
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3 Experimental Results

We were provided with two different case studies by an industrial partner. Both of them involve

six forest areas and five woodmills. The case studies involve respectively approximately 400 (resp.

700) shipments per week, and the average cycle time to transport a shipment is around of about 4

(resp. 5.5) hours. Each case has three different fleet sizes (resp. 14-16 trucks and 30-32). For each

of these scenarios, we performed three tests with different configurations of bases. All daily LTSPs

were run for 3 minutes initially and then 10 minutes. For the first phase, we fixed the computational

time to 5 minutes, and the first case study was solved optimally within less than 1.5 minute, while

for the second case we obtained a solution with a 4.5% gap. These computational experiments

showed that one could easily obtain fairly good solutions within the allotted CPU times and that

the special branching strategy outperformed CPLEX’s default strategy. Comprehensive results for

the experiments will be presented at the conference.
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1 Introduction

Traditional transit services are particularly suited to situations where the demand for transporta-

tion is strong, i.e., when there is a consistently high demand in the considered territory and time

period. The high degree of resource sharing makes it possible to provide efficiently and econom-

ically high quality service. In contrast, when the demand for transportation is weak, e.g., in

low-population density zones, operating a good-quality traditional transit system is very costly. In

particular, the fixed structure of traditional transit services cannot economically and adequately

respond to significant variations in demand. Demand-responsive systems are a family of mass

transportation services which, evolving toward a personalization of transportation, respond to the

actual demand in a specific time period: itineraries, schedules, and stop locations are variable and

determined according to the particular needs as they change in time. Demand-responsive systems

were introduced under the name of Dial-a-Ride (DAR) as door-to-door services for users with

particular needs or reduced mobility and then extended to more general settings.

DAR systems display a number of drawbacks, some of which follow from their inherent flex-

ibility: Users are obliged to book the service in advance, the actual pick up time is often left to

the discretion of the operator, the integration of DAR and other traditional transit services is

extremely difficult [5]. With the purpose of addressing such issues, a demand-responsive system

different from DAR, denoted Demand-Adaptive System (DAS ), was introduced in [3] and further
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developed in several works. A similar system, called MAST, has been introduced later by [4].

DAS combines features of both traditional fixed-line bus service and purely on-demand systems.

A DAS bus line serves, on the one hand, a given set of compulsory stops according to a predefined

schedule specified by suitable time windows. This provides the traditional use of the line without

in-advance reservations and makes the integration of DAS with traditional services easy. On the

other hand, similarly to DAR, passengers may issue requests for transportation involving optional

stops, inducing detours in vehicle routes.

Similarly to most transportation systems dedicated to serve several demands with the same

vehicle, DAS requires a complex planning process involving interrelated decisions. Schematically,

the design of the system has to determine the so called topological design of the line as the selection

of compulsory and optional stops [2]. Moreover, the time windows associated with compulsory stops

have to be defined, thus deciding the time available for possible deviations [1].

We address an important problem, called the General Minimum Latency Problem (GMLP),

arising in the context of the DAS line design. The GMLP is similar to the TSP except for the

fact that its objective function takes into account not only the routing cost, but also a latency

component related to the amount of time spent by users in the vehicles. This makes the GMLP

much harder then the TSP. We address the GMLP by a Branch and Cut algorithm based on

Benders decomposition and the exploitation of similarities between the GMLP and TSP polyhedra.

Preliminary results show the effectiveness of the proposed methodology.

2 The General Minimum Latency Problem

The design of a DAS line is a complex process and several hierarchical approaches have been

proposed to address it [2]. A number of core problems play an important role in the most of these

approaches and the GMLP is the most challenging one. It can be stated as follows. Consider a

complete directed graph G = (N,A), where the node set N = {1, . . . , n} represents a set of stops.

To each arc (i, j) ∈ A is associated a traversing time cij ≥ 0. We are also given a set D of node

pairs; to each (h, k) ∈ D is associated dhk > 0 representing the amount of transportation demand

from the origin h to the destination k. The objective of the GMLP is to find a Hamiltonian cycle

(tour) that minimizes the sum of the routing costs (cij) of the selected arcs and of the traveling

time of each passenger (latency).

The problem can be formulated introducing a binary design variable xij for each arc (i, j) ∈ A

equal to 1 if the arc (i, j) is in the tour. To account for the latency, multicommodity flow variables

0 ≤ fhk
ij ≤ 1 are introduced, representing the fraction of the demand from h to k traveling on arc
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(i, j). One possible formulation is:

min
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A

∑

(h,k)∈D

qhk
ij fhk

ij (1)

∑

(j,i)∈A

xji = 1 ∀ i ∈ N (2)

∑

(i,j)∈A

xij = 1 ∀ i ∈ N (3)

∑

(i,j)∈A

fhk
ij −

∑

(j,i)∈A

fhk
ji =






1 if i = h,

−1 if i = k,

0 ∀i ∈ N, i 6= h, k

∀ (h, k) ∈ D, ∀i ∈ N (4)

fhk
ij ≥ 0 ∀ (i, j) ∈ A, ∀(h, k) ∈ D (5)

xij − fhk
ij ≥ 0 ∀ (i, j) ∈ A, ∀(h, k) ∈ D (6)

xij ∈ {0, 1} ∀ (i, j) ∈ A (7)

where qhk
ij =

∑
hk dhkcij . Equations (2) and (3) describe a so-called cycle cover. Equations (4)

are the demand flow balance constraints. They imply that for each pair (h, k) ∈ D, one unit of

flow must be sent from h to k. Equations (6), coupling the flow to the design variables, impose

that commodity (h, k) cannot travel on an arc (i, j) if that arc is not in the tour. The objective

function (1) represents the sum of routing costs and latency. Note that, in this case, if the demand

is sufficiently dense, the so-called subtour elimination constraints of the TSP are implied by by

equations (4) and (6).

3 A Benders decomposition approach

Using a straightforward Branch & Bound algorithm to address the model (1)-(7) is not computa-

tionally efficient even for small instances, for two main reasons: 1) the linear relaxation is extremely

difficult to compute because of the high numbers of constraints and variables; 2) the lower bound

provided by the linear relaxation is very loose. An approach based on a Lagrangean Relaxations

of (6), while constraining the x variables to design a tour, was also applied to GMLP [2]. Even if

such an approach could tackle larger instances with respect to the linear relaxation, in practice, it

never provided better lower bounds.

We propose a Benders decomposition. When we consider a given master point x̄, the problem

(1)-(7) decomposes into |D| minimum cost flow subproblems. Master points x̄ are obtained by

solving a relaxation of the original problem called master problem. The advantage is that the master

problem has a much smaller number of variables with respect to the original formulation. Normally,

the subproblem is used to infer useful information for the master problem: if the x̄ is unfeasible or
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not optimal, feasibility or optimality cuts are added to the master problem, respectively.

We embed the Benders decomposition in a Branch & Cut scheme. The initial master problem

contains only cycle covers and a few optimality cuts; integrality constraints are also relaxed. Op-

timality and feasibility cuts are then generated throughout the optimization process and not only

at integer points. In particular, instead of letting the subproblem generating feasibility cuts, we

dynamically add to the master problem several families of inequalities which are facet defining for

the TSP. In fact, it is possible to show that all the inequalities facet defining for the asymmetric

TSP are also facet defining for the GMLP [2].

In Table 1 we compare results obtained solving model (1)-(7) by Cplex 10.1 (columns 2-5)

with those obtained by our algorithm based on Benders decomposition (columns 6-9). Instances

are generated as follows: stops are randomly chosen on a square of side 100 and the costs of

the corresponding complete graph are the Euclidean distances (column 1 reports the number of

nodes). The demand matrix is also complete and randomly generated. As it could be appreciated

by inspecting these preliminary results, our approach considerably improved the quality of the

bounds obtained.

Instance Cplex 10.1 Benders

#Nodes LB UP GAP Time LB UB GAP Time

10 428.48 428.48 0 19.38 428.48 428.48 0 226.79

15 492.22 559.46 0.12 1800 491.99 539.54 0.09 1800

20 558.00 - - 1800 569.73 634.92 0.1 1800

25 549.61 - - 1800 570.81 672.55 0.15 1800

30 566.77 - - 1800 597.73 712.31 0.16 1800

Table 1: Comparison between Cplex and Benders Dec. Time Limit 2 hours.
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1 Case Description

We consider a real world case based on a shipping company operating within a restricted geographi-

cal region. There are several customers located along the coast. Dry bulk products are imported to

the region by cape size ships (i.e. 80,000 to 120,000 dead weight metric tonnes), also called Ocean

Going Vessels, OGVs. However, the waters along the coasts in the region are so shallow that fully

loaded OGVs cannot sail to port. Thus, only smaller ships or partially loaded OGVs would be

able to serve the demand of the steel plants. The shipping company under consideration has a

number of panamax (i.e. 60,000 to 80,000 dwt) sized ships with large cranes (called Transloader

Vessels, TVs) that meet the OGVs at sea (at lightering points) and then move just enough bulk

from the OGVs to the TVs so that the OGVs can berth without running aground. This operation,

lightering, is the primary business of this shipping company. The OGVs are owned and operated

by other companies.
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We present the scheduling problem for this company, which is a special case of the stochastic

and dynamic inventory routing problem. There are several constraints, which will be presented in

due order. Our main contribution is a study of the solution method, the decision tree, for use in

maritime logistics.

There are eight ports, and most of them have one berth that can contain a panamax sized

vessel, and one berth that can hold an OGV. In a few cases, there are more panamax berths. Most

berths have cranes that are used to discharge the ships. Other berths do not have cranes, but have

conveyor belts that are used to load a ship with dry bulk. The TVs have their own cranes and

can, if needed, discharge from such a berth.

There are two types of contracts involved. The first one is the regular lightering operation,

while the second one is a full load pickup-and-delivery voyage. The OGVs arrive irregularly,

and the time between two lightering operations has to be utilised optimally. One of the various

pickup-and-delivery voyages can then be performed between arrivals of OGVs.

For each pickup-and-delivery contract, there is a running balance akin to an inventory level at

a customer’s port. The balance is reduced at a constant rate, regardless of how much the customer

actually removes from its inventory, but is incremented whenever a shipment is delivered. The

contracts specify minimum and maximum levels for this balance. If the company cannot send a

TV when the balance is close to the minimum level, a ship is hired on the spot market to make a

delivery. If the balance is close to the maximum level, voyages for this contract cannot be scheduled.

Ships from the spot market can be hired and used for pickup-and-delivery operations at any time,

but they cannot perform lightering voyages, since they are not equipped with the cranes that are

needed to lighter an OGV. The aspect with the running balance makes this problem a special case

of the inventory routing problem.

The customers order OGV shipments (and consequently, lightering services) at their own dis-

cretion. Sometimes, several OGVs bound for the same customer arrive in short order, making a

congestion at the lightering point. By the time that a TV has lightered the first OGV, sailed to

port, discharged, sailed back to the lightering point and lightered the second OGV, the first one

would still not be fully discharged. Therefore, it is unnecessary to send more than one TV at a

time to serve a single lightering customer.

Failing to meet the OGVs at sea on time will result in fines, called demurrages. This aspect of

the problem can be thought of as soft time windows of zero length. If a TV arrives n days late

for the first in a series of OGVs bound for the same customer, the shipping company has to pay

n days of demurrage for each OGV. The reason is that if the TV had arrived on time, each OGV

would have finished n days earlier.

The vessels described above are not the only ones using the ports, and other ships arrive

irregularly. The knowledge of future arrivals is limited. When commencing a pickup-and-delivery
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operation, the congestion at the discharging port will be highly stochastic. In addition, the loading

and discharging speeds are occasionally reduced for various reasons. For instance, whereas the time

spent sailing, loading and discharging might take eight days, the time spent due to port congestions

might take an additional week (or no time at all). The company receives demurrages for the time

spent in a port congestion. However, the average daily revenue earned from performing voyages

with no congestion is more than the demurrage rate.

The main short-term challenge is the trade-off between increasing a contract balance by per-

forming pickup-and-delivery voyages, and the risk of paying demurrages from arriving late for an

OGV.

In summary, one needs to decide the next voyage for a TV when it has completed the current

one. The choice is between a lightering operation for a customer that is currently not being

served by another TV, or a pickup-and-delivery voyage where the running balance is low enough

to warrant a new delivery. The company is informed of port congestions by observers at each port.

The incoming OGVs report their positions every five days, as well as every 24 hours during the

last five days before arrival at the lightering point.

The optimisation problem is to maximise expected profits. The income in terms of shipment

revenue is limited by the OGVs ordered by the customers, and the fixed reduction per time unit

of the balance for the pickup-and-delivery contracts. Variable revenue consists only of demurrages

collected at customers’ ports. Variable costs include OGV demurrages and the cost of hiring ships

in the spot market. The aim of the scheduling problem is three-fold. First, avoid arriving late

for OGVs, and thereby avoiding demurrages. Second, avoid the cost of hiring ships on the spot

market when the pickup-and-delivery contract balances get too close to the minimum levels. This

is done by keeping the TVs active, that is, avoid waiting at the lightering points and being stuck

in port congestions. This way, the balances will stay above the minimum levels. Third, one prefers

being stuck in port congestions (and thereby collecting demurrages) over waiting at a lightering

point (in which case, no demurrages are collected) for an OGV that is very far away. This last

case is only relevant when all pickup-and-delivery balances are close to their maximum levels.

2 Solution Methods

The solution method implemented for this case involves a decision tree and a simulator. A decision

is required only when a TV has completed its current assignment. This decision is the root node of

the tree. Each decision node has at most c child nodes, one for each contract (serving a lightering

customer or performing a pickup-and-delivery voyage) that is available at that time. These nodes

are chance nodes, each of them having b (b is called a branching factor) child nodes representing

a scenario of future stochastic events. The child nodes are again decision nodes, representing the
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next decision in the future; i.e. finding the next voyage for another TV. The time for this decision

depends on outcomes of events that lead to the decision. This way, there is an alternation between

chance and decision nodes until the planning horizon is reached.

The algorithm has two phases: construction and evaluation. The tree is constructed using

simulations. For each of the outcomes of the chance nodes, further events are simulated until a

new decision needs to be made. This creates the next decision and outcome nodes in the tree.

When the construction is completed, the tree is ready to be evaluated. Whereas construction

starts at the root and proceeds towards the leaves, the evaluation process starts at the leaves and

ends at the root. The net present value (NPV) of profits incurred up until the planning horizon,

discounted using a specified discount rate d, is used as a measure of the desirability of the series

of outcomes ending at the leaf. The average NPV of that leaf and the b − 1 other leaves that

originated from an option at a decision point is used as an estimate of the expected NPV of that

particular option. The average values for each of the options at that decision point are compared,

and the one with the superior result is chosen. The average NPV of the chosen option is used

as an estimated result for the simulation branch that ended at that decision point. The branch

is then treated the same way as the leaves, and is used together with b − 1 other branch results

to compute an average, being an estimate of the expected NPV of selecting a particular option

at a decision point. This process continues until the original decision point is reached. Again,

the option yielding the highest average simulated profit is used, and the method has reached its

conclusion.

The discount rate d is not a financial interest rate, it is simply a means to adjust the importance

of revenue and costs incurred in the near future compared to the revenue and costs incurred at

a later point in time. To be useful, this value needs to be far more than discount rates used in

finance.

3 Computational Study

A simulation is started at a fixed initial setting. Whenever a decision needs to be made, the

chosen decision algorithm is called. The result is then applied, and the simulation can continue.

This continues until H days have been simulated, where H >> h. The total undiscounted profits

after H days are used as an estimate of the suitability of the planning method and its particular

parameter settings.

The decision tree method is compared to the company’s own planning method, and has shown

to perform significantly better. Further results will be presented at the conference, where we show

the effects of varying parameters such as planning horizon, discount rate and branching factor.
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Existing trends in energy supply and consumption are neither secure nor sustainable 
economically, environmentally, and socially. In view of the pressing issues of energy 
security and climate change, bioenergy has been strongly promoted by US federal policy 
as a means to reduce oil dependence and greenhouse gas emission [1,2]. However, the 
challenge of realizing cost-effective energy solutions with minimal impact on food and 
other natural resource supplies has not been thoroughly investigated.  The true potential 
of bioenergy at a sustainable level needs to be sought through rigorous system analyses 
for the entire energy supply chain from feedstock resources to end users, using 
integrated knowledge from spatial economics, operations research, and alternative 
energy technologies.  
 
The goal of this study is to establish a mathematical model that can be used to support 
strategic planning of bioenergy supply chain systems and optimal feedstock resource 
allocation in an uncertain decision environment. From a sustainability standpoint, 
feedstock resources that make minimal impact on global food supplies and other natural 
resources should be emphasized.  In this paper, we emphasize on biowastes feedstock 
resources.  Compared to traditional corn grain, lignocellulosic biomass feedstock (such 
as biowastes) has several advantages: higher energy yields, lower agronomic inputs, 
less impact on food and land resources, and better life-cycle environmental impact [3]. 
Specific questions to be answered via the decision model include:  

• Can ethanol converted from wastes be part of a sustainable energy solution that is 
economically viable and environmentally acceptable?  

• What are the infrastructure requirements to support the production and delivery of 
such a bioethanol system?   

• What are the impacts of such a system on greenhouse gas (GHG) emission and 
natural resources?  

• How would future uncertainties impact the quality of model results and how could 
the potential risk caused by imperfect information be reduced? 

 
The entire biofuel supply chain includes feedstock resources, biorefineries, terminals, 
end users (i.e. demand cities), and the flows between adjacent layers of the supply chain 
[4].  A representative supply chain from biowastes to ethanol is illustrated in Figure 1.  
The model inputs include the geographic layout and availability of various types of 
biowastes resources, a set of candidate refinery locations (selected based on their 
proximity to water, transportation facilities, and labor markets), a set of existing gasoline 
terminal locations that can be selected for ethanol blending and distribution, a set of fuel 
demand sites, and all the cost functions associated with procurement, production, 
storage, and transportation.   
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Figure 1.  A typical supply chain system for bioethanol converted from biowastes 

 
In this problem, the future demand is assumed to be random, and can be described by a 
discrete set of possible scenarios and their associated probabilities. A two-stage 
stochastic mixed-integer programming model [5] is developed to optimize the entire 
bioethanol supply chain.  There are two types of decision variables in the model:  

• The planning (first-stage) decisions include the locations and sizes of the 
refineries and terminals.  These decisions are scenario independent, because 
planning decisions are usually made in advance, and should not be 
distinguishable between scenarios.   

• The operational (second-stage) decisions include the amount of feedstock 
usage, the quantity of produced ethanol, and the transportation flows between 
different layers of the supply chain. Operational decisions are easily adjustable 
according the actual realization of a random event, thus can be scenario 
dependent.   

The objective of the model is to minimize the first-stage cost plus the expected value of 
the second stage cost.  Cost components include the capital and operating cost of the 
refineries and terminals, feedstock procurement cost, production cost of fuel, 
transportation cost of feedstock and fuel, and penalty cost of unsatisfied demand.    

 
The stochastic programming model is much larger in size that its deterministic 
counterpart.  A solution algorithm based on progressive hedging (PH) method [6] is 
design to overcome the computational difficulties. The PH method decomposes a 
stochastic problem across scenarios and partitions the problem into manageable sub-
problems.  Let S denote the set of possible scenarios for random demand, s ∈ S  a 
specific scenario, ps the probability associated with scenario s. Let xs, ys, and Qs(xs,ys)  

denote the planning decision, operational decision, and the total cost in scenario s 
respectively. Define Gs  as the feasible solution set in scenario s.  The problem can be 

formulated in a compact way as: 

min ps

s∈S

∑ Qs(xs,ys) 

subject to  (xs, ys) ∈ Gs , 

xs = z,∀s ∈ S . 
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The last constraint is to ensure that the planning decisions across all scenarios are the 
same, since planning decisions cannot be made with an anticipation of which scenario is 
actually going to happen.  Note that the nonanticipativity constraints are not 
decomposable.  Define the augmented Lagrangian: 

Lr(x,t,w,z) = ps

s∈S

∑ Qs(xs,ys) + (ws)
T

⋅ (xs − z) +
1

2
r xs − z

2
,  

where w is the vector of dual variables for the nonanticipativity constraints and r>0 is a 
penalty parameter associated with violation of the nonanticipativity constraints. 
Therefore, the augmented Lagrangian integrates the nonanticipativity constraints with 
the original objective function.  The PH method achieves decomposition by alternatingly 
fixing the scenario solutions (u,x) and the implementable solution z in the above 
problem.   
 
The two-stage programming model with the PH based solution algorithm was 
implemented in a real-world case study based on California settings.  Eight types of 
biowaste resources are considered: cornstover (27 supply clusters), wheat straw (32 
clusters), forest residual (47 clusters), rice straw (14 clusters), cotton residual (10 
clusters), municipal solid waste (MSW) paper (57 clusters), MSW wood (57 clusters), 
and MSW yard (57 clusters).  There are 28 candidate locations for refineries, 29 
candidate locations for terminal, and 143 demand clusters. The model results show that 
bioethanol can be produced and delivered at an average cost less than $1.5 per gallon 
(without any subsidy), upon optimization of the entire supply chain, suggesting 
converting biowastes to ethanol as an economically viable part of future energy solution.     
 
From a modeling viewpoint, we found that the stochastic programming model performs 
better than a deterministic model (In which only the expected value of random demand 
was considered).  The relative value of stochastic programming solution (VSS) is about 
11%.  Results also show that stochastic model is less sensitive to imperfect information 
of model input.  From a numerical viewpoint, our experiments demonstrate that PH 
based solution algorithm performs much better than commercial solver (CPLEX) in case 
of a nontrivial size of scenarios.  In Figure 2, the x axis shows the number of scenarios, 
and the y axis shows the computing time (in seconds).  As the number of scenarios 
increases, the computational time required by CPLEX solver increases much faster than 
that by the PH method.  On the other hand, we have also noticed that the convergence 
and stability of the algorithm may be affected by the scale of the penalty parameter r.  
Recommendations on how to select a suitable range of r and how to speed up the 
convergence are provided based on our numerical experimental results.    
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Figure 2. Computing time (in seconds) vs. number of scenarios by different solution 

methods 
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1 Introduction 
 

Over the past two years, flight and passenger delays have been on the decline due to reduced demand 

for air travel as a result of the recent economic crisis.  As the economy rebounds, demand for air travel 

in the United States is also expected to recover [1].  Thus, after a brief reprieve, the U.S. will once 

again face a looming transportation crisis due to air traffic congestion.  In calendar year 2007, the last 

year before the economic downturn, flight delays were estimated to have cost airlines $19 billion (U.S. 

Congress Joint Economic Committee [2]) compared to profits of just $5 billion (Air Transport 

Association [3]).  In 2007, passengers were also severely impacted, with the economic costs of time 

lost due to delays estimated at $12 billion according to the Joint Economic Committee report.  A 

similar analysis performed by the Air Transport Association estimated the economic costs of passenger 

delays at approximately $5 billion for 2007.  While there are differences in methodologies, the huge 

discrepancy between these estimates suggests the need for a more transparent and rigorous approach to 

measuring passenger delays.  Accurately estimating passenger delays is important not only as a means 

to understand system performance, but also to motivate policy and investment decisions for the 

National Air Transportation System. 

Beyond the need for transparency and rigor, neither of the passenger delay cost estimates 

listed above include the delays associated with itinerary disruptions, such as missed connections or 

cancellations.  Analysis performed by Bratu and Barhnart suggests that itinerary disruptions and the 
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associated delays represent a significant component of system performance [4].  Their analysis was 

performed using one month of proprietary passenger booking data from a legacy carrier.  The 

challenge in extending this analysis systemwide is that publicly available data sources do not contain 

passenger itinerary flows.  For example, on a given day, there is no way to determine how many 

passengers planned to take the 7:05am American Airlines flight from Boston (BOS) to Chicago (ORD) 

followed by the 11:15am flight from Chicago (ORD) to Los Angeles (LAX), or even the number of 

non-stop passengers on each of these flights.  The passenger demand data that the Bureau of 

Transportation Statistics (BTS) provides is aggregated either monthly or quarterly.  The methodology 

we develop in this work is precisely to address this limitation.  That is, we use a discrete choice model 

trained on a small set of proprietary passenger booking data to simulate disaggregate passenger 

itinerary flows for all airlines.  Subsequently, we extend the Passenger Delay Calculator developed in 

[4] to estimate the magnitude and distribution of U.S. domestic passengers delays for 2007 based on 

the simulated passenger itinerary flows.  Beyond the analysis of historical passenger delays, we expect 

our approach to be valuable in extending passenger analyses to other contexts where previously only 

flight information has been available. 

 

2 Description of Data Sources 
 

The U.S. Bureau of Transportation Statistics (BTS) provides a wealth of data related to airline travel.  

The Airline Service Quality Performance (ASQP) database provides planned and realized flight 

schedules for all airlines that carry at least 1% of all domestic passengers.  For calendar year 2007, this 

includes 20 airlines from Aloha Airlines with 46,360 flights to Southwest Airlines with 1,168,871 

flights.  BTS also maintains the Schedule B-43 Aircraft Inventory which provides a historical list of 

aircraft in inventory for most airlines, matching approximately 75% of the flights in ASQP by tail 

number. 

The Federal Aviation Administration (FAA) maintains the Enhanced Traffic Management 

System (ETMS) database of all flights tracked by air traffic control.  This database is not publicly 

available, due to the presence of sensitive military flight information, but filtered versions are generally 

made accessible for research purposes.  The benefit of this database over ASQP is that in addition to 

the planned and realized flight schedules, it contains the International Civil Aviation Organization 

(ICAO) aircraft equipment code for each flight. 

There are two BTS datasets that we depend on for passenger demand information.  The first is 

the T-100 Domestic Segment (T-100) database, which contains passenger and seat counts for each 

carrier, segment and equipment type aggregated monthly.  For example, from this database we can see 

that in September 2007, American Airlines performed 79 departures from BOS to ORD using Boeing 

757-200s with 14,852 seats available and 11,215 passengers.  If only one aircraft type is used on a 

carrier-segment (which we define as the combination of the carrier, origin and destination of a flight 

segment), we can directly estimate the seating capacity of each flight by dividing the number of seats 
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available by the number of departures performed.  By combining Schedule B-43, ETMS, and T-100, 

we are able to estimate accurate seating capacity for approximately 98.5% of the ASQP flights.  The 

second passenger demand database we depend on is the Airline Origin and Destination Survey 

(DB1B), which provides a 10% sample of domestic passenger tickets from reporting carriers, including 

all of the carriers in ASQP, aggregated quarterly by removing information on flight times.  For 

example, in the 3rd quarter of 2007, 128 passengers tickets were sampled that included a one-way trip 

on American Airlines from BOS to ORD to LAX.  We use this data, adjusted according to T-100, to 

determine the approximate number of monthly passengers travelling on each non-stop or one stop 

carrier-route (which we define as the combination of the carrier, origin and destination for non-stop 

itineraries or the first carrier, second carrier, origin, connection and destination for one stop itineraries). 

 

3 Discrete Choice Sampling 
 

In this section, we summarize the methodological core of our work.  Excluding data processing, the 

process can be described as an effort to, given the month of travel and the carrier-route for a non-stop 

or one-stop passenger, sample a matching itinerary from a discrete choice probability distribution with 

regression parameters estimated from proprietary booking data.  For example,  given a passenger 

estimated to be traveling on American Airlines from BOS to ORD to LAX in September, there are 526 

matching itineraries generated from ASQP using a minimum connection time of 30 minutes and a 

maximum connection time of 3 hours.  Based on features such as local time of departure, day of week, 

and connection time, we estimate a utility, βxi, associated with each of these itineraries and then 

sample one of the choices based on the multinomial logit probability model.  Flight seating capacities 

are an important input into our process, because when a flight becomes full during sampling, we 

remove the corresponding itinerary and update the probabilities for the remaining choices.  To 

eliminate biases when flights become full, we randomly order passengers before sampling itinerary 

choices. 

 In a related context, Coldren, Koppelman and others have applied discrete choice models to 

estimate airline itinerary shares in [5] and [6] from booking data.  In the airline itinerary shares 

estimation problem, the goal is to predict the share of passenger demand for a market (i.e. all air travel 

from an origin to destination) that will utilize each of a set of available itinerary choices.  Thus, the 

itinerary shares problem is more general in that all carrier-routes for a market are considered 

simultaneously.  In our problem, we are only interested in the estimated choice probabilities for a 

single carrier-route, because the DB1B data effectively splits the market demand among carrier-

routes.  Nonetheless, the success of the Coldren and Koppelman models suggest that a discrete choice 

model is reasonable in this context. 

The linear-in-parameter utility function we use for our discrete choice model includes 

parameters for the interaction of the local time of departure and day of week as well as parameters for a 

piecewise linear function of connection time (to model the disutility associated with short and long 
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connection times).  Departure time is split into 4 hour blocks: 1:01 – 5:00am, 5:01 – 9:00am, 9:00am – 

1:00pm, ... , and 9:01pm – 1:00am; and each day of week is represented distinctly.  We fix the utility 

associated with departures between 5:01am and 9:00am on Monday to 0 to enable identifiability of the 

model.  The piecewise linear utility for connection time has three parts, corresponding to a mildly 

increasing utility up to a connection time of 45 minutes, a more dramatically increasing utility up to 60 

minutes, and then a mildly decreasing utility beyond 60 minutes.  This model is trained with 

BIOGEME [7] using a quarter of booking data from a single legacy carrier using sampling of 

alternatives to limit the size of the choice set to 10 alternatives for each observation. 

 

4 Passenger Delay Estimates 
 

Once we have sampled itineraries for each of the passengers represented by T-100 and DB1B, we use 

the ASQP realized flight schedules to determine which itineraries are disrupted due to missed 

connections (less than 15 minutes of connection time) or flight cancellations.  We then recover these 

passenger itineraries by rebooking them from the point of disruption to the final destination of the 

itinerary.  The recovery heuristic we use is an extension of the Passenger Delay Calculator described in 

[4].  In our approach, we set a default of 8 hours of delay for daytime departures (5:01am to 5:00pm) 

and a default of 16 hours of delay for evening departures (5:00pm to 5:00am).  If a passenger is unable 

to be rebooked to his or her final destination with an expected delay less delay than the default, we 

assume the delay equals the default.  We include this cap to ensure that our passenger delay estimates 

are conservative, since ASQP does not include all flight options (e.g. non-reporting carriers).  In 

attempting to rebook the passenger, we consider itineraries utilizing the airlines on the passengers 

original carrier-route, along with any sub-contracted or parent airlines, before considering rebooking 

on a competing airline.  Using this approach, we have estimated that in 2007, over 15 billion minutes 

of passenger delays led to $9.4 billion in economic costs.  Of the 15 billion minutes of passenger delay, 

approximately 50% are due to flight delays affecting non-disrupted passengers, 16% are due to a 

missed connection, and 34% are due to a flight cancellation. 
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The Double Traveling Salesman Problem with Multiple Stacks (DTSPMS) is a pickup and

delivery problem that was recently introduced in [7]. It is an interesting vehicle routing problem

in which some precedence and loading constraints induced by the use of multiple compartments in

the containers of the vehicles must be respected. This problem comes from a real application in

the field of logistics and has been receiving increasing attention during the last years.

The DTSPMS consists on a set of orders that must be served at minimum cost. Each order is

determined by a pickup location, where some goods must be picked up, and a delivery location,

where those goods must be delivered. All pickup locations are placed in one region and all delivery

locations are placed in another region that is usually far away from the first one. Then, a pickup

route and a delivery route visiting all pickup and delivery locations, respectively, must be deter-

mined. The intermediate transportation between the depot of the pickup region and the depot of

the delivery region is assumed to be constant.

The container of the vehicle is divided into several compartments, allowing the items to be

organized in several independent rows, and the vehicle used to serve the given orders is rear-

loaded. Furthermore, for safety and insurance reasons repacking is not allowed during pickups

or deliveries. As a consequence, each row behaves as a LIFO stack (Last-In-First-Out), and thus
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the possible delivery sequences depend on the chosen pickup sequence, inducing the appearance

of some precedence constraints on the items to be collected. The available containers have fixed

dimensions, so the number of available stacks and their capacity are also fixed.

In real life situations the items to be picked up and delivered are usually Euro Pallets, which

can store different kinds of products but have standard dimensions. For this reason, and also for

simplicity, it will be assumed that all items are uniform and each order consists of one single item.

Hence, a solution of a DTSPMS instance consists of a pickup route, stating how pickup locations

of the first region are visited, a delivery route, stating how delivery locations of the second region

are visited, and a loading plan, stating how collected items are stored in the container of the

vehicle. One such solution is feasible if all given orders are served and all precedence and capacity

constraints in the container of the vehicle are respected. The objective of the problem is to find a

feasible solution in which the sum of total traveled distances in both regions is minimized.

The DTSPMS is a pickup and delivery problem (see [6] for a recent survey on this kind of

problems) that generalizes the well known Traveling Salesman Problem (TSP) and as a consequence

it is NP-hard as well. Two different exact approaches are proposed in [1] and [4], but using these

methods instances with only up to 21 orders could be solved to optimality. To solve real-sized

instances different heuristic algorithms have been proposed in [2], [3] and [7], with which instances

with 33, 66 and 132 orders could be approached. Iterated Local Search, Tabu Search, Simulated

Annealing and Large Neighborhood Search heuristics are applied to the DTSPMS in [7] and several

neighborhood structures adapted to the problem that are embedded into a Variable Neighborhood

Search approach (introduced in [5]) are developed in [2] and [3]. To the best of the authors’

knowledge, the best results for real sized instances, that are obtained by a Variable Neighborhood

Search approach, are given in [3].

In this paper we give some alternative ideas to design a different algorithm for the problem

and propose the generation of instances of different kinds to better evaluate the performance of

existing approaches.

When a standard local search procedure is used, the search process moves from one feasible

solution to another feasible solution. The new solution is accepted if it is better than the previous

one or if it has some different features that may guide the search process to unexplored regions of

the solution space. However, if the problem is highly constrained, as it is the case of the DTSPMS,

imposing ALL constraints to be verified at each iteration may restrict too much the search process

and may make it difficult to reach new regions of the solution space. To avoid this inconvenience

we propose the temporal relaxation of some capacity and/or precedence constraints, obtaining a

more flexible search process.

On the one hand, if capacity constraints are slightly relaxed and α extra units per compart-

ment are used in the container of the vehicle we obtain what we call α-feasible solutions. On
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the other hand, if some precedence constraints are removed we obtain what we call potential so-

lutions. Combining both ideas we can also consider α-potential solutions. The moves to define

neighborhood structures for these intermediate non-feasible solutions are now much more simple,

introducing diversification into the search process and making it more flexible. However, the use of

these solutions introduces infeasibilities into the search process, and they should be controlled in

order to guarantee the obtaining of final feasible solutions. For this purpose we propose different

procedures: reduction algorithms, that rearrange the loading plan of the solutions to eliminate

capacity infeasibility, and projection operators, that modify both the loading plan and the routes

of the solutions to eliminate both capacity and precedence infeasibilites. Reduction algorithms do

not add any extra cost to the initial solutions but do not guarantee the obtaining of feasible solu-

tions in all cases. On the other hand, projection operators always provide final feasible solutions

but may add some extra cost to the initial solutions. Both procedures are used in combination to

deal with infeasibility.

To evaluate how infeasible a solution is, different infeasibility measures are proposed, as for

instance the number of orders exceeding maximum capacity, the number of pairs of orders violating

precedence constraints, etc. The search process with intermediate non-feasible solution is guided by

a new objective function that is a weighted sum of the cost and the proposed infeasibility measures.

The weights associated to each term are updated dynamically during the search process to guide

the search towards good feasible solutions, but reduction algorithms and projection operators are

applied as well to guarantee the obtaining of final feasible solutions. Following this methodology

a new algorithm called Exterior Search is designed.

To test the proposed heuristics we have generated several sets of instances with different sizes

(33, 66 and 132 orders), but we also propose the use of special instances with different character-

istics concerning the distribution of orders and the magnitude of distances to better evaluate the

performance of heuristics. In contrast with the instances that are usually used in the literature, in

which the orders are uniformly distributed, we have generated several sets of instances in which

some pickup and/or delivery locations are grouped in several clusters. Clusters may be formed in

one or both regions of the problem, the locations may be uniformly distributed among the clusters

or clusters with different number of locations may be considered, the size of the clusters and the

magnitude of the distances between them may change from one set of instances to another, etc.

To take advantage of the special structure of these new instances with clusters some modifications

can be introduced into the previously proposed algorithms to try to improve their performance.

This study, that is still being developed, provides more information about the heuristics and may

allow to determine which algorithms behave better for each kind of instances.
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1 Introduction 
Recent estimates suggest motor vehicle accidents cost the Australian economy around $17 

billion per year [1]. While both the number of crashes and crash rates (crashes/kilometre) has reduced 

dramatically in the last thirty years, latest statistics show that 1,463 persons were killed on Australian 

roads in 2008, with 395 killed in the state of New South Wales alone. More worryingly, it appears 

reductions may have stagnated in recent years, leaving policy-makers searching for other options that 

might lead to significant drops in crash rates. While engineering-based methods for both roadway 

infrastructure and vehicles, and regulation and enforcement will continue to play a critical role in 

future road-safety initiatives, an area of growing interest is the use of charging mechanisms that 

capture the variable risk effects of the kilometres driven [2]. The notion here is that through 

incorporating known correlates of increased crash risk (e.g., kilometres driven, night-time driving, 

speeding) directly into the charges, motorists will be incentivised to change behaviour reducing the 

overall risk and societal costs of accidents [3]. 

Within this context, the current paper reports on a study into the hypothetical/stated response 

of motorists to a kilometre-based charging regime that incorporates elements of risk, specifically night-

time driving and speeding. Hypothetical responses are gathered through a Stated Choice (SC) 

experiment that pivots off actual driving behaviour collected using an in-vehicle Global Positioning 

System (GPS) device over five weeks [4]. This provision of greater reality using revealed preference 

(RP) information ensures that the alternatives in the SC experiment are embedded in reality, providing 

motorists with (in theory) a more realistic context for their choices. In the SC experiment, participants 

267



are asked to trade-off financial rewards against reductions in kilometres driven, night-time driving and 

speeding for different trip purposes. In turn, this information is used to estimate values of crash-risk 

reduction and help guide a proposed charging regime that will be used to empirically assess changes in 

behaviour later this year. 

 

2 Approach 

 
The GPS Phase 

In the GPS phase, 148 motorists were recruited and agreed to install a GPS device in their 

vehicle for several weeks. In addition, motorists were required to complete an online prompted-recall 

survey, providing trip information such as who was driving, the purpose of the trip, number of 

passengers and whether any intermediate stops were made (see Figure 1). While full details of the GPS 

phase are provided by the authors in [4], the data were generally of a very high quality aside and of the 

original 148 drivers, only 8 have dropped out, 4 of which were due to problems with vehicles. 

 
Establishing the Charging Rates 

Per kilometre rates were derived using crash-risk and crash-cost information for New South 

Wales. While the approach is detailed fully in [5], the main issues were to establish per kilometre rates 

that were deemed substantial enough to warrant some change in behaviour, while staying within the 

available project budget. The final rates (shown in Table 1) were therefore derived both through a 

scientific approach as well as interviews with several participants who completed a pilot study of the 

processes employed for the study [4].  

Table 1: Per Kilometre Charging Rates Used in the Sydney Driving Study (Greaves et al. 2010) 

Charging Rates 17-30 Age-Group 31-65 Age-Group 

Day - Non Speeding $0.20 $0.15 

Day - Speeding $0.60 $0.45 

Night - Non Speeding $0.80 $0.60 

Night - Speeding $2.40 $1.20 

 
These rates were combined with the relevant information from the GPS data for each motorist 

to establish a ‘base incentive’. This base incentive represented the starting point from which money 

would be deducted according to their stated changes in driving. For the 123 motorists who qualified for 

the charging phase (17 were retained as a control group), the range of base incentives ran from $25 to 

$870, with an average of $300. For a five-week period, these were generally considered to be 

significant amounts of money that could potentially be made. 

 
 

The Stated Choice Experiment 
The purpose of the SC experiment was to see explore how respondents might hypothetically 

change their driving behaviour if they were participating in a kilometre based charging scheme. The 

SC experiment was implemented for three different trip purposes; work/work-related, 
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shopping/personal business, and social/recreation. This required some manipulation of the GPS data 

primarily around the development of GIS-based routines to automatically classify trips into trip tours 

and reclassify trips returning home to one of these three purposes. In keeping with recent literature on 

referencing SC experiments to a known experience [8] [9], the SC experiment was designed to pivot 

off actual trips taken from GPS data collected during the 5 week ‘Before’ phase. The experiments were 

based on a choice between maintaining existing trips (the current alternative) and alternatives 

involving changes to existing trips and receiving a reduced charge (e.g., cancelling trips, reducing 

speeding, changing time of day).  A screenshot of the SC experiment is shown in Figure 2. 

A Bayesian efficient design for each trip purpose was generated. This experimental design 

method was used to produce lower standard errors and provide more reliable parameter estimates for a 

relatively small sample size [9]. The experimental designs were constructed in Excel, assuming a 

random uniform distribution of prior parameters, given expected parameters signs.  Respondents 

answered four choice situations for each of the three different trip purposes. Individual trip purpose 

models will be estimated, although the data may be pooled later for further analysis. 

 

Results 
The data collection for the SC experiment has only recently completed, but preliminary 

insights are that participants found the experiment ‘fun’ and ‘interesting’ although many indicate a 

difficulty in changing behaviour. Basic interim modelling for a sub sample of participants suggests that 

most parameters are significant and correctly signed. Further analysis is underway to see if these 

results are consistent with results for the combined sample and will be reported in the full paper.  
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Figure 1: Example of the Prompted-Recall Interface 

 

 

 

Figure 2: Example Screen from the Stated Choice Survey 
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1 Introduction 

 

The fast rate of commercial vehicle activity growth over recent years and the higher impact of 

commercial vehicles are increasing preexisting concerns over their cumulative effect in urban areas. In 

particular, environmental, social and political pressures to limit the impacts associated with greenhouse 

gas (GHG) emissions and our dependence on fossil fuels is mounting rapidly. A key challenge for 

public transportation agencies companies is to improve the efficiency of urban freight and commercial 

vehicle movements while ensuring environmental quality, livable communities, and economic growth.  

Private companies are also interested in reducing GHG emission not only for marketing 

purposes, i.e. the more favorable social perception towards companies that are “greening” their 

operations, but also for economic reasons.  The level of GHG emissions is a proxy for fuel 

consumption in diesel engines. In addition, in the near future it is likely that GHG emissions will have 

a clear monetary value, i.e. $/kg for CO2 emitted, in most countries.  For example, CO2 emissions will 

have a clear economic value under carbon tax or cap and trade emissions system initiatives, which is 

already implemented in Europe and currently under study by the United States and other governments.  
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In terms of transportation and logistics sustainability, it is also important to quantify and minimize 

GHG emission. 

This research aims to formulate, study, and solve a new vehicle routing problem where the 

minimization of emissions is the primary objective or is part of a generalized cost function. In addition, 

departure times and travel speeds become decision variables.  To the best of the author’s knowledge, 

there is no research or formulation that minimizes GHG vehicle emissions when designing routes in 

congested environments with time-dependent travel speeds, hard time windows, and capacity 

constraints. This creates a new type of VRP which is denoted the GHG Emissions Vehicle Routing 

Problem or simply EVRP. 

 

2 Background and Literature Review 

 

There is an extensive literature related to vehicle emissions and several laboratory and field methods 

are available to estimate vehicle emissions rates [1]. Urban freight is responsible for a large share, or in 

some cities the largest share, of unhealthy air pollution in terms of sulphur oxide, particulate matter, 

and nitrogen oxides in urban areas such as London, Prague, and Tokyo [2, 3].  Research in the area of 

city logistics have long recognized the need for a balanced approach that aims to reduce shippers and 

carriers’ logistics costs while alleviating a community’s traffic congestion and environmental 

problems. [4-6] 

In terms of GHG, Research indicates that carbon dioxide (CO2) is the predominant 

transportation GHG and is emitted in direct proportion to fuel consumption, with a variation by type of 

fuel [7]. For most vehicles, fuel consumption and the rate of CO2 per mile traveled decreases as vehicle 

operating speed increases up to approximately 55 or 65 mph and then begins to increase again [7]; 

hence, the relationship between emission rates and travel speed is not linear.  

Congestion has a great impact on vehicle emissions and fuel efficiency. In real driving 

conditions, there is a rapid non-linear growth in emissions and fuel consumption as travel speeds fall 

below 30 mph [8]. CO2 emissions double on a per mile basis when speed drops from 30 mph to 12.5 

mph or when speed drops from 12.5 mph to 5 mph.  Frequent changes in speed, i.e. stop and go traffic 

conditions, increases emission rates because fuel consumption is a function of not only speed but also 

acceleration rates [9]. These results were obtained using an emission model and freeway sensor data in 

California and weighted on the basis of a typical light-duty fleet mix in 2005.  The volume of 

emissions per mile is a function of the speed profile from the departure time until reaching destination.  

In congested urban areas with significant speed changes due to recurrent congestion, e.g. 

predictable low speeds due to capacity constraints at peak hours, departure time must be considered 

when designing EVRP routes. The Time Dependent Vehicle Routing Problem (TDVRP) takes into 

account that links in a network have different costs or speeds during the day. Typically this is used to 

represent varying traffic conditions. The TDVRP was originally formulated by Malandraki and Daskin 
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[10]. Time dependent models are significantly more complex and computationally demanding than 

static VRP models; recent approaches to solve the TDVRP can be found in [11-13]. Palmer [14] 

studies the minimization of CO2 emissions utilizing real network data and shortest paths of Surrey 

county in the U.K..  However, Palmer’s methodology does not allow for time-dependent speeds or 

multi-stop routes.  

TDVRP instances are more data intensive than static VRP instances but their solution is likely 

to achieve environmental benefits in congested areas albeit in an indirect way because emissions are 

not directly optimized [15]. Other researchers have conducted surveys that indicate that substantial 

emission reductions can be obtained if companies improve the efficiency of routing operations [16, 

17]. Woensel et al. [18] used queuing theory to model the impact of traffic congestion on emissions 

and recommend that private and public decision makers should take into account the high impact of 

congestion on emissions. More recently Maden et al. [20] presented the results of a case study in the 

U.K.; the utilization of time-dependent vehicle routing algorithms can lead to an average reduction of 

7% CO2 emissions when comparing against simpler methods that do not take travel time variations 

into account.  Goodchild and Sandoval [19]  discuss the factors that affect emissions in urban areas and 

potential solution methods, case studies, and public policy applications. However, no formulation, 

solution methods, or results are provided. To the best of the author’s knowledge, there is no published 

research that deals with the formulation, properties, or solution approaches for the EVRP. The EVRP 

considered in this research has time windows and capacity constraints as well as time-dependent travel 

times. The paper deals with a static problem, the dispatcher is assumed to know the impact of recurrent 

congestion on travel speeds, i.e morning/evening rush hours. For example, in a practical case, the 

dispatcher/carrier designs the routes the night before the route is serviced; the carrier is committed to 

visit a specific group customers within a pre-determined and hard time-window. The heuristic is based 

on an initial construction heuristic followed by improvement phases. New heuristics to minimize 

emissions are proposed utilizing lemmas and properties of the travel time and emission functions.  

  
 

3 Contributions 

 

This research is different from previous research in several aspects: (a) a new vehicle routing problem 

is formulated, (b) an efficient heuristic is presented, (c) in the presented formulation travel speed is a 

decision variable, (d) using the well known Solomon instances, new problems are proposed to evaluate 

GHG emissions and other routing costs.  In addition to results obtained using modified Solomon 

instances, results based on real-world instances using real-life travel times from a congested interstate 

highway network in Portland, Oregon, will also be presented.    

273



Preliminary results indicate that there may be significant emissions savings if commercial 

vehicles are routed taking emissions into consideration.  The results also indicate that in congested 

areas, it may be possible to reduce GHG emissions with a minimal or null increase in routing costs.  

However,  the results indicate that congestion impacts on emission levels are not uniform. The route 

characteristics and dominant constraint type (hard time window or capacity constraints) seem to play a 

significant effect on emissions levels.   
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1 Introduction

Intelligent Transportation Systems (ITS) can play a key role to optimize the organization of in-

termodal platforms and to reduce the impact of freight traffic on urban congestion. In particular

advanced tracking systems, such as radio frequency identification (RFID) and global positioning

system (GPS), offer a new opportunity to collect information about network traffic conditions that

can be used both in real time, to locate the position of a vehicle, and off line to estimate the travel

time of each element of the network with high level of precision and reliability. However, while

the cost of implementing such measurement systems can be easily computed, estimating the value

generated by advanced tracking systems is more difficult [3].

The objective of this work is to develop a quantitative method to estimate the added value

generated by information of advanced tracking systems in urban freight distribution. We report on

an application of our method to the retail distribution of perishable goods. The perishable goods

market is characterized by the short life time of products and by the high cost associated to late

deliveries. As a consequence, there is a need for reliable and accurate data on the road network to

plan punctual deliveries at sustainable cost.

2 Research methodology

This section describes the procedure adopted for estimating the value of information for the urban

distribution problem considered. The basic idea behind the procedure is that the discrepancy
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between planned and implemented solutions is mainly due to the mismatch between the observed

data, used to build the planned solution, and the actual travel times occurring in real time. In other

words, the actual travel time tij for a link (i, j) can be expressed as tij = dij + sij , where dij is the

deterministic part and sij is a stochastic variable due to perturbation events on transport demand

and supply. The deterministic part dij is the desired value for solving the freight distribution

problem, such as the mean value of tij or a value achieved with a given probability ψ (i.e., such

that the probability of the event tij ≤ dij is ψ). In practice, the value dij is estimated by collecting

measures of tij on the network, which can be affected by measurement errors. We let tobs
ij =

dobs
ij + sobs

ij be the estimate of tij, where dobs
ij and sobs

ij are the observed values of dij and sij ,

respectively. We call discrepancy the stochastic variable δij = tobs
ij − dij. If tobs

ij is a rough estimate

of tij, then the discrepancy can be much larger than the inherent stochasticity of the travel time,

i.e., |δij| >> |sij |.

Collecting more reliable information may help to produce a better estimate test
ij of tij, i.e., an

estimate such that |test
ij − dij| << |tobs

ij − dij|. The value of such information is related to the

improved performance of the system that would have been achieved if the planned solution was

built using the more reliable test
ij instead of tobs

ij . Since the discrepancy may vary over the different

routes to be traversed, we introduce an aggregated value ε that we call the unreliability of the data

set.

The procedure computes the value of information with reference to a given solution algorithm

A. Given a data set affected by an unreliability ε, we let σp(ε) be the planned solution obtained

with A on such data set, and σh(ε) be the associated historical solution, obtained by using the

same value for the decision variables as in σp(ε) but using the real data with unreliability ε = 0. In

other words, σh(ε) takes into account the implementation of σp(ε) in practice. The performance

of σh(ε) is a stochastic variable associated to the decisions taken by using a data set affected by

unreliability ε, and we let π(ε) be the mean value of the performance achieved by σh(ε) for a given

ε.

Applying the above procedure for different values of ε and different solution algorithms, we

get a curve π(ε) for each algorithm being used. If a new advanced tracking systems allows to

decrease the information unreliability from a value ε2 to ε1 < ε2, the associated performance

improvement is then π(ε1)−π(ε2). This value depends on the chosen solution algorithm, and it is

intuitive that different algorithms may have different degrees of sensitivity to data set unreliability.

Therefore, when using more reliable data it can also be profitable to develop novel algorithms able

to take advantage from more reliable information. In other words, it is important to assess the

impact of ITS in combination with different (simple and advanced) vehicle routing algorithms. An

advanced tracking system in combination with a robust routing algorithm with poor performance

will produce a smaller benefit than in combination with a less robust but more performing vehicle
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routing algorithm. It is therefore worth paying the cost of implementing the new tracking system

and the new algorithm if the whole system generates sufficient ROI (Return On Investment).

3 Problem description

The retail distribution problem addressed in this work has been formulated as a vehicle routing

problem with soft time windows for the deliveries and time dependent travel times. The objective

function includes the transportation costs and the cost of late deliveries, i.e., the sum over every

route ρi ∈ ρ of: (i) the fixed cost fv(ρi) associated to the usage of vehicle v(ρi), (ii) the variable

cost ci(ρi, si(ρi)) associated to length of route ρi and to speed si maintained along the route, and

(iii) the penalty cost
∑

r∈ρi
wr(ρ) for late deliveries.

min
|ρ|∑

i=1

(fv(ρi) + ci(ρi, si(ρi))) +
R∑

r=1

wr(ρ). (1)

Each retailer r requests a certain quantity of goods dr to be delivered within a given time

window [tr, Tr]. A vehicle arriving at time ar > Tr at retailer r incurs the penalty cost wr for late

delivery. This penalty depends on the probability pr that the delivery is refused by the retailer.

We assume pr = 0 for on-time deliveries and up to a small delay τmin, i.e., ar ≤ Tr + τmin.

The delivery is refused with probability pr = 1 over a delay τmax, and increases linearly from

0 to 1 in the time window [τmin, τmax]. If the delivery is refused, the merchandise is returned

to the logistic platform and delivered the next day, with an associated cost corresponding to the

goods depreciation γr . Time-dependent travel times have been taken into account to represent

different traffic conditions during the planning horizon and to effectively plan the deliveries. The

solution approach consists of the development of a simple constructive heuristic and different tabu

search algorithms. The first tabu search procedure (hereinafter called ST or standard tabu search)

implements the main features of the TABUROUTE algorithm introduced by Gendrau, Hertz and

Laporte [2]. The second tabu search procedure (hereinafter called AD or advanced tabu search)

differs from ST for the definition of a larger neighborhood taking into account information about

the geographical position of customers and routes.

4 Results

We focus on a real case study, namely an intermodal logistic platform LP located in the suburban

area of Rome (Italy), and in particular on the distribution of fresh products in the historical center.

The network consists of 250 centroids, 425 nodes and 2346 oriented links.

The distribution of merchandise takes place from 4:00 am to 11:00 am. In order to model

the traffic conditions within this time window, about 280.000 vehicles are generated on the net-
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work considering a typical variable demand profile. For each hour, link travel times are obtained

by simulation using dynamic assignment model where transport demand can change during the

simulation interval. For the dynamic simulation the DYNAMEQ model [1] has been used. As

a consequence, the travel times between each pair of retailers, as well as between each retailer

and the logistic platform LP , are time-dependent and can be represented by a vector where each

component is associated to a certain time slice. These travel times values are considered as the

actual traffic conditions in the network. Unreliable data have been generated by perturbing these

data with different degrees of unreliability, thus obtaining several unreliable data sets.

Preliminary results, obtained by using the constructive heuristic and the two tabu search algo-

rithms AD and ST, show that AD outperforms the other algorithms in both cost function value

and resilience to errors in the input data. As far as the value of information is concerned, as ex-

pected, there is a clear benefit in using detailed and highly reliable data with respect to aggregated

and unreliable data. When the unreliability ε increases, it is still beneficial to use an advanced

algorithm, able to achieve good performance for a large range of perturbation. For large ε there

is no big convenience in using detailed information for the solution of the vehicle routing problem

since the results are almost the same with more aggregated information, e.g., with a small number

of time slices.

Future developments of this work will be possible when practical measures on the network

links will be available, and will address the design of the most suitable distributions for the link

travel time errors and the definition of the right combination of levels of input data aggregation,

information reliability and algorithm to be used in practice.
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1 Introduction 
 

Bicycle is an economical and environmentally friendly mean of transportation for short journeys 

within cities and it is also a very good complementary for longer regional journeys done by means of 

public transportation. Many cities are currently implementing bike sharing systems - a service that 

allows people to rent a bicycle for a short period of time from many automatic renting stations 

scattered around the city. The largest bike-sharing system as of today is Vélib launched in July 2007 in 

Paris (www.velib.paris.fr). It now consists of 1,700 renting stations and offers some 23,900 bikes for 

rent. Many other municipalities, including Tel Aviv, are in a process of examining the viability of 

deploying a bike-sharing system in their cities. 

A crucial factor for the success of a bike sharing system is its ability to meet the fluctuating 

demand for bicycles at each station. In addition, the system should be able to provide enough vacant 

lockers to allow the renters to return the bicycle at their destinations. Meeting the demand for bicycles 

and vacant lockers is a particularly challenging problem due to inherent imbalances in the renting and 

return rates at the various stations. In some cases, the imbalance is temporary, e.g., high return rate in a 

suburban train station in the morning and high renting rate in the afternoon. In other cases the 

imbalance is persistent, e.g., relatively low return rate in stations located on top of hills. Satisfying the 

users’ demand subject to such imbalances requires regularly removing bicycles from stations with high 
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return rates and transferring them to stations with higher demand rates, using a dedicated fleet of light 

trucks. We refer to this activity as repositioning bicycles. 

The bicycle repositioning problem can be classified as a variation of the Pickup and Delivery 

Problem (PDP). According to the survey of Berbeglia et al. [2] on static PDP, the repositioning 

problem presented here is a many-to-many single commodity PDP with arbitrary vehicle capacities 

and stochastic demand, on which no studies are available. Another closely related routing problem is 

the Swapping Problem (SP), first introduced by Anily and Hassin [1]. In the swapping problem, a 

vehicle of unit capacity needs to ship objects of different types from node in which they are available 

to other nodes in which they are required, using the shortest route. Anily and Hassin also showed that 

the problem is NP-Hard and presented a 2.5 approximation algorithm. Hernández-Pérez and Salazar-

González [3] introduced the one-commodity pickup and delivery traveling salesman problem (1-

PDTSP), which is a variation of the SP by the following characteristics: only one commodity type is 

allowed, the capacity of the vehicles and the demand at the nodes are arbitrary, and the vehicle route 

must be Hamiltonian. Hernández-Pérez and Salazar-González [3] presented a branch and cut strategy 

that is capable of solving instances with up to 40 nodes. Subsequently, Hernández-Pérez and Salazar-

González [4] presented heuristic methods for the problem and demonstrated their applicability for 

instances with up to 500 nodes. Louveaux and Salazar-González [6] considered the 1-PDTSP with 

stochastic demand where the objective function to be minimized includes a penalty that is proportional 

to the unsatisfied demand. 

In the repositioning problem the objective function is not typical, i.e., minimizing a measure of 

dissatisfaction of the users of the system. Measuring it properly is an independent challenging problem. 

In addition, the repositioning problem includes a fleet of several vehicles, rather than just a single one.  

 

2 Modeling and Formulation 
 

Our research focuses on how to reposition bicycles among stations, as a means of improving 

satisfaction of the users. We assume, what is commly believed, that the primary factor affecting the 

users’ satisfaction in a bike-sharing system is the availability of bicycles at the desired origin stations 

and the availability of vacant lockers at the desired destination stations. Thus, we define user 

dissatisfaction, to be minimized, as the weighted number of users who abandon stations without 

receiving service due to lack of bicycles or due to lack of lockers, with respected weights.  

The repositioning operations can be carried out in two different modes: one is during the night 

when the usage rate of the system is rather low; the other is during the day when the status of the 

system is rapidly changing. We focus on the former, referred to as the static repositioning problem. 

The static repositioning operation has a practical advantage because it allows the repositioning fleet to 

travel swiftly in the city without contributing to traffic congestion and parking problems. It needs to be 

solved once at the beginning of each night, based on the status of the system at that time and the 

demand forecast for the next day.  
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Kolka and Raviv [5] define and calculate the expected total user dissatisfaction related to a single 

station, as a function of its initial inventory (number of bicycles available), under some restrictive 

assumptions. They were able to show that this function is quasi-convex in the number of bicycles 

available, and conjectured that the function is in fact convex. In this research we build on their results 

and formulate the static repositioning problem as a Mixed Integer Linear Programs (MILP) that 

minimizes user dissatisfaction, by chnaging the number of bicycles available at each station through 

the repositioning operation. We use the following parameters as input to the problem: I is the set of 

stations, )(⋅iη  is the user dissatisfaction function of each station i, is  is the initial inventory level at the 

station before the repositioning operation takes place, say at 1:00am; iC  is the number of lockers 

installed at station i (capacity); ijt  is the traveling time between stations i and j; and L is the total time 

allowed for the repositioning problem (e.g., 5 hours between 1am and 6am). The repositioning trucks 

are assumed to be initially located at a depot station indexed by 0. The capacity of each truck (vehicle) 

v is denoted by vk . 

The decision variables are as follows: ijvx  is a binary variable which equals one if truck v travels 

directly from station i to station j and zero otherwise; ijvy  is the number of bicycles carried on truck v 

during its journey from station i to station j (it is forced to be zero if no such journey exists); and ivz  is 

the number of bicycles unloaded from the truck at station i by truck v. ivz  is negative when the truck 

removes bicycles from the station. The following is a MILP formulation of the problem: 

∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

i v
ivii zsηmin  

Subject to 

∑ ∑ ∀=
j j

jivijv ivxx ,    (1) 

∑∑ ∀=+
j

jiv
j

ijviv v,iyyz    (2) 

∑ ≠∀≤
vj

ijv ix
,

01   (3) 

jivxky ijvvijv ,,∀≤   (4) 

∑ ≠∀≤+≤
v

iivi iCzs 00   (5) 

SISvSx
Sji

ijv ∉⊂∀−≤∑
∈

0:,1
,

 (6) 

∑ ∀≤
ji

ijijv vLtx
,

   (7) 

vjizx ivijv ,,},1,0[ ∀Ν∈∈   (8) 
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The objective function is the sum of the expected dissatisfaction for the next day in all stations 

where the initial inventory is equal to the current inventory, plus the net number of bicycles unloaded 

at the station during the night. Constraint (1) forces trucks flow conservation; Constraint (2) forces 

bicycle flow conservation and keeps record of the trucks inventories in ivz . Constraint (3) allows at 

most one visit at a station; Constraint (4) forces truck capacity and relates the x variables with the y’s; 

Station capacity and non-negativity of bicycle inventory is forced by (5); Constraint (6) is a standard 

sub-tour elimination constraint that allows only tours that start and end at the depot; Constraint (7) 

forces the repositioning operation to last no more than the shift length, L. Finally, (8) requires the x 

variables to be binary and the z variables to be integral. Integrality of the y variables is implied by (2).  

There are two technical difficulties in implementing this program using a commercial MILP 

solver. One is the non-linearity of the objective function, which can be resolved using the conjectured 

convexity of the )(⋅η  functions and replacing the non-linear functions with piecewise linear functions 

that support it. The other is the exponential number of the sub-tour elimination constraints, which can 

be resolved by employing branch and cut techniques. In our preliminary computational tests, we 

replaced the sub-tour elimination constraints with a simpler set of constraints inspired by the sequential 

formulation of Miller et al. [7] for the traveling salesman problem. Running this formulation on a 

commercial MILP solver (Ilog CPLEX® 10.2), we are able to solve instances with 50 nodes in a 

reasonable time. We used in this experiment data representing real locations of Vèlib stations. Using a 

branch and cut framework, we believe somewhat larger instances can be solved in a reasonable time.  
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1 Introduction

The motor vehicle is an essential transport measure in peoples’ daily life and their commercial

activities (e.g. logistics). In the past, the total number of vehicles, the total number of licensed

drivers and the total mileage were steadily increasing together with the economic growth in Japan.

In addition, the government has expected that the growth would continue for the future. Recently,

however, with the various structural changes (e.g. falling birthrate, change in peoples’ life style,

aging population, change in the gasoline price and global warming), the structure of car market

has been dramatically changed. Especially, there are two big changes: a decrease in total mileage

and the increase in small-sized vehicles (SV) while the number of middle-sized vehicles (MV) is not

constantly increasing in Japan (Fig. 1 and Fig. 2). Generally, when households own a single SV

or more than 2 any vehicles, regardless of the car type, the average mileage per household becomes

lesser. Thus, it is possible that there is a relation between the decrease in the total mileage in

Japan and the increase in the number of SVs.

With this motivation, the purpose of this study is to analyze the structural relationship between
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Figure 1: Trend of number of vehicles, number of licensed drivers and total mileage in Japan [3]
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Figure 2: Trend of middle-sized and small-sized vehicles in Japan [3]

the multiple-vehicle ownership and their usage at the household level using a large dataset.

2 Outline of the data

This research uses the data of “Road Traffic Census” conducted by Ministry of Land, Infrastructure,

Transport and Tourism in 1999 and 2005. The survey questionnaire includes some attributes of the

household, the number of vehicles and their usage, and some specific characteristics of each vehicle

(e.g. make of vehicle, daily mileage for a weekday and a weekend). As for the data of socio-economic

characteristics, we further complement other data sources (e.g. population density, gasoline price,

worker’s average income and the number of stations). Please note that gasoline prices are different

across regions or cities in Japan. Therefore, it can be incorporated into explanatory variables

though only for two year cross-section dataset are applied.

Table 1 represents the summary statistics of the data set. Table 2 outlines the cross-tabulation
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Table 1: Summary statistics of the data set

Year 1999 Year 2005 Total

Sample Size 523,016 475,382 998,398

Total 724,853 721,858 1,446,711

Vehicles owned MV 570,458 504,880 1,075,338

SV 154,395 216,978 371,373

1 vehicle 370,856 (70.9) 303,617 (63.9) 674,473 (67.6)

Vehicles owned per household 2 vehicles 113,107 (21.6) 116,397 (24.5) 229,504 (23.0)

More than 3 39,053 (7.5) 55,368 (11.6) 94,421 (9.5)

Total 454,982 (87.0) 389,786 (82.0) 844,768 (84.6)

Households owning MVs 1 vehicle 362,471 (69.3) 299,535 (63.0) 662,006 (66.3)

More than 2 92,511 (17.7) 90,251 (19.0) 182,762 (18.3)

Total 141,357 (27.0) 183,741 (38.7) 325,098 (32.6)

Households owing SV 1 vehicle 129,661 (24.8) 155,625 (32.7) 285,286 (28.6)

More than 2 11,696 (2.2) 28,116 (5.9) 39,812 (4.0)

Total 17.5 15.9 16.7

Average daily vehicle mi1eage (km) MV 18.3 16.8 17.6

SV 14.9 13.8 14.3

Total 1.39 1.52 1.45
Average number of vehicles

owned per household MV 1.09 1.06 1.08

SV 0.30 0.46 0.37

Total 2.36 2.36 2.36
Average daily trips

per household and vehicle MV 1.81 1.62 1.72

SV 0.55 0.74 0.64

Note) The numbers in the parenthesis denotes the share (%).

analysis of households’ vehicle holdings. The similar tendency with Fig. 1 and Fig. 2 can be seen

from these tables.

3 Joint analysis of households’ vehicle ownership & usage

We develop the BSUROPT (Bayesian Seemingly Unrelated Regression, Ordered Probit and Tobit)

model, by extending the work of Fang [1]. The BSUROPT model, by taking the form of simul-

taneous equations, represents households’ multiple vehicle ownership and their usage (mileages).

So, using this model, it is possible to capture how some factors (e.g. household attributes and

socio-economic variables) affects the structural relationship between the number of vehicles and

the average mileage.
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Table 2: Cross-table analysis of households’ vehicle holdings

SV
Total

0 1 2 3

0
- 3151 229 25 3,405

- (15.8) (1.1) (0.1) (17.0)

1
11,383 1,964 233 33 13,613

MV
(56.9) (9.8) (1.2) (0.2) (68.1)

2
1,918 488 91 - 2,497

(9.6) (2.4) (0.5) - (12.5)

3
356 129 - - 485

(1.8) (0.6) - - (2.4)

Total
13,657 5,732 553 58 20,000

(68.3) (28.6) (2.8) (0.3) (100.0)

3.1 Model formulation

The latent utilities (y∗1i, y
∗
2i) of holding each car type and the corresponding latent average mileage

(y∗3i, y
∗
4i) can be written as:

y∗ji = x′
jiβj + ϵji, i = 1, ..., N, j = 1, ..., 4,

where i denotes household, j means the label of each equation (y∗1i, y
∗
2i, y

∗
3i, y

∗
4i) which can be stacked

as a vector y∗
i , xji is a vector of independent variables, βj is a vector of unknown parameters, and

ϵji is an error term. The vector of error terms follows a multivariate normal distribution with zero

means and unrestricted covariance matrix Σ:

ϵj ∼i.i.d. MVN(0,Σ)

The structural relationship between the latent utilities and observed variables (car ownership

and mileage) may be formulated by Ordered Probit Model and Tobit Model. To do this, we

setup the following measurement equations on the holdings of MVs and SVs respectively. The

relationship between the observed number of vehicles owned and the latent utility of households
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vehicle holding are given by

y1i =



0 if y∗1i ≤ α11

1 if α11 < y∗1i ≤ α12

2 if α12 < y∗1i ≤ α13

3 if α13 < y∗1i

y2i =



0 if y∗2i ≤ α21

1 if α21 < y∗2i ≤ α22

2 if α22 < y∗2i ≤ α23

3 if α23 < y∗2i

,

where α11, α12, α13, α21, α22, α23 denotes the thresholds of the latent utilities. These values can

be given by α11 = α21 = −Φ−1(1/4), α12 = α22 = 0, α13 = α23 = Φ−1(1/4) based on Fang [1]. Φ

denotes the cumulative distribution function of the normal. The only α12andα22 can be estimated

in this application for identification.

Finally, the measurement equations about households’ vehicle mileages are given by Tobit

equations because the vehicle mileages of the households with no vehicles are definitely equal to

zero. The Tobit equations are given by

y3i =

y∗3i if y∗3i ≥ 0

0 if y∗3i < 0

y4i =

y∗4i if y∗4i ≥ 0

0 if y∗4i < 0

.

3.2 Results of Bayesian Estimation

The BSUROPT model is estimated with Markov Chain Monte Carlo (MCMC) method [2] since

the standard maximum likelihood function is analytically intractable. This method iteratively

calculates the marginal posterior distribution π(·|·) of unknown parameters and it finally converges

to the joint posterior distribution. In our application, the following algorithm is applied.

Gibbs Sampling Algorithm� �
(1) Setup initial values.

(2) Drawing β|Σ,y∗
i ,α from π(β|Σ(t−1),y

∗(t−1)
i ,α).

Drawing Σ|β,y∗
i ,α from π(Σ|β(t),y

∗(t−1)
i ,α)

Drawing y∗
i |β,Σ,yi,α from π(y∗

i |β(t),Σ(t),yi,α)

Drawing α|β(t),Σ(t),y
∗(t)
i from π(α|β(t),Σ(t),y

∗(t)
i )

(3) Repeat the step (2) until convergence.� �
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We assume that the posterior distributions as follows:

� y∗
i : Univariate truncated normal,

� β: Multivariate normal,

� Σ: Inverse Wishart, and

� α12，α22: uniform.

Using 20,000 samples randomly drawn from the dataset, We take 30,000 MCMC iterations

after discarding 10,000 as burn-in in the Gibbs sampling. The diagnosis test indicates that a lot

of parameters made convergence.

Table 3 shows the summary result of the posterior distribution of parameters. For the number

of MV, the parameter signs of number of household, worker’s average income and number of

licensed drivers etc. are positive. For the number of SV, gasoline price, number of children and

with/without the certification of parking space have positive effects. For the mileage of MV, the

parameters of worker’s average income and number of stations are negative, so it is different from

the result of the number. Thus, it indicates that people have SV, but do not use so much if they

have high income or live in the area with a lot of stations. For the mileage of MV, the parameters of

worker’s average income and with/without the certification of parking space are negative. Because

many areas with the certification are located in urban area, people in that area are less likely to

access to SV.

3.3 Sensibility analysis

To predict the effects of gasoline prices on car ownership and usage, we calculate the changes

in probabilities of vehicle holdings and average mileage when gasoline price increases by 10% ,

25% and 50% for each household in the sample. Table 4 summarizes the average change in the

probability of holding each vehicle.

As the gasoline price rises, propensity of holding MV reduces whereas the tendency of holding

SV increase. This means that with gasoline price rising, people change from holding MV to holding

SV. Moreover, for the change in the average mileage, the higher the gasoline price is, the shorter the

average mileage of MV is and the longer that of SV is. The overall trend is appropriate, however

the accuracy is not enough. Then, I improved the model by including the effects with/without

each type of vehicle as a dummy variable. The accuracy to the number of vehicle mileages becomes

higher than the previous model. The model for the number of vehicle holdings, however, remains

less-accurate.
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Table 3: Estimation result of model parameters

Independent variables Posterior Mean Standard Dev.

(1) Number of MV

Number of household 0.0139∗∗ 0.00405

log(Population density) -0.0478∗∗ 0.00045

Miles of road 0.0428∗∗ 0.00310

Gasoline price(October) -0.0216∗∗ 0.00319

Worker’s average income 0.0471∗∗ 0.00367

Number of licensed drivers 0.0984∗∗ 0.00406

Number of stations 0.0199∗∗ 0.00353

Ratio of bus route miles -0.0066∗ 0.00290

Threshold 0.0003∗∗ 3.0118E-09

(2) Number of SV

Number of household -0.0221 ∗ 0.01074

log(Population density) -0.1485∗∗ 0.00119

Certification of parking space 0.0413∗∗ 0.00521

Miles of road -0.0513∗∗ 0.00535

Gasoline price(October) 0.0520∗∗ 0.00550

Worker’s average income 0.0174∗∗ 0.00596

Number of children 0.0565∗∗ 0.00785

Number of licensed drivers 0.1461∗∗ 0.00858

Threshold 0.0005∗∗ 2.4968E-09

(3) Average mileage of MV

Number of household 1.4145∗∗ 0.37486

log(Population density) 0.0227 0.04484

Miles of road 2.5412∗∗ 0.28064

Gasoline price(October) -2.0095∗∗ 0.29300

Worker’s average income -2.5990∗∗ 0.34561

Number of licensed drivers 2.3797∗∗ 0.37533

Number of stations -1.4134∗∗ 0.34948

Ratio of bus route miles -1.7784∗∗ 0.27754

(4) Average mileage of SV

Number of household -1.7907∗ 0.87289

log(Population density) -5.8706∗∗ 0.12313

Certification of parking space -1.4418∗∗ 0.43313

Miles of road -2.8871∗∗ 0.43027

Gasoline price(October) 3.3547∗∗ 0.44398

Worker’s average income -3.3446∗∗ 0.49748

Number of children 5.3776∗∗ 0.64995

Number of licensed drivers 9.7975∗∗ 0.70288

* (**) mean that 95% (99%) confidence interval does not contain zero.
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Table 4: Changes in vehicle choice when gasoline price increases

Change Probability changes for middle-sized vehicle choice

in gasoline price ∆P (M=0) ∆P (M=1) ∆P (M=2) ∆P (M=3)

10% 0.0054 -5.8E-06 -0.0019 -0.0034

25% 0.0135 -0.0001 -0.0049 -0.0085

50% 0.0271 -0.0006 -0.0099 -0.0167

Change Probability changes for small-sized vehicle choice

in gasoline price ∆P (S=0) ∆P (S=1) ∆P (S=2) ∆P (S=3)

10% -0.0127 0.0043 0.0048 0.0037

25% -0.0320 0.0105 0.0121 0.0095

50% -0.0647 0.0198 0.0245 0.0204

4 Conclusion

In this study, we developed an econometric model for analyzing households’ multiple-vehicle own-

ership and their usage simultaneously. The techniques of Bayesian estimation has been applied

for parameter estimation. The result of the application to Japanese dataset indicates the effects

that the household or the area characteristics have on the vehicle ownership and the car usage.

Finally, based on the result of sensibility analysis, it turned out that this model can predict the

whole trend, but it is still less-accurate for each household’s car ownership behavior.
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1 Introduction

Ant Colony System (ACS, [2]) is a well-known metaheuristic metaphore, and has been succesfully

applied to many combinatorial optimization problems. In this work some weaknesses of the method

are identified, and some changes to the original paradigm are introduced, in order to enhance

the method. Experimental results on two optimization problems arising in transportation are

discussed. The results show the effectiveness of the enhancements introduced.

2 An Enhanced Ant Colony System

ACS is a population-based approach initially devoted to solve combinatorial optimization problems.

The algorithm takes inspiration from the foraging activity of colonies of ants which are able to

compute the shortest path from the food to the nest due to the parallel laying of pheromone on

the ground. The basic ACS idea is to use a set of agents (artificial ants) to build feasible solutions

for a given optimization problem and to leave these agents to improve iteration after iteration the

quality of the best solution. The process is usually driven by a constructive procedure which is

based on a graph G = (V,A) with node set V and arc set A given. In ACS each edge of the graph

has two associated measures: the heuristic desirability and the pheromone trail (that corresponds

to an a-posteriori knowledge of the colony). The heuristic desirability is fixed during the search

while the pheromone trail is modified at runtime by ants. Each ant has a random starting node and

its goal is to build a feasible solution by adding step by step new edges until a complete solution

is generated. The choice of the new edge is made using a probabilistic rule that favors edges with

high heuristic desirability and high pheromone trail. Once all ants have built a complete solution,

a local search procedure is usually applied. Next, the pheromone trail is updated on the edges of
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the best solution. The guiding principle is to increase pheromone trail on edges belonging to high

quality solutions, in order to drive the search towards promising regions of the search space.

The constructive phase of the framework described above, can be seen as a diversification

process, able to generate solutions that are in the neighborhood of the best solution computed so

far. The local search is considered as an intensification phase, able to bring to its local minimum

each solution computed by the artificial ants.

One known drawback of the ACS approach is the large total running time required to build

new solutions by each artificial ant. Usually the constructive process takes time O(|V |) for each of

the |V | steps required. This is acceptable in case of small problems, but it is too expensive in case

of larger problems. In fact, ACS algorithms did not show the same performance as in case of small

instances when dealing with large routing and scheduling instances. We propose to modify the ACS

algorithm in two directions to overcome the slowness drawback: the first enhancement concerns

the constructive procedure direclty, while the second impacts on the local search component.

Concerning the constructive procedure, we discuss a new approach which - in contrast with the

classic ACS algorithm - directly considers the best solution computed so far already during the

constructive phase. In the classic ACS algorithm an ant in node i selects the next edge to visit

(outgoing from node i) according to a probabilistic criterion. With probability q0 the edge selected

is that with the best weighted compromise between pheromone trail and heuristic desirability,

while with probability 1− q0 the edge is selected according to a Monte Carlo sampling mechanism.

In our new proposal, the edge selected with probability q0 is the edge outgoing from node i in the

best solution computed so far (in case this edge is not feasible, the classic mechanism described

above is applied). Since probability q0 is usually grater than 0.9, the new approach drastically

reduces the running time required to select the next edge to visit (typically from O(|V |) to O(1)).

After the constructive phase is completed, each solution is brought to its local minimum using

a local search procedure. The second enhancement we propose comes out here. Our suggestion

is to apply the local search procedure only on a (promising) subset of the solutions generated,

where the subset usually depends on the problem under investigation, and on the running history

of the algorithm. Moreover, the local search is applied only on those solution components which

are different from the best solution computed so far (in order to avoid searching the neighbourhood

of the same solution over and over again). Notice that the local search enhancements are again in

the direction of reducing the total running time.

Despite the two enhancements we propose to heuristically limit the search space considered by

the algorithm, the quality of the solution produced by the Enhanced Ant Colony System (EACS)

is higher than those of the classic ACS (and often than those of state-of-the-art methods).

293



3 The Sequential Ordering Problem

The Sequential Ordering Problem (SOP), also referred to as the Asymmetric Travelling Salesman

Problem with Precedence Constraints, can be modelled in graph theoretical terms as follows. A

complete directed graph D = (V,A) is given, where V is the set of nodes and A = {(i, j)|i, j ∈ V }

is the set of arcs. A cost cij ∈ N is associated with each arc (i, j) ∈ A. Without loss of generality

it can be assumed that a fixed starting node 1 ∈ V is given. It has to precede all the other nodes.

The tour is also closed at node 1, after all the other nodes have been visited (ci1 = 0 ∀i ∈ V

by definition). This artifact creates an analogy with the asymmetric travelling salesman problem.

Such an analogy is exploited by many known algorithms. Furthermore an additional precedence

digraph P = (V,R) is given, defined on the same node set V as D. An arc (i, j) ∈ R, represents

a precedence relationship, i.e. i has to precede j in every feasible tour. Such a relation will be

denoted as i ≺ j in the remainder of the paper. The precedence digraph P must be acyclic in

order for a feasible solution to exist. It is also assumed to be transitively closed, since i ≺ k can

be inferred from i ≺ j and j ≺ k. Note that for the last arc traversed by a tour (entering node

1), precedence constraints do not apply. A tour that satisfies precedence relationships is called

feasible. The objective of the SOP is to find a feasible tour with the minimal total cost.

Experimenal results. An ACS approach for the SOP is described in [3]. Other approaches are

presented in [1, 4, 8]. There are 59 instances for which optimality has not been proven yet. EACS

improved 39 of the best solutions obtained by ACS, and matched the remaining 20 best solutions).

In general, EACS improved 27 best-known solutions, and matched the remaining 32.

4 The Team Orienteering Problem with Time Windows

The The Team Orienteering Problem with Time Windows (TOPTW ) can be formally defined as

follows. We are given a complete undirected graph G = {V,E}, with a positive weight tij associated

with each edge, representing the travel time between nodes i and j. For each node i ∈ V we have

the following data: pi is a positive profit that is collected when the node is visited, [ai, bi] is a time

window defining the feasible arrival time at the node and si is a non-negative service time, that

is the amount of time which is spent to visit the node. Two special nodes, numbered 1 and n,

where n = |V |, are the endpoints of the path to be computed. We have p1 = pn = 0, s1 = sn = 0,

a1 = an = 0 and b1 = bn = T , where T is equal to the maximum feasible arrival time at node n,

that is T = maxi∈V \{1,n}{bi + si + tin}. The TOPTW requires the computation of a set P of m

non-overlapping (apart from origin and destination) elementary paths, such that each path k ∈ P

is defined as an ordered sequence of nodes starting from node 1 and ending at node n. Given a

solution, we indicate with vi the arrival time at node i.
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Experimenal results. An ACS approach for the TOPTW is described in [7]. Other approaches

are presented in [5, 6, 9, 10]. There are 224 instances for which optimality has not been proven

yet. EACS improved 63 of the best solutions obtained by ACS and matched the best solutions

for 152 problems ( in 9 cases it was worse). In general, EACS improved 54 best-known solutions,

matched 136 best-known solutions, and was worse in 34 cases.
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We consider a multi-echelon location problem which arises in the distribution of goods at a national

level. The problem is motivated by a case study for a multi-channel retailing company described in

Gendron, Semet and Strozyk [4]. The company sells a wide variety of products (clothes, electronic

devices, appliances) via Internet, mail order catalogs, and stores. One of its main challenges is to

adapt its distribution system according to demand variations while guaranteeing service quality

and minimizing the overall logistic cost. Indeed, the demand varies quite significantly over time,

while goods have to be delivered within a preset period of time, 24 hours typically. Since most items

to deliver are small or medium-size parcels, consolidation is a major concern which is addressed by

designing a multi-echelon distribution system. The first echelon is associated with primary facilities

such as central warehouses. The second echelon corresponds to facilities such as cross-docking

terminals, hereafter simply called terminals. The third echelon is associated to facilities such as

small cross-docking terminals called satellites from which tours are issued to serve customers. More

precisely, from a small set of warehouses (their locations are assumed known and fixed, following a

preliminary strategic analysis), a fleet of large-size trucks delivers parcels to terminals, where they

are transferred on medium-size trucks, and then shipped to satellites, where the parcels are sorted

and delivered to the customers. The company owns only the central warehouses. Terminals and

satellites are neither owned nor rented by the company but by subcontractors such as independent

carriers. Satellites can be very basic facilities such as car parks where items are transferred from

trucks to vans. This multi-echelon system is adaptive, in the sense that terminals and satellites

can be opened or closed easily according to demand fluctuations. The problem is to ensure that
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customers’ requests are satisfied on time at minimum cost, taking into account the transportation

costs and the location costs for using the terminals and the satellites.

Gendron and Semet [3] compare two formulations for the problem, arc-based and path-based,

showing that the linear programming (LP) relaxation of the path-based model provides a better

bound than the LP relaxation of the arc-based model. Although the path-based model is very

effective, large-scale instances are still difficult to solve, even for state-of-the-art mixed-integer

programming (MIP) solvers. Gendron, Khuong and Semet [2] present a variable neighborhood

heuristic algorithm, which provides effective solutions to large-scale instances. In this work, we

introduce a Lagrangean decomposition approach embedded in a branch-and-bound scheme, which

can deliver provably optimal solutions to large-scale instances of the problem. Before presenting

the Lagrangean decomposition, we recall the path-based formulation, which serves as a basis for

the approach. Note that, because the locations of the warehouses are assumed to be fixed, we can

always assign to each terminal its closest warehouse without losing optimality. The resulting prob-

lem can therefore be considered as a two-echelon (from terminals to satellites, and from satellites

to customers) location-distribution problem.

The following sets define the different types of nodes in the network: D: set of potential sites

to locate terminals; S: set of potential sites to locate satellites; L: set of customers; DS
j : set of

potential sites to locate terminals connected to satellite j ∈ S; SD
i : set of potential sites to locate

satellites connected to terminal site i ∈ D; SL
l : set of potential sites to locate satellites connected to

customer l ∈ L; LS
j : set of customers connected to satellite j ∈ S; LD

i : set of customers connected

to terminal i ∈ D from some satellite j ∈ SD
i . The data related to the customer demands and

the vehicle capacities are defined as follows (all values are assumed to be positive): nl: number

of product units to deliver to customer l ∈ L; vl: volume of product units to deliver to customer

l ∈ L; Q: capacity (in number of product units) of one batch of products handled at any satellite;

P : volumetric capacity of a large-size vehicle transporting product units to any terminal, from

its closest warehouse; R: volumetric capacity of a medium-size vehicle transporting product units

from any terminal to any satellite. The location and transportation costs are defined as follows (all

values are assumed to be nonnegative): fi: fixed cost for using and operating terminal i ∈ D; gj :

cost per Q product units for using and operating satellite j ∈ S; di: transportation cost for using

one large-size vehicle to transport product units to terminal i ∈ D from its closest warehouse; eij :

transportation cost for using one medium-size vehicle from terminal i ∈ D to satellite j ∈ SD
i ; cjl:

transportation cost between satellite j ∈ S and customer l ∈ LS
j .

To derive the path-based model, the following sets of binary variables are introduced: Xijl = 1,

if some product units are transported on path (i, j, l), i ∈ D, j ∈ SD
i , l ∈ LS

j ; Wij = 1, if some

product units are transported between terminal i ∈ D and satellite j ∈ SD
i ; Yi = 1, if some

product units are transported to terminal i ∈ D from its closest warehouse. We also use the
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following general integer variables to represent the number of batches handled at any satellite and

the number of vehicles used on any terminal-satellite arc or at any terminal: Uj : number of batches

of products handled at satellite j ∈ S; Ti: number of large-size vehicles used between terminal

i ∈ D and its closest warehouse; Hij : number of medium-size vehicles used between terminal i ∈ D

and satellite j ∈ SD
i .

The path-based formulation of the problem can then be written as follows (we omit the con-

straints that specify the nature of the different types of variables):

min
∑
i∈D

fiYi +
∑
j∈S

gjUj +
∑
i∈D

diTi +
∑
i∈D

∑
j∈SD

i

eijHij +
∑
i∈D

∑
j∈SD

i

∑
l∈LS

j

cjlXijl (1)

∑
j∈SL

l

∑
i∈DS

j

Xijl = 1, ∀l ∈ L, (2)

∑
i∈DS

j

Wij ≤ 1, ∀j ∈ S, (3)

∑
j∈SD

i

∑
l∈LS

j

vlXijl ≤ (
∑

l∈LD
i

vl)Yi, ∀i ∈ D, (4)

Xijl ≤Wij , ∀i ∈ D,∀j ∈ SD
i ,∀l ∈ LS

j , (5)

Wij ≤ Yi, ∀i ∈ D,∀j ∈ SD
i , (6)∑

i∈DS
j

∑
l∈LS

j

nlXijl ≤ QUj , ∀j ∈ S, (7)

∑
j∈SD

i

∑
l∈LS

j

vlXijl ≤ PTi, ∀i ∈ D, (8)

∑
l∈LS

j

vlXijl ≤ RHij , ∀i ∈ D,∀j ∈ SD
i . (9)

The objective function, (1), consists in minimizing all costs incurred by using and operating

terminals and satellites, as well as transportation costs between warehouses and terminals, between

terminals and satellites, and between satellites and customers. Constraints (2) ensure that each

customer is being served by a single satellite. Constraints (3) ensure that any satellite, when it

is used, is connected to a single terminal. The forcing constraints (4) ensure that no flow can

circulate through a terminal that is not used to transport product units. Constraints (5) and (6)

are also forcing constraints that link together the different types of binary variables. Constraints

(5) ensure that any customer cannot be routed from a satellite that is not connected to some

terminal. Similarly, constraints (6) ensure that any satellite cannot be connected to a terminal

that is not used to transport product units. Constraints (7) ensure that the number of product

units handled at a satellite cannot exceed the capacity of product batches. Constraints (8) and (9)

ensure that the total volume of all product units transported on a network element (terminal or

terminal-satellite arc) cannot exceed the capacity of the vehicles used on that network element.
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To derive the Lagrangean decomposition approach, we first introduce three sets of variables

with corresponding copy constraints defined as follows: Njl =
∑

i∈DS
j

Xijl, j ∈ S, l ∈ LS
j ; Vil =∑

j∈SD
i

Xijl, i ∈ D, l ∈ LD
i ; Mijl = Xijl, i ∈ D, s ∈ SD

i , l ∈ LS
j . Constraints (7), (8) and (9) are

then rewritten using the new variables:
∑

l∈LS
j

nlNjl ≤ QUj , j ∈ S;
∑

l∈LD
i

vlVil ≤ PTi, i ∈ D;∑
l∈LS

j
vlMijl ≤ RHij , i ∈ D,∀j ∈ SD

i . Finally, the copy constraints are relaxed in a Lagrangean

way. The resulting Lagrangean subproblem decomposes into two parts: the first one, called LOC,

is a two-echelon uncapacitated location-distribution problem, whose structure is defined by con-

straints (2) to (6); the second part, called KNAP , decomposes itself into |S| + |D| +
∑

i∈D |SD
i |

0-1 knapsack problems with variable capacity, each of these problems corresponding to a structure

known as the unsplittable flow arc set in the network design literature [1]. Since both LOC and

KNAP do not have the integrality property, the lower bound obtained by solving the Lagrangean

dual (we use a bundle method for this purpose) dominates the LP relaxation bound, but also the

Lagrangean bounds computed by relaxing constraints (2) to (6) (obtaining KNAP as the La-

grangean subproblem), and by relaxing constraints (7) to (9) (obtaining LOC as the Lagrangean

subproblem). Upper bounds on the optimal value of the problem are derived directly from the

solutions to each LOC subproblem; these solutions are then improved using variable neighborhood

heuristic methods [2]. Finally, if there is still a gap between the best lower and upper bounds,

a branch-and-bound procedure is called upon, where bounding at each node is performed with

the Lagrangean decomposition approach, while branching is based on the violations of the copy

constraints.
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1. Introduction

Sensors are used on traffic networks to collect data for the purpose of monitoring and management

of the traffic flows. Through the monitoring, travelers may be informed of the network conditions

via traveler information systems. Subsequently, better information on the traffic flows, including

identification of congestion and bottlenecks, allow users and managers to better control the flows

on the network. Important decisions towards this end relate to where the given sensors should be

located to in order to better monitor and manage flows.

Many different location models have been proposed in the literature, as well as corresponding

solution approaches. The proposed existing models could be classified according to two main

criteria: (i) the types of sensors based on what they measure (e.g., counting sensors, image sen-

sors, Automatic Vehicle Identification (AVI) readers, etc.), and, (ii) the objective for the optimal

locations, such as, best estimation of origins and destinations, estimation of flows on arcs and

routes, maximal interception of flows, and reliably measuring travel times. The purpose of this

paper is review such models, including introducing new models, by classifying then with respect

to characterizing parameters and objective functions.

1

300



1 53
2

4
6

a
b

c
d

e
f

Figure 1: A network example

2. Locating Sensors to Measure Flows

Network traffic flows may be characterized in various ways, for example, flow volumes (in number

of vehicles per hour) from each origin to each destination, and, for another example, flow volumes

on given routes or route segments. Depending on what we are interested in we can deploy sensors

to observe such flows. The first issue that may be raised is “Are these flows observable?” For ex-

ample, if one were interested in measuring passenger flows on a route segment, current deployable

sensor technologies cannot observe that (but they may be estimated if one assumed a passenger

per vehicle distribution). Note, however, we are able to directly observe arc flows or, in some cases

route flows. Sometimes we are able to indirectly observe more aggregated flows such as OD trips.

Generally, relationships among various flow volumes can be represented by a system of linear equa-

tions where the columns represent the volume of flows and rows amounts come from data from the

deployed sensors. In this context, the main interest is either (i) where to deploy sensors so that the

related matrix has full rank and thus a unique solution is obtained or (ii) how to choose the best

possible solution of the system of equations among all the possible solutions when a deployment

for a unique solution is not possible. These two possibilities lead two main classes of problems: the

Sensor Location Flow-Observability Problem and the Sensor Location Flow-Estimation Problem,

which are introduced below with an example.

Consider the network in Figure 1 where there are 6 nodes and 6 arcs. There are 4 OD pairs

w1 = (1, 5), w2 = (1, 6), w3 = (2, 5), w4 = (2, 6), and each pair is connected by two different routes,

one using arc c and the other using arc d. Table 1 contains all the information regarding OD flows,

route flows, arc flows. That is, for example, the flow between the OD pair (1, 5) is 120 units, 48 of

them use route R1 = {a, d, e} and the remaining 72 the route R2 = {a, c, e}. Arc flow of arc a is

200 units resulting from the sum of the flows of the routes in the network that use arc a, that is

R1, R2, R3 and R4 whose flow respectively is fR1 = 48, fR2 = 72, fR3 = 40, fR4 = 40.

Let us assume, for the purpose of this example, we are interested in knowing route flows and

consider the two cases where we locate on arcs either (i) counting sensors or (ii) path-ID sensors
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OD OD Routes Route
couple Trips Flow
(1,5) 120 R1: a d e 48

R2: a c e 72

(1,6) 80 R3: a d f 40
R4: a c f 40

(2,5) 60 R5: b d e 12
R6: b c e 48

(2,6) 100 R7: b d f 30
R8: b c f 70

Arcs a b c d e f
Arc Flow 200 160 206 154 180 180

Table 1: OD flows, Route flows, Arc flows related to the network in Figure 1

which measure volumes of each route on the arc. These hypothesis are considered for clarity of

the exposition; they can be easily generalized to consider any type of sensors and various flow

characterizations.

Case (i): locating counting sensors

Suppose we can locate 3 counting sensors on the arcs of the network. When we locate a counting

sensor on an arc of the network we can count the total flow on that arc and express it as the sum

of flows of the routes that use the arc. For example, if we locate a counting sensor on arc a we can

derive the following linear equation: fR1 + fR2 + fR3 + fR4 = 200. If we locate counting sensors on

arcs a, c and e we can define the following system of 3 linear equations with 8 unknown variables:




fR1 fR2 fR3 fR4 fR5 fR6 fR7 fR8

(arc a) 1 1 1 1 0 1 0 0

(arc c) 0 1 0 1 0 1 0 1

(arc e) 1 1 0 0 1 1 0 0







fR1

fR2

fR3

fR4

fR5

fR6

fR7

fR8




=




200

160

206


 (1)

This system does not have a unique solution. The same happens if we choose to locate three sen-

sors on arcs c, d, e. Hence, our interest is focused in choosing the best solution among all possible

solutions.

To evaluate when a solution is better that another, we can define an estimation function. Gener-

ally such a function is derived from some estimation methods (such as least square estimation and

maximum entropy estimation among others). Therefore in this context, the location problem is:

How to locate sensors on the network so that the estimation function is optimized?
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Case (ii): locating path-ID sensors

Suppose we can locate three path-ID sensors on the arcs of the network. When we locate a path-ID

sensor on an arc we are able to know the flow volumes on each route that uses the arc. For example,

by locating a path-ID sensor on arc a we can observe: fR1 = 48, fR2 = 72, fR3 = 40, fR4 = 40;

while by locating a path-ID sensor on arc d we can observe: fR1 = 48, fR3 = 40, fR5 = 12,

fR7 = 30. Therefore, by locating three path-ID sensors on arcs a, c and d we can observe the flows

of all the routes of the network. Of course, not all the three sensors are needed to observe all route

flows. Indeed, by locating only on c and d (or, also, on a and b) a unique solution would be achieved

as well. Therefore, in this context, the location problem addresses the observability issue: what is

the best set of location of sensors on the network so that a unique solution of the corresponding

system of linear equation is obtained, where best could mean minimum number, minimum cost or

some other optimizing criterion.

Both the problems are now formally defined in the next section.

3. Observability versus Estimation

We can represent a traffic network by means of a graph G = (V,A) where the set of nodes V

represents intersections in the network and the set of arcs A, joining node pairs, represents roads.

Flows on the arcs of a network are generated from the users that travel along the network from

a given set of origins to a certain set of destinations following different routes. Let us denote by

hw the average number of trips connecting the OD pair w within a given time period. The main

relationships among arc flows, route flows and OD flows are the following:

∑

w∈W

pw
a hw = va ∀a ∈ A (2)

hw =
∑

r∈Rw

fr ∀w ∈ W (3)

fr = hwpw
r ∀r ∈ R ∀w ∈ W (4)

va =
∑

r∈R

frρar ∀a ∈ A (5)

va =
∑

w∈W

∑

r∈Rw

hwpw
r ρar ∀a ∈ A (6)

where W is the set of all OD pairs, pw
a are the arc choice proportions defining the portion of trips

between pair w that use arc a, va is the flow on arc a, R is the set of all the routes in the network

connecting OD pairs, Rw ⊆ R is the set of routes connecting OD pair w, fr is the flow of route

r ∈ R, pw
r are route choice proportions denoting the proportion of flow of the OD pair w traveling
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on route r, and parameter ρar is equal to 1 if route r contains arc a and 0 otherwise. Any of

the above systems of linear equations would give us information about unknown flows (either OD

flows, arc flows, or route flows).

By locating different types of sensors either on the arcs or on the nodes of the network one could

obtain additional information on how flows on arcs can be disaggregated in route flows. Therefore,

according to (1) the different type of sensors that can be located, (2) assumptions made about the

available a-priori information, and, (3) the type of estimates one focuses on, different system of

equations should be derived. In this context, the total number of observations and their location

play an important role for the determination of the system under consideration. In particular, two

questions that arise are:

• If the system is observable, what is the minimum number of sensors and where to locate

them to obtain the unique solution of the system?

• If the system is not observable, how to choose sensor locations to improve the quality of the

flows estimates?

Existing contributions answer these two questions, and can be then grouped into two main classes

of problems:

i) The Sensor Location Flow-Observability Problem: identify the optimum location of sensors

on the network that allow the unique determination of the solution of the related linear

system of equations.

ii) The Sensor Location Flow-Estimation Problem: identify the optimum location of sensors on

the network to best improve the quality of the related estimates (OD trips estimates, arc

flows estimates and, route flow estimates).

Most of the contributions existing in the literature can be then grouped in these two classes of

problems. Mainly, the contributions dealing with the estimation of OD flows by locating counting

sensors on the arcs of the network deal with an unobservable system of equations.

From the early nineties, most of the studies have concentrated on the Sensor Location Flow-

Estimation Problem and therefore the great majority of existing contributions address this problem.

More recently, mainly due to new types of sensors using new technologies, the Sensor Location

Flow-Observability Problem has gained more attention and many new interesting and relevant

problems have been investigated. In this paper, we will review the main contributions on these

two classes of problems.
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1 Introduction

Same-day clients usually request couriers with little or no notice, all but eliminating the ability to

construct routes or schedules in advance. Once a courier has been assigned a job, he/she proceeds

directly to the pickup location, collects the appropriate conveyance, and moves on to the delivery.

Automated information-based job allocation systems ([1]) are based on dispatching algorithms able

to assign each job to the most appropriate courier on the basis of the current fleet location and

status. Advantages of such systems include an improvement of the courier efficiency, a reduction

of the requirements of human supervisors as well as the possibility to provide customers a quality

of service (QoS) guarantee. In this extended abstract we deal with the same-day Courier Shift

Scheduling Problem (CSSP), a tactical problem which amounts to minimize the staffing cost subject

to probabilistic service level requirements. In particular, we investigate the value of clustering

customer requests into classes, extending the work presented in [3], in which the authors consider a

single class of requests. In what follows we assume that couriers are independent contractors paid

by the hour, thus creating economic incentives for companies to hire the least amount of labour

possible. The remainder of this extended abstract is organized as follows. In Section 2 we model

the CSSP as an integer program with nonlinear probabilistic QoS constraints, whereas in Section
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3 we describe the main ideas of our solution approach. Finally, in Section 4 we present preliminary

computational results.

2 Formulation

At an operational level, same-day couriers must solve a Dynamic Vehicle Dispatching Problem with

Pickups and Deliveries ([2], [4]) which aims at allocating requests to vehicles as well as scheduling

the requests assigned to each vehicle. A pickup and its associated delivery must be serviced by

the same vehicle and a pickup must always be made before its associated delivery. Given any

dispatching policy P , at a tactical level courier companies face a CSSP, i.e., they must decide how

many couriers should be allocated to each shift pattern subject to QoS constraints. The CSSP is

usually solved on a weekly or quarterly basis (the demand is usually characterized by significant

yearly/weekly/daily seasonal effects) with the aim of minimizing the staffing cost. In what follows,

we assume that requests are partitioned into E different classes, which may differ for either the

origin-destination pair or the characteristics of the parcel to transport. Moreover, we assume the

availability of V different courier types (e.g., bike, motorbike or van couriers). Furthermore, we

suppose that a QoS guarantee is provided to those requests arriving into a planning horizon H

(e.g., Monday to Friday, 6.00 am to 10.00 pm) and that the QoS is assessed with respect to J time

intervals (QoS intervals) in which H is partitioned. In particular, we require that the expected

service time of a request of class e (e = 1, . . . , E) arriving during time interval j (j = 1, . . . , J)

must be less than a given threshold T e
j . In this extended abstract we assume that the feasible

shifts (i.e., shift satisfying rest regulations) can be enumerated. This assumption is realistic since

only few patterns are acceptable in real world (e.g., shifts covering 4 consecutive days a week for

10 consecutive hours per day or 5 consecutive days a week for 8 consecutive hours per day). Let

Q be the number of feasible shift patterns, and let cvq be the wage of a courier of type v covering

pattern q (q = 1, . . . , Q; v = 1, . . . , V ). The CSSP amounts to determine the optimal number xvq

of couriers of type v covering shift pattern q (q = 1, . . . , Q; v = 1, . . . , V ):

Minimize z(x) =
V∑

v=1

Q∑
q=1

cvqxvq (1)

s.t. ge
j (x11, . . . , xV Q) ≤ T e

j j = 1, . . . , J ; e = 1, . . . , E (2)

xvq ≥ 0, integer v = 1, . . . , V ; q = 1, . . . , Q, (3)

where ge
j (x11, . . . , xV Q) = E[Ge

j(x11, . . . , xV Q, ξ)]. Here, ξ is a vector denoting the random demands

across the planning horizon, Ge
j(x11, . . . , xV Q, ξ) is the service (or system) time of a request of

class e (e = 1, . . . , E) arising during QoS interval j (j = 1, . . . , J) under dispatching policy P, and

ge
j (x11, . . . , xV Q) is its expected value. The complexity of the model lies in the ge

j (·) functions,

which are non linear and not known explicitly.
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3 Solution strategies

We propose a procedure that collects some statistics when simulating the current solution x(k)

at iteration (k − 1). Then, we use these statistics into an Approximated Neighborhood Evaluation

(ANE) procedure that approximates the QoS functions ge
j (·) with deterministic linear functions

of the xvq variables. We divide the planning horizon into m micro-intervals of duration ∆t (for

instance, ∆t = 30 minutes or 1 hour) and assume that the arrival rate λe
h of requests of class e

(e = 1, . . . , E) during micro-interval Ih (h = 1, . . . ,m) is constant. Let a and d be the arrival time

and the delivery time of a request, and let s = d−a be its service time. When selecting x(k) as the

new current solution at iteration (k − 1), we compute an estimate ŝev
hl of the conditional expected

service time (under operational policy P) of the requests of class e arriving in micro-interval Ih

and serviced in Il (l ∈ Wh, where Wh is the set of micro-intervals after Ih within the same working

day) by a vehicle of type v ∈ V e, where V e ⊆ V represents the subset of all the vehicle types

which can service requests of class e: sev
hl = E[s|a ∈ Ih, d ∈ Il, e, v, x(k), P ]. It is worth noting that

such an estimate comes at no cost since the QoS provided by x(k) must be evaluated (through

simulations runs) before this solution can be declared feasible.

Let Hj be the set of micro-intervals which make up QoS interval j (j = 1, . . . , J) and let Al be

the set of shifts covering micro-interval Il (l = 1, . . . ,m). By using the well known total probability

theorem, QoS constraints can be reformulated as follows:

∑
h∈Hj

(
1∑

i∈Hj
λe

i

∑
l∈Wh

∑
v∈V e

λev
hl ŝ

ev
hl

)
≤ T e

j , j = 1, . . . , J ; e = 1, . . . , E, (4)

where λev
hl is the part of λe

h delivered during micro-interval Il (l ∈ Wh) by a courier of type v

(v ∈ V e). Constraints (4) are then used as part of a linear program (not reported here, for the

sake of brevity) to determine, at each iteration k, the best neighbor of current solution x(k).

4 Preliminary computational results

The purpose of our computational experiments is to determine whether it is valuable to cluster

the requests into classes in place of using a single class. For this purpose, we embed the ANE

mechanism into a multi-start heuristic, and compare with the results obtained in [3]. Experiments

are performed on randomly generated instances, resembling usual courier operations. In particular,

the service territory is a grid with 36 zones, giving rise to 1260 origin-destination pairs, the travel

times between adjacent zones are set equal to 15 minutes, and the planning horizon is from Monday

to Friday, 8.00 am to 8.00 pm. The requests are clustered, according to the origin-destination pair,

into E = 6 classes, with 600 overall expected weekly requests. The thresholds T e
j are set equal

to 60 minutes for e = 1, . . . , E, and j = 1, . . . , J . At an operational level we use a cheapest

insertion policy, giving an higher priority to requests having their origin-destination pairs in the
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Table 1: Preliminary computational results

Instance
ANE-FP ANE-MC

OBJ OBJ DEV

1 856 821 -4,09%

2 914 889 -2,74%

3 864 812 -6,02%

4 812 801 -1,35%

5 889 850 -4,39%

6 914 861 -5,80%

7 872 850 -2,52%

8 951 901 -5,26%

9 807 776 -3,84%

10 930 898 -3,44%

Average -3,94%

central zones of the service territory (which, in a real-world setting, would be the downtown part

of a city). Preliminary experiments (Table 1) report the performance of the ANE-based heuristic

with multiple classes of requests (ANE-MC), and without this demand characterization (ANE-FP),

and compare the results obtained by the two approaches under the same conditions: ANE-MC:∑E
e=1

∑m
h=1 λe

h = 600; ANE-FP: λh =
∑E

e=1 λe
h; ŝh(x) =

∑E
e=1

λe
h∑E

e′=1
λe′

h

ŝe
h(x). The results show

that ANE-MC provides an average cost reduction of approximately 4%, which could result in

consistent monetary savings.

References

[1] A. Attanasio, J. Bregman, G. Ghiani and E. Manni, “Real-time fleet management at eCourier

Ltd”, in Dynamic Fleet Management - Concepts, Systems, Algorithms & Case Studies, V.S.

Zeimpekis, G.M. Giaglis, C.D. Tarantilis and I.E. Minis (eds), 219-238, Springer-Verlag, 2007.

[2] M. Gendreau, F. Guerten, J.-Y. Potvin and R. Séguin, “Neighborhood search heuristics for a
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Consider a graph G=(V;A), where V ={1,2,..,n} and A={(i,j): i,j=1,..,n, i ≠ j}. Assume that we 

have a cost cij associated to each arc in A.  Consider the following generic formulation for the 

ATSP: 

( , )

    ( ) (1)         

                  {( , ) :  1}   . (2)

ij ij
i j A

ij

ij

minimize c x

subject to x x Assign

i j x is connected

∈

= ∈

=

∑

 

with Assign denoting the feasible set of the well-known assignment relaxation arising in 

formulations for the problem: 

1     (1 )

1     (1 )

{0,1}    ( , ) . (1 )

ij

i V

ij

j V

ij

x for all j V a

x for all i V b

x for all i j A c

∈

∈

= ∈

= ∈

∈ ∈

∑

∑     

Several research works on formulations for the TSP and the ATSP start with this generic 

formulation and then exploit different ways of expressing (2), see, for instance, [3], [4], [5], [6]  and 

[7] which cover these matters, reviewing and comparing most of the published formulations for 
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both the TSP and the ATSP. We obtain probably the most well-known formulation for the ATSP by 

adding the standard cut constraints 

 
[ \ , ]

1  ij
i V S j S

x for all
∈ ∈

≥∑  S ⊆ V\{1}  (Cut2) 

that guarantee that the solution is connected. A formulation using only the ijx  variables is called a 

natural formulation in contrast with a so-called extended formulation that uses extra variables to 

express (2). We start our study, with an extended formulation such that the non explicit part is given 

as follows 

( , ) :  g 1         1,   ,  

                                                                   \ {1}                    
{ }k

iji j contains a non necessarily simple circuit containing node node k

with exactly n arcs for all k V

=

∈   (C2a)

  ( , ) ,  \ {1}.    (C2b)

     

 g                                                                   k
ij ij for all i j A k Vx ∈ ∈=

 

In these models, the circuit variables k
ijg  indicate whether arc (i,j) is in the circuit passing through 

node k.  

One way of writing this “circuit” model is to find an exact model for the underlying constrained 

circuit subproblem, that is, a model whose linear programming relaxation has integral extreme 

points. Such a model can be obtained by modelling the problem as an unconstrained shortest path in 

an appropriate graph, as it has been done by Godinho, Gouveia and Magnanti in [2]. In this paper, 

we propose a formulation that is more compact than the one presented in [2] and with the same 

linear programming relaxation bound. The formulation is based on the following algorithm for 

computing, for each k, the (not necessarily simple) circuit passing through node 1, containing n arcs 

and including node k: for each integer p (p = 1,…,n) we compute the shortest path from node 1 to 

node k with exactly p arcs and  the  shortest path from node k to node 1 with exactly p arcs. Then we 

combine adequately shortest paths from the first series with the shortest paths from the second (for 

instance the shortest path from node 1 to node k with exactly p arcs and the shortest path from node 

k to node 1 with exactly n+1-p arcs gives the shortest circuit such that node k is in position p).  

A straightforward shortest path reformulation based on this two-layered graph provides a 

compact hop-indexed model (the construction just given shows that the corresponding linear 

programming relaxation is integer) for the underlying circuit subproblem. We associate 1hk
ijz  

variables to the arcs of the sub-graph modeling paths in the first part of the circuit and variables 2hk
ijz  

to the arcs of the sub-graph modeling paths in the second part of the circuit, that is: we consider 

variables i) 1hk
ijz  =1 if arc ( ), ( 1, )i j A j i k∈ ≠ ≠  is in the hth position in the circuit from node 1 to 

node 1 passing through node k and is before node k (that is in the path from node 1 to node k) and 

variables ii) 2hk
ijz  =1 if arc ( ), ( , 1)i j A j k i∈ ≠ ≠  is in the hth position in the circuit, from node 1 to 
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node 1 passing through node k and is after node k (that is in the path from node k to node 1). Using 

these variables, we can write the following new model for the Circuit subproblem: 

 

Table I. Modelling a Circuit (from node 1 to node 1 and passing through node k) 

 

1
11 1k

j
j V

z
∈

=∑      (H-C1) 

{ }1,1 1 0 \ 1 , 1,..,| | 2h k hk
ij ji

j V j V

z z for all i V h V+

∈ ∈
− = ∈ = −∑ ∑                         (H-C2) 

1,2 1 0 1,...,| | 1h k hk
kj jk

j V j V

z z h V+

∈ ∈
− = = −∑ ∑      (H-C 3) 

{ }1,2 2 0 \ 1 , 2,..,| | 1h k hk
ij ji

j V j V

z z for all i V h V+

∈ ∈
− = ∈ = −∑ ∑    (H-C4) 

( )
1

( , )1 2
n

k hk hk
ij ij ij

h

for all i j Ag z z
=

∈= +∑                                                      (H-C5) 

 

{ }1 0,1 ( , ) , , 1,
1,..,| | 1

hk
ijz for all i j A i k j

h V
∈ ∈ ≠ ≠

= −
   (H-C6) 

{ }2 0,1 ( , ) , 1, ,
2,..,| |

hk
ijz for all i j A i j k

h V
∈ ∈ ≠ ≠

=
   (H-C7) 

Clearly the subformulation we have used is the tightest we can get for the defined circuit 

subproblem since the corresponding linear programming feasible set has integer vertices. We can 

obtain a formulation for the ATSP by replacing (C2a) with this circuit formulation for each k. We 

let HC-MCF denote this model.  

As noted before, this is the starting formulation for our work. We will discuss: 

i) Model enhancements - In the previous model the focus was set on finding good 

formulations for the sub-problems associated to each node k, each one seen as an 

independent sub-problem - the sub problems are related to each other only through the 

linking constraints. However, when we analyse a solution for the ATSP we realize that 

there is a great deal of information regarding the way the sub-problems are related to 

each other and that might be used to derive improved formulations. In this section, we 

analyse formulations for the ATSP problem from this point of view. We will use 

simple and straightforward proprieties that relate the circuits associated to different 

nodes and that will permit us to write “interesting” new valid inequalities for the whole 

problem. Since all of these properties characterize common features of all circuits we 

will designate the new inequalities by Intersecting-Circuit (IC) inequalities.  
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ii)  We will contextualize the linear programming relaxation of the new enhanced model 

with the linear programming relaxation of some of the strongest formulations know 

from the literature. In particular, we will show that among known compact 

formulations from the literature, the proposed formulation is the one with the tightest 

linear programming bound. 

iii)  From a computational point of view, we will show that the proposed formulation is 

quite interesting for the related and so-called cumulative travelling salesman problem 

[1],  Computational results taken from instances with up to 40 nodes show that the 

proposed formulation provides linear programming gaps that are within 1% per cent of 

the optimum. This is a huge improvement to previously know formulations.  
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1 Introduction

In January 2009 present driving and working hour regulations in the United States entered into

force which are comprehensively described by Federal Motor Carrier Safety Administration (2009).

The most important rules of the U.S. hours of service regulations are that a driver may drive for a

maximum of 11 hours after 10 consecutive hours of rest time, and that a driver may not drive after

the 14th hour since returning from the last rest period of at least 10 hours. Further, regulations

impose constraints on the maximum amount of driving time within a period of seven or eight

consecutive days. For simplicity, however, these additional regulations shall not be considered in

this contribution.

In this contribution we consider a sequence of locations denoted by n1, n2, . . . , nλ which shall

be visited by a single manned vehicle. At each location nµ some stationary work of duration wnµ

shall be conducted. This work shall begin within a time window denoted by Tnµ . We assume

that n1 corresponds to the driver’s location at time zero and that the driver completes her or his

work week after finishing work at location nλ. The driving time required for moving from node

nµ to node nµ+1 shall be denoted by δµ,µ+1. The U.S. Truck Driver Scheduling Problem is the

problem of scheduling driving, working, and rest periods in such a way that all customer locations
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are visited within the given time windows and that driving and working hours of the truck driver

comply with regulations imposed by the U.S. Department of Transportation.

The first work explicitly considering hours of service regulations imposed by the U.S. Depart-

ment of Transportation within a vehicle routing problem is the work by Xu et al. (2003). They

conjecture that determining a minimal cost truck driver schedule for a given sequence of customer

locations is NP-hard in the presence of multiple time windows. Recently, Archetti and Savelsbergh

(2009) present an algorithm for scheduling driving and working hours of truck drivers in the pres-

ence of single time windows and U.S. hours of service regulations. They prove that their algorithm

finds a feasible truck driver schedule in O(λ3) time if one exists. This paper shows that by carefully

traversing the search space this complexity can be reduced. A tree search algorithm is presented

which determines in O(λ2) time whether a feasible schedule exists for a tour of length λ or not. If

a feasible schedule exists, the algorithm generates such a schedule. If no feasible schedule exists,

the algorithm terminates with a feasible schedule for the largest partial tour n1, n2, . . . , nµ with

µ < λ for which a feasible schedule exists.

A truck driver schedule can be specified by a sequence of activities to be performed by the driver.

Let us denote with DRIVE any period of consecutive driving, with WORK any work period in which the

driver is not driving, with REST any period of at least 10 hours in which the driver is neither driving

nor working, and with IDLE any period of less than 10 hours in which the driver is neither driving

nor working. Let A :=
{
a = (atype, alength) | atype ∈ {DRIVE, WORK, REST, IDLE}, alength > 0

}
denote the set of driver activities that may be scheduled.

The algorithm presented in this contribution iteratively appends new activities to a sequence

of activities until a truck driver schedule for tour θ := (n1, n2, . . . , nλ) is found. As the regulation

requires that no driving is performed after 14 hours since the end of the last rest period, it may

be required to schedule rest periods of more than 10 hours duration. In this contribution we show

that we can anyhow restrict our search to truck driver schedules in which each rest period has

a duration of exactly 10 hours. For this, however, we have to make sure that the duration of

each rest period can be extended in a post-processing step if required. This contribution provides

conditions under which such a post-processing step can achieve compliance with the regulation

without violating time window constraints.

The state of a truck driver w.r.t. a given sequence of activities can be specified by the time after

which all activities are completed, the amount of driving since the last rest period in the sequence,

the completion time of the last rest period, and the amount by which the last rest period can be

extended. Given such a driver state we can uniquely determine the activities required to travel to

the next location in the tour θ. If this location is reached before the opening of the corresponding

time window, the driver may either wait idle until the time window opens and start serving the

customer at the earliest possible time, or the driver may take an additional rest period of at least
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10 hours before serving the customer. For a trip from a location nµ to nµ+1, we may thus need to

consider two alternative truck driver schedules. For the entire tour θ := (n1, n2, . . . , nλ) we may

therefore need to consider 2λ−1 different schedules.

To reduce the number of alternative schedules to be considered in the search we provide domi-

nance criteria that help reducing the computational effort drastically. This contribution presents

a tree search algorithm which, in each iteration, cuts off branches of the search tree corresponding

to partial schedules dominated by other partial schedules found so far. It is shown that by using

these dominance criteria the algorithm terminates after at most 1
2λ2 − 1

2λ iterations.
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1 Introduction

The problem of finding a suitable timetable that allows customers to travel without unnecessary

delay from one station to another is as economically important as difficult to handle mathematically.

Especially the case of periodic timetables, in which events occur repeatedly over a given period,

is known to be NP-hard - in fact, even finding a feasible solution is so. Thus even heuristics are

rare. On the other hand there are recent achievements like the newly introduced timetable of the

Dutch railway system (see [5]) that impressively demonstrate the applicability and practicability

of the mathematical model.

Karl Nachtigall and Jens Opitz presented in [1] a new heuristic approach to the periodic

timetabling problem based on the classical network simplex method. Besides the drawback that

a feasible starting solution still has to be provided, it suffers under relatively high running times

and solutions mediocre in quality.

This presentation proposes different approaches we explored to improve the modulo simplex

algorithm which result in an algorithm that is able to handle problems of the size of the German

intercity rail network.

2 Periodic Timetabling

In 1989 Paolo Serafini and Walter Ukovich introduced in [4] the Periodic Event Scheduling Problem

(PESP) to treat periodically reoccurring events that have to be scheduled according to given feasible
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time spans. Based on the PESP the periodic timetabling problem can be formulated by introducing

Event-Activity Networks to model the time-dependent behavior of the various vehicles considered.

These are directed graphs G = (E ,A) with nodes

E = Earr ∪ Edep

that represent arrival or departure events and edges

A = Adrive ∪ Await ∪ Achange ∪ Ahead

representing either driving, waiting and changing activities or the necessary security headway

between vehicles sharing the same infrastructure.

The goal is to find a timetable assigning a time πi to each of the events i ∈ E . Instead of the πi

one can also determine the tension xij = πj − πi for any activity a = (i, j) ∈ A. Given a period T

and a spanning tree T = (E ,AT ) with its corresponding network matrix Γ the periodic timetabling

problem can be formulated as follows.

min
∑

(i,j)∈A

ωijxij

s.t Γx = Tz

lij ≤ xij ≤ uij

xij ∈ ZZ ∀(i, j) ∈ A

zij ∈ ZZ ∀(i, j) ∈ A \ AT .

As the variables zij model the periodic character of the problem, they will be referred to as

modulo parameters.

Note that the modulo parameters are the reason why this problem is NP-hard. For fixed

variables zij the timetabling problem is called aperiodic and is the dual of a minimum cost flow

problem that can be solved efficiently using the well-known network simplex method.

3 The Modulo Network Simplex method

The main idea of the method is to encode solutions as spanning tree structures (Tl∪Tu) by setting

the modulo parameters of the tree edges to 0 and the time consumption of these activities either

to their respective lower or upper bound. It can be shown that this uniquely determines a periodic

timetable. On the other hand, it is shown in [2] that(π
z

)
∈ Q := conv.hull

({(π
z

)
|lij ≤ πj − πi + Tzij ≤ uij ; z ∈ ZZm;π ∈ IRn

})
is an extreme point of Q if and only if it is a solution that is given by a spanning tree structure.

Thus it is sufficient to investigate only these solutions.
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As it is the case in the classical network simplex method, a given feasible spanning tree solution

is gradually improved by exchanging tree and non-tree edges that lie in the same fundamental cycle.

Due to the modulo parameters, reduced costs as in the classical network simplex do not exist. In

consequence, the resulting change of every entry of the simplex tableau has to be calculated, which

results in a time-consuming complexity of O(n3). Furthermore, as the problem is not convex, local

optima will not coincide with global ones, which is the reason why methods of global optimization

should be added.

4 Improving the modulo simplex

We proceed in two steps. On one hand, we propose alternative schemes for choosing a base exchange

pair, as investigated in [3], in order to improve the running time and the quality of the solution:

Improving running times. As the time needed for investigating a single column of the simplex

tableau grows quadratically in its number of non-zero entries, different algorithms are presented

that take advantage of sparse columns.

Improving quality. We use and test different versions of the generic Simulated Annealing and

Tabu Search algorithms to avoid getting stuck in local optima.

On the other hand, we analyze the single node cuts of [1] and introduce new types of possible

cuts:

Single Node Cuts. The time πi of a single event i is delayed by δ ∈ ZZ. A single node cut is

considered to be improving if∑
eij∈A

ωij(xij − δ) +
∑

eji∈A
ωji(xji + δ) < 0. (1)

As a given spanning tree structure is optimal with respect to the induced modulo parameters,

it can be concluded as a necessary condition that a single node cut changes at least one modulo pa-

rameter in order to be improving. We show that this is unlikely to happen, taken into consideration

that the tension xij of at least one of the adjacent edges is set to be lij or uij .

Waiting Edge Cuts. To improve the probability of finding a feasible single node cut, another

approach is to consider cuts which are induced along an activity (i, j) with a small feasible time

span uij − lij .
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Multi Node Cuts. A cut induced by the partition V1 ·∪V2 is defined to be connected if both

induced subgraphs G1 = (V1, E(V1)) and G2 = (V2, E(V2)) are so. As the change of the objective

value when applying a cut to a given solution can be calculated by simply adding up the change

of every single connected component of the cut, only connected cuts have to be considered. A

heuristic algorithm is presented that searches for an improving connected cut.

Random Node Cuts. As the presented formula to calculate the change in the objective value

by a single node cut is only a local consideration and thus too pessimistic, cuts may be still im-

proving when (1) does not hold. In our method of random node cuts we apply feasible single node

cuts, neglecting whether they improve locally or not.

The different combinations of these methods are compared numerically on data sets based on

the German intercity rail network, as part of the LinTim project (see [6]), a toolbox of traffic opti-

mization algorithms that allows direct evaluation of the mutual influence of the different planning

steps. Our results show that we are able to improve the original modulo simplex significantly.
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Mixed Capacitated Arc Routing 
 

Capacitated Arc Routing (CARP) models are widely used in distribution or collection problems where 

vehicles with limited capacity, perform certain activities that are continuously distributed along some 

pre-defined links (routes, streets) of an associated network. The Mixed Capacitated Arc Routing 

Problem (MCARP) describes a more realistic scenario since it considers directed as well as undirected 

required links. The MCARP is NP-hard as it generalizes the CARP (Golden and Wong [8]) which is 

known to be NP-hard. Many real-world applications can be studied in the context of CARP or MCARP 

models, as reported in  Dror’s book [5] or, for instance, papers from Assad and Golden [1], Eiselt et al 

[6]-[7] and Wøhlk [11]. 

The MCARP study reported in this presentation is motivated by a household refuse collection 

problem in a quarter of Lisbon. Each quarter can be planed separately as a fleet of identical vehicles is 

assigned to its refuse collection. Vehicles depart from a special point, the depot, where they should 

return after completing their collecting period and then empty at the dumpsite. In order to define a 

problem similar to the ones in the CARP literature, it is assumed that depot and dumpsite coincide. For 

simplicity, each vehicle performs only one trip compatible with its capacity. 

A compact formulation for the MCARP is presented and its validity is shown. In this model 

flow variables are used to impose the connectivity of the solutions. Variables are indexed by vehicle to 

guarantee a matching between trips and vehicles. The objective function represents the total cost 
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(service, deadheading and dump costs) to minimize. Conditions are defined to impose trips continuity 

at each node; to guarantee that the service in each required link is performed; to ensure that the dump 

cost is adequately charged in the objective function; to force trips connectivity and also to guarantee 

that the vehicles capacity is not exceeded. 

The model is used within an ILP package to solve medium sized problems and to produce 

lower bounds on larger instances. Lower bounds are also obtained from the associated linear 

programming relaxation.  

Essentially, our model differs from the one first presented by Golden and Wong [8] for the 

CARP since it considers the mixed case and it uses flow variables with a different interpretation. 

Further more, our model includes additional constraints so as to ensure that trips start at the depot. The 

addition of some valid inequalities strengthens the corresponding linear programming formulation, 

namely a depot degree constraint, lower bounds on the flow variables, and different types of breaking 

symmetries restrictions, this latter being used to diminish the number of alternative solutions for the 

same set of trips and they come up as extensions to a very recent paper [9] published by the authors and 

that may be seen as a guideline for the present study. 

We also present and discuss an aggregated model, where links and flow variables are not 

disaggregated by vehicle. This option, although not valid, it is attractive for three reasons: (a) the 

integer optimal solution, providing good lower bounds, is easier to compute than the optimal integer 

solution of the previous model; (b) for some instances, the optimal solution of the aggregated model is 

also optimal for the original problem; and (c) proving that the linear programming relaxation values of 

the two models, aggregated and disaggregated, are equal is an attractive feature, as it then offers a 

faster alternative to obtain the same lower bounds.  

The linear programming relaxation value of the aggregated model is also improved on by 

adding some valid inequalities. These inequalities are the aggregated version of the inequalities 

previously considered, and lead to a model with a tighter linear programming bound. Again, it can be 

shown that the linear programming relaxation value of the two enhanced models, aggregated and 

disaggregated, is equal.  

The first study on lower bounds for the MCARP based on a formulation using only one 

variable per edge ([2]) is due to Belenguer et al. [3]. Embedded in a cutting plane algorithm and with 

several valid inequalities added, this model, although not valid for the MCARP, produces good lower 

bounds. In our aggregated model both capacity and connectivity constraints are enforced by using the 

additional flow variables and constraints linking the two sets of variables, whilst in Belenguer and 

Benavent [2] no extra set of variables is used, while in turn, an exponential number of constraints 

forces connectivity. 

Computational experiments were conducted using CPLEX 11.0 to evaluate the performance of 

the models. For that purpose well known extended CARP instances are used, namely: gdbe [10]; mval 

and lpr [3]; alba, madri and alda [4]. The aggregated model is competitive as the lower bounds 

provided do not differ from the better upper bound more than 5%, and the CPU times are quite similar 

to the ones of Belenguer et al. [3]. The compact model for the MCARP was able to produce optimal 

solutions for some instances.  
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The bounds are comparable with the ones presented by Belenguer et al. [3], the best known 

from the MCARP literature used for medium and large sized instances. 

The presentation is organized as follows. Firstly, the MCARP is defined. A valid formulation 

and some inequalities are explained, as a foreground into the discussion of its aggregated version. 

Computational results on a set of benchmark problems and final remarks conclude the presentation. 
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Problem definition

For the passengers public transport, the development of alternatives to the individual vehicles

introduces new challenges for the organization of the travels via the use of various modes of trans-

portation. Taking into account the multimodality of urban transportation networks for individual

passenger’s itinerary computation introduces a number of additional constraints such as time de-

pendent travel times, restriction and/or preferences in using some modes.

The central problem considered in this work is a bi-objective shortest path on a multimodal and

time-dependent network with a single source O, destination D and departure time t. The goal is

to find all the non-dominated paths under the two objectives ”travel time” and ”number of modal

transfers”. The problem can be defined as the time-dependent extension of the one solved in [2].

We consider that the urban multimodal network is represented by a multi-level graph G(V,E)

in which each level is associated to a transportation mode. Considering a set of modes M , each

node i ∈ V is associated with a mode mi ∈ M . An arc linking two nodes with different modes is

called a transfer arc. Each arc is associated with a function aij(t) giving the arrival time to node

j given that departure time from i is t. Depending on the mode m, this function can be or not

time-dependent. For instance, bicycle and walk are time-independent modes since that they do

not vary with the traffic level but car mode could be time-dependent and bus mode depends on

timetables. We consider a FIFO network (aij(t) is non decrasing ∀(i, j) ∈ E) [4]. A viable path

is a path that respects given constraints on the sequence of modes (e.g. taking a private car after

leaving the bus is not viable). We model the mode viability of paths by a finite state automaton

as in [2]. Let S denote the set of states. A transition function δ is defined where s′ = δ(m,m′, s) is
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the state reached if a transfer from mode m to mode m′ is performed. By convention, the state at

origine is s = 0 and δ(m,m′, s) = 0 means that the transition is not viable. This approach allows

also to specify a subset of authorized states S(D) to reach the destination (e.g. if no parking is

allowed at the destination, private car should be dropped in a public parking area).

Related work

If modes are ignored, the problem resorts to the time-dependent single source, destination

and departure time shortest path which can be solved by a standard label-setting algorithm in

O(|E| log n) time [4] using a binary heap 1, where n is the number of nodes and assuming aij(t)

is computed in O(1). For a multimodal network where all paths are viable and time-independence

is assumed, a topological algorithm is proposed in [4] to find all the non-dominated path with a

number of transfers lower than a given upper limit kmax in O(kmax|E| log n) for the label-setting

variant. This method has been extended to path viability represented by an automaton by [2].

Although no information is given on complexity issues in [2], the algorithm can be implemented

in O(kmax|S||E| log n|S|). In [1, 5], multimodal and time-dependent shortest-path are considered

but only the minimum time objective is tackled. In [5], non FIFO networks are considered. In [1],

the objective is to compute the K−shortest paths under an upper bound of the maximum allowed

number of transfers. In these papers, experimental validations are limited to small networks. The

largest one, presented in [1], involves 1000 nodes and 2830 arcs.

Proposed Algorithms

As the network is FIFO, the Lozano and Storchi algorithm [2] can be extended trivially to time

dependence. We propose a label setting implementation of their method, denoted LS. Using two

buckets (priority queues Qnow and Qnext [4]), the method computes the non-dominated shortest

paths in increasing number of transfers k from 0 to a given kmax even if there is no shortest path for

given number transfert. For each node i, there is at most |S| non-dominated labels for a given num-

ber of transfers k and aij(t) is computed in O(1). So the algorithm LS runs in O(n|S||E| log n|S|).

We propose a new algorithm which computes only non dominated shortest paths non decrea-

sing order of the number of transfer. A label is now denoted tsi (k) and corresponds to the shortest

path from the source to i in state s and k transfers. Instead of considering Qnow and Qnext,we

build incrementally a list Q = {Q0, Q1, . . .} of priority queues such that Qk ∈ Q contains labels

leading to k modal transfers. Non-dominated labels tsi (k) are stored. Let Dom(s) denote the set

of states, dominant for state s. A state s′ dominates a state s if all modes viable from state s are

also viable from state s′. Note we have s ∈ Dom(s). The resulting algorithm (MLMH) is described

below and has a worst complexity in O(n|S||E| log n|S| + n3|S|) if kmax is not part of the input.

1. Better amortized time complexity can be obtained with Fibonacci heaps which were not used in our study
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Example :

Q0 = {1}

i = 1, k = 0, Q0 = {3}, t03 = 5, Q1 = {2}, t12 = 1

i = 2, k = 1, Q1 = {4}, t14 = 6, Q2 = {3}, t23 = 2

i = 3, k = 2, Q2 = {5}, t25 = 7, Q3 = {4}, t34 = 3

i = 4, k = 3, Q3 = ∅, Q4 = {5}, t45 = 4

i = 5, k = 4, Q4 = ∅ (shortest path with 4 transfers)

i = 3, k = 0 Q0 = {5}, t05 = 10

i = 4, k = 1, Q1 = ∅

i = 5, k = 2, Q2 = ∅ (shortest path with 2 tranfers)

...

Algorithm 1 Multi-labels multi-heap algorithm (MLMH)
Require: G(V,E), O, D, dij , ∀(i, j) ∈ E, t

1: Set Q = {Q0 := {(O, s0, 0)}}, t0O,s0
:= t, p0O,s0

:= (0, s0, 0), t
0
i,s :=∞, ∀i ∈ V , ∀s ∈ S, (i, s) 6= (0, s0)

2: set kmax =∞

3: repeat

4: Let (i, s, k) := argmin{tk
′

i′,s′ |(i′, s′, k′) ∈ Q} and set Qk := Qk \ {i}(minimum time label)

5: if i = D and s ∈ F then

6: store tki,s and pk
i,s as the shortest path with k transfers. Discard all Qk′ with k′ ≥ k. set kmax := k − 1

7: else if tki,s < tk
′

i,s′ , ∀k′ ≤ k, ∀s′ ∈ dom(s) then

8: for j ∈ FS(i) do

9: set s′ := δ(mi,mj , s)

10: if s′ 6= −1 and mi = mj and aij(t
k
i,s) < tk

j,s′ then

11: set tk
j,s′ := aij(t

k
i,s), pk

j,s′ := (i, s, k) and Qk := Qk ∪ {(j, s′, k)}

12: else if s′ 6= −1 and mi 6= mj and aij(t
k
i,s) < tk+1

j,s′ and k + 1 <= kmax then

13: set tk+1
j,s′ := aij(t

k
i,s), pk+1

j,s′ := (i, s, k) and Qk+1 := Qk+1 ∪ {(j, s′, k + 1)}

14: end if

15: end for

16: end if

17: until kmax < 0 or Q = ∅

We propose an adaptation of MLMH in a bidirectional way [3]. The proposed bidirectional algo-

rithm (MLMH-BI) maintains, in a similar way as in MLMH, two priority queue lists FQ for the for-

ward one and BQ for the backward one such that FQk contains forward labels ftsi (k) representing

paths reaching i in state s and k transfers and BQk contains backward labels btsi (k) representing

paths issued from i in k transfers and possibly in state s. For backward search, the state at destina-

tion is unknown and one has to generate labels in potential states (that may never be reachable).

Morever, in backward search,arcs are considered in none time dependant way. When a connection

is made between a label ftsi (k) and a label btsi (q) , if condition ftsi (k)+btsi (q) ≤ minFQ+minBQ,

all priority queues FQk′ and BQk′ with k′ ≥ k+ q can be discarded. Another extension of the bi-

directional method to time-dependent networks can be found in [3]. All the above-three algorithms

can be further accelerated using the A* principle (the cost of a node in the label setting process

is the cost from the origin plus the estimated cost to the destination) yielding variants LS-A*,
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MLMH-A* and MLMH-BI-A*.

Experiments

To adapt LS for computing the maximal number of modal transfers, we add to this algorithm

a step which computes the shortest path independently to use modes ; this shortest path gives

then the maximum number of modal transfers. All algorithms have been implemented in C++

and tested on an Intel Pentium2, 2.4 GHz processor on Windows using a real-world multimodal

network covering the urban area of Toulouse with 10397 nodes and 22004 arcs. Considered modes

are bus, metro, walking and private vehicle, there are time-tables for buses and frequencies for

metro from 05pm to 11 :59 am. Experiments concern 100 randomly generated trips in which travel

times vary from 28mn to 163mn (as walking can be the only alternative with no transfer) and lead

from 0 to 3 modal transfers. The number of pareto optimal solutions vary from 2 to 4 solutions

with 3 non dominated solutions per itinerary on average. The table below presents the average

CPU time (ms) obtained by the 6 variants with and without inclusion of dominance rules to prune

labels.

LS MLMH MLMH-BI LS-A* MLMH-A* MLMH-BI-A*

av CPU (ms) - without dom. rules 434 470 424 424 326 415

av CPU (ms) - with dom. rules 351 362 433 339 288 400

The best CPU time (in bold) is obtained by MLMH-A* which significanly outperforms the LS

variants. The dominance rules are useful for all algorithms , the bidirectional approach is not the

most efficient on our tests, experiments on larger networks are necessary to precise these results.
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Institut für Mathematik

Technische Universität Berlin

rolf.moehring@tu-berlin.de

1 The Kiel Canal

The Kiel Canal connects the North and Baltic seas and is ranked among the world’s three major

canals. In fact, in terms of traffic, it is the busiest artificial waterway worldwide. In a billion Euro

project, the German Federal Waterways and Shipping Administration plans to enlarge the canal

during the coming years. This project is about contributing to a well-founded advise on how the

enlargement can be optimally done. In order to evaluate the various construction possibilities it

is indispensable to first provide an accurate model for the ship traffic and designing an algorithm

which (ideally optimally) controls it. This paper is about such optimal traffic control.

The problem very roughly is as follows. There is bi-directional ship traffic on the canal; there are

several locks at both ends. Ships are classified in different size categories. Passing and overtaking

is allowed only if the sizes of the two ships do not exceed a given threshold which depends on the

meeting point. If otherwise a conflict occurs, ships have to wait at designated, capacitated places,

the sidings. The objective is to minimize the total passage time, including lock and siding waiting

times. The overall scheduling is currently done by two teams of experienced planners, one for the

locks, one for the sidings. In this abstract we concentrate on the latter problem, but both will be

treated in an integrated way during the project. Despite significant differences there are certain

similarities to train scheduling on a single track line [1].
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2 Algorithms for Ship Traffic Control

The canal consists of sidings (set T ) which alternate with canal segments (set E). More precisely,

we represent the canal as t1, e1, t2, e2, . . . , e|E|, t|T | with sidings ti ∈ T and segments ei ∈ E. We

have a set S of n ships, each pair (s1, s2) ∈ S×S of which may be forbidden to pass each other on

a given segment e ∈ E. In this case, we say that (s1, s2) has a conflict on e and write (s1, s2) ∈ Ce.

A ship s ∈ S needs time τs,i ≥ 0 to pass through a siding or segment i ∈ T ∪ E. We formulate

a mixed integer program (MIP) which is based on deciding for each ship s ∈ S when it departs

from a siding or segment (this is a natural way of encoding a solution). We have a variable ds,i,

i ∈ T ∪ E for the respective departure time. For each segment e ∈ E and each conflicting pair

(s1, s2) ∈ Ce of ships we decide which ship will enter e first. This decision is represented by a

binary variable zs1,s2,e which assumes a value of 1 if and only if s1 enters e before s2 does. Finally,

a variable ws,t ≥ 0 represents the waiting time of ship s in siding t. The model reads as follows.

minimize
∑

s∈S,t∈T

ws,t (1)

s.t. ds,ti
+ τs,ei

= ds,ei
s ∈ S, i = 1, . . . , |E| (2)

ds,ei−1 + τs,ti + ws,ti = ds,ti s ∈ S, i = 2, . . . , |T | (3)

zs1,s2,e = 1 ⇒ ds1,e ≤ ds2,e − τs2,e e ∈ E, (s1, s2) ∈ Ce (4)

zs1,s2,e = 0 ⇒ ds2,e ≤ ds1,e − τs1,e e ∈ E, (s1, s2) ∈ Ce (5)

ds,i ≤ ds,i ≤ ds,i s ∈ S, i ∈ T ∪ E (6)

ws,t ≥ 0 s ∈ S, t ∈ T (7)

zs1,s2,e ∈ {0, 1} e ∈ E, (s1, s2) ∈ Ce (8)

The objective function (1) accounts for minimum total waiting time of all ships, which—when

ships travel at their respective full speeds, what is an assumption close enough to reality also for

manual planners—is equivalent to minimum total passage time. Constraints (2) and (3) ensure a

consistent setting of departure times along each ship’s route. Our notation assumes that all ships

travel upstream, that is, in the direction of increasing indices of sidings and segments, but—abusing

notation—departure times of downstream ships are set analogously. We avoid the distinction here

for the sake of an easier presentation.

In a continuous planning, ships may start and end at any point of the canal, not necessarily only

at the ends; thus there are release times for each ship s ∈ S. This implies that constraints (2) and

(3) ensure that d variables increase in the travel direction of the ship, but also that they decrease,

and even below zero, in the other direction. For this reason, d variables are not restricted in sign,

but there are lower and upper bounds ds,i, ds,i imposed on departure times. These bounds are
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given in (6). Precedence constraints (4) and (5) link the d and z variables. It is easy to incorporate

safety distances between ships as well which in particular avoid that ships are at the same place

concurrently. Note that we do not respect siding capacities. In fact, the logic of this formulation

assumes that all ships wait at the same point at the end of a siding, no matter how many ships

they are. Thus, this MIP is a relaxation of our original problem formulation.

In fact, to overcome this inaccuracy one needs some sort of time and space discretization. In

particular the latter one causes some difficulties due to lots of different ship sizes and arbitrary

start and end points. Instead of respecting such a discretization in the model directly we chose to

let the algorithm take care of that. We designed a successive shortest path algorithm respecting

blocked time windows which constructs conflict-free dynamic routes for the ships one after another.

In addition to the basic version described in [2] our algorithm allows more than one ship to be on

an edge, handles arbitrary start and end positions, and tries different valid waiting positions in

a siding. Thus, an initial solution is constructed which is feasible with respect to all constraints

(also those not mentioned here). The running time is a few seconds. A local search based on a

loss-benefit calculation improves that first solution in a rolling horizon manner, mildly imitating

a manual planner’s procedure. Since this local search uses the dynamic routing algorithm as a

subroutine also the final schedule respects all the constraints. Our solutions are visualized in

exactly the same way the planners are used to see them, in a way-time diagram of the canal, see

Figure 1.

3 Lower Bounds

Not only for theoretical reasons we want to assess the quality of the heuristic solutions we obtain.

The above MIP is suited for this purpose, however, for practical problem instances it takes much

too long to solve it to integer optimality, mainly because of the poor LP relaxation. Instead, we

developed a much more involved model which is solved by a full-fledged branch-and-price algorithm.

The idea is to base an integer program on schedules for all ships on a given segment. Via a sort

of flow conservation constraints these schedules for segments are linked together to form a valid

schedule for the entire canal. The pricing subproblem is a scheduling problem which is interesting in

its own right. In principle, this model is suited to seamlessly integrate the lock scheduling problem

as well. To price the corresponding variables, a particular two-dimensional packing problem needs

to be solved.

4 Preliminary Results and Perspectives

We are provided with historical ship traffic data from recent years and forecasts for the year 2025.

This way, we can compare our schedules to the manual plans. We refrain from giving numerical
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results here. However, in an intermediate evaluation the officers in charge of the enlargement were

impressed and satisfied by the possibilities operations research and discrete optimization have to

offer. We were encouraged to extend our models to take all further details of the planning situation

into account, in particular the locks at both ends of the canal.

Figure 1: Example of a way-time diagram showing one of our solutions.

References

[1] A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling problem.

Oper. Res., 50(5):851–861, 2002.
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1 Introduction

Norway is a major oil and gas producing country with offshore installations in the Norwegian Sea and North

Sea. Statoil is the leading operator on the Norwegian continental shelf and controls several onshore supply

depots along the Norwegian coastline where supply vessels load cargoes to and discharge backloads from

the offshore installations. Statoil hires supply vessels for the supply service on time charter and construct

weekly routes and schedules, which are typically valid for a few months ahead depending on when major

changes in demand are expected.

Thesupply vessel planning problem consists of deciding weekly voyages and schedules from an onshore

supply depot while at the same time determining the optimal fleet of supply vessels. The supply vessel

planning problem is a fleet size and mix and periodic routing problem as a schedule is determined that is to

be repeated on a weekly basis.

On request from Statoil we started up a project aiming to develop a tool that could be used as decision
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support for the supply vessel planning problem. A new model and solution method were developed to be

used for this purpose and is presented here. A problem description is given in Section 2, followed by a

description of the solution method in Section 3 before the work is concluded in Section 4.

2 Problem description and modelling assumptions

The supply vessel planning problem consists of identifying the optimal fleet of supply vessels that are to

service a given number of offshore installations from one common onshore depot while at the same time

determining the weekly routes and schedules for the supply vessels. A route is in this setting a combination

of one or more voyages that a vessel sails during a week. In each voyage the vessel starts at the supply

depot and visits a number of offshore installations before returning to the supply depot.

There are several constraints that need to be considered. The offshore installations may have opening

hours for when they can receive visits from supply vessels. Limited capacity at the supply depot sets a bound

on the number of vessels that may be prepared for a new voyage on a given day. The fleet of available supply

vessels is heterogeneous and each vessel has a given service speed, time charter rate, and capacity. Each

installation has a given demand and requires a given number of visits during the week. The total demand

for all installations visited on a voyage cannot exceed the capacity of the vessel sailing the voyage. All

installations have a given service time that is the lay time for the supply vessels at the installation. The

durations of the voyages are measured in an integer number of days and are limited to be two or three days.

These limitations are to avoid too short voyages with too few visits that do not exploit the supply vessels’

capacities properly, and too long voyages as they involve more uncertainty with regard to sailing time. For

the same reasons there are also defined minimum and maximum numbers of visits for a voyage.

Finally, the departures from the supply depot to a given installation should be fairly evenly spread

throughout the week. It is more important to spread the departures to an installation than the actual visits,

as the demand from an installation is reported continuously. This means, for example, that if an installation

requires three services a week and the supply vessels visiting the installation leave the supply depot on

three consecutive days, a demand may be called in after the third vessel has left and it will be almost five

days until next departure. In such cases it may be necessary to reroute other supply vessels or send out a

helicopter to meet the demand. Such solutions will in most cases be very costly and will be less needed if

the departures are evenly spread.

3 Solution method

To solve the supply vessel planning problem, a voyage based solution method has been developed. The

mathematical formulation for the problem is an extension of the model by (1) who studied a similar problem.

In the mathematical formulation of the problem, letv ∈ V represent a vessel,i ∈ N an offshore

installation, andt ∈ T a time period (one day). SetRv ⊆ R contains candidate voyages that vesselv may

332



sail, indexed byr. These candidate voyages are generated a priori by a full enumeration procedure. Subsets

Rv2 ⊆ Rv andRv3 ⊆ Rv contain voyages for vesselv of duration two and three days, respectively.

Further, parameterCTC
v is the time charter cost for a week for vesselv, CS

vr is all sailing and service costs

associated with vesselv sailing voyager, Bt is the number of supply vessels that may be serviced at the

onshore supply depot on dayt, Si is the number of services offshore installationi requires during a week,

Avir is a constant that is equal to 1 if vesselv services installationi on voyager and 0 otherwise,Dvr is the

duration of voyager sailed by vesselv rounded up to nearest whole day, andFv is the maximum number

of days vesselv may be in service during the planning horizon. Binary variableδv equals 1 if vesselv is

used in the solution and 0 otherwise, and binary variablexvrt equals 1 if vesselv starts to sail voyager in

time periodt and 0 otherwise. The mathematical formulation then becomes:

min
∑

v∈V

CTC
v δv +

∑

v∈V

∑

r∈Rv

∑

t∈T

CS
vrxvrt, (1)

∑

v∈V

∑

r∈R

∑

t∈T

Avirxvrt ≥ Si, i ∈ N , (2)

∑

r∈Rv

∑

t∈T

Dvrxvrt − Fvδv ≤ 0, v ∈ V, (3)

∑

v∈V

∑

r∈Rv

xvrt ≤ Bt, t ∈ T , (4)

∑

r∈Rv2

xrvt +
∑

r∈Rv

xrv,((t+1) mod |T |) ≤ 1, v ∈ V, t ∈ T , (5)

∑

r∈Rv3

xrvt +
∑

r∈Rv

2∑

ν=1

xrv,((t+ν) mod |T |) ≤ 1, v ∈ V, t ∈ T , (6)

δv ∈ {0, 1} , v ∈ V, (7)

xvrt ∈ {0, 1} , v ∈ V, r ∈ Rv, t ∈ T . (8)

The objective function (1) minimizes the number of supply vessels used and the costs of the voyages

sailed by the vessels. Constraints (2) ensure that all installations get their required number of visits during

the planning horizon. Then constraints (3) ensure that the total duration of all voyages sailed by a vessel

does not exceed the maximum number of days the vessel may be in service during the planning horizon,

and that the variableδv must take the value 1 if vesselv is used. Constraints (4) ensure that there are no

more vessels loaded in the supply depot on dayt than there is capacity to service. Constraints (5) and (6)

prevent overlapping voyages. Finally, constraints (7) and (8) set the binary requirements for variablesδv

andxvrt, respectively.

There are several ways to formulate constraints that will ensure that departures to installations are fairly

evenly spread throughout the planning horizon. As an example, for installations requiring three visits a
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week, the following formulation is used:

∑

v∈V

∑

r∈Rv

2∑

ν=0

Avirxvr,((t+ν) mod |T |) ≥ 1, i ∈ N3, t ∈ T , (9)

Here the setN3 contains all installations that require three visits. Then constraints (9) ensure that there will

be at least one departure to these installations during a period of three days (given that the planning horizon

is one week).

The mathematical formulation presented so far gives a good description of the real life supply vessel

planning problem. Other practical aspects of the problem may appear, and many of these can be handled

by the model by adding additional constraints. As an example, this could be case specific considerations,

where for instance certain installations require visits by vessels departing the supply depot on given days.

The solution method has been tested on instances based on real data provided by Statoil. The test results

show that the method will provide good solutions to the supply vessel planning problems within short CPU

time, and for many instances optimal solutions were obtained in less than an hour of CPU time.

4 Concluding remarks

We have presented a real life fleet size and mix and periodic routing problem that appears in the offshore

supply vessel service, and a solution method has been proposed. This is a real life problem that originates

from a project performed together with the leading operator on the Norwegian continental shelf, Statoil.

The solution method has been tested on instances based on real life data, and test results show that the

method works well for the purpose of solving supply vessel planning problems of a realistic size. A version

of the solution method is used by Statoil in their planning operations to establish routing alternatives and

optimal plans for their supply vessels. So far, the model has played an essential role in the process of

reducing the number of supply vessels at one onshore supply depot. According to Statoil, the annual cost

reductions made possible by the use of the voyage based model at this supply depot has been estimated to

3 million USD.
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1 Introduction

In transportation science, congestion pricing is often discussed in the context of vehicular traffic

networks (see, e.g., [1] and [4]) where the problem of setting tolls to reduce congestion can be

classified as first and second best. In first-best toll pricing, one assumes that optimal travel delays

can be induced, for instance through marginal cost pricing. This is the case when all links of the

network can be tolled. Whenever “optimal” tolls are not unique, one can optimize a secondary

objective (see, e.g. [4]). In contrast, second-best toll pricing problem assumes that some roads

are not tollable. In the congestion pricing literature, second-best toll pricing problem is modeled

either as a bilevel optimization problem (see, e.g., [2] and [5]) or a mathematical program with

equilibrium constraints (see, e.g., [6]).

In this paper, we address second-best congestion pricing of a transit system, with the aim

to encourage passengers to select travel strategies that lead to the least travel delay under some

constraints on the fares. Similar to [6], we formulate the second-best problem as a mathematical

program with equilibrium constraint and propose a cutting constraint algorithm for its solution.

Throughout, we assume that transit users are rational, in the sense that they adopt travel

strategies that minimize their individual travel time. In this respect, Section 2 summarizes pas-

senger behaviour upon which equilibrium conditions are based. Movements and travel strategies

yielding user equilibrium and system optimal flows are described in Section 3. In Section 4, we

formulate the second-best transit problem as a mathematical program with equilibrium constraint
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and propose a cutting constraint algorithm for its solution.

2 Passenger movements and travel strategies

Let G = (N, A) be a transit network with node set N , arc set A and group-dependent demand

Dg
(q,r). We assume that there is a schedule for every transit line that lists the daily scheduled

departure times. Let T denote the operating interval of a transit system and cij the travel time

for arc (i, j). We adopt a time-expanded (TE) representation of the network of the form G(V, E),

where V = {it | i ∈ N, 0 ≤ t ≤ T} and E is the union of the following sets:

• in-vehicle arc set {(it, j(t+cij)) | (i, j) ∈ A, t ∈ ∆ij}, where ∆ij is the set of the departure

times from node i of route segment (i, j).

• access arc set {(qt, j(t+cqj))| (q, j) ∈ A, 0 ≤ t ≤ T − cqj}.

• egress arc set {(it, r(t+cir)) | (i, r) ∈ A, 0 ≤ t ≤ T − cir}.

• waiting arc set {(it, i(t+1)) | i ∈ N, 0 ≤ t ≤ T − 1}.

Transit fares and capacities on all in-vehicle arcs given departure time t, are denoted as vt
ij and ut

ij ,

respectively. We assume that passengers behave strategically. A strategy s assigns, at each node

it ∈ V , a user-preference set Es
it

of TE nodes, that may consist of transit, walking, or wait arcs.

The user is then assigned to its preferred available choice. Let S(q,r) denote the set of strategies

for OD pair (q, r). We denote the set of all feasible strategic assignments (SA):

X = {X :
∑

s∈S(q,r)
xs

(q,r,g) = Dg
(q,r), ∀(q, r, g)}.

For a given X ∈ X , πs
(it,j(t+cij))

(X) is the probability that a passenger using strategy s access

arc (it, j(t+cij)). The procedure for computing these access probabilities involves loading the TE

network according to a given SA vector X (for more details, see [3]). These access probabilities

induce node arrival probabilities, αs
it
(X), of accessing node it using strategy s. The expected cost

of a strategy s can be expressed in terms of arc and node probabilities as follows:

Cs
(q,r,g)(X) =

∑
(it,j(t+cij))∈E(pg

(it,j(t+cij))
(X) + γcij + vt

ij)α
s
it
(X)πs

(it,j(t+cij))
(X)

+
∑

(it,i(t+1))∈E γαs
it
(X)πs

(it,i(t+1))
(X),

where γ is a factor converting time into monetary units and pg
(it,j(t+cij))

(·) is the penalty function

that measures the discomfort level for in-vehicle arcs and that accounts for lost opportunities

associated with early departure and arrivals outside the desired arrival interval.
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3 User equilibrium and system optimum

This section presents the formulation of the user equilibrium and system optimum problems for

schedule-based transit networks with travel strategies and capacity constraints. More details about

solution algorithms are given in [3]. A strategic assignment vector XU is in a user equilibrium if

and only if XU solves the following variational inequality:

U-OPT: C(XU )T (X −XU ) ≥ 0, ∀X ∈ X ,

where C(X) is the vector of expected strategy costs associated with X.

The system optimum problem can be formulated as follows:

S-OPT: XS = arg min
X
{C(X)T X : X ∈ X}.

4 Second best congestion pricing

The second best congestion pricing problem can be expressed as the mathematical program with

equilibrium constraint:

SBCP-VI: min
X,β

C(X)T X

s.t. X ∈ X ,

βt
ij ≥ 0, ∀(it, j(t+cij)) /∈ F

βt
ij = 0, ∀(it, j(t+cij)) ∈ F

C(X, β)T (Y −X) ≥ 0, ∀Y ∈ X ,

where βt
ij are time-varying fare adjustments, F is the set of TE arcs for which transit fares vt

ij

cannot be adjusted, and C(X, β) is the vector of expected strategy costs that accounts for fare

adjustments added to each in-vehicle travel cost. If (X∗, β∗) denotes an optimal solution to SBCP-

VI, then the following holds:

C(XU )T XU ≥ C(X∗)T X∗ ≥ C(XS)T XS

Using the extreme point representation of the bounded convex polyhedron X , SBCP-VI can be

reformulated as:

SBCP-EX: min
X,β

C(X)T X

s.t. X ∈ X ,

βt
ij ≥ 0, ∀(it, j(t+cij)) /∈ F

βt
ij = 0, ∀(it, j(t+cij)) ∈ F

C(X, β)T (Y k −X) ≥ 0, ∀k = 1, 2, · · · , n
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We propose for a solution of the above the following cutting constraint algorithm:

Step 0: Let X1 be the optimal solution of S-OPT. Set n = 1 and go to Step 1.

Step 1: Solve the following master problem

(Xn, βn) = arg min
X,β

C(X)T X

s.t. X ∈ X ,

βt
ij ≥ 0, ∀(it, j(t+cij)) /∈ F

βt
ij = 0, ∀(it, j(t+cij)) ∈ F

C(X,β)T (Y k −X) ≥ 0, ∀k = 1, 2, · · · , n

Step 2: Solve the subproblem Y n+1 = arg min{C(Xn, βn)T X}. If C(Xn, βn)T (Y n+1 −Xn) ≥ 0

stop and (Xn, βn) is a solution to SBCP-EX. Otherwise, set n = n + 1 and go to Step 1.

While the above scheme provides a sequence that converges to the optimal solution of the prob-

lem within a finite number of iterations, it relies on the exact solution of nonconvex subproblems.

A key contribution of this work is to show that, based on the structure of the problem, it is possible

to solve the subproblems to near-optimality. We will then discuss the extension of the model to

the situation where both private and transit modes are considered.
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1 Introduction

Bicycle sharing system has rapidly become a popular tool in developed countries. The basic

premise of the bike sharing concept is sustainable transportation. We design the mobility on-

demand services such as bicycle sharing, these problems occur: 1) Although total supply exceeds

total demand, you can’t use or return the mobility due to spatial uneven distribution of demand

or supply, 2) You can’t use the mobility when you want because total demand exceeds supply.

The former problem has been proposed to resolve the spatial imbalance by encouraging a move to

a major port from another small-demand port with price incentives. However, if excess demand

occurs, the incentive can’t solve it.

Another approach is road appointment system or tradable bottleneck permits (TBP) system

(Akamatsu, 2007). It is difficult for road authorities to know users’ desired arraival and willingness

to pay due to the asymmetry of information between road authorities and users. In this system,

tradable permits auction makes the optimal price without being presented users’ preferences di-

rectly. In addition, there is a big advantage not to cause congestion because TBP system does not

issue permits more than road capacity. In on-demand mobility, we can solve the capacity problem

by incorporating TBP system.
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Figure 1: Framework of This Pilot Program System

But, We point out the following two problems of TBP system. One is the problem whether

we can implement the complex trading system techinically in daily life. In this regard, we im-

plemented the system in this research and we conducted the pilot program in real urban space.

Second problem is that we assume that people in theory do rational decision-making but that

real people confront schedule uncertainty. In auction theory, Each user has his or her preference

in full recognition.Actually people cannot recognize their preference due to uncertainty of future

schedule. On this point, we conducted the above pilot program and observed microscopic trading

behavior. And we try to clarify the users’ cognitive structure under uncertainty.

2 Pilot program framework and data

In empirical analysis, we implemented Probe Person System, Bicycle sharing system and Tradable

permits auction system. They are mutually connected. Figure 1 shows the total framework.

First, Probe Person system (Hato and Kitamura, 2008) is a method to get travel diary data

and positioning data in detail by GPS mobile phone. Users operate the mobile phone when they

depart and arrive. Application of the mobile phone records the data of trip OD, travel mode, trip

purpose, time of departure, time of mode change, time of arrival, and location data during trip.

Using Probe Person survey, we can know more travel behavior data than paper-based survey. The

example of PP system is Figure 2.

Second, Bicycle Sharing Tradable Permits System is an operation system of a capacity-limited

sharing service. The system needs use reservation until the previous day and respondents can

reserve bicycle sharing by the application of the mobile phone or the web site. There are two time

slot of bicycle sharing and one is morning (9:30 - 13:00) the other is afternoon (13:30 - 19:00). To

reserve it, respondents need use permit and can participate the following auction to get use permit.

Each permit is set the time when you can use bicycle sharing.

Next, we will describe the tradable permits auction system. There are two systems. One is
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Figure 2: Probe Person Data in Yokohama Downtown Area

single auction. In single, Seller is the administrator of bicycle sharing system only and buyers are

users. Users have a bidding choice when they want. As auction rule is set to second price auction,

the highest bidder wins the auction and he or she pay the second price. In this way, permits are

distributed according to each user’s willingness to pay. Single auction is the mechanism achieving

an efficient allocation of resources but it doesn’t achieve fairness. So, some researchers suggest

double auction mechanism as alternative. In double auction, all permits are allocated to all users

at random for achieving fairness. Then, if users don’t intend to use permits, they can offer them

for sale. It is a phase for achieving efficient allocation. This pilot program implemented both single

and double auction. And this research scopes the double auction mechanism.

The data used were obtained in 2008 at Yokohama Metropolitan Area, Japan by using the

above system. Period is from 10th Nov to 24th Dec and it is 44 days. The activity and trip are

recorded by mobile phone with GPS and Web diary. Respondents who did both probe person

survey and web diary survey are 118. Only 19 people of the respondents participated in pilot

program of bicycle sharing service and we analyzed the small sample data in this paper.

3 Results and Discussion

The number of total tradable permits is 108. But 3 permits are used, 15 are for sale and the

remaining 90 permits are done nothing. If she or he doesn’t set out to use it or can’t use it, they

can offer it for sale and should do for efficient allocation. However, many people didn’t. In general,

expected utility of selling seems to be larger than expected utility of doing nothing. In reality,
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Figure 3: The Lag of Decision-Making

irrational behavior is chosen, that is, they spoiled permits. The reason is thought that respondents

didn’t decide the choice because of their schedule uncertainty.

Figure 3 shows When respondents decide to use or sell their permits. Use reservation is done

until 8 days ago at the soonest and many case are done at the previous day. The choice of selling

denotes the same tendency of ”use”. There is a possibility that schedule uncertainty enables

respondents not to decide about permits until the eve of expiration. And this suggests schedule

uncertainty as a possible cause of a low fluidity of permits in this auction. Therefore we model

trade behavior in bicycle sharing permits auction and we clarify the elements of the irrational

behavior.

4 Conclusions

This paper has taken a close look at the evidence on the influence of spatial relevance and uncer-

tainty of schedule in mobility permits auction. We implemented this pilot program and collected

the data of trade behavior and travel behavior. What we are modeling from the data is trade

behavior considering uncertainty.
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It is a well known fact that selfish behavior results in outcomes that are inefficient in general. A

prime example is the rush-hour phenomenon observed in urban road traffic. Since every traffic

participant solely aims at minimizing her individual travel time, the overall outcome is less efficient,

e.g., in terms of the total average travel time, as if everybody would have been routed according

to a centrally coordinated routing scheme. With the increasing number of traffic participants, the

regulation of traffic becomes an increasingly important issue. One of the most promising means to

regulate traffic is to impose tolls on roads. The basic idea is to impose tolls such the selfish behavior

of the traffic participants leads to an outcome that corresponds to a predetermined routing scheme,

e.g., one that minimizes the total average travel time. In this paper, we consider the problem of

computing such tolls that additionally optimize a toll-dependent objective function.

A common way to model the selfish behavior of traffic participants is by means of a (non-

atomic) network routing game: We are given a directed network G = (V,A), k commodities

(s1, t1), . . . , (sk, tk) ∈ V × V , and a demand ri > 0 for every commodity i ∈ [k] which specifies the

amount of flow that has to be routed from the origin si to the destination ti. Let Pi be the set of

all (simple) directed si, ti-paths in G and define P = ∪i∈[k]Pi. It is convenient to express a flow

as a function f : P → R≥0 that assigns to every path P ∈ P a flow-value fP that is routed along

P . A flow f is feasible if for every commodity i ∈ [k] a total of ri units of flow are routed from si

to ti, i.e., for every i ∈ [k],
∑
P∈Pi

fP = ri. We define the flow on an arc a ∈ A as fa =
∑
P3a fP .

Every arc a ∈ A has a latency function `a : R≥0 → R≥0 associated with it. For each a ∈ A the

latency function `a is assumed to be standard (cf. [13]), i.e., `a is non-negative, non-decreasing and

differentiable and x`a(x) is a convex function of x. The latency `P (f) of a path P with respect to a

flow f is defined as the sum of the latencies of the arcs in the path, i.e., `P (f) =
∑
a∈A `a(fa). The

total cost of a flow f is defined as C(f) =
∑
P∈P fP `P (f) or, equivalently, C(f) =

∑
a∈A fa`a(fa).

1

343



A feasible flow of minimum total cost is called optimal and denoted by f∗. A feasible flow f is a

Nash flow iff

∀i ∈ [k], ∀P ∈ Pi, fP > 0, ∀P ′ ∈ Pi : `P (f) ≤ `P ′(f).

That is, for every commodity the latency of every path that carries some positive amount of flow

is minimum; in particular, this implies that all si, ti-paths to which f assigns a positive amount

of flow have equal latency. Under the assumption that all latency functions are standard, the cost

of a Nash flow is unique (see, e.g., [14]). The price of anarchy is defined as the worst-case ratio

(over all instances) of the cost of a Nash flow and the cost of an optimal flow, i.e., C(f)/C(f∗).

It is well-known (see [14]) that the price of anarchy is unbounded for general standard latency

functions.

An efficient means to reduce the price of anarchy in network routing games is by imposing tolls

on arcs. Basically, every player that traverses arc a ∈ A incurs in addition to the experienced

latency `a(fa) a non-negative toll. We represent the tolls by a vector τ = (τa)a∈A, where τa ∈ R≥0

specifies the toll that is imposed on arc a ∈ A. We assume that players are heterogeneous. That is,

we are given a parameter γi ∈ R>0 for every commodity i ∈ [k] and the total cost of a path P ∈ Pi
with respect to a flow f is defined as `P (f) + γiτ(P ), where τ(P ) :=

∑
a∈P τa. The parameter γi

specifies how the players of commodity i value latency relative to cost. We say that players are

homogeneous if γi = 1 for all i ∈ [k].

A question that arises is whether we can efficiently compute tolls τ = (τa)a∈A such that a

predetermined feasible flow f can be realized as Nash flow, i.e.,

∀i ∈ [k], ∀P ∈ Pi, fP > 0, ∀P ′ ∈ Pi : `P (f) + γiτ(P ) ≤ `P ′(f) + γiτ(P ′).

We call such tolls f -inducing. The problem of computing tolls that induce an optimal flow f∗

is of particular interest and we call such tolls opt-inducing. It is well known (see, e.g., [15]) that

opt-inducing tolls are guaranteed to exist for homogeneous players: Define the marginal cost tolls

as τa := f∗a · `′a(f∗a ) for every arc a ∈ A. Then f∗ is an optimal flow if and only if f∗ is a Nash

flow with respect to `+ τ . Although marginal cost tolls assure that opt-inducing tolls always exist,

there might be a wide variety of such tolls.

Our Contributions. In this paper, we are interested in computing f -inducing tolls such that

an additional (toll-dependent) objective function z(τ) is minimized (or maximized). There are

several natural objective functions that one may want to consider. Here we mainly concentrate on

the following fundamental min-toll-booth problem): Given some weights (wa)a∈A on the arcs, the

goal is to compute f -inducing tolls that minimize the sum of the weights of the arcs with positive

tolls, i.e., z(τ) :=
∑
a∈A:τa>0 wa. The min-toll-booth problem thus models situations where the

imposition of a toll on an arc a ∈ A incurs a certain cost wa (e.g., operational costs to collect the
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tolls). In the unit-weight case, the problem reduces to computing f -inducing tolls such that the

number of arcs that are subject to charges is minimized. Our main contributions are threefold:

(1) We prove that a special case of the min-toll-booth problem for single-commodity instances

is polynomial time equivalent to the minimum length bounded cut problem (see [1]). This result en-

ables us to prove that the min-toll-booth problem is NP-hard and APX-hard, even for very restricted

single-commodity instances. While constant approximation algorithms may still be obtainable in

the single-commodity case, we rule out their existence for the multi-commodity min-toll-booth

problem. Via a reduction from the directed multicut problem, we show that the min-toll-booth

problem cannot be approximated within a factor of 2Ω(log1−ε n) for every ε > 0.

(2) In light of the above hardness results, we derive an approximation algorithm for the min-toll-

booth problem. For single-commodity instances we prove that its approximation factor is bounded

by the difference between the latencies of the longest flow-carrying path and the shortest path.

For general instances the algorithm achieves an (instance-dependent) approximation factor that

depends on the largest toll in an optimal solution (which might be difficult to quantify). However,

this is the first approximation algorithm for the min-toll-booth problem.

(3) We present experimental findings on real-world instances for the min-toll-booth prob-

lem (and some other fundamental network toll problems). The experiments show that our approx-

imation algorithm performs much better in practice than its worst-case approximation guarantee

suggests. For most of the test instances our algorithm computes solutions whose cost is at most a

factor 4 worse than that of an optimal solution.

Related Work. Pigou [12] already suggested in 1920 that in order to obtain a system optimal

traffic pattern vehicles should be charged taxes equal to the difference between marginal social

and private cost (marginal cost pricing). The theoretical foundation of marginal cost pricing was

further explored by many researchers; see, for example, Knight [10], Beckmann et al. [2], and

Smith [15].

A large body of work in the transportation literature is devoted to the characterization of the

set of feasible tolls inducing an optimal flow as equilibrium by systems of linear inequalities; see,

among others, Bergendorff et al. [3], Hearn and Ramana [8], Larsson and Patriksson [11]. Hearn

and Ramana [8] also proposed secondary optimization problems, where the goal is to minimize

(maximize) a toll-dependent objective function over the set of feasible tolls. In particular, they

were the first to study the min-toll-booth problem. Dial [5, 6] proposed efficient algorithms for

finding tolls that minimize the total revenue.

Recent studies addressed the setting of heterogeneous players, where players may have different

trade-offs for delay versus toll. In this setting, one can exploit linear-programming duality to

obtain tolls that induce an optimal flow; see, e.g., Cole et al. [4], Fleischer et al. [7], Karakostas et

al. [9], and Swamy [16].
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1 Introduction

Over the last decade, the study of complex networks spanning from the Internet to social net-

works has grown enormously [1, 2]. Understanding the coupled dynamics between the structural

properties and the functions of complex networks has been the principal focus of a wide area of

research. A fundamental question relates to how the interactions between the nodes or vertices

of the network may cause a small movement in the network to propagate throughout the whole

network. Such phenomenon called as cascades or contagion can occur, for example, in the trans-

mission of infectious diseases through communities [3, 4], global spread of computer viruses on

the web [5, 6], diffusion of activities, beliefs, ideas, and emotions in social networks [7], failures in

electrical systems [8] and the collapse of financial systems [10].

Such contagious behavior can also become a vital component to investigate transportation

demand analysis under specific situations. Since transportation systems, have a significant coupling

between the dynamic demand (manifestation of human behavior) and the supply, small changes

in the behavior can have significant impact on the transportation network. For example, the

information cascade or social contagion process in the social network can be applicable to the

modeling of the complex process of information propagation within the social network in hurricane
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evacuations. However, this influence of social interactions among the population is yet to be

fully understood for modeling the complex evacuation process during an emergency. Under an

emergency situation, individuals in a population usually exhibit herd-like behavior as their decisions

are based on the actions of other individuals rather than their own perception of the information

about the problem. Whether to evacuate or not; when to evacuate, where and which route to

take are some important dimensions of the decisions involved in the process which are influenced

primarily by the information and by peers in the social network.

In this paper, we develop a network science model to investigate the social contagion process

within a network where individuals adopt alternate behaviors by following their peers. Specifically,

we investigate the threshold model of social contagion on random networks with a particular mixing

patterns. The threshold model follows a simple binary decision rule such as an individual agent

observes the current states (either 0 or 1 i.e either evacuated or not-evacuated) of k other agents

which we call its neighbors, and adopts state 1 if at least a threshold fraction of its k neighbors

are in state 1, else it adopts state 0. We test the threshold model of individual decision making

process assuming a distribution of threshold value for individuals. We also investigate the effects

of mixing patterns of the social network to the propagation or diffusion among the population. As

such this paper envisions to bring together concepts from complex networks and transportation

to develop an integrated contagion propagation model. Initially, our analytical model will derive

strict conditions for the information cascade to diffuse efficiently. Our simulation model will test

the findings of the analytical results.

The threshold model of social contagion on random networks was first proposed and studied

by Watts [14]. Gleeson [12] introduced a method to determine the mean avalanche size of modular

random networks. Dodds and Payne [11] investigated the social contagion process on degree

correlated networks. However, the mixing in their networks is based on vertex degrees not based

on any socio-demographic characteristics such as income, ethnicity or the race of individuals in

the social network. It is found from the literature that the modularity or community structure or

assortative mixing in networks are not well represented in studies related to threshold model of

contagion process in social networks.

We hypothesize that social mixing patterns play an important role for contagion process in

social network and become an important part of the decision making process during an evacuation

period. The principal objective of this paper is to find the effects of mixing patterns on the

threshold model of social contagion process on random networks.
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2 Analytical Model

In this section we try to determine the condition at which a social cascade or contagion will occur

within a hypothetical network having mixing pattern based on some discrete characteristics; this

type of network is called assortatively mixed network. The analytical derivation of the cascade

condition draws from previous work of Newman [13] and Watts [14].

Let us consider a mixing matrix eij , degree distribution of vertices p(i)
k of type i = 1, 2, ..., n

and a distribution of threshold values of Pthreshold(φ)

Following the definitions provided in Newman [13], let a vertex of type i has degree k. These

k edges are divided into n types with some partition {r1, r2, ..., rj} where
∑n

j=1 rj = k

Now, the probability that a particular partition {rj} takes a particular value is given by fol-

lowing equation of multinomial probability

P i(k, {rj}) = k!
∏
j

1
rj !

[
eij∑
j eij

]rj

(1)

The concept of generating function is used for the distribution of the number of edges for each

type,[13, 15]

G
(i)
0 (x1, x2, ..., xn) =

∑∞
k=0 p

(i)
k

∑
{rj} δ(k,

∑
j rj)P i(k, {rj})xr1

1 x
r2
2 ...x

rn
n

=
∑∞

k=0 p
(i)
k

[∑
j

eijxj∑
j

eij

]k

= G
(i)
0

(∑
j

eijxj∑
j

eij

)
Where,δ is the Kronecker delta function and G(i)

0 (x) =
∑

k p
(i)
k xk is the generating function for

the degree distribution p
(i)
k .

Now, one important feature to find is the distribution of the degree of vertex of type i following

a randomly chosen edge,

G
(i)
1 (x) =

∑
k kp

(i)
k xk−1∑

k kp
(i)
k

=
1
zi
G

(i)
′

0 (x) (2)

Where zi ≡ G(i)
′

0 (1) is the mean degree of type i vertices.

For the distribution of the edges of different types,

G
(i)
1 (x1, x2, ..., xn) = G

(i)
1

(∑
j eijxj∑

j eij

)
(3)

Now if we consider a threshold model where a vertex with degree k is vulnerable with probability,

ρk = P [φ ≤ 1
k ] then from Watts [14], probability of a vertex having degree k and being vulnerable

is ρkpk and then the generating function for vulnerable vertex degree will be F0(x) =
∑

k ρkpkx
k

Similarly, for our case, the generating function for vulnerable vertex degree of type i will be

F
(i)
0 (x) =

∑
k

ρ
(i)
k p

(i)
k xk (4)
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Then the fraction of vulnerable vertices of type i will be P (i)
v = F

(i)
0 (1) =

∑
k ρ

(i)
k p

(i)
k . And the

average degree of a vulnerable vertex of type i is, z(i)
v = F

(i)′

0 (1) =
∑

k ρ
(i)
k kp

(i)
k .

But the average degree of any vertex of type i will be, z(i) = G
(i)′

0 (1) =
∑

k kp
(i)
k

Hence, the generating function for the distribution of the number of vulnerable edges for each

type is F (i)
0 (x1, x2, ..., xn) = F

(i)
0

(∑
j

eijxj∑
j

eij

)
Similar to the previous formula for randomly chosen edge, we can also find the generat-

ing function for the distributions of the vulnerable vertex degrees of type i following a ran-

domly chosen edge. F
(i)
1 (x) = 1

z(i)F
(i)′

0 (x). For the distribution of the edges of different types,

F
(i)
1 (x1, x2, ..., xn) = F

(i)
1

(∑
j

eijxj∑
j

eij

)
An important distribution to observe is the distribution of the number of vulnerable vertices

that can be reached by following a random edge to a vertex of type i. The generating function

H
(i)
1 for such distribution satisfies the following self-consistency condition

H
(i)
1 (x) = 1− F (i)

1 (1) + xF
(i)
1

[
H

(1)
1 (x), ...,H(n)

1 (x)
]

(5)

And similarly the distribution of the number of vulnerable vertices that can be reached from a

randomly chosen vertex of type i is generated by

H
(i)
0 (x) = 1− F (i)

0 (1) + xF
(i)
0

[
H

(1)
1 (x), ...,H(n)

1 (x)
]

(6)

The average number of vulnerable vertices si reachable from a vertex of type i is

si = dH
(i)
0

dx |x=1 = F
(i)
0

[
H

(1)
1 (1), ...,H(n)

1 (1)
]

+ F
(i)′

0 (1)
∑

j
eijH

(j)′
1 (1)∑

j
eij

= P
(i)
v + F

(i)′

0 (1)
∑

j
eijH

(j)′
1 (1)∑

j
eij

= P
(i)
v + z

(i)
v

∑
j

eijH
(j)′
1 (1)∑

j
eij

This can be written in matrix format,

s = Pv + m0H
′

1(1) (7)

Where m0 is a matrix [m0]ij = z(i)
v eij∑

j
eij

Now to find s, we will need to know H
′

1(1)

H
(i)′

1 (1) = F
(i)
1

[
H

(1)
1 (1), ...,H(n)

1 (1)
]

+ F
(i)′

1

[
H

(1)
1 (1), ...,H(n)

1 (1)
]

= F
(i)
1 (1) + F

(i)′

1 (1)
∑

j
eijH

(j)′
1 (1)∑

j
eij

In matrix format,

H
′

1(1) = F1(1) + m1H
′

1(1) = F1(1)[I−m1]−1 (8)

Where m1 is a matrix [m1]ij = F
(i)′
1 (1)eij∑

j
eij

F
(i)′

1 (1) = 1
z(i)F

(i)′′

0 (1) = 1
z(i)

∑
k ρ

(i)
k p

(i)
k k(k − 1) = 1

z(i) (
〈
k2
〉
− 〈k〉) = z

(i)
v2

z
(i)
1
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Where z(i)
1 ≡ z(i) (average degree of vertices) and z

(i)
v2 is the second vulnerable neighbors of a

vertex of type i.

So matrix m1 becomes, [m1]ij = z
(i)
v2 eij

z
(i)
1

∑
j

eij

So finally, equation (7) for average component size becomes,

s = Pv + m0 [I−m1]−1 F1(1) (9)

A cascade will happen when s diverges and s will diverge when det[I−m1] will reach its first

zero. This condition is similar to Newman [13]. However, it is interesting to know when this will

happen for assortatively mixed networks.

1−
z
(i)
v2

∑
j

eij

z
(i)
1

∑
j

eij

= 0

⇒ z
(i)
v2 = z

(i)
1

This means that a cascade will happen when the average first neighbors are equal to the average

second vulnerable neighbors.

3 Simulation and Conclusions

In the full paper, we will develop the full set of analytical models and develop a simulation model

to investigate whether our analytical findings correspond to the simulation results. Briefly, the

simulation model consists of two stages: first stage builds an assortatively mixed network following

[13] and second stage applies the threshold model of social contagion on the network. The steps

are as following:

Stage I - Building the assortatively mixed network

1. Choose first number of edges M of the network and then draw M edges from the distribution

eij

2. Count the number of ends of edges of each type i, to obtain the sum of mi; calculate ni = mi

zi

where zi is the desired mean degree of vertices of type i

3. Draw ni vertices from p
(i)
k of type i making the sum of degrees of the vertices to be mi

4. Randomly pair up the mi ends of edges of type i with the generated vertices so that each

vertex has the number of attached edges according to its chosen degree

5. Repeat step 3 and 4 for each vertex type

Stage II - Applying the threshold model

1. Each vertex is given a fixed threshold value φ sampled from Pthreshold(φ).

2. Vertex states update at times t = 0, 1, 2, ... At each time step a vertex can either of the two

states σ0 (Not evacuated) and σ1 (Decided to evacuate). Each vertex observes the fraction of its

neighbors in state σ1 and switches to σ1 if the fractions exceeds its threshold φ.
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We will also investigate, in the full paper, the effects of the strength of each edge. In the above

model individual’s neighbors have equal weight while calculating the fraction of the people who

have decided to evacuate. However, there could be alternative mechanisms such as individuals put

higher weights for a particular group (i.e. same ethnicity) of their neighbors while other neighbors

have lower weight when calculating the fraction of the people who have decided to evacuate.

This paper will contribute to the transportation literature in terms of building a modeling frame-

work of incorporating the social influence on decision making relevant for transportation modeling.

Although the social contagion models have been studied in network analysis more commonly, they

have not been used in any previous transportation literature to the best of the authors’ knowledge.

We believe that such introduction of social influences can improve the modeling capabilities and

can become an essential component for future integrated transportation models.
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1 Introduction 
 

For many applications of optimized transportation management, there is still a large gap between 

requirements and the performance of decision support systems of today. Vehicle routing is no 

exception [8]. Although there have been a tremendous increase in our ability to solve ever more 

complex VRPs (partly due to methodological improvements, partly due to the general increase in 

computing power), the ability to consistently provide better routing plans in shorter time across a 

variety of instances will give substantial additional savings. With VRP methods that are more powerful 

and robust, applications that are too large or too complex for routing tools today will become 

effectively solvable. 

For solving a variety of industrial VRPs, some form of approximate solution method is 

required in a generic vehicle routing tool [9]. Metaheuristics constitute a popular basis for solving rich 

and large-size VRPs [3,4,7]. Variants and hybrids of Large Neighborhood Search, Variable 

Neighborhood Search, and Iterated Local Search methods have proven remarkable performance lately 

[5,13]. Heuristics based on exact methods such as column generation, and hybrid methods, for instance 
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combining exact methods and local search, have recently proven to be highly effective in solving 

complex VRPs. 

Parallel computing is one way of improving both performance and robustness of VRP 

methods. Parallelism comes in many guises, ranging from low level instruction parallelism to coarse-

grained cooperative parallel solvers. We distinguish between task parallelism and data parallelism (or 

stream processing). Parallel methods in discrete optimization are not new [1,15]. According to the 

recent survey of Crainic [7] however, the literature on parallel methods for the VRP is scarce before 

year 2000. The survey has 80 references that almost exclusively focus on task parallelization for the 

VRP. 

The optimization methods that are utilized by vehicle routing tools of today are tailored to 

yesterday’s computer architectures and sequential processing. Standard (commodity) PCs today have 

2-8 cores that support task parallelism. The number of cores is expected to increase rapidly. Moreover, 

the performance and programmability of special processors, such as General Purpose Graphics 

Processing Units (GPGPUs) for data parallel stream processing, is improving very rapidly. Today’s 

GPUs greatly outpace CPUs in arithmetic throughput and memory bandwidth. 

Heterogeneous computing aims at combining the task parallelism of traditional multi-

core CPUs and accelerator cores to deliver unprecedented levels of performance [2,6]. It has shown 

impressive results in scientific computing, e.g. in simulation and visualization. Sequential algorithms 

cannot benefit from the rapid, parallelism based performance increase of modern heterogeneous PC 

architectures. The new architectures call for a rethinking of optimization algorithms. 

 

2 Solving VRPs with Heterogeneous Computing 
 

The literature on heterogeneous computing in discrete optimization is scarce. We know of no paper 

that investigates the use of heterogeneous computing for the VRP, but there is ongoing work on GPU 

processing for local search [12]. 

We investigate the potential of heterogeneous computing in solving VRPs. The targeted 

heterogeneous computing platform is a modern multi-core PC with a GPU for stream processing. Our 

starting point is the well known and much studied Distance Constrained VRP (DVRP), but our aim is 

to extend the work to a rich VRP model. The solution method is inspired from earlier work on 

industrial, rich VRPs by a subset of the authors [10], as well as ideas from Irnich et al. [11]. 

The solution method we investigate is a local search based metaheuristic. In broad terms, it is 

a hybrid between Iterated Local Search, Variable Neighborhood Search, and Large Neighborhood 

Search. We use a giant tour representation of solutions, and utilize the general resource concept and 

resource extension functions to handle constraints. 

On each iteration, a Variable Neighborhood Descent with restricted k-opt moves in the giant 

tour representation, k=2,...,5 is executed until a local optimum is reached. Candidate lists are utilized to 

reduce neighborhood size. A phase of Adaptive Large Neighborhood Search with various destructors 
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and constructors [13] is then executed until a timeout with no improvement. A new iteration is then 

started, and the whole process is continued until a given time limit. 

Stream processing on the GPU is utilized for data parallel neighborhood evaluation. A general 

kernel for delta value calculation of the objective and feasibility check of a neighbor executes on the 

available GPU cores. Small sized neighborhoods (size depending on the specific type of GPU) are 

executed in true parallel. For larger neighborhoods, the GPU evaluates the neighborhood in several 

chunks. 

Our method will later be extended with task parallelism targeted at multiple heterogeneous 

computers. Task parallelism will first be targeted at rather embarrassingly parallel tasks of Large 

Neighborhood Search [14], Variable Neighborhood Search, and Iterated Local Search. Later, we shall 

investigate heterogeneous computing for cooperative solvers. 

In the talk, we briefly explain modern PC architectures and the general principles of 

heterogeneous computing. We illustrate how multi-core and GPU computing may be utilized for 

higher performance and more robust VRP solvers, and explain the details of our solution method for 

the DVRP. We present the results of computational experiments on standard CVRP/DVRP 

benchmarks from the literature as well as industrial test instances from newspaper distribution. 

Perspectives and directions for future work are given. 
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1 Introduction

We study a real world problem occurring in the waste collection industry, which we will call the

Waste Bin Allocation And Routing Problem (WBARP). In this problem we have to balance the

trade-off between the service frequency of a given waste-collection site over a planning period, and

the number of bins that can be placed there. More precisely, if a site has a higher service frequency,

the routing cost will increase, since we have to visit this site more often, but at the same time the

allocation cost is less, because we use a smaller number of bins. Bins used may be of different types,

each characterized by different capacity and cost. Moreover, due to possible space limitations at

each collection site there is a limit on the total number of bins it can accommodate, as well as a

limit on the total number of bins of each type that can be used.

So our problem consists of two aspects. On the one hand there is the routing, on the other

hand there is the part of deciding how many bins to place at each site given the restrictions on

space and on the total number of bins to be used.

2 Problem Formulation

Concerning the routing part, a similar problem has already been studied in [2] and [3], where an

extension of the classical Periodic Vehicle Routing Problem (PVRP), called PVRP with Service

Choice (PVRP-SC) is considered. The classical PVRP extends the Vehicle Routing Problem to a
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m day planning horizon. A set of customers requires regular visits during the planning horizon.

The timing of the visits is not given, but every customer has a certain visit frequency ei that must

be respected. Moreover, for every customer a set Ci of allowable visit combinations (i.e., a set

of days in which the service must occur) is given. Hence the PVRP consists of choosing for each

customer a visit combination and defining a set of routes for each day of the planning horizon with

overall minimum cost. In the PVRP-SC the visit frequency is not given, but chosen during the

search. Moreover, a cost is defined to measure the benefit of a service frequency. In our problem

such a benefit is based on the bin allocation.

As previously mentioned, the second aspect of the problem is the allocation of the bins. This

problem may be defined as follows. We are given a set V of n collection sites, each characterized by

the volume of waste produced per day, qi, and a maximum capacity for that site, Ui, i = 1, . . . , n.

We are also given a set of m bin types, each characterized by a volume capacity Qj , the amount

of space required at a site ej , a purchase cost CP
j and by a maximum total number Mj that may

be used, j = 1, . . . ,m. Note that the purchase cost may also include the maintenance costs, and

that all these costs are relative to a single service time horizon. For the the sake of simplicity we

only consider a single type of waste.

Service at collection sites may be performed according to different possible service profiles.

In particular a service profile specifies in which relative days of the service period the bins are

served (i.e., emptied). For our purposes, we are given k service profiles, each associated with a

maximum number of time intervals between two consecutive visits, ah, h = 1, . . . , k. Note that

to appropriately define the total capacity required at a given collection site the only important

information about the service profile is the maximum number of days between two consecutive

visits.

We also consider the fact that often sites are grouped into zones to which should be assigned

the same service profile. To this end, given a set of s zones let us define the site-zone association

by means of a matrix of binary coefficients πi` which take value 1 iff site i (i = 1, . . . , n) belongs

to zone ` (` = 1, . . . , s), and 0 otherwise. Let f`h be a set of constants indicating whether service

profile h is chosen for zone `.

We may also take into account the current bin allocation and therefore want to optimize the

cost of modifying the current configuration. Some additional problem input data are required.

First of all, for each site i (i = 1, . . . , n) let pij be the current number of bins of type j present in

the site, j = 1, . . . ,m. Note that if we do not want to take the current allocation into account, all

pij are simply set to 0.

For each bin type j (j = 1, . . . ,m) in addition to the already defined purchase cost, CP
j , we now

introduce specific costs for the transfer of a bin from the depot to a site, CT
j ,and for the removal

from the site to the depot, CR
j . Note, that the transfer of a bin from one site to another consists
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of a removal from one site and a movement to the other one. In practice transfers are performed

by collecting all containers, then bringing them to the depot and finally distributing all containers

to their destination.

The model makes use of the following decision variables. The integer variable xij is the number

of bins of type j = 1, . . . ,m, allocated to site i = 1, . . . , n. Since we need to distinguish between

the bins that are actually purchased and those that are simply moved between sites, we introduce

new set of continuous variables. In particular, for each pair (i, j) of site and bin type we let z+
ij

and z−ij denote the number of bins of type j that are added or removed form site i, respectively.

Moreover, for each bin type j (j = 1, . . . ,m) let wj denote the total number of bin of that type to

be purchased. The model is then:

min
m∑

j=1

CP
j wj +

n∑
i=1

m∑
j=1

CR
j z
−
ij +

n∑
i=1

m∑
j=1

CT
j z

+
ij

subject to

m∑
j=1

Qjxij − qi
k∑

h=1

ah

s∑
`=1

πi`f`h ≥ 0, ∀ i = 1, . . . , n, (1)

m∑
j=1

xijej ≤ Ui ∀ i = 1, . . . , n, (2)

wj ≤Mj ∀ j = 1, . . . ,m, (3)

z+
ij ≥ xij − pij ∀ i = 1, . . . , n; j = 1, . . . ,m, (4)

z−ij ≥ pij − xij ∀ i = 1, . . . , n; j = 1, . . . ,m, (5)

xij − z+
ij + z−ij = pij ∀ i = 1, . . . , n; j = 1, . . . ,m, (6)

wj ≥
n∑

i=1

(z+
ij − z

−
ij) ∀ j = 1, . . . ,m, (7)

xij ≥ 0 and integer, ∀ i = 1, . . . , n; j = 1, . . . ,m, (8)

z+
ij , z

−
ij ≥ 0, ∀ i = 1, . . . , n; j = 1, . . . ,m, (9)

wj ≥ 0, ∀ j = 1, . . . ,m, (10)

The objective function minimizes purchase, movement and transfer cost. Constraints (1) impose

the capacity requirements by requiring that the total capacity of the bins at a given site is not

smaller than the maximum amounts of waste produced at the site between two consecutive visits

of the selected service profile. Moreover, constraints (2) limit the total number of bins that may be

associated with a site, and constraints (3) limit the total number of bins that may be used for each

bin type. Constraints (4), (5) and (6) control the number of bins that are added and the number

of bins that are removed. Constraints (7) state that the number of bins to be purchased for every
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bin type is the difference between the number of bins that are added and those that are removed.

Finally, constraints (8), (9) and (10) define the type of the decision variables.

3 Solution Approaches

We have analyzed and tested the above model for bin allocation and we found that it is solved

very fast with CPLEX (within one second), when applied to instance with practically relevant

size, i.e. having several hundreds of collection sites. This gives way for incorporating this model

within a routing framework. In a first step we develop a method based on a VNS for the PVRP

(based on that presented in [1]), that is able to solve the PVRP-SC . Then we incorporate the bin

allocation in the routing framework, so as to solve the WBARP. Since the bin allocation model

solves very fast, we can incorporate it in the routing part whenever new solutions are found that

change the visit frequency of at least one customer. Note that for the bin allocation problem a

different service profile means a service profile that has a different maximum number of days in

between two consecutive visits, i.e. a different ah. Changes between visit frequencies with the

same ah do not affect a solution to the bin allocation model. The proposed method is evaluated

through computational testing on instances from practical applications.
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1 Introduction

The splitting of a customer’s demand between several vehicles of a given fleet seems natural in the

attempt to carry out efficient transportation. Today operations research (OR) accounts for this

mainly through study of the split delivery vehicle routing problem (SDVRP). The real problem

studied here can be characterized as a split pickup split delivery problem with time windows and

capacity constraints and will be referred to as SPSDP(TW) throughout this paper. The pickup and

delivery problem (PDP) has been extensively studied in many variants, see for example reviews

of [1, 2]. A commented review is provided by [3]. Variants, that treat split of quantities and

many-to-many relations for pickup and delivery nodes are scarce. [2] for example names only one

study, in which pickup and delivery points are non-paired for the multi-vehicle case. Pickup and

delivery problems with split for both pickup and delivery are not mentioned in the review at all.

The only PDP with multiple vehicles and allowed split in both pickup and delivery nodes known

to the authors is [6].

In this study we transfer ideas used by [4] and [5] for the SDVRP to the SPSDPTW. We

develop a branch-and-price algorithm whose master problem is similar to the master problem in

[4]. However, our subproblem is considerably more complex and therefore we suggest using column

generation for the subproblem itself.

This extended abstract is organized in the following way: Section 2 gives a simplified descrip-
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tion of the problem and Section 3 gives an overview of our solution approach. A comment about

the results is given at the end in Section 4.

2 Problem description

Our basic model resembles the following situation: Main entities are a set of heterogeneous ships

V, a set of pickup and delivery time windows N and a set of products, C. Ships operate on a

directed Graph G = (N ,A) where N is the set of time windows and A the set of arcs. Each

ship has an individual initial location and may be sent to an individual final location. Each time

window i ∈ N is associated with a pickup or delivery port, a quantity Qi of a particular product

c ∈ C, and a time interval [T i, T i] in which service has to start. Pickup and delivery quantities and

may exceed ship capacity.

There can be several choices of pickup time windows to supply a given delivery time window

and vice versa. Pickup and delivery ports accumulate in certain pickup or delivery regions. Large

distances between pickup and delivery regions lead to routes having a voyage structure. On a

voyage a ship may visit one or several pickup regions followed by one or several delivery regions. It

is unrealistic that a ship carries cargo from a delivery region back to any pickup region. If voyage

length allows, a ship may undertake several voyages during the planning period. The number

of time windows a ship services in a region is limited by practical considerations. Therefore the

maximum number of different grades simultaneously onboard is limited, too. Since pickup and

delivery times may amount to several days for large tanker ships, the quantities picked up and

delivered can influence the time feasibility of a route. For time feasibility it is sufficient that a

ship arrives at time window i not later than closing time T i. A maximum waiting time between

arrival at time window i and time window opening T i may be desired. Sailing times TS
ijv on arcs

(i, j) ∈ A are assumed to be deterministic. Two types of capacity, weight and volume, have to be

taken into account. Capacity changes during operation due to external factors like for example

limited water depth and port regulations. Hence, pickup and delivery quantities can be influenced

by the order in which time windows are visited. A ship is allowed to serve any fraction of a time

window quantity.

3 Solution approach

Our research is targeted at solving the stated problem by an exact column generation method. Pre-

liminary tests with pre-generated columns showed that master problems with continuous quantity

variables for pickup and delivery solved much slower than master problems where discrete pickup

and delivery quantities had been already imbedded in the columns.
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The latter approach has already been studied for the SDVRP by [4] and [5], who successfully

exploit the special structure of their subproblems. Facing pickup and delivery, multiple com-

modities, arc dependent capacities and quantity dependent service times, we had to resort to an

extended solution approach, namely nested column generation as [7] uses the term. In nested

column generation the subproblem is solved by column generation itself.

We define an all-ship column generation master problem and call it RMP 1, i.e. restricted

master problem on level 1. The RMP 1 has columns representing a subset of possible routes with

specific pickup and delivery quantities, called cargo patterns, for all ships . A feasible solution of the

RMP 1 is a convex combination of cargo patterns for a particular route for each used ship. Some

of the columns in this problem are generated on a second level as solutions of single-ship master

problems, RMP 2, for each ship. The rest of the columns are found by heuristically changing

pickup and delivery quantities for known time window sequences found in the RMP 2. In essence

a RMP 2 is a route selection and cargo pattern generation problem. It has variables that represent

some of the possible routes for the given ship. But instead of having quantity information in the

route columns, we have separate continuous variables to determine pickup and delivery quantities.

The level 2 subproblem is a rather standard elementary shortest path problem with time windows

(ESPPTW). During solving of a particular RMP 2 a dynamic program provides routes without

cargo quantity information that are RMP 2 columns with non-positive reduced cost.

The whole algorithm is implemented in C++ using the non-commercial branch-cut-and-price

framework SCIP (scip.zib.de) developed by [8]. For the dynamic program we use the resource

constrained shortest path algorithm provided by the boost C++ graph libraries (www.boost.org).

To facilitate the full branching capability of SCIP we choose to branch on single variables. Therefore

we have defined binary variables for both a ship visiting a time window, and a ship using an arc

on both master problem levels. Each of these variables need a matrix row to calculate their values

dependent on the use of the route columns.

4 Results and Conclusion

We present results for the described method and compare these with column pre-generation results.

The results are based on twelve instances based on realistic data. Column pre-generation for the

model with continuous pickup and delivery variables turned out to be a not promising approach,

but showed that better solutions can be obtained in comparison to the approach with discrete split.

The latter performed well for a reasonable discretization. However, for the largest instances it can

be a challenge to execute pre-generation in reasonable time. With the branch-and-price algorithm

we were able to improve results since it performs significantly better than the first pre-generation

method and provides a larger feasible space than the model with discrete split. Running time
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improvements will be discussed.

For the SDVRP, the largest instances optimally solvable today comprise about 100 customers

(Desaulniers, 2008). Allowing a split of loads in both, the pickup and delivery time windows implies

a complication of this already tremendously difficult optimization problem. The problem gets even

more complex with arc dependent capacity constraints and quantity dependent time window service

times. As a computational consequence this implies a further combinatorial explosion of solution

possibilities, so it is not surprising that the resulting type of SPSDP is even harder to solve. It is

precisely this explosion (in finding optimal combinations of split loads) which consumes most of

our reported computation times. Thus, being able to provide high quality solutions to instances

with almost 50 pickup and delivery locations (as we do) is a respectable achievement already
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1 Problem description

The Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) is a variant of the

classic Vehicle Routing Problem with Time Windows (VRPTW) where vehicles can be scheduled

more than one trip within a workday or planning time horizon. In this study, we consider a special

case of the MTVRPTW, called MTVRPTW-LD, where duration of trips (routes) are limited.

The MTVRPTW-LD is defined as follows. Let G = (V,A) be a directed graph where V =

{v0, · · · , vn} with v0 representing the depot and v1, · · · , vn the customers, a cost cij for all arcs

(vi, vj) ∈ A, a fleet of U vehicles with a load capacity Q, a planning time horizon [0, T ], a duration

limit tmax and for each vi ∈ {v1, · · · , vn} a demand di, a time window [ai, bi] with ai, bi ∈ [0, T ] and

a service time sti. The problem is to find a minimum cost set of trips visiting each customer only

once with respect to capacity and time constraints, and such that two routes cannot be travelled at

the same time by the same vehicle. Trip duration is the elapsed time between the depot departure

time, after the vehicle has been loaded, and the arrival time to the last customer of the trip, before

the delivery. The schedule of a vehicle must also include, in the complete trip duration, the loading

time, the service time to last customer and return time to depot.

This problem was addressed in 2007 and 2009 by N. Azi et al. They designed an exact method

for the single-vehicle case [1] first, then for the multi-vehicle case [2]. Based on these investigations

and on previous works [4], we developed a new exact method, allowing large improvements in terms

of computing times.

366



2 A new exact method for the MTVRPTW-LD

Let us define a ”trip structure” s, simply denominated hereafter ”structure”, as an ordered list of

customers than can be visited during a trip while satisfying their time constraints. Let ds be the

minimal complete trip duration needed to visit these customers and come back to depot, in this

order. For every structure s, a time window [as, bs] can be calculated such that as (bs, respectively)

is the earliest departure time (latest arrival time, respectively) permitting to visit the customers

of s with a duration ds. A trip is now defined as a structure with fixed time position.

The proposed algorithm is composed of two phases: enumeration and column generation.

2.1 Enumeration phase

As long as the duration limit is relatively short, it is possible to generate all the non-dominated

structures [2]. In order to do this, we adapted the dynamic programming algorithm described in

[3], mainly by modifying resources and dominance rules.

We defined the labels as follows: a path p from the origin v0 to node vj is labeled with

Lp = {cp, vj , hp, qp, rdp, ap, bp,W
v1
p , · · · ,W vn

p }, where cp is the reduced cost of this partial path, hp

and qp are the values of time and load resources, respectively, accumulated along this path; rdp is

the minimal trip duration of the partial path represented by Lp ; ap and bp are the start and end

of the label time window as defined above; and W vi
p = 1 if node vi is visited by Lp, 0 otherwise.

As for dominance, we use the following relation: if p and p′ are two differents paths from origin

v0 to node vj with labels Lp and Lp′ , respectively, then p dominates p′ if and only if the nodes

visited by p and by p′ are the same (W vi
p = W vi

p′ for every customer vi), the time window of

Lp includes the time window of Lp′ (ap ≤ ap′ and bp ≥ bp′), and cp ≤ cp′ , hp ≤ hp′ , qp ≤ qp′ ,

rdp ≤ rdp′ .

2.2 Column generation phase

The second phase of the algorithm is based on column generation and branch and price. We propose

a set covering formulation where columns (variables) represent trips. The planned itinerary for

a vehicle consists in a set of successive loadings and trips. Two trips of a given vehicle cannot

overlap, so we introduce time intervals dt = [lmin ∗ t, lmin ∗ (t + 1)[ where lmin is a small value

guaranteeing that the duration of any trip will be at least lmin, and t ∈ {0, · · · , b T
lmin
c}. The set of

columns is denoted Ω. Column generation is based on the solution of restricted master problems,

each corresponding to a subset Ω1 of columns as follows:

z(Ω1) = minimize
∑

rk∈Ω1

ckθk (1)

subject to
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∑
rk∈Ω1

aikθk ≥ 1 (vi ∈ V \ {v0}), (2)

∑
rk∈Ω1

btkθk ≤ U (∀dt), (3)

θk ≥ 0 (rk ∈ Ω1), (4)

where ck is the cost of trip rk, aik indicates whether customer vi is visited by route rk or not,

btk ∈ [0 , 1] is the fraction of the time interval dt occupied by trip rk and θk are decision variables.

Constraints (2) enforce that every customer is visited at least once, constraints (3) enforce that at

most U vehicles are used during any time interval.

The subproblem consists in finding trips rk ∈ Ω \ Ω1 with a negative reduced cost ck −∑
vi∈V \{v0} aikλi +

∑
dt
btkµt, where λi and µt are dual variables respectively corresponding to

primal constraints (2) and primal constraints (3).

Every non-dominated structure has been previously enumerated. For every structure s, new

trips (columns) are generated by selecting a time position in the time window [as, bs], such that

the reduced cost of the trip is negative.

This column generation scheme is integrated in a branch and price tree. A lower bound of

solutions is computed at each node of the search tree. We use a classical branching rule on arcs.

Note that solutions with fractional variables but integer flows on arcs might exist. It can be shown

that such solutions can be transformed into integer solutions.

This algorithm essentially differs from [2] in the definition of the set covering model. In their

approach, Azi et al. rather define columns as complete itineraries that a vehicle could carry out,

which are generated by performing elementary shortest path search in a graph where nodes are

what we call here structures.

3 Results

We ran our method, yet without dominance relation, on the Solomon’s instances with 25 customers

and large time horizon in same conditions as [2]. All tests were performed with a fleet size of two

vehicles and data resolution of 0.01. The loading time for customer vi is equal to 20% of its service

time, the travel time is the same as the Euclidean distance between two customer locations and

tmax = 220 for C2 class instances and tmax = 75 for R2 and RC2 class instances. Some of our

preliminary results are presented in Table 1. We close 24 of these 27 instances within an allowed

computation time of 30h. Compared to [2], we obtain much lower computation times. As for these,

it is worth to note that, as in the classical VRPTW, computation times of instances vary greatly

within the same class. Please note that in table 1, solutions with lower costs have been found.
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Instance Solution Solution [2] Total Time (sec) Total Time (sec) [2] Iter Column

c201-25 659.02 659.02 0.734 160.16 62 134

c202-25 653.37 653.37 25.25 5095.33 684 558

c203-25 646.4 - 146.312 - 1520 791

c204-25 602.46 604.51 144.39 45004.70 941 1333

c205-25 636.39 636.39 55.64 349.72 3407 318

c206-25 636.39 636.97 683.89 6511.43 33413 498

c207-25 603.22 603.22 62.281 1732.88 1722 588

c208-25 613.20 613.20 68.046 2832.06 2293 489

Table 1: Branch and Price result on C2 Solomon instances with 25 customers and a duration limit

of 220

4 Conclusion

In this paper, we adressed the exact solution of the MTVRPTW-LD, previously introduced and

investigated in Azi et al. [2]. We proposed an efficient branch and price scheme, achieving a fast

improvement compared to [2] with regard to computing times. A main advantage of our approach

lies in the efficiency of the column generation subproblem, solved with a fast pseudo-polynomial

algorithm.
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When integer programming (IP) models are used in operational situations there is a need to

consider the tradeoff between the conflicting goals of solution quality and solution time, since for

many problems solving realistic-size instances to a tight tolerance is still beyond the capability of

state-of-the-art solvers. However, by appropriately defining small instances, good primal solutions

frequently can be found quickly. This approach is taken, for example, within linear programming-

based branch-and-bound algorithms using techniques such as local branching ([5]) and RINS ([3]).

These techniques use information from the linear program (LP) solution and incumbent solution

to define a small IP, which is then optimized. These techniques can be applied to any integer

program and are available in commercial solvers such as CPLEX. Another approach to defining

small instances is to use problem structure as in [6] where small IPs are chosen according to the

attributes of previous solutions. Combining exact and heuristic search techniques by solving small

IPs has received quite a lot of attention recently, see, for example, [4], [9], [2], and [8]. Still another

heuristic approach is to use structure to define neighborhoods that can be searched in polynomial

time such as the very large scale neighborhood search approach of [1]. A key difference between

the methods that are embedded in an LP-based tree search algorithm (local branching and RINS)

and the others is that they are connected with a dual bounding procedure so that optimality or

weaker tolerance gaps can be proved.

In this research we introduce a new approach to finding good solutions quickly that is capable

∗Research supported in part by the Air Force Office of Scientific Research under grants FA9550-07-1-0177 and

FA9550-09-1-0061.
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of proving optimality as well. It is different from techniques such as local branching and RINS since

it uses problem structure to define the small IPs to be solved. It is different from other IP-based

local search methods since the IPs to be solved are determined by a column generation scheme.

The embedding of this column generation scheme into a branch-and-price algorithm gives the dual

bounds that provide the capability of proving optimality.

Our extended formulation, which requires column generation, is very different from typical

column generation formulations that employ structurally different objects from the compact for-

mulation, for example, paths rather than arcs. Our extended formulation keeps the original vari-

ables from the compact formulation and augments them with an exponential number of additional

variables that are used to define problem restrictions to obtain small IPs. By preserving the orig-

inal compact formulation, we are able to enrich it by preprocessing, cutting planes or any other

techniques normally used in a branch-and-cut framework.

We apply the approach to the Multi-commodity Fixed Charge Network Flow (MCFCNF) prob-

lem, a challenging problem that lies at the heart of many transportation problems, including those

faced by consolidation carriers. The MCFCNF is a classic optimization problem in which a set

of commodities has to be routed through a directed network. Each commodity has an origin, a

destination, and a quantity. Each network arc has a capacity. There is a fixed cost associated

with using an arc and a variable cost that depends on the quantity routed along the arc. For a

consolidation carrier, the fixed cost represents the transportation cost of a container and there may

be no variable cost. The objective is to minimize the total cost.

We first discuss the approach as applied to a general mixed integer program P given by:

max cx + dy

s.t. Ax + By = b

x real, y binary.

(1)

Let V ∗

P denote the optimal value of P and SP = {(x, y)| Ax + By = b, x real, y binary} be the

set of feasible solutions to P . For a given integer matrix N and a given integer vector q, both of

appropriate dimension, we define restriction PN (q) of P as:

max cx + dy

s.t. Ax + By = b

Ny ≤ q

x real, y binary

(2)

with optimal value V ∗

N (q). We suppose that this restriction can be solved much faster than P .

We define R = {r| r = Ny for some (x, y) ∈ SP } to be the set of vectors associated with feasible

solutions to problem P . Clearly, we have V ∗

P ≥ V ∗

N (r) ∀ r ∈ R and V ∗

P = V ∗

N (r∗) with r∗ = Ny∗

P

for an optimal solution (x∗

P , y∗

P ) to P . Thus, a strategy for finding an optimal solution to P is
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searching over the set R and solving restrictions PN (q), which will be feasible if there is an r ∈ R

such that q ≥ r. A major advantage of such a strategy is that it produces a feasible solution to P

each time such a restriction PN (q) is solved.

Ideally, we would only solve restrictions PN (q) whose optimal value V ∗

N (q) is close to the optimal

value V ∗

P . Consequently, we would need an oracle that considers all vectors r ∈ R, but returns only

those with V ∗

N (r) ≈ V ∗

P . The role of this oracle is thus similar to the role of the pricing problem in

column generation: consider all columns, but return only columns with positive reduced costs (for

a maximization problem). Therefore, we next assume that we know the entire set R and build a

model that extends the formulation of P to choosing a vector r from R and solving the resulting

restriction PN (r). Specifically, we define the problem MP :

max cx + dy

s.t. Ax + By = b

Ny −Rz ≤ 0

1z = 1

x real, y, z binary,

(3)

where the binary variables z in MP represent the choice of vector r for which the restriction PN (r)

should be solved. Given the definition of R, MP is a valid reformulation of P . Because knowing

the entire set R is neither necessary nor feasible we use a pricing problem to generate its elements

dynamically and solve MP using a branch-and-price procedure. In fact, we leverage the prevalence

of mutli-core processors by developing a parallelized branch-and-price procedure to solve instances

of MP.

Much of the approach is generic. To apply it to a specific class of problems primarily requires

defining the matrix N that defines the restriction PN (q) and the resulting extended formulation,

MP. For the MCFCNF, we use a variable-fixing type restriction that removes a subset of arcs.

The computational results demonstrate that the approach achieves its goals. For the MCFCNF

instances, the approach often produces a proven near-optimal solution in 15 minutes. More specif-

ically, the primal solution found in 15 minutes is often better than the one CPLEX produces in 6

hours, and the dual bound is usually close to the one CPLEX produces in 6 hours.

Our implementation of the approach is flexible, allowing us to apply the approach to a new class

of problem by implementing only the problem and the restriction to be used. We are currently

studying its application to some transportation problems with a temporal component such as

Inventory Routing and Periodic Vehicle Routing.
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Modeling the dynamics of all-day activity plansWillem HimpeTra�c and Infrastructure LaboratoryKatholieke Universiteit LeuvenGunnar Flötteröd, Ricardo Hurtubia, Michel BierlaireTransport and Mobility Laboratory (TRANSP-OR)Ecole Polytechnique Fédérale de Lausanne (EPFL)Email of corresponding author: gunnar.�oetteroed@ep�.ch1 Context: Estimating activities from smart phone dataThe modeling e�ort described in this text is motivated by the problem of identifying a smart-phone user's current activity (we currently consider work, shopping, leisure, home, education, andservice) from sensor data obtained by the phone. This data comprises the current position, nearbywireless devices and networks, and phone inputs of the user. We build on a previous article, wherea Bayesian activity estimation framework is presented [3], which consists of two components:The behavioral prior model provides a �rst distributional estimate about the activity based onsocioeconomic attributes and land use data. This information is then updated using a likelihoodfunction that relates the detection of nearby Bluetooth devices of known activity partners to theaccording activities.Preliminary experimental results with this system were obtained based on a likelihood functionthat was modeled from survey data in that the actually conducted activities of the respondentwere known. In a real application, such a survey is infeasible and supplementary information fromwhich the activities can be inferred in hindsight is needed. This problem is tackled in this work,which proposes an additional behavioral model that is evaluated at the end of each day, generatesan improved estimate of the missing activities, and updates the relation between encounteredBluetooth devices and presumably conducted activities accordingly in the likelihood, which allowsfor improved real-time activity estimates in the following day. This text describes the speci�cationand estimation of this additional model.

374



2 Formal speci�cation of activity schedule modelAs a preliminary working hypothesis, it is assumed that the switching times between all activitiescan be inferred unambiguously from the data gathered by the phone. This assumption is likelyto be relaxed in future work. It also is assumed that some activities can be identi�ed with highcertainty based on phone data only; an example would be the home activity, which is very likely tobe conducted at the same place every night, or the work activity of persons with a �xed workinglocation and regular working hours.The considered activity schedule consists of N activity slots. The nth activity is denoted by anand its duration by τn. If it can be inferred from the phone data only, then an is assigned one ofthe values {work, shopping, leisure, home, education, service}. Otherwise, it needs to be predictedby the model. Denote by X the index set of all unknown activity slots. The model can then bewritten in terms of the conditional distribution P ({ax}x∈X
| {an}n∈{1...N}\X

, {τn}n∈{1...N}
).In order to reduce the combinatorial complexity of the model, only a speci�cation P (ax |

{an}n∈{1...N}\{x}, {τn}n∈{1...N}
) with a single activity gap x is considered. A simulation-basedevaluation of the full model (with an arbitrary number of gaps) is possible through Gibbs sampling[5]. Gibbs sampling is a generic Markov chain Monte Carlo technique that allows to draw from amultivariate distribution if all of its one dimensional conditional distributions are known, which isexactly what the single-gap model provides.3 Model estimationThe combinatorial complexity of a model that explicitly �lls in sequences of activity gaps is avoidedby estimating a model only for a single gap and relying on the Gibbs sampling technique forevaluation of the full model. The single-gap model, as from now simply called the model, is builtin two steps.First, a deterministic decision tree is built from the Swiss microcensus 2005 [1], using allinformation available for the canton of Vaud. For this purpose, an implementation of the C4.5algorithm [4] in the free Weka software package is deployed [6]. This data-mining method buildsa maximum entropy decision tree by repeatedly partitioning the data. Every path from the rootof the tree to a terminal node (leaf) constitutes an if-clause for the activity assigned to that leaf.Second, the crisp output of each leaf is replaced by the empirical distribution of activities to whichthe condition of this leaf applies, hence generating a true distribution of model outputs.The generation of the tree resembles the estimation procedure of the Albatross activity schedul-ing simulator [2]. The major di�erence to that system is that Albatross captures the actual schedul-ing decisions of households as a sequential decision making process, whereas the proposed modelconcentrates on the dynamic structure of the schedule, thus being less constrained with respect to
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name possible values descriptionstart_day minutes after midnight time at which the house is left for the �rst timeactiv_start minutes after midnight starting time of the activity gapduration minutes duration of the activity gaptot_activity minutes total duration of activity outside of the gapemployment full time, part time,student, unemployed daytime occupation of considered personweekday any weekday considered day of the weekprev_act an activity type activity conducted before the gapnext_act an activity type activity conducted after the gapTable 1: Attributesthe meaning of its rules in terms of a real scheduling process.The attributes given in Table 1 currently exhibit the greatest explanatory power. (The C4.5algorithm can cope with missing attributes, e.g., if the gap is at the very beginning or end of theday. Also, land use data is yet to be incorporated in the model.) Overall, 2 890 reported schedulesare available for the canton of Vaud. Taking out every single activity once out of every scheduleresults in 8 508 learning data sets. The algorithm generates a tree with 57 leaves (rules). A tenfoldcross-validation indicates more than 68% of correct classi�cations. Table 2 shows the accordingconfusion matrix. As mentioned before, the crisp predictions of the tree are in a second stepwork shopping leisure home education service classi�ed / observed1308 57 218 127 22 0 work89 568 486 81 5 6 shopping162 293 2251 295 31 2 leisure114 59 259 1277 4 1 home13 3 47 15 391 0 education32 124 133 23 3 9 serviceTable 2: Confusion matrixtransformed into empirical distributions. The resulting rules are consistent with common sense,which is illustrated in terms of the following example:IF activ_start_time≤ 532min (08:52) AND employment /∈ {student, no_o�cial_work}THEN Prob(gap = work) = 0.81This rule states that everyone but students and unemployed people who get up early are likely towork next. Interestingly, the day of the week is not accounted for in this rule because the majority
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of applicable data sets indeed indicates a work activity. (We speculate that people who do notneed to work on weekends are likely to sleep in, which results in an extended home activity.)4 Current integration of the model and further re�nementsThe speci�cation and estimation of the model is completed in most parts; it only remains to addthe land use data, which is available and already in use in the online activity tracking system. Thenext step is to de�ne a consistent update logic for the likelihood function that links the detectionof nearby Bluetooth devices to the activities estimated in hindsight by the o�ine model describedin this work. This system will be validated with experimental data for which the true activities(and their switching times) are known. Finally, a detection mechanism for activity switches willbe added, which is likely to result in a probabilistic model of switching times as well.An interesting aspect of further work is to investigate to what extent a random utility model canbe speci�ed based on information revealed by the decision tree. In this setting, the tree-buildingalgorithm would constitute a data-driven tool that identi�es relevant explanatory variables, whichthen would be transformed into a utility function and re-estimated from the same data. Theadvantages of this approach would be interpretability of the model coe�cients, greater robustnessof the model (because structure is imposed a priori), and better extrapolation capabilities.References[1] ARE/BfS. Mobilität in der Schweiz, Ergebnisse des Mikrozensus 2005 zum Verkehrsverhalten.Technical report, Federal O�ce for Spatial Development and Swiss Federal Statistical O�ce,Bern and Neuenburg, Switzerland, 2007.[2] Theo A. Arentze and Harry J.P. Timmermans. A learning-based transportation oriented sim-ulation system. Transportation Research Part B, 38(7):613�633, 2004.[3] R. Hurtubia, G. Flötteröd, and M. Bierlaire. Inferring the activities of smartphone users fromcontext measurements using Bayesian inference and random utility models. In Proceedings ofthe European Transport Conference, The Netherlands, October 2009.[4] Ron Kohavi and Ross Quinlan. Decision tree discovery. In Handbook of Data Mining andKnowledge Discovery, pages 267�276. University Press, 1999.[5] S.M. Ross. Simulation. Elsevier, fourth edition, 2006.[6] Ian H. Witten and Eibe Frank. Data Mining � Practical Machine Learning Tools and Tech-niques. Elsevier, 2005.
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The 21st century has been characterized by the increasing role of information technology in everyday 

life. Modern computer systems allow for information to be transferred faster and safer through the 
Internet, thus making it convenient for consumers to shop online in the comfort of their homes. As this 
trend continues, the demand for lighter, higher-value goods increases, since they are likely to have a 
lower cost to the consumer on the Internet. This increase in demand, combined with population growth 
and other factors, is resulting in an increase in the amount of freight that has to be transported, particularly 
by truck. The Oregon State Department of Transportation, as well as other ports and institutions all over 
the United States, expect their freight volumes to more than double by the year 2040, a rate higher than 
the projected population growth for that state (Metro, 2001). According to the Federal Highway 
Administration, about 70% of small package freight is transported by trucks; resulting in a contribution 
by the trucking industry of 48 billion dollars to the national GDP in the year 1998, a 130% increase from 
1990 (USDOT, 1999). In light of these trends, it is clear that better, more efficient forms freight 
transportation systems are essential.  

 
A hindering factor to efficient ground transportation is the larger commercial vehicle traffic that 

increases congestion on the roads. This results in a significant increase in air and noise pollution as well 
as the number of dangerous traffic accidents involving trucks. A study by the Organization for Economic 
Co-Operation and Development revealed that in some European countries noise from truck traffic 
resulted in a property loss equivalent to nearly .4% of the national GDP.  The study also showed that 
individuals (aggregated) are willing to pay up to .65% of the GDP for a significant reduction in noise 
(Hecht, 1997). 

 
The increase in truck traffic, along with the accompanying increase in externalities, puts pressure on 

the trucking industry and on Metropolitan Planning Organizations (MPOs). The trucking industry will 
need to handle larger delivery volumes, facing lower revenues due to the level of competition and 
increasingly stringent regulations for externalities. MPOs will have to improve their planning processes in 
order to accommodate the ever increasing demand for goods transportation. In order to do this, the 
organizations need more efficient demand models than the ones currently in use. In many cases, MPOs 
use adaptations of passenger car models to estimate freight demand in the area. Although these simplistic 
approaches can sometimes provide rough estimates, they are fundamentally flawed since they do not 
capture the key dynamics of freight phenomena.  

 
One recurrent misconception involves equating commercial vehicle traffic to freight transportation 

demand, when in fact commercial vehicle traffic is an expression of how the trucking industry organizes 
itself to satisfy the demand, i.e., the commodity flows. As a result, a significant number of freight demand 
models focus on modelling vehicle-trips.  
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Currently there are two major platforms for modelling freight transportation demand: vehicle-trip and 
commodity based models (Ogden, 1978). Vehicle-trip models focus on modelling the actual number of 
vehicle trips, which has some practical advantages. Among them are the relative ease and high-quality 
with which data can be obtained due to an increasing number of Intelligent Transportation Systems. Also, 
since the model focuses on vehicle trips it has no problem generating the number of empty trips between 
regions. However, these models have two fundamental limitations. The first one is that these models 
cannot be applied to multimodal transportation because the vehicle-trip is in itself the result of a mode 
choice and the selection process is not represented in the data (Holguín-Veras, 2000, 2002). Furthermore, 
since the models assume that the vehicle is the unit of demand, as opposed to the commodity being 
transported, the model neglects the economic characteristics of the shipment that have been found to play 
a significant role in the majority of choice processes in the trucking industry (e.g., Holguín-Veras, 2002). 

 
Commodity based models, as the name points out, focus on modelling the flow of goods from one 

region to the other (measured in a unit of weight). Since the commodities are the unit of demand, the 
modeler can capture the underlying factors that determine freight movement, such as value, weight, and 
volume. In this platform, the loaded trips are estimated by dividing the total flow from one region to the 
other by an average payload from all loaded trucks. The problem with commodity-based models is that 
they are unable to model empty trips, which can make up about 30 to 50 percent of the total trips in a 
region. This occurs since the commodity flow in one direction determines the loaded trips, but does not 
bear a relationship to the number of the empty trips in the same direction. To resolve this, some 
complementary models have been developed, such as Hautzinger’s (1984), Noortman and van Es’ (1978) 
and Holguín-Veras and Thorson (2003a). The complementary models developed by Noortman and van Es 
and Holguín-Veras and Thorson will be described and compared in this paper. 

 
This is not a marginal issue, all the contrary. The statistics show that about 20-25% of the truck traffic in 
urban areas, and 40-50% of intercity trucks are traveling empty (Holguín-Veras and Thorson, 2003). The 
official statistics in the United States clearly indicate the magnitude of the problem: about 57% of the 
miles traveled by straight trucks, and 33% of the miles traveled by semi-trailers are empty (U.S. Census 
Bureau, 2004). Obviously, not properly modeling such important flow—that as said cannot be 
proportionally added to the loaded traffic—is bound to lead to major estimation errors. The research 
conducted indicated that not properly modeling empty trips lead to errors on the estimation of directional 
traffic that are four to seven times larger than when appropriate empty trip models are used (Holguín-
Veras and Thorson, 2003). 
 
The paper reviews the modeling approaches that have been suggested to model empty trips, and proposes 
novel formulations that lead to improved estimation performance. The models range from simple naïve 
formulations to some more complex ones involving trip chains, destination choice processes, and memory 
components. The performance of the alternative formulations to model empty trips is assessed by 
applying these models to sample data sets from different countries. The formulations developed and 
discussed in the paper have been successfully applied in a number of different countries including 
Sweden, Norway, Guatemala, and Colombia. The paper starts with some background information on the 
subject, followed by a brief description of previous developments in the area, a description of the 
test cases for the model, the methodology, and finally the results and conclusions. 
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1 Introduction 
 

This paper deals with the problem of duties scheduling for freight train drivers at the French state 

railways SNCF (Societe Nationale des Chemins de Fer Français). The duties scheduling problem 

consists in constructing weekly shifts of driving work in order to cover all driving tasks with a 

minimum cost. This problem can be defined as follows.  

We are given a planned timetable for train services (i.e. the actual journeys with freight) to be 

performed in a certain period. Each train service is made up by a sequence of trips. Each trip (driving 

task) represents a portion of a train journey which must be performed by the same driver without rest 

and without the possibility of changing the train. A duty is a sequence of trips which can be performed 

by one driver in the working day; it starts and ends at a home base (depot) and must satisfy a set of 

work laws and agreements. The duties scheduling problem focuses on designing duties using the pre-

defined set of trips; the objective is to cover all trips while minimizing costs (the number of duties and 

penalties related to capacity constraints of home bases). 

In practice, after solving the duties scheduling problem for each weekday, the resulting duties are 

assigned to individual drivers and sequenced into rosters, defining a weekly duties assignment for each 

driver. This process is called crew rostering and it is out of the scope of this work. 

Duties scheduling represents a hard problem due to both the dimensions and the work laws and 

agreements constraints involved. Most of the Operations Research literature on duties scheduling 

concerns the airline context, the pairing optimisation problem. For a comprehensive review on this 

topic we refer the reader to [1] and [2]. In the railway context and especially for the passenger trains 

several approaches have been also proposed, for example in [3], [4], [5], [6] and [9]. However, the 

specificity of each problem passengers or freight, the company’s rules and the level of details to be 

considered generally require the development of specific solutions methods.  Our proposed method is 

based on coupling heuristic and column generation techniques. 

 

2 Problem definition 
In this section, we describe the basic principles of the duties scheduling problem for freight trains 

at the French railways SNCF; we present the input data, the constraints, the criteria, the degree of 

freedom and the results. 

 

We are given a set of home bases (drivers’ depots) that are located at the main nodes of the 

French railway network. Train drivers need to be allocated to the different home bases. Each home 

base has a limited capacity; i.e., a maximum number of drivers starting from that base. We can also 

start from scratch.  

We also have, as an input, the planned schedule of trains for one week. Each train journey is 

composed of a set of trips; called also “driving tasks”. A trip represents a part of a line where it is not 

allowed for a driver to change trains in between. It is characterized by a departure time, a departure 

station, an arrival time, and an arrival station. 
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If the departure station of the first trip in the duty is different from the starting home base, then 

the driver can travel as a passenger (by car, taxis or train) to the corresponding station. Equivalently, 

by the end of the last trip of the duty, the driver can travel as a passenger to the ending home base if the 

latter is different from the arrival station. These travels are called “traveling tasks”; they can also be 

performed between two driving tasks within the same duty. A traveling task can be performed between 

each couple of stations and each pair home base / station. Each traveling task is represented by time 

duration depending on the departure and the arrival station. 

 

Two categories of constraints must be satisfied by a duties schedule: duties feasibility constraints 

and global costraints. In the sequel, we give the definition and the carachetristics of a duty, and after 

that we present these two categories of constraints. 

A duty (see figure 1) is a set of sequenced driving tasks that must be performed by one driver; it 

represents its driving work for that day. It should be noticed that we include night shifts which may 

start late in one day and finish next day. Each duty starts from a home base and ends at a home base 

(not necessarily the starting one). In addition of driving tasks included in the duty, it is possible that the 

driver performs traveling tasks, takes a break meal and/or rests. Two types of rests are considered: 

short rests and long rests. Short rests do not exceed 1 hour. Long rests have a duration time of at least 1 

hour and are not considered as a working time.  

 

 

 

 

 

 

 

Figure 1 : Duty representation 

 

The duties that are generated in the solution approach have to meet certain work laws and 

agreements in order to be feasible. Some of these laws and agreements are defined below and each one 

must be limited by an upper and lower bound:  

 Spread time: the time between the departure from the starting home base of the duty and the 

arrival to the ending home base. 

 Driving time: the sum of driving tasks (trips) durations. 

 Working time: the driving time plus half of duration of traveling tasks, plus the duration of 

meal break and all rests, except long rests (longer than 1 hour). 

 Overnight label: a duty is considered as overnight if it requires “some work” in the “night 

period” from 11 pm to 6 am. Indeed, there are several variants of overnight duties with 

different definitions for “night period” and “some work”. For simplicity of presentation, we 

do not present all of them.  

 Sequencing trips. They insure that each pair of consecutive trips i and j in a duty is 

compatible, the end location of trip i and start location of the tripe j should be identical and 

the time between both locations is greater than the possible traveling time allowances, …  

 

In addition of the constraints that must be satisfied by each individual duty, there are also global 

constraints that are to be satisfied per home base or by the complete final schedule. These global 

constraints insure the feasibility of a set of duties; some examples are mentioned in the following. 

 The average spread time of selected duties (global or per home base) must not exceed a given 

maximum duration. 

 For each home base, the number of assigned duties should be less than its capacity. 

 Compatibilities between drivers, these are associated to the home base and type of the engine 

that are assigned to train service, ... 

The defined problem is a multi-criterion optimization problem. It consists to minimise, the number 

of uncovered tasks, the number of duties, the violated capacity at home base, etc. We have used a 

lexicographic weight to optimise these criteria. 

The defined duties scheduling problem can be modeled as a generalized set partitionning integer 

program where each column represents a feasible duty. 
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A GUI (Graphical User Interface) was added to allow users to set a degree of freedom to guide 

the optimisation and to view the optimization process, to see and analyse the GANTT diagram 

associated to the list of duties with their composition (travel time, meal break, working time…), 

performance indicators that allow to assess the quality of the schedule; such as the average driving 

time, the level of unproductive time, number of travelling tasks, etc. 

3 Problem solution  

Because of the size of freight problem, we first decompose the week problem into  periods 

problems. Each period is less or equal to two days (parameter). The process (see figure 2) starts by 

optimising the problem associated to the period P1.  Then we freeze the duties that start on day1 and 

can finish on day2. After that we optimise the problem associated to the period P2 we include all the 

tasks that are not retained on period P1 and those of the day3. We do the same and so on until all 

periods are optimised. 

 
Figure 2 : problem décomposition. 

 

The proposed solution method is divided in sequential and iterative steps: 

For each period Pi=(day[1],day[2]), i{1,...,N} 

Step 0“ initialize problem“ : data preparation for period Pi 

Step1 “Iterative random greedy construction method”: by taking into account the  

characteristics of the problem we first construct quickly a good initial feasible  

solution by relaxing home base capacity constraints.  

Step2 “Optimal or near-optimal duties optimization”:  We start from the initial  

feasible solution found in phase 1 and try to improve it by an iterative process.  

This is produced by solving column generation method. 

Step3“Data and output consolidation“ : we freeze the duties of day[1] and identify  

the no retained  tasks associated to day[2]. 

At the end of this process we consolidate the whole results. 

 

Column generation is a popular technique that is widely accepted as an attractive solution method 

for this type of large scale optimization problems. References [7] and [8] give an interesting state-of-

art on this technique.  

In this work, column generation approaches have been developed to solve the duties scheduling 

problem. This approach consists in (i) solving the linear relaxation of the set partitioning problem by 

the column generation technique, and (ii) using a heuristic method to derive an integer solution, the 

final duties schedule. The column generation process starts by a restricted master problem (RMP) 

made-up by a small subset of columns obtained by a heuristic method. After that, the RMP is solved, 

and then the dual solution is transmitted to the pricing problem witch identifies new columns with 

negative reduced costs. The RMP is enriched by new columns and solved again. This process is 

repeated until no improving columns can be identified by the pricing problem. At this stage, the 

solution of the RMP represents the optimal solution of the linear relaxation of the set partitioning 

problem. The next stage consists on deriving an integer solution. For this purpose, two heuristic 

methods have been developed: restricted integer programming and adaptive rounding heuristics. 

Numerical tests performed on real data show that adaptive rounding heuristics provide solutions of 

better quality for the duties scheduling problem. In the sequel, we provide numerical results of the 

column generation approach with an adaptive rounding method (rounding up the largest factional 

variable at each iteration).  
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Tests on real world data show that our solution approach provides near-optimal solutions, with a 

duality gap less than 2%, for large scale problems within a reasonable computation time. Table 1 

presents the results related to a real problem instance with about 700 driving tasks (trips). Each row 

represents a scenario for one day. For each scenario, we provide (i) the duality gap which is relative to 

the lower bound provided by column generation (ii) the improvement that is achieved comparing to an 

initial solution provided at the initialization phase of the column genaration approach, and (iii) the 

computation time. These results show that the solution method finds almost near optimal solutions 

within 5 minutes for large real world problems. The efficiency of the column generation approach is 

due to: (i) the structure of the problem that provides a tight relaxation with a good lower bound, (ii) 

and the use of efficient pricing scheme that generate one or several columns per depot at each iteration 

and hence accelerating the column generation process. 

The proposed tool is intended for use as a strategic decision making tool. The validation results 

with the experts in charge for planing show that the obtained results are very promising. 

 

Table 1: Results on the for real life data tested. 

Scenario # 
Duality Gap 

(%) 

Improvement of 

Initial Solution (%) 

Computation 

Time (sec)* 

1 1.28 19.38 336 

2 0.43 20.34 306 

3 0.86 20.00 301 

4 0.00 19.44 263 

5 0.43 19.29 289 

6 0.43 18.14 263 

 
(*) 

The numerical experiments have been performed on a 2.33 GHz AMD Athlon PC with the memory of 2 Go, and 

running Windows XP. The algorithms have been implemented in MS Visual C++.NET 2005 and linked with the CPLEX 11.0 

optimization library. 
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1 Introduction 
 

The railroad blocking
1
 problem (RBP) is formally defined as follows. We are given a set of 

shipments that must be routed from their origins to their respective destinations on a railroad physical 

network (figure 1). This network comprises a set of functional yards (with and without hump) 

connected by undirected links. Among the yards, some are classification yards where blocking 

operations (i.e., the grouping of incoming cars for connection with outgoing trains) are performed. In 

railroad freight transportation, a shipment, which consists in one or more cars with the same origin and 

destination (OD), may pass through several classification yards on its journey. The classification 

process often causes delays of several hours for the shipment, making it a major source of delay and 

unreliable service. Instead of classifying the shipment at every yard along its route, railroads group 

several incoming and originating shipments together to form a block. A block is defined by an OD pair 

that may be different from the OD pairs of individual shipments in the block and is defined by a slot. 

The slot is the mean that allows operator to use the infrastructure. The operator SNCF buys slots from 

RFF, railway infrastructure manager. The slot is defined by path, arrival/departure times at each node 

and the used trains characteristics (speed, weight ...). Once a shipment is placed in a block, it will not 

be classified again until it reaches the destination of that block. 

Ideally, each shipment would be assigned to a direct block, whose OD is the same as that of the 

shipment, to avoid unnecessary classifications and delays. However, infrastructure availability and 

blocking capacity at each yard, determined by available yard resources (working crews, the number of 

classification tracks and switching engines), limit the maximum number of blocks and maximum car 

volume that each yard can handle, preventing railroads from assigning direct blocks for all shipments.  

 

 

 

 

 

 

 

 

 

Figure 1.  An example of a piece of a blocking network. 

 

The main goal of the designer is to build blocks and to assign each shipment to dedicated blocks 

by minimizing total cost associated to the used resources (crew, locomotives and slots). 

 

2 Problem definition 
 

This section describes the basic principles of the temporal railroad blocking problem for freight 

trains at the French railways operator SNCF. It gives the input data of the problem, the constraints, the 

criteria, the degree of freedom and the output. 

                                                 
1
 A “block“ is a group of cars that move together by one or more trains from a common origin or 

assembly point to a common destination or disassembly point. 
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2.1 The input data 

This section summarizes the inputs of our blocking problem: 

- Planning horizon, in general it is a loaded week 

- Infrastructure (network) nodes and links with their characteristics 

- Shipments defined by customer, OD, number of cars, ton, day of departure/arrival and 

characteristics 

- Slots that the operator buy from railway infrastructure manager 

- Partial solution (current blocking plan if one exists or pre-specified shipment routes) 

2.2 The constraints 

The constraints can be classified into two categories, hard and soft constraints. The hard constraint 

must be respected and soft constraints must be respected as far as possible.  

- Yards’ capacities 

- Time windows to pick up and to deliver the shipments (hard constraints) 

- Temporal constraints associated to the set of used slots (hard constraints) 

- Constraints associated to the partial solution (current blocking plan if one exists or pre-specified 

shipment routes) 

2.3 The criteria 

We have defined a lexicographic weight to optimize the following criteria. 

- Service quality which is defined by a delay penalty 

- Train.km 

- Slots cost 

- Classification cost 

3.4 The output 

This section summarizes the outputs of our blocking problem tool: 

- Blocks composition  

- Routing shipment: how should the shipment, be routed over the blocks made? 

- Yard workload 

- Performances indicators to help the evaluation and comparison of the studied scenarios 

3.5 The degree of freedom 

These degrees of freedom help the user to define scenarios and to guide the optimization engine 

towards a realistic and good solution. 

- Possible routing 

- Yard capacity 

- Slots availabilities 

- Order of the criterion  

- Discritized time step... 

 

The main goal of this problem is to optimize the resources (locomotives, crew and slots) that are 

used by the trains to ensure the freight production. This is done by minimizing the number of blocks 

which is a way to achieve economies of scale and reduce the global cost. In other words we try to 

ensure that the locomotive always pulls the maximum number of cars. Because, with a locomotive 

there is driver and in front of there is a slot. The railroad blocking problem without temporal constraint 

is well known as an NP-Hard problem. Our contribution is to present a combination of two approaches 

to solve this type of industrial problem with temporal constraint: a heuristic (k-shortest path) and a 

mixed integer program. 

3. Literature review 

To the best of our knowledge, this problem has not raised a lot of research in the railway context; 

all the research that we found refers to the problem without temporal constraints. Chronologically, 

Bodin et al. [1] set the bases and their paper remains a reference in the domain by formulating the 

problem as a non linear MIP model. Crainic et al. [2] do not consider the RBP as an explicit problem 

and propose a model that takes into account the whole freight plan problem. The most recent research 

on the RBP is that of Newton [3] and Barnhart et al. [4] where the RBP is modeled as a network design 

model and formulated as a MIP. Ahuja et al. [5] proposes an efficient method relying on an algorithm 
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called "Very Large-Scale Neighborhood Search". Roughly speaking, this method starts with a feasible 

solution and iteratively improves the current solution by replacing it with its neighbor solution until the 

solution can no longer be improved. 

The literature exposes very widely the manner to solve the RBP but the underlying models are 

distant from the reality of our problem, in particular with respect to specific constraints or used 

resources. For instance, temporal constraints where planning horizon must be discretized at a level that 

is more precise than the day (e.g. half an hour). For example, [6] presents their impossibility to tackle 

their problem with these existing models: it is not possible to reduce the number of blocks too much 

and create too long and heavy trains in certain areas where, as in the North of Italy, the network is 

constituted of many viaducts and tunnels. On the other hand, France designer must face the lack of 

slots availability, which makes the time factor a crucial parameter in the plan. The models that we 

propose in this paper are therefore different from the existing ones. 

4 Problem solution and first results 

Our proposed algorithm for temporal railroad blocking problem can be sketched as follows: 

 

Step0: “Initialize problem“: read the whole input data (freight network, shipments ...) and initialize 

the parameters. 

Step1: “Problem pre-processing”: prepare the necessary data that are dedicated to the scenario to 

be studied. This means that according to the set of, shipments and the slots we reduce the size 

of the network and the possible and realistic set of blocks. This step has allowed us saving 

significant amounts of time for step 2 and 3. 

Step2: “Identify a possible routing”: For each shipment we add the set of possible and realistic 

itinerary (block). It was done by solving the k-shortest paths on the network of step 1. 

Step3: “Blocks optimization”: create and solve the corresponding mathematical model.  

Step4: “Output “ : display the detailed results and the indicators performances. 

In step 2, we generate a set of paths (cf. Figure 1): direct path from border node to border node, 

path from border node to border node by using yard with classification etc. 

In step 3, we create two mathematical models and solve them by using Cplex an optimization 

solver from ILOG. We have tuned a Cplex parameters which has allowed us to reduce the 

computational time by 5% and especially to find quickly a good solution in the first iterations.  

Our first investigation is to analyze two criteria (slot cost and train.km) and their impact on the 

reduction of the number of blocks. It is done by favoring one over another. We were not surprised to 

note that: 

 The solution associated to the slot cost criterion, produces more direct routing but incurs a 

larger number of waiting cars even those with an origin and destination: it operates to a 

temporal massification.   

 The solution associated to the train.km cost criterion prefers to lengthen the trip by waiting 

the cars on yard: it operates to a spatial massification.     

 

 
Figure 2. Comparison between slot cost and train.km criterion. 
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The example on figure 2 illustrates this behavior for an example with one shipment from “Saulon” 

to “Grenoble”: The length of the trip in the solution with slot cost is 309km instead of 347km for the 

train.km criterion (+ 11%). The observation for the whole of the shipments is the same. 

 

Based on the real tested data we can give the first conclusion: 

1. The train.km criterion reduce of 31% the number of blocks in comparison with the slot cost 

criterion (by favoring one over another) 

2. In a similar way, the size of the blocks (trains) is reduced by a factor of +33%. 

3. Our solutions are 6% less costly than manual decision making process 

4. The obtained solutions show an economy of 70% in train.km in comparison with a direct 

transport of each shipment that would consist in producing a train for each of them. 

5. The massification has taken place on the yards and between the yards. In fact, we have trains 

almost three times longer on/and between yards than if the request had to be transported 

directly 

6. The obtained average gap was less than 7% by limiting the computational time to 1 hour
2
. The 

numerical experiments have been performed on a 2.33 GHz AMD Athlon PC with the 

memory of 2 Go, and running Windows XP. The algorithms have been implemented in MS 

Visual C++.NET 2005 and linked with the CPLEX 11.0 optimization library. 

 

By using the degree of freedom to guide the optimization engine the user can choose the order of 

criteria to find a good solution that: reduces the number of blocks, avoid unnecessary classifications on 

yards, reduces the length of the trip and guaranteed the best service quality.  

 

The first obtained results are very promising although the solution search is time-consuming and 

needs to be reduced. Nevertheless, we show on real life data that the proposed method is well oriented 

to propose a solution that minimizes the number of blocks. The proposed engine is intended for use as 

a strategic decision making tool. It will help our organization in charge of the blocking plan to reduce 

the throughput time of the planning process. Meanwhile, it allows the organization to increase the 

flexibility and react faster to changes in the environment in particular for freight context. Further 

recognized advantages of the proposed tool are: the fact that the organization becomes less dependent 

on the experience and the craftsmanship of the planner. 

 

Naturally, although the results are very promising, we need to be careful when drawing conclusion 

based on few real data only. Therefore, future research is necessary: 

 To test the algorithm on other real data as well.  

 To add step of constructing an initial feasible good solution to reduce computational time 

for solving the mathematical model.  
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1 Introduction

Traffic networks are inherently uncertain with random dis-

ruptions, e.g., crashes, vehicle breakdown, bad weather,

special events, construction and maintenance activities.

They greatly affect the reliability of transportation sys-

tems and create significant congestion, which, as described

in [1], is a problem in the United States’ 439 urban areas

and has gotten worse in regions of all sizes. A stochastic

time-dependent (STD) network is required to capture such

uncertainties, where link travel times are time-dependent

random variables. Furthermore, there usually exist strong

dependencies among random link travel times, largely due

to traffic flow propagations over time and space. An im-

portant aspect of routing in an STD network is that real-

time traveler information can be utilized to mitigate the

adverse effects of uncertainties. The information can come

from a number of sources, including personal observations,

radio, variable message signs (VMS), and in-vehicle traffic

information systems. A traveler can make his/her rout-

ing decision adaptive to information on prevalent traffic

conditions, and doing so will generally lead to a better

travel time. It is also noted that stochastic dependencies

are generally required to capture the benefits of real-time

information for network routing, since only through the

dependencies over time and space can the knowledge of

an incident at the current time result in a better predic-

tion of traffic conditions in the future and elsewhere.

As the routing is adaptive to information, a traveler

generally does not follow a fixed path. We loosely de-

fine such an adaptive routing process as a routing pol-

icy. Among the studies addressing optimal routing policy

(ORP) problems, different assumptions have been made in

terms of network stochastic dependency and information

access (see the taxonomy in [2] and [3]). Network stochas-

tic dependency is characterized by link-wise and time-wise

stochastic dependencies of link travel times. When no

link-wise or time-wise dependency is considered, travelers

cannot make inferences about travel times on other links

or in the future, even though they have information on

the past. In a network with complete dependency, travel

times on all links at all time intervals are dependent. A

general representation of complete dependency is a dis-

crete joint distribution of all link travel times. However,

ORP problems in such a network could potentially suffer

from problems such as the lack of data, large computer

memory requirement and complication of algorithm de-

sign. Partial dependency lies between no dependency and

complete dependency. The limited dependency assump-

tions are likely to reduce the algorithm complexity, yet

how well they reflect real life situations is unresolved. In-

formation access has the following categories: Perfect On-

line Information, where travelers have knowledge of the re-

alizations of all link travel times up to current time period;

No Online Information, where travelers have no knowledge

of any link travel time realizations, and the routing is only

adaptive to arrival times at intermediate nodes (termed

time-adaptive routing); and Partial Online Information,

where the amount of information lies between Perfect On-

line Information and No Online Information, with restric-

tions over space or time or both. [3] shows that, for opti-

mal adaptive routing in a flow-independent STD network,

more error-free information is always better (or at least

not worse).
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A number of studies works (e.g., [4], [5], [6], [7], [8], )

address time-adaptive routing problems in a network with

no dependency. Some studies address Partial Online Infor-

mation cases with partial dependency, e.g., [9], [10], [11].

They either assume that link costs evolve as Markov pro-

cesses, or adjacent link travel time dependency. [2] studies

the case of Partial Online Information with complete de-

pendency and designs exact and approximate algorithms.

Later [3] continues the study of Partial Online Information

and designs a heuristic algorithm.

The minimum information a traveler can get in an STD

network is the travel times they have already experienced,

i.e., the travel times on traversed links at corresponding

arrival times at the source nodes, which is referred to as

trajectory information in this paper. If travelers make

decisions at each node based on not only the nodal ar-

rival time but also trajectory information, they are mak-

ing trajectory-adaptive route choices. [12] designs a label-

correcting algorithm addressing multi-criterion trajectory-

adaptive routing problems with no dependency. Later [13]

investigates the relationship between time-adaptive and

trajectory-adaptive routing. This work studies the single-

criterion ORP problem with trajectory information in a

complete dependency network. Note that the trajectory

information is useless in a no dependency network, and in

such a case the problem reduces to a time-adaptive rout-

ing problem which has been well studied. The complete

dependency assumption is more realistic than no depen-

dency for a traffic network, however it poses challenges in

the algorithm design.

2 Trajectory-Adaptive Routing

Let G = (N, A, T, C) denote an STD network. N is the

set of nodes and A the set of links, with |A| = m. There is

at most one directional link from node j to k, denoted as

(j, k). T is the set of time periods {0, 1, . . . , K − 1}. Link

travel times with entry times between 0 and K−2 are time-

dependent and random, while those at and beyond K − 1

static and deterministic. In an STD network with com-

plete dependency, travel times on all links at all time pe-

riods are jointly distributed random variables. The travel

time on each link (j, k) at each time t is a random variable,

which is assumed positive and integral, with finite number

(R) of discrete support points. A support point is defined

as a distinct value (vector of values) a discrete random

variable (vector) can take. C = {C1, . . . , CR} is the set

of support points of the joint probability mass function

of all link travel times at all times, where Cr is a vector

of time-dependent link travel times with a dimension of

K × m, r = 1, 2, . . . , R. Cr
jk,t is the travel time of link

(j, k) at time t in the r-th support point, with probability

pr, and
R∑

r=1

pr = 1.

Definition 1 (Trajectory) H is a trajectory of node-

time pairs a traveler could experience up to the current

node j and time t: H = {(j0, t0), (j1, t1), . . . , (j, t)}, where

j0 is the origin and t0 the departure time.

In trajectory-adaptive routing, the information contains

the revealed travel time on link (jx, jx+1) at time tx, which

is tx+1 − tx for all (jx, tx) along the trajectory.

We seek the ORP with minimum expected travel time

(METT) from all origins and departure times to a given

destination. Similar to [2] and [3], the state variables for

routing decisions can be specified as (j, t, H), and the de-

cision is what next node k to take. In this case, Bellman’s

principle of optimality ([14]) will hold, i.e., at any interme-

diate state, the remaining decisions of an optimal policy

must be optimal with regard to (w.r.t.) the state. An

exact dynamic programming algorithm similar to that in

[2] can be designed to solve the ORP problem. However,

the number of states will be huge, due to the potentially

exponential number of trajectories to any given node-time

pair. In order to circumvent the curse of dimensionality

in state space, a definition of trajectory-adaptive routing

policy without the trajectory H in the state variable is

given as follows:

Definition 2 (Trajectory-Adaptive Routing Policy)

A trajectory-adaptive routing policy µ(j, t) departing node

j at time t is recursively defined as a combination of the

next node k and the set of sub-policies {µi(k, ti)}, where

ti is the i-th possible arrival time at node k from the

marginal distribution of C̃jk,t.

Note that this is a recursive definition. The sub-policy

µi at (k, ti) is defined similarly as a combination of the
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next node k′ and sub-policies {µ1
i (k

′, t1i ), µ
2
i (k

′, t2i ), . . .}.

The recursion stops at the destination d. Although each

policy is defined over a node-time pair only, the recur-

sive nature allows the routing decisions dependent on the

trajectory. Consider two different possible trajectories to

(j, t) by following a given routing policy. Assume they

start to differ at (j′, t′) due to different arrival times at

the next node k, and the next node-time pairs are (k, t1)

and (k, t2) respectively. The sub-policies at the two node-

time pairs can then be defined such that they will both

reach (j, t) with a positive probability but contain differ-

ent sub-policies from (j, t). This way, the decisions at (j, t)

differ for the two different trajectories. However, the fact

that the trajectory information is not included in the state

does make Bellman’s principle invalid.

Proposition 1 A sub-policy of an optimal trajectory-

adaptive routing policy as in Definition 2 is not necessarily

optimal.

The optimality is w.r.t. the state (j, t), or equivalently,

METT over all support points. The sub-policy of an opti-

mal policy must be optimal w.r.t. any intermediate state

(j, t, H), or equivalently, with METT over a subset of sup-

port points that are compatible with travel times revealed

through H (denoted as EV (H) ∈ C). However, it is not

necessarily optimal in the whole set of support points.

With the hope of finding another property that can be

maintained in the way optimality is maintained from a

routing policy to all its sub-policies in Bellman’s princi-

ple, non-dominated routing policy is defined. Other stud-

ies considering non-dominance include [5], [12], [15], [16].

Unfortunately, the hope evaporates with the fact that a

sub-policy of a non-dominated routing policy is not nec-

essarily non-dominated. The reason is similar to that why

Bellman’s Principle does not hold for trajectory-adaptive

routing policy. However, good news is that pure routing

policy can be defined based on non-dominated routing pol-

icy and it can be proved that for any origin-departure-time

pair (j, t), there always exists an optimal routing policy

which is pure.

Definition 3 (Non-Dominated Routing Pol-

icy w.r.t. Support Point Set B) A routing

policy µ at origin j with departure time t is non-

dominated in support point set B iff ∃ no routing

policy µ′ such that Sµ′(j, t, r) ≤ Sµ(j, t, r), ∀r ∈ B and

∃r0 ∈ B|Sµ′ (j, t, r0) < Sµ(j, t, r0), where Sµ(j, t, r) is

defined as the travel time of routing policy µ from origin

node j and departure time t to the destination node d if

support point r is realized.

Proposition 2 A sub-policy of a non-dominated

trajectory-adaptive routing policy as in Definition 2 is not

necessarily non-dominated.

It is trivial to show that non-dominance can be main-

tained at any intermediate state (j, t, H) or w.r.t. EV (H).

However, for the recursively defined trajectory-adaptive

routing policy, non-dominance is checked at intermediate

node-time pair (j, t), or w.r.t. the complete set of support

points C. A sub-policy µ at (j, t) of a non-dominated pol-

icy from the origin could be non-dominated w.r.t. EV (H)

in such a way that it has an equal travel time as sub-policy

µ′ for each support point in EV (H), but is dominated by

µ′ in C \ EV (H), and thus dominated by µ′ in C.

Definition 4 (Pure Routing Policy) A routing policy

is pure iff the routing policy itself and all its sub-policies

are non-dominated; otherwise, it is a mixed policy.

Proposition 3 For any mixed routing policy λ at (j, t),

there exists a pure routing policy µ such that Sµ(j, t, r) ≤

Sλ(j, t, r), ∀r.

A straightforward conclusion can be drawn that, if

mixed routing policy has METT, then there must exist

a pure routing policy with the same METT.

Theorem 1 (Optimal Pure Routing Policy) For

any origin-departure-time pair (j, t), there exists an

optimal routing policy which is pure.

Theorem 1 suggests a solution algorithm that finds all

the pure routing policies and chooses the one with METT.

3 Algorithm DOT-CD-Traj

Algorithm DOT-CD-Traj is based on the concept of de-

creasing order of time (DOT). Note that the construction
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of routing policies at time t involves only routing policies

at times later than t, due to the assumption of positive link

travel times. At time K − 1 or beyond, the network be-

comes deterministic and static, and for any node-time pair

(j, t) where t ≥ K−1 the set of pure routing policies χ(j, t)

contains only one policy (the shortest path). Any deter-

ministic static shortest path algorithm can be employed to

compute the policy µ∗ and its travel time to destination

eµ∗(j, t), ∀j ∈ N, ∀t ≥ K − 1, and assign it to the corre-

sponding support point travel time Sµ∗(j, t, r), ∀r. The set

of pure routing policies at time K − 1 at any node is com-

plete, i.e., no routing policy in the set will become mixed

and no new pure routing policies will be constructed from

later operations. Therefore the set of pure routing policies

at time K − 2 constructed from pure sub-policies at time

K − 1 is also complete. This procedure is continued down

to time 0, and pure routing policy sets at all times will be

constructed with one pass along the time dimension.

The algorithm will find all pure routing policies upon

termination and thus will find the optimal pure routing

policies. However it will miss the mixed non-dominated

routing policies and thus the optimal mixed routing poli-

cies. The algorithm terminates after a finite number of

steps, yet the worst-case complexity is exponential, and so

heuristics might be needed to work more efficiently. An-

other way is to introduce hybrid routing, where adaptive

routing is allowed at a subset of nodes and at other nodes

travelers can only follow a prior path. Computational tests

are conducted to evaluate average running time. More-

over, a comparison of Algorithm DOT-CD-Traj results in

a dependent STD network and in an independent STD

network ([4],[5],[6],[7]) can provide insights into the im-

pact of network stochastic dependency on ORP problems.
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1 Introduction

The growing congestion of road infrastructure, particularly in urban areas, is alarming and requires

solutions to increase the logistics productivity [1]. In terms of current practices of the logistics

sector, we observe that: vehicle capacity is underutilized, many warehouses have storage capacity

unused, rail transportation, metro or waterways are underutilized. Based on this observation and

to improve their profitability, service companies managing a fixed capacity aim to increase their

occupancy rates. To achieve this goal, we propose an innovative strategy among all actors of the

logistic chain which relies on the mutualization of unused logistic capacities.

In this presentation, we first propose a model for routing demands over a network defined

by logistic services. Then we propose a strategy of acceptance and allocation of ponctual logistic

demands. More precisely, a demand is accepted if the expected utility resulting from its acceptance

is greater than the one related to its refusal.

2 Routing demand on a network of logistic services

The mutualization solution described in this presentation is based on a pooling of untapped logistic

capacity. The purpose of this sharing policy is to create a new network of logistic services able

to increase the overall ability of the system to satisfy efficiently new demands. At the opposite of

the current practices, the answer to a logistic demand can result from the consolidation of several

capacities under the control of different companies. To incorporate this innovative aspect in logis-

tics, the demand routing problem on the logistic service network is modeled as a multicommodity
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flow problem defined on a time-space network. The objective is the maximization of the number

of accepted demands. To accept a demand means to route the associated flow on the network.

A transportation service is modeled by an available capacity during a time window and two

locations where the means of transportation is available and should be returned. In the context of

an intermodal transportation system [2], several modes of transportation are considered (heavy or

light vehicles, metro ...). A logistic service can also result into a storage capacity available during

a time window. Note that the transfer of goods between vehicles takes place in a warehouse. A

logistic demand consists to pick-up goods within a time window in a given location and to deliver

them within a time window at destination.

Let G = (N, A) be a directed network modeling logistic services. N is the set of nodes and

A is the set of arcs. A node n ∈ N is defined by a triplet (z, t, k) where z belongs to the set of

geographical areas Z, t belongs to the set of time periods T and k belongs to K = {V ∪ S ∪ P}.

V denotes the set of vehicles, S the set of warehouses and P the set of demands. More precisely,

if k ∈ V, (z,t,k) means that the vehicle k is in area z at period t. If k ∈ S, (z,t,k) corresponds to

the warehouse k in area z at t, and finally if k ∈ P, (z,t,k) represents the origin or the destination

location for demand k. For i, j ∈ N, arc (i, j) ∈ A means that goods can be moved from i to j.

For each arc the capacity and the transportation or storage cost between the two nodes are given.

One key point is how this time-space network can be built. The storage service allow to the

cross-docking of goods or their storage. A transportation service is characterized in this network

by the origin and destination locations corresponding to the geo-temporal positions. Reducing a

service to a direct link between the origin and destination locations does not reflect the potential

of transportation that it generates. Therefore we enumerate feasible paths from the origin location

to the destination location across the geographical areas visited to model a transportation service.

More precisely, for each transportation service, we create a subnetwork Gk that represents the

availability of capacity related to service vehicle k. The directed network G = (N,A) including all

logistic services consists of ∣V ∣ layers associated to Gk (k = 1, ..., ∣ V ∣) as well as ∣ S ∣ layers for

storage and ∣ P ∣ layers for the origins and the destinations of demands. With each demand p ∈

P is associated a pair (op, dp) where op ∈ N and dp ∈ N correspond respectively to the origin and

the destination nodes of demand p. Moreover, we denote by qp, the quantity of product p to be

transported from op to dp. The binary decision variables are :

Yp = 1 if the demand p is accepted, 0 otherwise.

Xp
ijtk = 1 if product p is moved by vehicle k from i at period t to j, 0 otherwise.

Bijtk = 1 if vehicle k goes from i to j at t, 0 otherwise.

Sp
itkk′ = 1 if product p is transfered from logistic means k to logistic means k’, 0 otherwise. .

Sp
itkk = 1 if product p is stored in k from the period t to t+1, 0 otherwise.
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We denote by Zp the subset of zones including the origin and destination locations of demand

p. For k ∈ V, Zk represents the set of zones served by vehicle k while Zk reduces to the zone where

the warehouse is located when k ∈ S. For demand p, Tp represents the set of time periods where

goods are available to be moved. T1p and T2p are the sets of periods associated with the origin and

the destination. For logistic means k, Tk represents the set of time periods where k is available.

Tkp is the intersection of Tp and Tk. We denote by ctijtk the available capacity on vehicle k from i

at period t to j and csitk the available capacity of warehouse k in area i at period t. We formulate

the allocation of demands on the network of logistic services as follows:

max
∑
p∈P

Yp (1)

st :
∑
k′∈V

Sp
itpk′ = Yp i = op ∈ Zp,∀t ∈ T1p, p ∈ P (2)∑

k′∈V

Sp
itk′p = Yp i = dp ∈ Zp,∀t ∈ T2p, p ∈ P (3)∑

j∈Zk

Xp
jit′k −

∑
j∈Zk

Xp
ijtk +

∑
k′∈S∪P

(Sp
it′k′k − Sp

itkk′) = 0 ∀i ∈ Zk, t ∈ Tkp, k ∈ V, p ∈ P (4)

∑
k′∈V

Sp
i(t−1)k′k −

∑
k′∈V

Sp
itkk′ + Sp

i(t−1)kk − Sp
itkk = 0 ∀i ∈ Zk, t ∈ Tkp, k ∈ S, p ∈ P (5)∑

p∈P
Xp

ijtkq
p <= ctijtkBijtk ∀i ∈ Zk, j ∈ Zk, t ∈ Tk, k ∈ V (6)

∑
p∈P

∑
k′∈K

Sp
itkk′q

p <= csitk ∀i ∈ Zk, t ∈ Tk, k ∈ S (7)

∑
i∈Zk

∑
j∈Zk

Bijtk <= 1 ∀t ∈ Tk, k ∈ V (8)

∑
j∈Zk

Bjit′k −
∑
j∈Zk

Bijtk = 0 ∀i ∈ Zk, t ∈ Tk, k ∈ V (9)

Yp ∈ {0, 1} ∀p ∈ P (10)

Sp
itkk′ ∈ {0, 1} ∀i ∈ Zk, t ∈ Tk, k ∈ K, k′ ∈ K, p ∈ P (11)

Xp
ijtk ∈ {0, 1} ∀i ∈ Zk, j ∈ Zk, t ∈ Tkp, k ∈ V, p ∈ P (12)

Bijtk ∈ {0, 1} ∀i ∈ Zk, j ∈ Zk, t ∈ Tk, k ∈ V (13)

Constraints (2) and (3) ensure that supply and demand requirements are met, relations (4)

and (5) correspond to flow conservation constraints while constraints (6) and (7) are the capacity

constraints. Constraints (8) and (9) ensure the feasibility of the transportation plan. Note that in

constraints (4) and (9), t′ is obtained from the transport duration or is equal to (t− 1) depending

whether we consider the transfer of goods between zones or their storage in a warehouse.
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3 Strategies to manage punctual demands

The strategies used here are designed to manage the allocation of punctual demands given a network

of logistic services. With each demand is associated a price based on the anticipation, the delivery

time requirement and the quality of service. The strategy proposed for demand management aims

to answer the following questions:

- Is there a feasible solution?

- Is it profitable to accept this demand or is it better to keep the remaining capacity for high price

demand that could arise later?

For each logistic demand request, the expected utility evaluation of a solution is based on three

types of demands:

- the already accepted demands which must be moved through the network of services

- the current demand

- the forecasted demands for which it is possible to keep some logistic capacity.

A logistic demand is accepted if it is feasible and the expected utility resulting from its ac-

ceptance is greater than the one related to its refusal. The expected utility computation requires

the solution of a slightly revised version of the mathematical program described in the previous

section. The objective function has to be replaced by the expected utility function including a

term associated with each demand type. Capacity constraints need to include forecast demand

potentially accepted.

In this presentation, we will describe efficient solution methods to solve the problems defined in

Sections 2 and 3. Assessment of the proposed formulation and solution methods will be conducted

on randomly generated instances based on real life data of Paris urban area. Preliminary experi-

ments consist in solving the formulation described in Section 2 with the state-of-the-art LP/MIP

solver CPLEX (Version 11.2) on a computer operating at 3.2 Ghz and equiped with 16 Gig RAM.

Instances with 50 to 100 demands, 10 to 80 vehicles and 10 to 80 warehouses were solved to

optimality in less than 35 seconds.
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1 Introduction 
 
Natural disasters, like bush fires and floods, often cause many casualties. To avoid this as much as 

possible, authorities have to be prepared for such disasters. This includes creating a plan to evacuate 

people from a threatened region. During an evacuation, people involved have to leave the region over 

the accessible. They make decisions about departure times (which includes the decision to evacuate or 

not), routes and destinations. Without any interventions, the decisions people make are most likely not 

system-optimal, primarily caused by a lack of information. Giving optimized evacuation instructions to 

the people can lead to a more effective evacuation (i.e., shorter evacuation times, less casualties). 

In earlier research, a method has been presented to optimize evacuation instructions 

(departure times, destinations and routes) for an arbitrary hazard (kind of hazard and time and spatial 

pattern) and region (road network and population distribution) [1]. Traffic is simulated by an 

evacuation simulation model and the performance of instructions is determined as the value of an 

objective function (often related to the safe arrivals over time), both chosen by the user of the method. 

Optimization methods for evacuation instructions have been developed before, see e.g. [2] and [3]. The 

main improvement of our method presented in [1] is the simultaneous optimization of departure time, 

destination, and route instructions instead of the optimization of only one or two of these variables for 

a dynamic instead of static evacuation problem. In addition, the method can be used to optimize 

instructions under uncertain conditions, like uncertainty in the hazard pattern, as discussed in [4].  

Application of the method results in instructions which performance approximates the 

performance of the optimal instructions. This near-optimality (with respect to the arrivals) is shown in 

[5]: for three different applications of the method, the average intensities over time on the links leading 

to the destinations are equal to respectively 86, 86, and 88% of the network capacity. The network 

capacity is an upper bound on the intensities under optimal instructions (the real intensities are 

unknown), thus the deviations from optimal use of the links are expected to be small (maximum 14%).  

The optimization method contains parameters influencing the exploration and concentration 

of the search process. In this abstract is researched how the parameter settings influence the 

performance of the optimized instructions and the speed of convergence. The findings provide insight 

into suitable parameter settings for efficient optimization in new cases.  
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2 Summary Optimization Method 
 

The optimization method presented in [1] (see [1] for more details) contains an algorithm wherein 

instructions are created by assigning groups of evacuees to combinations of departure times and routes 

(indirectly implying destinations). To contribute to the applicability of the method and the resulting 

instructions, only a selection of all possible combinations are considered in the algorithm. Before 

applying the algorithm, this selection is made for each origin separately. The selected combinations are 

called elements ,u U∈ where U is the set of all elements and rU  is the set of elements for origin r. 

The structure of the algorithm is based on ant colony optimization [6], an algorithm to solve 

numerical problems that is based on the communication behavior of ants. In each iteration, each ant in 

a colony M creates instructions for all evacuees by assigning each group of evacuees to an element. For 

each group, an element u is selected by using the following iteration-dependent selection probability: 

( ) ( )
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where ( )u iγ  is the value of the so-called pheromone trail belonging to element u in iteration i for 

which holds ( )1 1, ,u u Uγ = ∈  and uκ  is a scalar representing the problem-dependent information for 

element u. The problem-dependent information is constant for all iterations and gives elements with 

relatively low free flow travel times and relatively early departure times a relatively high selection 

probability, because they are expected to have a positive influence on the evacuation: 
 

{ }
]

2free

3free
,

min
1 0,1

max

u
r

u u

p
u U u

u
p r

k

K

ξ
τ

κ ξ
τ

∈
    = − ∈ 

      

      (2) 

where free

upτ  is the free flow travel time of the route which is part of u, uk  is the departure time which is 

part of u and
ur

K  is the set of departure times for which there are elements belonging to ,ur  the origin r 

where u belongs to. For the parameters 2ξ  and 3ξ  holds 20 1ξ≤ ≤ and 30 1.ξ≤ <  Pheromone trails 

are iteration-variant: they are updated at the end of each iteration, whereby the trails of elements 

included in the global-best instructions are raised: 
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     (3) 

where ( )u iγ∆  is the amount of pheromone added to ,gbU  the set of elements where groups are 

assigned to in the global-best instructions (the instructions with the highest performance over all 

iterations). The performance of the instructions is determined by using a simulation model and an 

objective function. The factor ( )u iγ∆  depends on the performance, the population and the number of 

people assigned to a specific element. For the parameters ρ and 4ξ  holds 0 1ρ< < and 4 0.ξ >  

 

3 Analysis of the Influence of the Parameter Settings 
 
The analysis concerns the parameters ρ and 4,ξ  both influencing the exploration and concentration of 

the search process. Different values for these parameters are tested for different scenarios to study the 
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influence on the performance of the optimized instructions and the speed of convergence. The tested 

parameter settings and scenarios are listed in Table 1. The scenarios are all floods of Walcheren, a 

peninsula in the southwest of the Netherlands. In Scenario 1 and 2 all residents have to be evacuated, 

in Scenario 3 only a part of the residents. Scenarios with different sizes of the search field (# 

possibilities) are included in the test, because of an expected relation between this size and the 

influence of the exploration and concentration parameter settings. The size follows from the number of 

elements (depending on the departure time step and the maximum number of routes per departure 

time) and the number of groups per origin (depending on the maximum group size). For more 

information about the influence of the elements and the groups and about the Walcheren case, see [1].  

Table 1.  Case study: parameter settings, and scenarios and their properties 

Settings ρ 4ξ
 

 
Scenario # Origins Population 

Departure 
time step 

Max # routes per 
departure time 

Maximum 
group size # Possibilities 

A  0.98 0.1  1 23 121,838 0.5 5 10,000 9.9.1036 

B 0.9 1  2 23 121,838 1 5 10,000 8.3.1029 

C 0.8 10  3 8 67,358 0.5 5 10,000 2.8.1015 

 

The traffic flows are simulated using the evacuation simulation model EVAQ [7], containing 

the dynamic travel demand, the en-route travel choice behavior and dynamic network loading with 

queuing and spill-back. The applied objective function is the maximization of a function of the number 

of arrivals for each time period, where early arrivals have a higher weight than late arrivals (see [1]).  

The optimization method is applied for each combination of parameter settings and scenarios. 

All evacuees are assumed to comply with the instructions. For each combination, the method is applied 

four times (because of the stochastic in the method) and the averaged results are shown in Figure 1.  
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c. 150 iterations d. converged 
     
Fig. 1 Influence of the exploration and concentration parameters (ρ, 4ξ ) on the performance of the best evacuation 
instructions found over the iterations, in different stadia of the optimization process, for Scenario 1 (●, 9.9.1036 
possibilities), Scenario 2 (○, 8.3.1029 possibilities), and Scenario 3 (*, 2.8.1015 possibilities). 
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Figure 1 shows the following: 1) For a low number of iterations, more concentration leads to 

higher values of the relative performance, while after convergence, more exploration leads to the 

higher values. The trend changes in the phases in between. 2) The bigger the size of the search field is, 

the bigger the improvements in the relative performance are by increasing the number of iterations. 3) 

For the highest exploration parameters chosen, the relative performance is for all scenarios equal to 98 

or 99% of the best known performance. 

The results show the differences and equalities in the influences of the exploration and 

concentration parameters for the different scenarios. Depending on the situation, suitable parameters 

should be chosen. When instructions are created beforehand, the effectiveness of the instructions is the 

most important criterion, but when there is a time limit, a balance between the effectiveness and the 

speed of convergence has to be found because of the computational time of the optimization method. 

 

4 Conclusions  
 
By varying the exploration and concentration parameter values in an optimization method for 

evacuation instructions, the performance of the optimized instructions and the speed of convergence of 

the method are influenced. The results provide insight into suitable parameter settings for efficient 

optimization in new cases. An extension of this research (analysis of more case studies and parameter 

settings) should lead to rules to choose the exploration and concentration parameter settings for an 

arbitrary problem, given the size of the search field and the time available to find the best instructions.  
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1 Introduction

Roll-on/Roll-off (RoRo) ships transport cargo on wheels such as cars, trucks, farming equipment,

and military equipment. Intercontinental trade involved more than 17 million vehicles in 2004,

growing 5% annually, and regional trade involved more than 26 million vehicles, growing 3–4% per

year (MDS Transmodal, 2006). Almost all of this trade is conducted using RoRo ships. The deep

sea fleet for vehicle transport, consisting of ships taking more than 3000 CEUs (Car Equivalent

Units), had 355 ships in 2006, and the regional fleet of ships taking less than 3000 CEUs consisted of

152 ships. Although they have a special role in international trade, only few scientific publications

are concerned with the development or analysis of decision support tools for planning the operations

of RoRo ships. Existing publications mainly focus on safety and avoiding roll motion, for example

(Vassalos and Konovessis, 2008) and (Kreuzer et al., 2007), where the latter present a simulation

tool for calculating how strongly trailers need to be secured to the deck. Examples of work in

related areas include Mangan et al. (2002), who present a methodology for port/ferry choice from

a shipper’s point of view, and Mattfeld (2006), who investigates how transhipment terminals should
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handle the transportation of vehicles. We will focus on the shipping company, and the planning

required when operating a fleet of RoRo ships.

RoRo ships sail between different regions of the world according to predefined plans. Plan-

ning of operations in the maritime transport industry can mainly be divided into three categories:

strategic, tactical, and operational planning. Strategic planning is concerned with a time horizon

of several years, and typically involves decisions such as determining the fleet size and mix. On

a tactical level, the decision maker must determine which ships should operate which routes and

when they are required to arrive to each region. These decisions lay the premises for planning on

the operational level. On the operational level, one must decide which cargoes to carry, and which

routes to follow in order to pick up and deliver these cargoes. In addition for RoRo ships, opera-

tional decisions must be made regarding stowage: for a given route with pick-ups and deliveries,

it must be determined how the cargoes should be stored on the ship during the voyage.

When creating these plans, the planner must at all times balance the scope of the plan and the

tractability of the problem. Increased scope, that is, planning for longer time periods and more

ships simultaneously, gives the planner more flexibility. This enables him/her to find solutions

that exploit synergy better than if the problem was partitioned into smaller problems and solved

sequentially. However, solving a planning problem of large scope is more difficult than solving the

subproblems of which it is composed. In addition, problems of larger scope typically require more

information, which may not be readily available. In this work we focus on the operational level of

planning, trying to incorporate as many decisions as possible while studying whether the resulting

problem can be solved efficiently by exact or heuristic solution algorithms.

2 Problem Description

A RoRo ship consists of a number of decks on which vehicles can be stored. Some of these

decks have adjustable heights: when carrying farm equipment more height is required between

decks than when transporting sports cars. Increasing the height of one deck can only be done by

simultaneously decreasing the height of another deck. Each deck also has a given width and length.

To utilize the full capacity of the ship it may be necessary to consider which vehicles should be

stored next to each other, so as to avoid empty space on the decks. Some cargoes may have flexible

quantities, meaning that within certain limitations the shipping company can decide how many

vehicles to lift, with a loss of revenue associated with reducing the transported quantity. While the

shipping company is obliged through contracts to carry certain mandatory cargoes, additional spot

cargoes may be available for which a revenue can be collected if they are transported. Although

cars are very light, compared to other materials transported by other types of ships, there are

stability requirements to consider: if the centre of gravity is too far to the side or too high, the
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ship may become unstable during the voyage. Cargo is loaded/unloaded using a single ramp on a

last-in-first-out basis. When many different cargoes are transported together, there is an additional

inconvenience connected to cargoes sharing lanes if the cargo loaded first should also be discharged

first.

We have studied two related problems. In the first we consider a fixed route, where all port

calls have been decided in advance. The task is then to decide which cargoes to carry, how many

vehicles to carry from each cargo, and how to stow the vehicles for the duration of the voyage. In

the second problem we consider the routing and scheduling decisions in addition to the stowage:

each cargo has an origin and a destination, and the task is to decide the sequence of port calls

to pick up and deliver all mandatory cargoes as well as optional cargoes if feasible and profitable.

There are time windows for each cargo, as well as for an artificial end node. The time windows

of the cargoes are very wide, but there is a potential profit from ending the route early: if the

ship becomes available earlier it is free to make more port calls in its next voyage, thus potentially

gaining more revenue for the shipping company. On top of the routing and scheduling comes

the decisions regarding stowage, and it should be noted that the routing decisions may influence

whether feasible stowage decisions exist due to the ship stability constraints.

3 Solution Methods

We have modeled the two problems described above as mixed integer programs, and solved them

using Xpress MP. A heuristic solution method is also developed, consisting of an initial construction

heuristic, a tabu search to improve the routing and scheduling, a squeaky wheel optimization

construction heuristic for creating stowage plans, and an additional local search to improve the

stowage plans. The following describes how the heuristic works when solving the problem including

routing and scheduling decisions.

The initial solution is created by a simple construction heuristic by inserting all mandatory

cargoes into a route one by one. The construction heuristic does this twice, first assuming that the

minimum quantity is taken for each cargo and then assuming that the maximum quantity is taken.

If the solution with maximum quantities is feasible it is taken as the initial solution, otherwise the

solution with minimum quantities is used.

Tabu search is used for the main part of the heuristic. The basic move is to reassign a cargo

in the current route by removing its pickup and delivery point and reinserting them in the best

possible way. A periodic diversification mechanism is used to allow optional cargoes to enter the

solution and to adjust the vehicles quantities taken from each cargo. Binary search is used to

determine the best quantity to carry of a given cargo, and a reduction in the quantity carried from

other cargoes is considered when performing the periodic diversification. A stowage plan is only

403



created when a new potentially best solution has been identified during the normal tabu search,

or when adjusting the cargoes carried during the periodic diversification.

When creating stowage plans we consider a fixed route and fixed cargo quantities. Stowage

plans are created using a construction heuristic guided by squeaky wheel optimization (Joslin

and Clements, 1999). The construction heuristic ignores ship stability constraints, and to repair

solutions when these are violated we propose a simple first improvement local search.

4 Results

Both the heuristic solution method and Xpress MP are analyzed in terms of their ability to ef-

ficiently solve the ship routing problem described above. Extensive computational tests have

indicated that the two solution methods have significantly different strengths and weaknesses. For

tiny problem instances, Xpress performs better than the heuristic, but for slightly larger instances

only the heuristic finds any feasible solutions.
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1 Introduction

Multi-objective shortest path problems consist in finding a set of paths that minimizes a number

of objective functions. The objectives commonly include the sum of costs and/or the maximum

(bottleneck) cost in the path. Such problems have considerable practical relevance, as they appear

in a number of real world applications. We refer for example to the transportation of hazardous

material (see, e.g., [2]) in which the traveled distance is not the only objective but other costs

(probability of accidents, population density, and so on) have a relevant impact. In many appli-

cations, the quality of the roads (highways, local routes, and so on) or the risk of accident can be

seen as bottleneck objectives, see, e.g., [1]. The reader is referred to [4] for an exhaustive review.

Formally, we are given a directed graph G = (V,A), defined by a set of vertices V = {1, 2, . . . , n}

and a set A of m arcs (i, j) (i, j ∈ V ). Each arc (i, j) ∈ A has k associated non negative costs

c1(i, j), c2(i, j), . . . , ck(i, j), and there are k different objective functions, one per cost type. A

prefixed vertex σ ∈ V is called the source. Given a vertex i ∈ V , and a path Pq(i) (q = 1, 2, . . . )

from σ to i, we define the corresponding label of vertex i as the k-tuple `q(i) = [fq
1 , f

q
2 , . . . , f

q
k ] that

gives the k objective function values of path Pq(i). A path Pq(i) dominates another path Pr(i)

if fq
h ≤ fr

h for h ∈ {1, 2, . . . , k} and fq
h < fr

h for at least one h ∈ {1, 2, . . . , k}. A path is said to
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be non-dominated if no other path dominates it. The set of all non-dominated paths is called the

maximal complete set. The Multi-Objective Shortest Path Problem (MOSPP) considered in this

paper is to find the maximal complete set of paths from σ to any other vertex i ∈ V , where the

objective functions include both sum and bottleneck criteria. The problem is NP-hard.

Most of the approaches to the exact solution of multi-objective shortest path problems fall

into two main categories, namely label setting and label correcting algorithms. The label setting

algorithms for MOSPP generally adopt a lexicographic ordering of the labels. However, other

orderings can be adopted, in particular those based on an aggregate function, i.e., a weighted sum

of the label values. Aggregate orders have been extensively used for the bi-objective case (see [5]),

as well as for the resource constrained shortest path problem, in which one looks for a shortest path

subject to a number of capacity constraints on additional weights associated with the arcs (see,

e.g., [6] for the case of a single capacity constraint). For the general case of MOSPP, aggregate

orders were suggested as a possible algorithmic enhancement, but were substantially disregarded.

In this work we address the general MOSPP with any number of sum and bottleneck objectives,

and devise a label setting algorithm based on a remarkably simple, yet very effective aggregate

order. Computational results show that, with a suitable choice of the aggregate function, the

aggregate order is up to three times faster than the lexicographic one.

2 Label setting MOSPP algorithms

As in the classical Dijkstra approach, the label setting algorithms extend the paths from the source

to the rest of the network by labeling the vertices. For a given s (s ≤ k) assume that [fq
1 , f

q
2 , . . . , f

q
s ]

are sum objectives, and [fq
s+1, f

q
s+2, . . . , f

q
k ] are bottleneck objectives. In the following we denote

by Pq(i) ⊕ (i, j) the path obtained by adding the arc (i, j) to path Pq(i). Initially, only one label

is defined, namely `1(σ) = [0, 0, . . . , 0], and marked as temporary. In the classical implementation

each iteration of a label setting algorithm consists of three main steps:

1. selection: select a temporary label `q(i) that is lexicographically minimal among all tempo-

rary labels, and mark it as permanent;

2. propagation: for each arc (i, j) ∈ A create a new label, say ¯̀(j), consisting of the k costs

corresponding to path Pq(i)⊕ (i, j);

3. dominance check: if ¯̀(j) is dominated by one of the (permanent or temporary) labels

of vertex j then delete ¯̀(j) and go to the next iteration. Otherwise add a new label, say,

`r(j) = ¯̀(j), to the labels of vertex j, and delete temporary labels of j dominated by `r(j).

The algorithm terminates when no further temporary label exists, and it can be modified to handle

bottleneck objectives as discussed in [3].
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An aggregate approach can be obtained by replacing the order used in the selection step.

Basically, this replacement consists in adding to each label `q(i) = [fq
1 , f

q
2 , . . . , f

q
k ] an additional

aggregate information, say, fq
k+1, defined by a linear combination of the values fq

1 , f
q
2 , . . . , f

q
k of

path Pq(i), and selecting, at each iteration, a temporary label for which fq
k+1 is a minimum. In

the choice of the weights of the linear combination, our goal was to give each objective the same

“importance”, i.e., the same expected impact on the aggregate information. To this aim we define,

for each objective h (h = 1, 2, . . . , k), the average arc cost c̄h =
∑

(i,j)∈A ch(i, j)/m. The aggregate

information is then obtained by a linear combination of the normalized objective values, i.e.,

fq
k+1 = α

s∑
h=1

fq
h

c̄h
+ β

k∑
h=s+1

fq
h

c̄h
,

where α (resp. β) is a positive weight assigned to the sum (resp. bottleneck) objective functions.

Choosing a weight β > α allows to give bottleneck and sum objectives a similar importance. After

the outcome of extensive computational experiments, not reported here, we set α = 1 and β = 10.

3 Computational comparisons

We report here the results of an experimental comparison of the lexicographic and aggregate

algorithms. We tested the algorithms on the set of random instances introduced in [3], which is

the only benchmark specifically addressing bottleneck objectives proposed so far. For different

numbers of vertices n, the graphs are generated according to different percentage densities d =

m/(n(n − 1)). The following data sets are considered: n ∈ {50, 100, 200}; d ∈ {5%, 10%, 20%}.

For each pair (n, d), three cost types C are tested. For each triple (n, d, C) and pair (s, b) ten

instances are given. We refer to [3] for further details. In the following we denote the number of

bottleneck objective functions as b (= k− s). We considered seven pairs (s, b), with s, b ∈ {1, 2, 3}

and k = s + b ∈ {3, 4, 5}, obtaining a total of 1890 instances. Algorithms were coded in C++.

Computational experiments were performed on a Pentium IV PC with 3 GHz and 2 GB RAM.

We summarize the results in Table 1. The entries are here the average values computed over

the 270 instances generated for each case. Column |PS| gives the size of the Pareto set, i.e., the

maximal complete set. The next two groups of four columns report the results obtained by the two

algorithms: sec is the average CPU time in seconds, %rate is the average percentage of temporary

labels that become permanent, temp
103 (resp. perm

103 ) are the average numbers of comparisons between

the generated labels and the temporary (resp. permanent) labels, expressed in thousands.

Table 1 allow us to draw some remarks on our label setting algorithms. Observe that the

aggregate version gives a quite similar reduction (more than 2/3 in the best cases) both in the

CPU times and in the number of comparisons to permanent labels, even if the latter is slightly

more relevant. Due to the huge number of label comparisons performed by both algorithms, it is
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Table 1: Lexicographic and Aggregate algorithms: summary.

Lexicographic Aggregate

s b |PS| sec %rate
temp
103

perm
103 sec %rate

temp
103

perm
103

2 1 4,837 0.3 85.0 88 1,569 0.2 89.8 72 733

3 1 11,949 2.0 89.7 445 8,988 1.0 95.6 456 3,021

1 2 10,107 1.2 85.8 223 5,587 0.8 86.9 202 2,711

2 2 30,556 11.1 90.8 1,856 49,122 4.8 95.3 2,073 16,856

3 2 63,385 50.1 93.4 8,629 212,007 17.4 98.1 11,395 58,090

1 3 84,986 87.8 91.6 9,730 381,308 36.4 93.0 11,759 148,538

2 3 213,47 515.8 94.6 64,904 2,194,421 185.0 97.7 91,478 712,864

aver. 59,899 95.5 90.1 12,268 407,572 35.1 93.8 16,776 134,687

conceivable that the CPU time reduction obtained by the aggregate version is explained by the

corresponding reduction in the number of label comparisons. Note that in our implementation,

and for both algorithms, new labels are compared to permanent labels following a temporal order,

i.e., in the order in which labels became permanent, which is clearly different for the lexicographic

and the aggregate version. The aggregate order is much more effective, as rejected new labels tend

to be dominated by “older” permanent labels, i.e., labels with a smaller aggregate weight.
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1 Introduction

Single-vehicle arc-routing problems a.k.a. postman problems are among the oldest and best studied

discrete optimization problems (see Dror, 2000; Eiselt et al., 1995a,b). The talk presents a non-

standard extension of classical postman problems, i.e., the Profitable Capacitated Rural Postman

Problem (PCRPP). The PCRPP can be characterized by non-connected (postal) delivery regions,

where it is possible to select the street segments that are serviced. Moreover, the overall duration

of the postman tour is bounded.

Traditional exact methods for the Capacitated Arc Routing Problem (CARP) either rely on

branch-and-cut (Belenguer and Benavent, 2003) or on the transformation into the corresponding

node-routing problem (see, e.g., Baldacci and Maniezzo, 2006; Longo et al., 2006), the well-known

Vehicle-Routing Problem (VRP). An alternative exact approach is the solution of the CARP by

column generation (Desaulniers et al., 2005) or Lagrangian-relaxation (Lemaréchal, 2001). Letch-

ford and Oukil (2009) follow this idea (they refer to the conference presentation Gomez-Cabrero

et al. (2005) as the first column generation algorithm for the CARP). In essence, Letchford and

Oukil (2009) price out elementary routes using a MIP formulation with directed flow variables.

In contrast, we propose solving the subproblem directly as an undirected postman problem, but

still guarantee that routes are elementary in the sense that no required edge is serviced twice. In

fact, the subproblem is the PCRPP and we propose its solution by branch-and-cut, instead of

transforming it into a node-routing problem and applying corresponding node-routing methods.

2 Definition of the PCRPP

We consider the PCRPP over an undirected graph G = (V,E). The startpoint and endpoint of a

postman tour is the depot d ∈ V . Edges e ∈ E that are serviced generate a profit pe, but traversing

an edge costs ce. Traversing an edge without servicing it is called deadheading. Both service and
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deadheading consume time. Let qe be the time for service and re be the time for deadheading

through edge e. The task is to find a postman tour that maximizes the difference of profits and

costs, while the overall duration of the tour must not exceed a given bound Q. Note that one can

earn the profit pe only once (when first traversing an edge). Furthermore, providing no service

to an edge but deadheading through it can make sense: due to the maximum tour duration Q it

might be better to not serve an edge, but to deadhead through that edge in order to reach other

(profitable) edges.

A straightforward model for the PCRPP uses decision variables x = (xe)e∈E ∈ {0, 1}|E| to

indicate that edges are serviced with (not necessarily positive) contribution margin φ = (φe) ∈ R|E|

(profit minus traversal cost; φe = pe − ce ∈ R). Decision variables y = (ye)e∈E ∈ Z|E|+ indicate

the deadheading through edges with costs c = (ce)e∈E ∈ R|E|+ . It is easy to see that in an optimal

solution the variables ye can only take the values 0, 1, and 2.

zPCRPP = maxφ>x− c>y (1a)

s.t. x(δ(i)) + y(δ(i)) = 2wi for all i ∈ V (1b)

x(δ(S)) + y(δ(S)) ≥ 2xe for all e ∈ E,S ⊆ V \ {d} : e ⊆ S (1c)

q>x+ r>y ≤ Q (1d)

x ∈ {0, 1}|E| (1e)

y ∈ {0, 1, 2}|E| for all e ∈ E (1f)

w ∈ Z|V |+ (1g)

The objective (1a) is the maximization of the contribution margin, i.e., profit generated from

services minus costs for traversals. Equalities (1b) use additional integer variables wi for each node

i ∈ V in order to ensure that in the tour every node has an even degree. Connectivity of the tour

with the depot results from the connectivity constraints (1c). Constraint (1d) ensures that the

tour duration does not exceed the upper bound Q.

The PCRPP is an extension of the so-called Prize-collecting Rural Postman Problem (PRPP)

introduced and solved with branch-and-cut in the work of Araoz et al. (2007). However, there

are several important differences between the PCRPP and PRPP: First, Araoz et al. (2007) show

that variables for deadheading can be restricted to take only values 0 and 1 in the PRPP. This is

not true for the PCRPP. Second, Araoz et al. (2007) consider connected components built by the

edges e ∈ E with nonnegative contribution margin when traversed twice, i.e., with φe − ce > 0.

They prove that these connected components can be treated similar as the components of required

edges in in the undirected rural postman problem (URPP) (cf. Corberán and Sanchis, 1994). In

this way Araoz et al. (2007) are able to come up with a pure binary programm with reduced

variable set and additional constraints to strengthen the formulation.

We follow another idea, already used by (Ghiani and Laporte, 2000) for the URPP: variables
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ye ∈ {0, 1, 2} can be replaced by two binary variables ye, ze ∈ {0, 1}. The novelty of the following

formulation for the PCRPP is that with these binary variables ye and ze the node degree constraints

can be fully replaced by cocircuit-inequalities:

zPCRPP = maxφ>x− c>(y + z) (2a)

s.t. x(δ(S) \ F ) + y(δ(S) \G) + z(δ(S) \G)− x(F )− y(G)− z(H)

≥ 1− |F | − |G| − |H|

for all S ⊆ V ;F,G,H ⊆ δ(S) with |F |+ |G|+ |H| odd (2b)

x(δ(S)) + y(δ(S)) + z(δ(S)) ≥ 2xe

for all e ∈ E,S ⊆ V \ {d} : e ⊆ S (2c)

q>x+ r>(y + z) ≤ Q (2d)

y ≥ z (2e)

x ∈ {0, 1}|E| (2f)

y, z ∈ {0, 1}|E| (2g)

The advantage of this model compared to (1a)-(1g) is that the cocircuit-inequalities (2b) give a

tight description of the underlying integer polyhedron. Constraints (2e) are added in order to

reduce the inherent symmetry.

3 Solution Methods

We propose solving model (2a)-(2g) with branch-and-cut. The separation of violated cocircuit

inequalities can be done with fast exact algorithm by Letchford et al. (2004). Violated connectivity

constraints (2c) are easy to find (see Araoz et al., 2007) by solving a sequence of max-flow/min-cut

problems. Several other classes of valid inequalities are known, e.g., cover inequalities (related to

(2d)), valid inequalities from the TSP etc. Preliminary computational results of a branch-and-cut

implementation are very promising. We are convinced that the branch-and-cut algorithm for the

PCRPP will be the key component when solving instances of the CARP using column generation

or Lagrangian relaxation.

A fine-tuned branch-and-cut implementation is currently under development. The talk at

TRISTAN 7 will discuss the most recent version of this implementation and give answers to the

following research questions:

1. What is a good (efficient, fast) separation strategy when solving the PCRPP via branch-and-

cut? Similar to the study on the elementary shortest-path problem with capacity constraints

performed by Jepsen et al. (2008), we will analyze the impact of different classes of valid
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inequalities, of the sequence of separation algorithms, number of cuts to add per iteration,

and thresholds to use for selecting violated inequalities.

2. What characterizes CARP instances to be well-suited for being solved with a column-generation

or Lagrangian-relaxation approach? In which cases works the branch-and-cut solution ap-

proach for the subproblem better than traditional solution approaches?
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1 Introduction and Problem Definitions

The context of this paper deals with routing and scheduling problems under incomplete and un-

certain data, and in some cases under short time requirements for some of the decisions. Here we

want to consider these questions around generalizations of the Traveling Salesman Problem (TSP)

and Hamiltonian Path Problem (HPP).

Specifically, we are concerned with online versions of the TSP and HPP on metric spaces where

the server doesn’t have to accept all requests. Associated with each request (to visit a point in the

metric space) is a penalty (incurred if the request is rejected) and a weight (collected if the request

is accepted and the point visited). Requests are revealed over time to a server, initially at a given

origin, who must decide which requests to serve in order to minimize the time to serve all accepted

requests plus the sum of the penalties associated with the rejected requests while collecting enough

weights to exceed a given quota. In the first online version of these problems, we assume that the

server’s decision to accept or reject a request can be made any time after its release date. In the
∗Extended abstract accepted for presentation at TRISTAN VII. Research funded in part by ONR, grant N00014-

09-1-0326

414



second version we assume that the server’s decision to accept or reject a request must be made

exactly at its release date. Formal problem definitions are as follow:

TSP with Acceptance/Rejection Decisions:

Instance: A metric space M with a given metric d and an origin O. A series of n requests

(li, ri, pi, wi)i∈N where N = {1, . . . , n} is the index set of the requests, li ∈M is the location

(point in metric space) of request i, ri ∈ R+ its release date (first time after which service

can be done), pi ∈ R+ its penalty (for not being served), and wi ∈ R+ its weight (collected if

served). A parameter Wmin ∈ R+ (quota of total weight to collect). The problem begins at

time 0; the server is initially idle at the origin (initial state), can travel at unit speed (when

not idle), and eventually must be back and idle at the origin (final state). The earliest time

the server reaches this final state is called the makespan.

Feasible solutions: Any subset S ⊂ N of requests to be served, and a feasible TSP tour

with release dates τ(S) through S so that
∑

i∈S wi ≥Wmin.

Offline context: Requests are all revealed to the offline server at time 0.

Online context: Requests are revealed to the online server at their release dates ri ≥ 0;

assume r1 ≤ r2 · · · ≤ rn. There are two online versions:

Basic: The online server can accept or reject a request any time after the request’s release

date.

Real-time: The online server must accept or reject a request immediately at the time of the

request’s release date. Decisions are then final.

Cost Function: In all cases, minimize {the makespan to serve all accepted requests + the

sum of the penalties of all rejected requests} among all feasible solutions.

The HPP with Acceptance/Rejection Decisions is the same problem without requiring the

server to return to the origin. In all cases, the goal is to find online algorithms that minimize the

competitive ratio, which is defined as max{online cost/ offline cost} over all instances.

2 Results

Full descriptions and proofs of results obtained on the TSP are contained in [7]. For the basic

version of the problem in a general metric space, we construct an optimal 2-competitive online

algorithm, improving the 7/3-competitive online algorithm of [3], and the 2.28-competitive online

algorithm of [8]. For the real-time version, we analyze the problem in details for the case with no

quotas. We first prove the optimality of a 2.5-competitive polynomial time online algorithm on

the non-negative real line. We then provide a 3-competitive online algorithm on the real line and

prove a general lower bound of 2.64 and a tighter lower bound of 2.73 among a restricted family of

online algorithms. Finally we show that there can’t be any finite c-competitive online algorithm on
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a general metric space. We show a Ω(
√

lnn) lower bound on any competitive ratios, and describe

an asymptotically optimal O(
√

lnn)-competitive online algorithm.

With respect to the HPP, we have recently developed a 2-competitive online algorithm on the

non-negative line, which, as a by-product, improves upon the 2.06-competitive algorithm of [11]

(which was the best result so far for the problem without rejections).

3 Literature review

Research concerning online versions of the TSP have been recent but have been growing steadily.

Most related in spirit with this paper is the stream of works which started with the paper by

Ausiello et al. [5], in which the authors study an online version of the TSP with release dates

(without acceptance/rejection decisions); they analyze the problem on general metric spaces giving

an optimal online algorithm with a competitive ratio of 2. They also provide a polynomial-time

online algorithm, for general metric spaces, which is 3-competitive. Subsequently, Ascheuer et

al. [2] give a 2.65-competitive polynomial-time algorithm, for general metric spaces and a (2 + ε)-

competitive (ε > 0) algorithm for Euclidean spaces. Lipmann [11] develops an optimal online

algorithm for the real line, with a competitive ratio of 1.64. Blom et al. [6] give an optimal online

algorithm for the non-negative real line, with a competitive ratio of 3
2 . Jaillet and Wagner [9]

introduce the notion of a disclosure date, and quantify the improvement in competitive ratios as

a function of the advanced notice. A similar approach was taken by Allulli et al. [1] in the form

of a lookahead. Jaillet and Wagner [10] consider the (1) online TSP with precedence and capacity

constraints and the (2) online TSP with m salesmen and give for both problems a 2-competitive

online algorithms (optimal in case of the m-salesmen problem). They also study online algorithms

from an asymptotic point of view, and show that, under general stochastic structures for the

problem data, unknown and unused by the online player, the online algorithms are almost surely

asymptotically optimal.

Ausiello et al. [4] analyze the online Quota TSP, where each city to be visited has a weight

associated with it and the server is given the task to find the shortest sub-tour through cities

in such a way to collect a given quota of weights by visiting the chosen cities. They present an

optimal 2-competitive algorithm for a general metric space. In Ausiello et al. [3], the authors give

a 7/3-competitive algorithm and a lower bound of 2 for the “prize-collecting TSP” in a general

metric space, a generalization of the quota problem where penalties for not visiting cities are also

included. In Jaillet and Lu [8], we consider the “TSP with flexible service”, a special case of the

online prize-collecting TSP with no quotas. On the half-line and real line, we provide optimal

2-competitive online algorithms, and a c-competitive online algorithm, where c =
√

17+5
4 ≈ 2.28

for the general metric space.
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1 Introduction

The 2-echelon capacitated vehicle routing problem (2E-CVRP) is a transportation and distribution

problem and can be described as follows: Given a depot, a set of satellites, and a set of customers

each with a demand, our task is to distribute goods from the depot to the customers. Goods can

be transported to the satellites before being shipped to the customers vehicles. Two sets of vehicle

types are considered, a large capacity vehicle type going between the depot and the satellites and

a small capacity vehicle type servicing the customers from the depot and the satellites. Each

customer must be visited by exactly one small vehicle. It is optional to use a satellite and vehicles

from the depot may deliver split deliveries to the satellites. No vehicle may be loaded so that the

vehicle capacity is exceed. The number of vehicles to be used of each type is bounded, and the

number of smaller vehicles used at each satellite is also bounded. The objective is to minimize the

travel costs of the vehicles and the transshipment costs at the satellites.

The 2E-CVRP is relevant in city-logistic applications. Due to legal restrictions it may not be

feasible to use large trucks within the center of large cities. Therefor, to distribute goods efficiently

it is convenient to a use two-tier distribution network as in the 2E-CVRP where satellite facilities

are located at the outskirts of the city.

The literature on 2E-CVRP is sparse, but in recent years some papers have been presented.

Gonzales Feliu et al. [3] and Perboli et al. [4] present a multi-commodity flow inspired mathematical

formulation for the 2E-CVRP. They are able to solve instances with up to 32 customers and 2
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satellites to optimality. Perboli et al. [4] also present two heuristic methods that can find feasible

solution to instances up to 50 customers and 4 satellites. Crainic et al. [1] present a clustering

heuristic that can find solutions to instances up to 150 customers and 3 satellites. Crainic et al. [2]

analyses the relationship between customers and satellite layouts and present heuristic solutions

for instances with up to 200 customers. Perboli et al. [5] present several valid inequalities for the

2E-CVRP.

The contribution of this work is a new mathematical formulation for the 2E-CVRP inspired

by the edge flow formulation of the CVRP. The new formulation have much fewer variables than

the previously proposed but does have several constraint sets of exponential size. It is shown that

some of the cutting planes from [4, 5] is redundant in the new model and that many symmetries

regarding the assignment of customer sets to satellites is no longer an issue. This implies the

strength of the new formulation. A branch-and-cut algorithm is developed to solve this model to

optimality.

2 Mathematical Model

Define the graph G = (V0∪VS ∪VC , E∪E′) where V0 = {0} is the depot, VS is the satellites, VC is

the customers, E is the edges in the first echelon and E′ is the edges in the second echelon. Let ce

and c′
e be the travel cost of the edges in the first and second echelon respectively. The size of the

two fleets associated with the echelons are given as K and K ′ with capacity C and C ′ respectively.

K ′
i is the maximum of second echelon vehicles serviced at satellite i. Let di be the demand of

customer i and let hi be the unit cost for transshipment at satellite i. Variables xe indicate the use

of edges in E and edges connected to the depot can be used twice. Variables ye indicate the use

of edges in E′, and if a customer is connected to a satellite on a one-route via edge e then variable

ze indicates the return to the satellite. Variables yi indicate the use of satellite i with the number

of visits from the depot that is given by integer variables xi. Let li be the quantity delivered to

satellite i from the depot. Let r(S) be the minimum number of second echelon vehicles needed to

service S ⊆ VC . The model is as follows:

min
X
e∈E

cexe +
X
e∈E′

c′eye +
X

e∈δ(VS)

c′eze +
X
i∈VS

hili (1)

X
e∈δ(i)

xe = 2xi i ∈ VS (2)

X
e∈δ(V0)

xe ≤ 2K (3)

li ≤ min

8<:X
j∈VS

dj , CK

9=; yi i ∈ VS (4)

X
i∈V0∪VS

li =
X
i∈VC

di (5)
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X
e∈δ(S)

xe ≥
2

C

X
i∈S

li S ⊂ VS , |S| ≥ 2 (6)

yi ≤ xi i ∈ VS (7)X
e∈δ(i)

(ye + ze) ≤ 2K′
iyi i ∈ VS (8)

X
e∈δ(i)

ye +
X

e∈E(i:VS)

ze = 2 i ∈ VC (9)

X
e∈δ(S)

ye +
X

e∈E(S:VS)

ze ≥ 2r(S) S ⊂ VC , |S| ≥ 2 (10)

X
e∈δ(S∪{j})

ye +
X

e∈E(S:VS\{j})

ze ≥
2

C′

 X
i∈S

di − lj

!
S ⊂ VC , j ∈ V0 ∪ VS (11)

X
e∈δ(S)

ye ≥ 2
X
e∈F

ye S ⊆ VC , F ⊆ δ(VS),

|F ∪ δ(i)| ≤ 1, i ∈ VS (12)

ze ≤ ye e ∈ δ(V0 ∪ VS) (13)

X
i∈VS

0@ X
e∈δ(i)

(ye + ze)

1A ≤ K′ (14)

xe ∈ {0, . . . ,K} e ∈ E \ δ(V0) (15)

xe ∈ {0, . . . , 2K} e ∈ δ(V0) (16)

ye ∈ {0, 1} e ∈ E′ (17)

ze ∈ {0, 1} e ∈ δ(V0 ∪ VS) (18)

xi ∈ {0, . . . ,K}, yi ∈ {0, 1} i ∈ VS (19)

li ≥ 0 i ∈ V0 ∪ VS . (20)

The objective (1) minimizes travel cost and satellite operations. Regarding routing in the first

layer we have: Constraints (2) ensure that satellites are left again if visited, (3) ensures that at most

K vehicles leaves the depot, (4) ensure that a satellite needs to be visited in order to have goods

delivered, (5) ensure that the quantity delivered for distribution is equal to customer demands,

(6) ensure that the tours covering the satellites are connected, (7) ensure that a satellite cannot

be used unless it is visited, and (8) limits the number of second echelon vehicles at the satellites.

In the second layer we have: Constraints (9) ensure that all customers are visited, (10) ensure

that the tours covering the customers are connected, (11) ensure that if a set of customers are

connected to a satellite then the satellite have received enough quantity from the depot to service

the customers, (12) ensure that a connected subset of customers are connected to the same satellite,

and (13) ensure that an edge can only be used twice if it is a one-customer route. Constraint (14)

ensures that at most K ′ vehicles are used to service the customers. Constraints (15)-(20) are the

domain of the variables.
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In the talk we will show how some valid inequalities from [4] and [5] are implied by the linear

relaxation of (1)-(20). Compared to the previous presented model in [3, 4] symmetry is avoided

both due to the undirected graph structure and because the assignment of customers to satellites

are implicit, hence sub-routes in the second echelon cannot change assignment between satellites.

3 Solution Approach

We suggest to solve the model (1)-(20) by a branch-and-cut algorithm by relaxing the exponential

number of constraints (6), (10), (11), and (12) and separate them when violated.

Constraints (6) are derived from the fractional capacity inequalities known from the CVRP,

and the separation is polynomial and is done by solving |VS | − 1 maxflow problems. Constraints

(10) are the capacity inequalities known from the CVRP. Separation is NP-hard if r(S) is not the

trivial fractional bound. Constraints (11) are equivalent to (6) but concerns the customer set VC ,

hence separation is done by solving |VS ||VC | maxflow problems. The separation of constraints (12)

is also polynomial solvable by solving |VS ||VC | maxflow problems.
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1. Introduction 

The vehicle routing problem (VRP) describes the allocation of transportation tasks to a fleet of 

vehicles, and the simultaneous routing of each vehicle. The VRP was first described by Dantzig 

and Ramser (1959), and has been proved NP-hard by Lenstra and Kan (1981). Due to its high 

industrial relevance and complexity, the VRP has been the object of numerous studies and a great 

number of papers have proposed solution methods. 

The classical or capacitated VRP (CVRP) is defined on a graph G= (N, A) where N= {0,…, n} is 

a vertex set and A= {(i, j) : i, j  N} is an arc set. Vertex 0 is the depot where the vehicles depart 

from and return to. The other vertices are the customers which have a certain demand d i  
to be 

delivered (or picked up). The travel cost between customer i and j is defined by c ij >0. The 

vehicles are identical. Each vehicle has a capacity of Q. The objective is to design a least cost set 

of routes, all starting and ending at the depot. The customers are visited exactly once. The total 

demand of all customers on a route must be within the vehicle capacity Q. Some CVRP instances 

may have an additional route duration limit which restricts the duration of any route does not 

exceed a preset bound D. 

From the literature, one trend in the latest contributions of metaheuristic algorithms for solving 

vehicle routing problems is to address very large scale classical VRP instances. For example, Li 

et al. (2005) have applied record-to-record travel with a variable-length neighbor list to a set of 

instances up to 1200 customers. Kytojoki et al. (2007) present an efficient variable neighborhood 

search heuristic for CVRP and demonstrate the proposed method is able to solve problem 

instances with up to 20000 customers. These authors also generated a couple of sets of large 

CVRP instances.  

Another noticeable trait for VRP solution methods is the application of parallelization. Parallel 

algorithms involve problem solving means that several (sometimes could be many as well) 
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processes work simultaneously on available processors (computers/workstations) with the 

common goal of solving a given problem instance.  Crainic (2008) describes and discusses the 

main strategies used in this group of algorithms and also provides an up-to-date survey of 

contributions to this rapidly evolving field. In a latest instance, Dorronsoro et al (2007) presented 

a grid-based hybrid genetic algorithm for large scale instances of the CVRP. In their model, the 

population was divided into islands at the first level, and structured as cellular patterns at the 

second level. Periodically, each island exchanged individual solutions with its immediate 

neighbors. The proposed method was tested with the large scale CVRP instances presented by Li 

et al (2005). The testing platform was a grid composed of up to 125 heterogeneous computers 

using Proactive to manage all the grid related issues. Computational results showed that the 

proposed algorithm could find very good solutions for large CVRP instances but long 

computational time (from 10 hours to 72 hours) was required.  

The main focus of this paper is to combine granular Tabu search (Toth and Vigo (2003)) and 

parallel computing technique for large scale CVRP for the purpose of solving them with high 

efficiency and flexibility. Computational experiments will be carried out on the large scale 

benchmark instances of Golden et al. (1998), Li et al. (2005) and Kytojoki et al. (2007). 

2. The problem solving methodology 

Intuitively, in order to find good solutions very quickly, one had better either reduce search tasks 

or use more computational power. Following such logic, we apply granular Tabu search in the 

parallelization setting.  Granular Tabu search (Toth and Vigo (2003)) is a mechanism which is 

able to significantly reduce the computational efforts, especially for large problem instances by 

getting rid of the unpromising solution components. In this paper, a different granular 

neighborhood is implemented, which is to select a set of nearest neighbors (plus the depot) for 

each customer, and at each iteration, only moves involving one of the nearest neighbors will be 

considered. The size of the set of nearest neighbors is selected by considering the instance size 

and the requirement of solution quality (or the time available for computation) as suggested in 

Branchini et al (2009).   In addition, to address large instances, several neighborhood structures 

will be used to increase the effectiveness and the efficiency of the algorithm.  
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Another aspect of the proposed metaheuristic is the application of parallelization. As suggested in 

Crainic (2008), cooperative multi-thread strategy and asynchronous information exchange 

through solution pool (like adaptive memory approach presented by Rochat and Taillard (1995)) 

are applied in the algorithm for the sake of the employment of more computational power.  

3.  Implementation issues  

The solver will be implemented with C++ and Intel Threading building Blocks (TBB) libraries 

for parallelization. The computational experiments will be carried out on a computer with Intel® 

Xeon® E5450 3.00GHZ CPU and 8 GB of RAM. 

4. The expected outcomes 

In this paper, we are expecting the following outcomes or findings. 

(1). Our proposed algorithm is capable of solving large scale CVRP instances very quickly. 

(2). Discover the proper size for the set of nearest neighbours. 

(3). Investigate the strategies of implementing multiple neighborhoods. 

(4). Explore how parallelization can improve the performance of the algorithm. 
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1 Problem definition and formulation

The paper introduces a new routing problem: the Multi-Modal Traveling Salesman Problem

(MMTSP). The MMTSP is a bi-objective variant of the Traveling Salesman Problem (TSP) that

can be defined as follows. Let G = (V,E) be an undirected graph, where V is the vertex set and

E is the edge set, and let C be a set of colours. Edge e ∈ E has a cost ce and a colour δ(e) ∈ C.

Colours can be seen as different means of transportation. The goal is to determine a Hamiltonian

cycle of least length and least number of colours. A colour k ∈ C is said to be used if an edge

e ∈ ζ(k) belongs to the cycle with ζ(k) = {e ∈ E|δ(e) = k}.

The MMTSP can be formulated as an extention of the Dantzig, Fulkerson, and Johnson model

for the TSP [2]. We define binary variables xe, equal to 1 if and only if e is used and binary

variables uk, equal to 1 if and only if k ∈ C is used. The problem is then:

min (
∑
e∈E

cexe,
∑
k∈C

uk) (1)∑
e∈ω({i})

xe = 2 (i ∈ V ) (2)

∑
e∈ω(S)

xe ≥ 2 (S ⊂ V, 3 ≤ |S| ≤ |V | − 3) (3)

xe ≤ uδ(e) (e ∈ E) (4)

xe ∈ {0, 1} (e ∈ E) (5)

uk ∈ {0, 1} (k ∈ C), (6)

where ω(S) = {e = (i, j) ∈ E|i ∈ S, j ∈ V \ S}.

Additional valid inequalities can be used to strengthen the model. First, note that any valid

inequality for the TSP is also valid for the MMTSP. Also, The following constraints are also valid:
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uk ≤
∑
e∈ζ(k) xe (k ∈ C). These constraints state that if a colour k is used, then at least one

of the edges of colour k must be used. Finally, additional constraints can be derived from valid

constraints for the TSP, using one of the following propositions.

Proposition 1.1 Let T be a subset of E. If
∑
e∈T αexe ≤ β is valid for the TSP then for a colour

k ∈ C, the inequality
∑
e∈T∩ζ(k) αexe ≤ βuk is valid for the MMTSP.

Proposition 1.2 Let T be a subset of E. If
∑
e∈T αexe ≥ β is valid for the TSP then the inequality∑

k∈C min{
∑
e∈T∩ζ(k) αe, β}uk ≥ β is valid for the MMTSP.

Three single-objective problems were derived from the MMTSP. The first one, the Label Con-

straint Traveling Salesman Problem (LCTSP), deals with the goal of finding a minimal length tour

that does not exceed a given number of colours. The second problem, the Minimum Labelling

Hamiltonian Cycle with Distance Constraint (MLHCDP), is the reverse of the LCTSP, i.e. the

goal is to find a Hamiltonian cycle using the minimum number of colour without exceeding a

given distance. The last one is the Minimum Labelling Hamiltonian Cycle Problem (MLHCP) or

Colourful Traveling Salesman Problem (CTSP) in which the goal is to find a Hamiltonian cycle

minimizing the number of colours. The MLHCP has previously been solved heuristically in [1] and

[5]. To our knowledge, The other problems have not been solved previously.

2 Branch-and-cut algorithm

Branch-and-cut algorithms were first developped for the single-objective variants of the problem.

They use the inequalities defined in the previous section to strengthen the lower bound. Con-

nectivity constraints are used as cuts. Tests were conducted on generated data and modified

instances from the TSPLIB. However, the intent of this work was to solve the problem as a bi-

objective problem and to find the optimal set of non-dominated solutions. Most exact algorithms

for multi-objective combinatorial optimization problems consist one way or the other in a repeated

application of a single-objective method. For example, a possibility is to use one of the branch-

and-cut algorithms defined earlier in an ε-constraint method, as explained in [3]. As far as we

know, only one reference [4] proposes an adaptation of a standard and generic branch-and-bound

algorithm to multi-objective optimization. The method can find the optimal Pareto set in a single

run. However, it cannot efficiently solve the multi-objective problem if the weighted aggregation

of the objectives results in an NP-hard single-objective problem, as is the case of the MMTSP.

To avoid this difficulty, we have developed a generic multi-objective branch-and-cut algorithm

(MOB&C). This was done with the aim of modifying as little as possible the generic structure

of the standard branch-and-cut algorithm. At every node of the search tree, the method works

on the full Pareto set. It can therefore be used heuristically as an anytime method that can be
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stopped to return an approximation of the optimal Pareto set. In this sense, it can be compared

with multi-objective evolutionary algorithms that work on a population of solutions and offer

a well-diversified approximation. Such methods constitute the main class of metaheuristics for

multi-objective problems.

Differences with the standard branch-and-cut algorithm appear in the definition of the lower

and upper bounds, in how branching is performed, and in the presence of a mechanism to avoid

useless computations. We define the lower bound as a set of points in the objective space such

that any point corresponding to a feasible solution is dominated by at least one of these points.

A point in the lower bound set does not necessarily correspond to a feasible solution. The upper

bound is a set of points in the objective space corresponding to at least one non-dominated feasible

solution found during the search. A node of the search tree can be pruned if all the points in the

lower bound are dominated by at least one solution of the upper bound. For the MMTSP, we

propose a polynomial algorithm to compute the lower bound. Concerning the branching, since

the lower bound is composed of several solutions, it is probable that they will not all possess the

same set of fractional variables. Therefore, we have implemented a process to allow branching

to be done on multiple variables. The rationale for this choice is that since the lower bound is

composed of a set of points, if there is a least one fractional and undominated point, then the node

cannot be pruned, but the dominated and integer points will remain or will lead to dominated

solutions, irrespective of how the branching is performed or which constraints are added. To avoid

these useless computations, a mechanism was used to avoid computing solutions in aeras that are

certain to be dominated under the current branching choices.

MOB&C was implemented for the MMTSP and compared on generated data with an ε-

constraint method (εCM) [3] using a branch-and-cut algorithm for the LCTSP. To compare the two

methods, aside from the specific aspects of MOB&C and some improvement mechanisms for εCM

[3], the branch-and-cut characteristics (cuts, inital heuristic ...) are the same. Some results are

reported in Table 1 (note that each line corresponds to a mean over 25 instances). The main con-

clusion is that MOB&C is faster on average than the ε-constraint method. The relative difference

in performance increases with instance size (especially with the number of colours). Our algorithm

also explores far fewer nodes than the ε-constraint method. Again, the difference increases with

instance size, which suggests that MOB&C will be more efficient on larger instances.

As the optimal Pareto set can be reached well before the end of the search (column “Seconds*”

in Table 1), tests were also conducted to evaluate the performance of MOB&C if it is stopped before

the proof of optimality and used as a heuristic. It appears that it performs well. For instance, if we

explore only 50 percent of the nodes, on average more than half of the optimal set is found. Also,

the fact that the size of the approximation is almost the size of the optimal Pareto set and that the

gap is less than one percent indicates that the approximation is close to the optimal Pareto set.
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Table 1: Summary of computational results for the branch-and-cut algorithm.

MOB&C εCM

|C| |V | #Par #Nodes #Cuts Seconds Seconds* #Nodes #Cuts Seconds

40 30 17.8 1913.0 258.9 58.7 42.7 5806.0 273.4 67.2

40 40 21.7 4406.6 548.2 503.0 349.8 17462.0 578.3 665.8

40 50 26.6 15360.6 926.0 1845.9 1374.5 45306.6 1037.9 3334.5

50 30 18.8 3248.3 355.0 144.0 110.2 12687.6 428.1 224.9

50 40 23.9 8722.7 738.3 1374.4 1097.7 36339.4 797.5 1636.9

50 50 27.7 20680.3 1204.9 4094.0 2902.5 74336.6 1307.5 5938.4

Here, the gap is expressed as the average ratio between the length of the solution using c colours

in the approximation and the length of the solution using c colours in the optimal Pareto set. If

there is no solution using c colours in the approximation, we use the ratio between the length in

the approximation and the closest smaller length in the optimal Pareto set.
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1 Introduction

Several extensions of the network pricing model introduced by Labbé et al. [2] have been proposed

but none, to the best of our knowledge, involves elastic demand, which is the topic of this work.

More specifically, we consider the problem of maximizing the revenue raised from tolls set on a

multicommodity transportation network, taking into account that demand is assigned to cheapest

paths, and is actually dependent on the total cost (initial cost of carrying the products + toll) of

these paths.

This presentation is concerned with various formulations of the problem, either in arc or path

flow space. In the case of a linear demand-price relationship, we propose three mixed integer

(MIP) linear formulations. In the case of nonlinear demand functions, we develop one exact and

two heuristic solution methods, and provide an upper bound that allows to assess the quality of

the heuristic solutions.
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2 Mathematical formulation of the problem

The problem is cast into the framework of a leader-follower game which takes place on a multi-

commodity network G = (K,N ,A) defined by a set of origin-destination couples (commodities)

K, a set of nodes N and a set of arcs A. The latter is partitioned into a subset A1 of toll arcs

which belong to the leader, and the complementary subset A2 of toll-free arcs. Each arc a ∈ A

bears a fixed travel cost ca. A toll arc a ∈ A1 involves a toll component ta, to be determined. The

demand for a commodity k is represented by the function nk(uk), where uk is the total cost to

travel between the origin o(k) and the destination d(k).

Our formulation follows into the footsteps of that suggested in Didi et al. [3]. Specifically, we

introduce the set Pk of paths from o(k) to d(k), and flow hk
p on path p ∈ Pk. The problem can

then be formulated as a bilevel program involving bilinear objectives at both decision levels, and

bilinear constraints at the lower level, i.e.:

max
t≥0, h′≥0

∑
k∈K

∑
p∈Pk

∑
a∈p

tah
′k
p

∀ k ∈ K



h
′k ∈ arg min

hk≥0

∑
p∈Pk

∑
a∈p

ca +
∑

a∈p∩A1

ta

hk
p

s. t.
∑

p∈Pk

hk
p = nk(uk)

uk =
∑

p∈Pk

∑
a∈p

ca +
∑

a∈p
⋂
A1

ta

hk
p.

Note that the lower level problem is separable by commodity and, since there are no capacities

on the arcs of the network, that uk corresponds to the cost of a cheapest path associated with

commodity k. Next, one moves the demand function into the upper level objective, one forces flow

variables to be binary, and one drops the constraints involving uk. Finally, replacing the lower

level by its primal-dual optimality condition, and linearizing the complementarity constraints in

the classical fashion, we obtain a MIP that involves a nonlinear objective and linear constraints:

PATH: max
t≥0, h∈{0,1}

∑
k∈K

nk(uk)Tk

∀ k ∈ K



Tk ≤
∑
a∈p

ta + Mk
(
1− hk

p

)
∀ p ∈ Pk∑

a∈p

ca +
∑
a∈p

ta −Mk
p

(
1− hk

p

)
≤ uk ≤

∑
a∈p

ca +
∑

a∈p
⋂
A1

ta ∀ p ∈ Pk

uk = Tk +
∑

p∈Pk

hk
p

∑
a∈p

ca∑
p∈Pk

hk
p = 1.

where Tk represents one unit of the leader’s revenue raised from commodity k.
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3 Linear demand

Let us assume that, for each commodity k, demand assumes the linear form nk(uk) = ak − bkuk,

where ak, bk are positive constants. We rewrite the objective function of PATH for each commodity

k as the quadratic term:

nk(uk)Tk = akTk − bkTk

Tk +
∑

p∈Pk

hk
p

∑
a∈p

ca

 = akTk − bkT 2
k − bk

∑
p∈Pk

Tkhk
p

∑
a∈p

ca.

Upon the introduction of a unit commodity path revenue T k
p and the replacement of the bilinear

terms Tkhk
p by terms T k

p that we require to be equal whenever the associated flows hk
p are positive,

we obtain a mixed quadratic program that can be fed into an off-the-shelf software such as CPLEX.

4 Nonlinear demand

In the situation where demand is convex and decreasing, we may express the commodity revenue

nk(uk)Tk in the objective as the sum

nk(uk)Tk = nk(uk)

uk −
∑

p∈Pk

hk
p

∑
a∈p

⋂
A1

ca

 = nk(uk)uk − nk(uk)
∑

p∈Pk

hk
p

∑
a∈p

⋂
A1

ca.

Next, we introduce new variables and constraints (cuts) that allow to linearize the terms nk(uk)uk

and nk(uk), yielding a MIP formulation. The latter is refined until the gap between its optimal

value and an upper bound falls below a predetermined threshold. Along the lines of the framework

proposed by Colson et al. [1], we also designed two heuristic procedures that combine the PATH

formulation with a trust-region approach. More specifically, given a current solution (hl, tl, T l)

and a trust region radius, the first heuristic linearizes the demand function around the current

iterate (hl, tl, T l) and solves the resulting PATH within the trust region. Alternatively, the second

heuristic linearizes the objective function (hl, tl, T l). The stopping criterion and the update of the

trust region radius are performed according to standard practice.

5 Numerical results

The algorithms have been tested on a range of randomly generated instances. Quite surprisingly,

the linear demand model did not prove more challenging than the standard fixed demand model,

the ratio of the Cpu times being bounded by a constant factor.

In the nonlinear case, the Cpu time required by the exact method grows rapidly with network

size, resulting in the slow decrease of the upper bound. While it can solve to proven optimality

on medium size problems within reasonable Cpu time, and that good solutions of large problems
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can be found quickly, the poor quality of the upper bound precludes the determination of provably

optimal solutions.

To overcome this difficulty, improved upper bounds are computed in the following fashion. We

bound the commodity revenue nk(uk)Tk in the objective by the expression nk (Tk + minp∈Pk
cp) Tk

and next change the objective function of the PATH formulation to
∑
k∈K

nk

(
Tk + min

p∈Pk

cp

)
Tk. The

resulting formulation is then solved through the incorporation of cuts that approximate the term

nk

(
Tk + min

p∈Pk

cp

)
Tk. While more expensive to compute, this bound yields a considerable decrease

of the gap defined as the difference between the upper bound and the best feasible solution. It also

allows to probe the performance of the heuristics which have been developed. Indeed, numerical

tests showed that solutions whose objective lie within 1% of the upper bound could be achieved

within reasonable Cpu times, even on large instances.

6 Conclusion and extensions

Although we have already shown that elastic network pricing problems are amenable to efficient

solution procedures, there is still room for improvement. In particular, as was done in the fixed

demand case, we will analyze the structure and properties of the inverse demand problem that cor-

responds in optimizing the revenue with respect to given path flows. If there is a single commodity,

this reduces to the computation of a cheapest path in some modified graph. In the multicommodity

case, its structure is that of a network-based quadratic and concave maximization problem. While

its exact solution is costly, an approximate solution could be use to enhance our basic algorithmic

scheme. If it proves successful, the approach could then be extended to the nonlinear demand case.
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1 Introduction and Problem Definition 
 

Planning of railway operations has been practiced since the first trains started working early in the 

nineteenth century. Nowadays, the usage of train transportation is increasing and the expectation of the 

passengers for better service raises. 

 The train planning problem can be divided into several interrelated sub‐problems, namely 

Line Planning – deciding which set of lines should be served by the system and in what frequencies 

subject to total demand for journeys and capacity constraints of trains and of the infrastructure and 

Train Timetabling – deciding upon the schedule of each train in each line subject to track availability 

and headway constraints. Other sub-problems that need to be addressed are Track Assignment, 

Platforming, Rolling Stock Circulation, and Crew Planning.  Each of these sub‐problems is 

computationally hard. 

Although in practice, some of the planning work is still being done manually, in the last 40 

years planners have been using Decision Support Systems and optimization methods in order to 

improve the quality of their plans and to save labor. Typically, the planning problem is solved 

hierarchically in a strategic order such that the solution of each sub‐problem is used as input for the 

following problems. This solution strategy enables tackling real‐world problems; the disadvantage is 

that the global optimal solution is lost "on the way." For a comprehensive survey of optimization 

models see [1] [2] [3].   

 The development of railway infrastructure takes years, or even decades; therefore, unlike in 

other transportation systems, the line planning stage is mainly to choose routes between terminals on a 

given infrastructure.  In general, the objective of the Line Planning Process is to balance the tradeoff 

between operational costs and service quality. Bussieck et al. [4] suggests the minimization of total 

travel time of all passengers as a good way to model quality service. However, since the timetable at 

this stage of the planning is unknown, it is impossible to calculate the total travel time. Therefore, 

previous studies [4] [5] considered service level indirectly by minimizing the total number of transfers 

or maximizing the number of direct passengers. These objectives do not fully capture the service level. 

For example, longer lines with many stops may reduce the number of transfers but prolong the travel 
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time of some passengers. A partial remedy for this issue is found in [6] where actual time on board 

plus some arbitrary penalty for transfers is minimized. 

 For the Train Timetabling stage some studies focus on finding a feasible timetable [7] while 

others try to schedule as many trains as possible under a cost or profit criterion [8] [9] [10] [11]. In 

most studies, the demand pattern is ignored at this stage, assuming it was treated at the Line Planning 

Stage. However, timetabling considerations may have a significant impact on the quality of service.  

For a detailed survey of scheduling approaches see [12]. 

Common practice in passenger transportation is to use cyclic timetables. In a cyclic timetable, 

each trip is operated in a cyclic way. That is, each period of the timetable is the same. From the 

passengers' point of view, such timetables are more convenient because all they need to remember are 

the times in a cycle in which trains arrive at their station. From the planners' point of view, since each 

event occurs again every cycle, it is enough to plan one cycle, thus reducing the search space 

dramatically.  A mathematical model for the Periodic Event Scheduling Problem (PESP) is developed 

in [13]. Our method follows similar ideas.   

In our study, we focus on creating integrated Line Plans and Timetables with the objective of 

minimizing the total time that passengers spend in the system. This includes waiting time at station of 

origin, time on board the trains, and transfer times.  The line planning component of our model is 

restricted to decisions on stopping stations and frequencies while a set of optional routes is given.   

Total travel time had been recognized by previous researches, e.g., [4], as the correct measure 

for quality of service, but was never tackled in the litrature; probably since its proper optimization 

requires integration of the line planning and timetabling phases. This study aims to close this gap. 

The problem that we formulated is solved using the Cross-Entropy (CE) meta-heuristic 

technique. See [14] [15] [16]. CE is a randomized evolutionary optimization technique that iteratively 

applies to following two phases: 

1. Generation of a sample random data according to a specified random mechanism. 

2. Updating the parameters of the random mechanism, typically parameters of probability mass 

functions (PMF), on the basis of this data, to produce a "better" sample in the next iteration. 

 In the rest of this abstract we present we apply the CE meta-heuristic technique to solve the 

integrated line planning and timetabling problem. The results of a numerical study based on actual data 

from the Israeli railway system are then briefly reported. 

 

2 Solution Procedure 
 

In this section we formulate the integrated Line Planning and Train Timetabling Problem and we 

present an effective method to encode a feasible solution. We then apply the CE meta-heuristic. 

The input of our model consists of:  

• Origin-Destination matrix of passengers for each period of the planning horizon (typically a day). 
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• Description of the railway infrastructure including minimal traveling time through each block and 

minimal dwelling time at each station.  

• Set of possible routes, maximal frequency and priority for each route. Each instance of a route is 

taken as a possible train in use. 

The infrastructure is encoded as undirected graph where edges represent rail blocks and vertices 

represent either stations, siding or signals. A block is an atomic track section that may normally hold a 

single train at a time in order to maintain a required safety level while vertices may represent a rail 

section that can hold several trains at a time. A track segment that connects two vertices may contain 

several parallel blocks.  Routes are directed paths on this graph. 

The priorities of the routes are pre-determined by the planner and they define the by-passing 

order. Maximal frequency can be easily computed by dividing the cycle time by the traveling time on 

the longest block in the route. Next we present a method to encode a feasible solution in a manner that 

will be useful for our algorithm. Each possible train is encoded by the following variables. 

• IN_USE -  Boolean stating whether or not this train is being used. 

• FIRST_TIME - The earliest time (in a cycle) that the train can be inserted at the first block. 

• STOPPING_STATIONS – Set of passenger stations where the train stops. We represent this set by 

a characteristic (Boolean) vector.  

We refer to the above triplet as a “gene.” A feasible solution is represented by a string of genes, one 

for each possible train. Such a string is referred to as a chromosome. 

 A chromosome is decoded into a timetable of a single cycle by trying to insert all the trains 

with true value of IN_USE one at a time in non-increasing priority order. This process is similar to the 

manual process done by planners. The insertion operation is done after checking whether a time slot is 

available for the train in all of its blocks starting at the first block from time FIRST_TIME and on. For 

each block we look for an available time slot that is consistent with the previous one. All times are kept 

in minutes modulo the cycle length (60 minutes). A train may dwell at a station or siding until the next 

block becomes available and it must dwell for at least some pre-specified time at each station in 

STOPPING_STATIONS. Next, the cycle is being duplicated over the planning horizon, usually a day, 

to create a feasible timetable. 

A feasible timetable is evaluated with respect to a series of origin-destination matrix that 

represent the passenger demand over time.  We calculate the total travel time of all the passengers.  To 

accomplish this calculation an events graph is built. Each arrival and departure of trains to or out of a 

station is represented by a node in this graph. With each node we store the time, the station, and the 

train of the event. Arcs connect each pair of consecutive events of a train and each pair of consecutive 

events in a station. For each node in this graph we calculate the earliest reachability time to each 

station. A specialized reachability algorithm was devised taking advantage of the special structure of 

the graph (i.e., directed acyclic with maximal out degree of two) and the fact that we are only 
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interested in reachability to the earliest node of each station. The running time of this algorithm is 

linear in the number of events times the number of stations, i.e., in its output size.  

The total travel time of a passenger is the difference between the first reachable time to the 

destination and his arrival time at the origin station. This calculation is valid under the assumption that 

the capacity of the trains is not a binding constraint.   

We have developed fast methods to encode and generate a feasible cyclic timetable and to 

evaluate its service quality. This calls for a heuristic approach that will allow us to examine a large 

amount of solutions and the CE meta-heuristic technique is an attractive alternative. 

 We randomized a generation of chromosomes using the following multidimensional 

distribution function. The probability of IN_USE and the STOPPING_STATIONS being true are 

determined by Bernoulli random variables and FIRST_TIME is drawn from some general discrete 

(empirical) distribution. Initially the probability of all the Bernoulli random variables is set to 0.5 and 

the empirical distribution of FIRST_TIME for each train is uniform over some portion of the cycle. 

After a generation is created and evaluated, this distribution function is updated based on the elite set 

(e.g., the best 10% solutions) as follows: The probability of the Bernoulli random variables is set to the 

frequency of the true values and the distribution of FIRST_TIME is calculated based on the empirical 

distribution.  The new distribution function is exponentially smoothed by a weighted average with the 

distribution function of the previous generation.  When the distribution parameters tend to degenerate 

into a deterministic value the algorithm is stopped. 

 
3 Numerical Experiment 

 

We used the Israeli train network as a test bed. This system is composed of some 47 passenger stations, 

130 blocks, and 22 sidings and operational stations. There are 14 inbound routes and 14 outbound 

routes. The infrastructure consists of both uni- and bi-directional blocks. We constructed cyclic 

timetables based on these 28 routes. The timetable created by our algorithm can save about 20% of the 

total travel time as compared to the current one. The CE algorithm typically converges in few hours.  

The same algorithm was used to solve a bi-objective problem to explore the tradeoff between 

operational costs and service level and some solutions that dominate the currently used schedules with 

respect to both objectives were found. For example we obtained a solution with operational cost 

similar to the one currently in use that reduces the total traveling time of passengers by 11%. 

 

4 Conclusion 
  

We devised a method that enables us to solve an integrated Line Planning and Timetabling Problem 

based on the CE meta-heuristic technique. This is the first application of this meta-heuristic technique 

to train planning.  The solution encoding used by our method can be used in other meta-heuristics such 

as Genetic Algorithm, Simulated Annealing and Tabu Search.  
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1 Introduction 
 

The object of this paper is to analyze some possible implications of tax/toll competition 

between regions. The context is one of increasing regional authority and responsibility in the European 

Community. As such, the paper is prospective: it deals with possible consequences of current 

evolutions. Many researchers have studied tax competition; for example, [1], [2], [3], [4], and many 

others. Some papers have been devoted to the study of commodity tax competition models: [5], [6], 

[7], [8]. 

In order to carry out this analysis we build a simplified model for two regions which expands 

on [9], [10], in which complex transportation costs in regional tax competition are taken into account 

in the case of two regions. Regions are assumed to compete in order to maximize their revenue (by 

which we measure how well-off a region is). In order to achieve their objective, regions are assumed to 

use tax and toll instruments, which affect good consumption and transportation. As a consequence of 

the structure of the competition, the reaction functions for taxes and tolls are multi-valued and do not 

yield Nash equilibriums in general. 

The iterative process by which the two regions choice choose their optimal toll and or taxes 

each in turn need not converge. Indeed for each region, there exist also several alternative values of 

taxes and tolls possible for each value of the taxes and tolls of the other region (or no value at all). 

The results extend to general networks. Thus in a process of sequential optimization, in which 

each region maximizes in turn its revenue, regions are unlikely to reach any Nash equilibrium, and 
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while some regions profit others are worse off, which expresses the invariance principle (the affluence 

of regions is being measured by their revenue). 

 

2. A model for two regions competing using tolls and VAT 

 

In the case of two competing regions, we propose a simplified model based on [9], which 

dealt with the problem of regional tax competition ([1], [8], [4]). [9] has expanded on the model of 

Kanbur and Keen [5] by introducing the heterogeneity of population and travel times. Further the 

stability of the regional tax competition equilibrium was analyzed in [11]. 

The simplified model proposed here makes semi-analytical computations possible; it is 

adapted so it is compatible with the general model developed in the previous section. The model is 

based on the following basic ideas: 

• The transportation system is simplified: transportation costs are considered only to the 

border. 

• The tax/toll competition problem can be parameterized in terms of two parameters only: 

the differences in tax level and the sum of tolls. 

 

The elements of the model are the following:  

• There are two regions i = 1 and 2, 

• Region ( )i  applies a VAT iW on consumption and a toll it  on transportation, 

• The population density is ( ) iii dxxρ , with xi the distance to the closest centre over the 

border, 

• The density of consumers at distance xi to the closest centre over border with 

travel cost τ is ( ) ττϕ dxii , ,  

• The density of the population with respect to the travel cost iτ is given by: 

  ( ) ( ) ( ) iii
i

iii

def

iii dxxxdd τϕρτ=ττΡ ∫ ,
)(

   

• The total population of region ( )i  is: ( ) ( )∫ ∫
∞ ∞

ττ=ρ=
0 0 iiiiiii dPdxxN , 

• Cost of buying in region ( )j : ( ) ijjii Wtt η++++τλ , with 

• iη  a random variable expressing the variability of consumers, the variability of the 

consumer perception of items such as travel time, the variability of travel costs, 

• λ  the fraction of the travel cost supported by consumers (as in the previous section 2.4). 
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• Cost of buying in region ( )i : iiW ζ+ , with iζ  a random variable expressing the 

variability of consumers and consumer perception. 

• The probability for a consumer in region ( )i  to buy in region ( )j  is given by: 

[ ] ( )[ ]
( )tWG

ttWWji

i

jiijiii

λ−∆=
++τλ−−≤ζ−η=→ PP

 

with notations: 

ji

def

WWW −=∆ , ji ttt +=  

( ) ( ) ( )dssgG
i

def

i

def

i ∫
σ

∞−
=

σθ−+
=σ

exp1
1

 and ( ) ( )
( )( )2exp1

exp
s

s
sg

i

ii
i θ−+

θ−θ
=  (a 

simple logistic model) 

Now we can calculate the number of consumers in region ( )i  buying in region ( )j . Let jiN →  be the 

number of consumers of region (i) buying in (j). 

( ) ( )
( )∫

∫
∆

∞

→

λ−σσµ=

λτ−λ−∆ττµ=
W

i

iiiji

tQd

tWGPdN

0

0      

with µ  the factor of impact of demand and with 

 ( ) ( ) ( )iiii

def

i gPdQ λτ−ςττ=ς ∫
∞

0
     

iQ  represents the population density of region ( )i  corrected by the effect of the variability of 

consumers. If we denote by l→kN  the number of consumers in region ( )k  buying in region ( )l , we 

deduce from the above calculation the following results: 

 

( )
( )
( )

( )∫
∫
∫
∫

∆−

→

∞

∆−→

∆

→

∞

∆→

λ−σσµ=

λ−σσµ=

λ−σσµ=

λ−σσµ=

W

jji

W
jjj

W

iji

W
iii

tQdN

tQdN

tQdN

tQdN

0

0      

We deduce the reaction curves for instance for region ( )i : 
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3. Extensions 

The model can be extended in several ways: inclusion of congestion costs and demand 

functions. The model can also be extended as a multi-regional model, in which case it does not admit a 

semi-analytic solution, but must be solved numerically.  

The multi-regional model which takes into account consumption of a single generic good, 

demand functions at population centres, impact on transportation of activity, distribution, assignment 

on the transportation network with non constant arc costs, and node supply constraints. The model 

distinguishes local flows from flows induced by economic activity. Regions apply tolls on 

transportation and taxes (VAT) on the generic good. 

 

 

 

 

 

 

 

 

 

 

 

Figure: revenue of region 1, as a function of the VAT 21,WW in the two regions (left), and of 

the tolls 21 , tt in the two regions (right) 
 

In the general model, partial reaction functions can be defined for any region, and as in the 

case of two regions, the iterative process of regions optimizing their revenues in turn normally does not 

converge in general. The process results in some regions losing out, and in others gaining, again in 

conformity with the invariance principle postulate. 
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In this complex system the reaction functions are necessarily multi-valued and only piecewise 

continuous. 
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1 Introduction

We outline an architecture for solving instances of the Vehicle Routing Problem that have arbitrary

constraints that must be observed by solutions. The system uses a Constraint Programming (CP)

system to model, propagate and check constraints. The use of the CP system allows the system to

be very flexible – producing solutions for essentially arbitrary constraints that model the business

practices of the companies that will use the the system. However, this flexibility comes at the

price of increased execution time, and may effect solution quality. The primary contribution of the

paper is to examine some facets of the trade-off between flexibility, solution quality and execution

cost.

2 Vehicle Routing

In the Vehicle Routing Problem (VRP), a fleet of vehicles must deliver goods or services to satisfy

a number of customer requests. The primary problem to be solved is the assignment of requests

to vehicles, and the ordering of requests within a vehicle so as to minimise overall costs.

The problem has been widely studied in the Operations Research literature (see for instance the

reviews [9, 1, 2, 4]). Various constraints have been studied, most commonly capacity constraints

where the load on each vehicle is limited, and time windows constraints where the time service

begins is limited to a particular period. In a variant called pickup-and-delivery problems (PDP),

requests are paired – one pickup and one delivery. The delivery must follow the pickup, and be

assigned to the same vehicle.

However, constraints seen in practice often extend well beyond these basics. The General

Vehicle Routing Problem (GVRP) [3] includes a number of constraints that are seen a practice.

These include
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• multi-dimensional capacity constraints (capacity measured in multiple dimensions, e.g. weight

and volume)

• multiple time windows (i.e. service within a one of a set of time windows)

• vehicle compatibility constraints (a request can/can not be served by a particular vehicle)

• request compatibility constraints (two requests must/must not be served by the same vehicle)

• precedence constraints (one request must be served before another)

• Constraints on total route time and length

The GVRP goes a long way towards capturing the constraints found in real-world applications.

By combining vehicle compatibility and precedence constraints, pickup and delivery problems are

included as a subset.

However, as noted by Kilby and Shaw [5], additional constraints are often found in real-world

problems. Examples include

• A PDP where the delivery must be completed within 20 minutes of pickup. (Unlike the

usual time window which is known a-priori, this time window is not set until the the pickup

is finalised)

• Constraints on how requests can be loaded - e.g. 2D packing constraints

• Driver break constraints

• First-in-last-out unloading constraints

The list is as long as there are businesses requiring solutions – each business will have constraints

that implement their own business practices. In order to produce a usable solution, a vehicle routing

solver must be able to capture these rules, and produce solutions which observe them.

3 A Flexible Solver

This paper suggests an architecture which marries a finite domain constraint programming (CP)

solver with a vehicle routing solver to flexibly solve real-world vehicle routing problems. A con-

straint programming language is used to express the constraints, and the CP solver is used to help

construct, and to check, solutions.

The system described, called Indigo, has a number of constraints as “native” – that is, the solver

“knows” about these constraints, and is able to construct solutions which observe these constraints.

The list of native constraints is exactly the list of constraints included in the GVRP specification

of [3]. Additional constraints are specified using the Zinc modelling language [6]. This method of

specification allows almost arbitrary constraints to be placed on the solution. The constraints are

handled during construction and local search using a simple Constraint Programming platform.

The use of CP in solving Vehicle Routing problems has been discussed by Kilby and Shaw [5].

The Indigo solver uses some of the ideas discussed there.
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The solver proceeds in two phases. First, an initial solution is created ab initio. An insertion-

based procedure is used by which one of the requests is inserted into the solution at each iteration,

until no more requests can be feasibly inserted. No requests are removed during this phase of

the method. This style of initial creation allows the CP system maximum scope to propagate the

effects of each decision – as mediated by all of the particular constraints of the problem – and

allows maximum information flow to the insert procedure.

In the second phase, local search is used to improve the solution. The main, low-level operator

explores the Or-Opt neighbourhood [7]. A Large Neighbourhood Search [8] is also applied to

improve the solution. Again, Large Neighbourhood Search is an insertion-based procedure, which

allows maximum use to be made of the propagations from the arbitrary constraints.

For ease of exposition, the version of Indigo used in testing uses standard implementations and

parameters for local search and meta-heuristics. Indigo also has more advanced techniques avail-

able, but the methods used here offer a standard “baseline” by which to compare the effectiveness

of side constraint handling.

4 Computational Testing

In order to test the effectiveness of this method of handling arbitrary constraints we look at two of

the types of constraint included in the GVRP: Time Window constraints, and PDP constraints.

Were these not already able to be solved by the Indigo solver, we would be able to implement

them using the Zinc interface. In order to test the effectiveness of the specification and solving

using this interface, this is exactly what we do.

We look at solving a set of benchmark VRP with Time Windows problems, and a set of PDP

problems with Time Windows (PDPTW), using the Indigo solver. In one set of these runs, the

Indigo solver uses its inbuilt methods to handle the Time Window and PDP constraints. In a

second set of runs, these constraints are handled using the constraint programming system.

We are then able to look at the cost of using the CP constraint interface. We look at two main

questions

• Are the solutions as good as those generated by the native Indigo solver?

• How much longer does it take to handle the constraints using a CP solver, rather than native

code?

We will look at the results of runs of Indigo solver handling the Time Window and PDP

constraints as native, and compare them to solving the same problems using the CP system to

handle those constraints.

We know that the interface to the CP solver gives the Indigo solver great power to express and

solve problems with arbitrary constraints. The answers to these questions will begin to shed light

on the cost of this flexibility in terms of objective value and solution time.
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1 Introduction 
 

The railway industry is an infrastructure intensive industry. Major Class-1 US railways have more than 

20,000 miles of tracks. The tracks are heavily used and thus subject to wear and failures. Throughout a 

year, track maintenance, which encompasses both preventive and real-time maintenance, is an 

equipment and labor intensive process. Maintenance workers work in groups, called gangs, performing 

heavy labor duties such as installing track ties, driving track spikes, shoveling ballast, and other similar 

maintenance track related activities. Gangs work outdoors at almost all weather conditions to install 

and maintain the tracks properly. A gang consists of several members, typically between ten and one 

hundred, with different responsibilities such as machine operators, termite welders, assistant extra gang 

foremen, or extra gang foremen. A gang beat or a beat section is a regular section of a track where 

some form of a maintenance need to be performed. During a year a gang moves from one beat section 

to another upon completion of the work at the section. A beat section together with its attributes such 

as the type of work, the number of days to complete the work, and an underlying time window to 

perform the task is called a job.   

Gang scheduling is to find a favorable gang schedule for each gang during a given planning 

horizon that is governed by several regulatory and union rules. A gang schedule consists of a sequence 

of jobs together with the underlying start time of each job. Typically there are three or four types of 

gangs (rail, tie and surface, surface, and dual) and more than 1,000 jobs around the U.S. Each job has 

an underlying required gang type, which implies that a particular job can only be carried out by 

particular gangs. Certain jobs must obey precedence constraints, e.g., work on ties must precede any 
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work on the rails. From the operational perspective, it is not desirable to perform two jobs 

geographically close to each other during the same period since it could substantially disrupt train 

operations. Few occurrences of such situations create a more robust schedule. At most railways the 

process of gang scheduling is an intensive manual effort often leading to costly and inefficient 

schedules.   

The main goal of this study is to develop an algorithm to solve the gang scheduling problem 

considering all business requirements. The objective is to develop an algorithm capable of: 

1. minimizing the total cost including the gang related cost of transitioning between jobs 

and the cost of equipment movement between two locations,  as well as the travel 

allowance covering the transfer from a job location and the home domicile of the 

underlying gang, 

2. obeying all business requirements, e.g., it is suitable for gangs to work at a southern area 

during the winter period, but jobs in the northern part must be performed during the 

summer season, and 

3. computationally handling the large-scale instances arising in the industry. 

The main contributions of this work are: 

1. designing a network based model capturing job precedence and robustness, and 

2. developing a construction and mathematical programming heuristic (math-heuristic) for 

solving the underlying model. 

 

2 Model 
 
We formulate a network model G (N,A) for each gang g, where N  is the set of all job nodes and A the 

set of arcs in the model.  

Node (j,t) of the network is encoded by job j eligible to be performed by gang g and the 

associated starting time t. Given time t, job j, and gang g, it is possible to calculate the completion time 

of the job (from the duration requirement of job j and productivity of gang g). Two nodes are 

connected by an arc if the completion time of the job associated with the tail plus the transition time 

from one job to the other one is less than or equal to the start time of the node associated with the head. 

Other requirements such as gangs not working during weekends and holidays can easily be directly 

incorporated in the network. 

We next focus on the underlying node and arc cost. Cost is driven by travel allowance, and 

thus all costs are measured in monetary units, i.e., the money paid to a gang for traveling between the 

locations of two consecutive jobs or for weekend stays at the home domicile. The arc cost is composed 

of three components:  

1. the travel cost between the location of  job j, the home domicile of the gang if the transition 

time includes a weekend, and then return to the location of the adjacent job k, 

2. the direct travel cost between the two locations if the weekend is not included, and 
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3. the equipment movement cost from the location of job j to the location of the adjacent job k. 

In addition, each node bears the travel allowance cost for weekend travel to the home domicile over 

weekends. We note that job duration can span several weeks and thus it might require several weekend 

home trips. 

By construction, each path in the network forms a gang schedule. The underlying 

mathematical program includes variables that assign a path (gang schedule) to each gang. The 

underlying constraints impose: 

1. each job is assigned to exactly one selected path,  

2. each gang is assigned one and only one path,  

3. precedence constraints linking paths among the gangs, 

4. equal number of work days for all gangs of a certain type,   

5. robustness constraints likewise link various path. 

 

3 Methodology 
 

The problem as posed is very hard to solve to optimality since it is an NP-hard problem, and a pure 

mathematical programming approach does not work due to the sheer size of real-world instances. 

Either significant ad-hoc preprocessing is required or a branch-and-price algorithm developed. 

Computational tractability of the latter is questionable due to several unstructured constraints linking 

paths. For this reason, we resort to a heuristic. Instead of employing a traditional local search strategy, 

we combine very large-scale neighborhood search ideas with mathematical programming. To this end, 

we use a two-phase solution methodology. In the first phase a solution covering many jobs but not 

necessarily all of them is obtained. In the subsequent phase the uncovered jobs are inserted by means 

of a mathematical program. The solution quality of a feasible solution is then iteratively improved by 

removing jobs from the incumbent solution and then reinserting them back by means of the same 

mathematical program.  

3.1 Initial Construction Heuristic 

First, we designed a heuristic that generates several shortest paths using dynamic programming. Gangs 

are ranked and then a schedule is found for each gang sequentially by solving a shortest path type 

problem. Once a path is fixed for a gang, the network is accordingly modified so that each job is 

assigned at most once, and the precedence and robustness rules are warranted.  

To obtain balanced workload within the same gang type we do not choose the exact shortest 

path with the maximum number of jobs and smallest cumulated cost at the last job node. Instead we 

choose a path with the total duration falling in some predetermined range. Since each gang has a 

limited number of working days for the year and each available job has a restricted time window, in 

this phase, the solution by the shortest path algorithm cannot schedule all possible jobs. An 

improvement phase is introduced to cover the unassigned jobs.  
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3.2 Improvement Strategy 

The initial solution is then iteratively improved at each subsequent iteration by an interchange 

algorithm so as to schedule all of the jobs and to guarantee finding a no worse solution than the one we 

begin with. The basic idea of the improvement phase is to randomly select certain nodes to extract 

from the starting solution, then extract the nodes, and derive sequences of nodes including extracted 

nodes and uncovered nodes to reinsert into the short-cut solution. Next we formulate an integer 

program and solve it using an ILP solver to incorporate the results back into the solution. This process 

is repeated until an iteration limit is reached or the solution is of an acceptable quality.   

3.2.1 Recombination 

In this step, we use all the extracted/uncovered nodes to create a pool of subsequences to be potentially 

reinsterted into the solution. To make the problem simpler and improve the performance, we only 

consider the short sequences of nodes (1 or 2 jobs). The business rules, such as job precedence and 

robustness, are also considered in this step.  

3.2.2 Reallocation 

In this step, we form an insertion ILP. This ILP reinserts back the extracted/uncovered nodes. Note that 

the model is always feasible since the nodes can always be reinserted back to the original locations. 

Binary decision variables indicating whether certain sequence s is inserted at some  insertion point i, 

and integer decision variables presenting the shift in time of the job sequences at the short-cut solution 

after nodes extraction, are introduced into the ILP model. It is critical to introduce the shift time 

variables since at some insertion point, the time window of the subsequent job sequence must be 

enlarged or shrinked to accommodate the to-be-inserted job sequence. The objective is to minimize the 

overall cost. Essentially, the ILP is an assignment problem, but with additional constraints, such as 

jobs precedence and robustness, and time window restrictions.  The complete ILP has a large number 

of columns. We solve it by randomly choosing a predetermined, large number of columns from the 

entire set of columns to add to the problem.  

3.2.3 Reinsertion 

We incorporate the optimal results obtained from the reallocation ILP into the solution using specially 

designed insertion operations. This reinsertion step marks the end of an iteration, and the entire series 

of steps is repeated until all jobs are scheduled or an improved solution is obtained. 
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An important way in which carriers collaborate is through the formation of alliances. Carrier
alliances can be structured in many different ways, and the detail rules of an alliance are clearly
important for both the stability of the alliance, as well as the well-being of each member of the
alliance.

Examples of widely used carrier alliances are the following. Airlines often sell tickets on each
others’ flights through code sharing agreements. There are various ways in which such an alliance
can be structured. The major distinguishing factor between different alliance structures involves
the control of the revenue management (in effect, the pricing) of the resources that alliance members
have access to. For example, in a so-called “free-sell” or “soft block” alliance, each alliance member
(the marketing member) can sell tickets for flights operated by another alliance member (the oper-
ating member) and the marketing member can put its own code on the flight. That enables carriers
to sell tickets for itineraries that include flights operated by multiple carriers, thereby dramatically
increasing the number of itinerary products that each carrier can sell. However, under free-sell, the
revenue management for the flights included in a code-share agreement is still controlled by the
operating member. In free-sell alliances, an important design parameter of the alliance agreement
is the set of flights that each carrier is allowed to market under its own code.

Another type of alliance structure is a so-called “resource-exchange” or “hard block” alliance, in
which the sellers exchange resources. For example, carriers exchange seat space on various flights,
and ocean carriers exchange capacity on various voyages of container ships. In addition, money may
be exchanged. After the exchange, each carrier can control the received resources as though they
are the producer of the resources. For example, in a resource-exchange alliance carrier 1 may receive
15 seats on flight A operated by carrier 2, and carrier 2 may receive 10 seats on flight B operated
by carrier 1 as well as $2000. After the exchange, carrier 1 controls the revenue management for
the 15 seats on flight A that it received from carrier 2, as well as for the remaining seats on the
flights that it operates, and similarly, carrier 2 controls the revenue management for the 10 seats
on flight B that it received from carrier 1.

Another example of a widely used carrier alliance is the type of alliance that ocean container
carriers enter into when they introduce new joint services. A “service” is a cycle (also called a “loop”
or a “rotation”) of voyages that repeat according to a regular schedule, typically with weekly de-
partures at each port included in the cycle. Suppose the cycle is ports A,B,C,D,E,A. A set of ships
is dedicated to the service, with each ship visiting the ports in the sequence A,B,C,D,E,A,B,. . . .
To offer weekly departures at each port included in the cycle, the headway between successive ships

∗Supported, in part, by the National Science Foundation under grant DMI-0427446.
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traversing the cycle must be one week. In addition, if it takes a ship n weeks to complete one cycle,
then n ships are needed to offer the service. For many services that visit ports in Asia and North
America, and services that visit ports in Asia and Europe, it takes a ship approximately 6 weeks to
complete one cycle, and thus 6 ships are needed to offer the service. Taking into account that a large
container ship can cost several hundred million US dollars (and the trend is towards even larger
container ships, because larger container ships tend to have significantly lower per unit operating
costs), it becomes clear that for even the large carriers it would require an enormous investment to
introduce a new service. A solution is for several carriers to enter into an alliance to offer a new
service. The majority of services that visit ports in Asia and North America, and services that
visit ports in Asia and Europe, are offered by alliances between two carriers. Each carrier in the
alliance provides one or more ships to be used for the service. The capacity on each ship is then
allocated to all the alliance members, often in proportion to the capacity that the alliance member
contributed to the service. For example, if carrier 1 contributes 2 ships and carrier 2 contributes
4 ships to the service, and all the ships in the service have the same capacity, then carrier 1 can
use 1/3 of each ship’s capacity, and carrier 2 can use 2/3 of each ship’s capacity. That way, each
carrier in the alliance can offer weekly departures at each port in the service even though it did not
have enough ships by itself to do so.

An important feature of resource exchange alliances is that after the resource exchange the
alliance members compete by selling substitutable (and also complementary) products. This sub-
sequent competition should be taken into account when structuring resource exchange alliances.
However, in spite of this observation, most academic models ignore the subsequent competition.
In our research we take this competition after the exchange into account. We develop models to
determine the amount of each resource to be exchanged in an alliance with two members, taking
into account the consequences of the exchange on the subsequent competition between the alliance
members.

First we briefly discuss the modeling of the competition resulting from a given resource exchange.
Consider 2 carriers, indexed by −1 and 1. Carrier i produces a set Ri of resources indexed by
j = 1, . . . , Ri. For example, flight j may denote the Monday 8am flight of carrier i from Atlanta
to New York. Carrier i produces bi

j units of resource j. For example, carrier i may make bi
j = 200

seats available on flight j each Monday. There may be multiple repetitions of the same resource,
for example, flight j may be repeated once per week. We assume that there is a time period, for
example a week, such that the sets Ri of resources under consideration, of both carriers i = ±1,
repeat once every time period. Suppose that carrier i allows carrier −i to use up to xi

j units of
resource j ∈ Ri, with 0 ≤ xi

j ≤ bi
j . Let x := (ixi

j : i = ±1, j ∈ Ri) denote the vector of resource
exchange quantities, and let R := R−1∪R1, that is, xj > 0 indicates that carrier 1 allows carrier −1
to use xj units of resource j ∈ R, and xj < 0 indicates that carrier −1 allows carrier 1 to use −xj

units of resource j ∈ R.
Each carrier i has a set Ki of product types that carrier i can sell with the resource types in

R. Each product k of carrier i requires ai
jk units of resource j ∈ R. Each carrier i sets a price for

and sells units of each product type in Ki in each time period (over which the sets R of resources
repeat). Each carrier may take into account information specific to the time period when deciding
on the prices. Suppose that each carrier observes data ξ, and after observing the data, each carrier i
chooses a price yi

k(ξ) for each product type k. Let yi(ξ) := (yi
k(ξ) : k ∈ Ki) denote the vector of

prices chosen by carrier i. Given observed data ξ and a vector (y−1, y1) of prices chosen by both
carriers, the demand for each product type k of carrier i is denoted by di

k(y
−1, y1, ξ). The resulting

2
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total revenue of carrier i is given by

gi(y−1, y1, ξ) :=
∑

k∈Ki

yi
k di

k(y
−1, y1, ξ)

Assume that the objective of each carrier is to maximize its total revenue.
Given the observed data ξ and a vector y−i of prices chosen by carrier −i, the best response

problem of carrier i is given by

max
yi≥0

{
V i(x, y−1, y1, ξ) := gi(y−1, y1, ξ)

}
(1)

s.t.
∑

k∈Ki

ai
jk di

k(y
−1, y1, ξ) ≤ bi

j − ixj for all j ∈ R

Given x and ξ, an equilibrium (y−1∗, y1∗) ≥ 0 satisfies the property that for each i, yi∗ is an
optimal solution of (1) given y−i∗. If one assumes that after the resources have been exchanged
and random data have been observed, each alliance member chooses the prices of its products
to maximize its own profit, and that this behavior of the alliance members leads to a unique
equilibrium, then the problem can be formulated as a mathematical program with equilibrium
constraints.

max
x

E
[
V −1(x, y−1, y1, ξ) + V 1(x, y−1, y1, ξ)

]
(2)

s.t. (y−1, y1) solves (1) for i = ±1, for each ξ and for x

The reason the sum of the optimal values for the carriers is maximized is that the carriers can
exchange money together with resources, and thus it makes sense to both carriers to maximize
their total revenue. The exact division of total revenue can be given by the Nash solution to the
corresponding cooperative game.

Important questions are whether, for each resource exchange x and each data realization ξ,
there is an equilibrium, and if so, whether the equilibrium is unique. We give sufficient conditions
for existence and uniqueness of an equilibrium. We propose an algorithm to compute a solution of
this mathematical program with equilibrium constraints.

3
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1 Introduction 

 
Martime inventory routing problems involve the coordination of vessel routing and inventory 

managment. Compared to road-based problems, maritime problems have several characteristics that 

make this integration relevant. The quantities transported are large, both in terms of vessel capacity 

and storage capacity at production and consumption facilities. In addition, travel times between 

facilities are considerable. This leads to a problem where routing decisions has a large impact on the 

inventory levels and vice versa.  

 Maritime inventory routing problems have been considered by several authors in the last 

decade using various approaches. These includes Dantzig-Wolfe decomposition [1], mixed integer 

programming [2], metaheuristics [3, Lagrangian relaxation and heuristics [4], and a hybrid of genetic 

algorithms and linear programming [5]. In contrast with the above solutions, the present work is not 

motivated by a specific business operation, but attempts to tackle maritime inventory routing problems 

in a more general setting. For more references see the recent review of these problems see [6]. 

In this talk we will present a heuristic to solve real-world maritime inventory routing 

problems. To properly capture the aspects of the various industrial settings, the heuristic need to handle 

a rich set of model elements, constraints and objectives. This works build on and extends the work 

described in [7]. The most important new model elements are bookings, tank cleaning, contracts and 

boil-off. Also, the algorithm includes a more proper optimization phase, not just repeated construction. 

 

2 Model description 
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A fleet of vessels, with given capacities and saliing speeds, is available for transporting products 

between a set of ports. Some ports have storages, which each produces or consumes one product 

according to a time-varying profile. Each storage has a finite capacity for storing product. The goal is 

to use the vessels’ transportation capacity to avoid overflow or stockout at any storage within the time 

horizon, while maximizing profit. The production and consumption in some storages can be reduced to 

some extent to help avoiding overflow/stockout. 

In problems where there are more than one product, we model stowage in one or more tanks 

of given capacities aboard each vessel. Each tank may only contain one product at any time. Cleaning 

may be required when changing from one product to another in a tank, with a mininmum duration and 

associated cost. In the case of LNG transportation, we must deal with the phenomenon of boil-off , 

where the amount of product discharged in each trip is less than the amount loaded, due to evaporation. 

The operations at each storage may be regulated by contracts. A contract imposes interval 

limits for the amount that may be picked up/delivered in given periods. It also determines the 

associated price, which may be given as a time-dependent curve or by more complex mechanisms. A 

number of other constraints can be present, such as vessel/port compatibility, draft limits, port closure 

periods, vessel maintenance periods, inter arrival gaps and minimum/maximum number of visits to a 

storage in given time periods. 

The problem may have aspects of tramp shipping, by containing bookings, which are 

requirements or options to transport product from one port to another, independently of the storages. 

Bookings have time windows (laycan), quantity limits and other constraints. 

 

3 Solution method 
 

We attack the problem using a neighbourhood search based heuristic. The search works with a plan 

that contains an explicit representation of the schedule for each vessel. Its main constutients are port 

stays, where a vessel visits a port, and actions during port stays, that represent product being loaded or 

discharged. As the feasible part of solution space is quite constrained, we relax (and penalize) a subset 

of the constraints, namely those that can be fixed by adding more port stays and actions (e.g. stockout 

in a consumption storage, or too little product delivered in a contract period). 

To construct the initial plan, we start with an empty plan, where the initial vessel positions 

and stock levels are known, but no sailing takes place. This plan is feasible, since only relaxed 

constraints are violated. We then iteratively identify violations of relaxed constraints and add port stays 

and actions to the plan in order to fix them. This continues until there are no more violations, or no fix 

is found for any remaining violation. 

The first step in each iteration is to identify which constraint violation to fix. Each violation is 

assigned a critical time, before which some action must be added. The critical time for e.g. a storage is 

the time of stockout/overflow, while for a booking, it is the end of the loading time window. The 

violation with the earliest critical time is selected. 
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We then generate all different journeys that can fix the violation. A journey consists of a pair 

of matching load and discharge actions for one vessel. Different journeys arise from choosing different 

vessels, different load/discharge ports, storages and contracts, and different insertion points in the 

chosen vessel’s schedule. Each journey is tested for feasibility, and the change in the plan’s objective 

value is calculated. 

The journey feasibility test is the most complex part of the algorithm. Inserting the journey 

directly affects later stock levels at the visited storages. Other storages that the vessel visits may also 

be affected, since the timing of the vessel’s actions after the new journey is usually changed. Even 

though we keep the schedules for all other vessels fixed, large parts of the plan must be considered in 

order to determine feasible assignments of the load/discharge quantity and timing of the journey. 

The feasibility test starts with inserting the journey, with zero quantity, and propagating time 

for the vessel while assuming that all actions and sailing take place as quickly as possible. Based on 

these approximate times, we find the largest feasible quantity that satisfies the most important hard 

constraints. We set this quantity for the journey and propagate correct times for the vessel. If 

necessary, stowage is determined and tank cleaning actions inserted in the schedule. All hard 

constraints are then checked to verify that the plan is feasible. 

At many points during the feasibility test, we may encounter a violation of a hard constraint 

and fail. Bu we may also find that the violation can be fixed by delaying one of the vessel’s actions 

(e.g. the vessel has an action that overlaps another vessel’s action at the same storage. Wait until the 

other vessel is finished). In this case, we note the earliest feasible start time for the action and restart 

the feasibility test. From now on, time propagation will respect the noted time as a lower limit for the 

action’s start time, preventing that the same violation occurs again. 

When all the feasible journeys have been determined, we select and insert the one that most 

improves the objective value, before starting the next iteration of construction. In the case where we 

wish to generate a number of different initial plans, a random element and other criteria can contribute 

to diversifying the journey selection. 

After obtaining the initial plan as described above, we proceed to the optimization phase. 

During optimization, we repeatedly tear down and then rebuild a part of the plan, in the hope that this 

leads to an improvement. 

The first step in an optimization iteration is to select a random interval of time, usually around 

10% of the planning horizon. All journeys, for all vessels, that have one or both actions within the 

selected interval are removed from the plan. The plan is then compacted, i.e. some of the remaining 

actions are moved to earlier times (while respecting the hard constraints). This is possible because 

removing the journeys frees transportation capacity and may eliminate the need for some delays. 

Compacting keeps the plan from developing in a particular unfavourable direction, where actions are 

pushed to ever later times by new delays added in the construction heuristic.  

After compacting the plan, we reuse the construction heuristic to add journeys until no more 

violations of relaxed constraints can be fixed. During this reconstruction phase, violations in the part of 
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the plan where actions were removed are given priority. The new plan so obtained is evaluated and 

kept if it is the best of the recently generated plans. Otherwise, we revert to the previous plan. A new 

optimization iteration then starts. 

 

4 Results 

 
The algorithm has been tested on cases based on real world problems from three different business 

operations: transport of LNG, cement and oil-based products. The characteristics of three selected 

cases are summarized in Table 1. 

Table 1. Test case characteristics. 

 Business  Vessels Storages Products Period Contracts Bookings Tanks Cleaning 

Case A LNG 8 7 1 1 year X    

Case B Cement 5 60 11 14 ds   X  

Case C Oil-based 7 4 14 6 mths X X X X 

 

For each test case we ran the initial construction algorithm followed by 500 optimization iterations. 

During the optimization, some degrading moves are allowed to diversify the search.  The test results 

are given in Table 2. 

Table 2. Test case results. 

 Initial objective Best objective Time (sec.) 

Case A 2.84e+08 6.76e+08 52.3 

Case B -785098 -355715 11.28 

Case C 1.38e+07 1.65e+07 4.67 
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1 Introduction

The Braess paradox [1] is well known by traffic engineers. It states that adding a link to a network

can, in special conditions, lead to an increase in total travel travel. Braess’ work is based on a

static network with link travel times. There are several conditions, like the maximum increase

of travel time [2], which are derived for this case. However, with dynamic queuing models, the

paradox changes. This paper will show that even for a very small network the addition of a link can

increase the travel time (section 2). It will be also argued that this is in fact a common situation

for real-world networks. The paper also presents a possible solution for the road layout avoiding

the extra delay in section 3.

In this extended abstract we will not explain the queuing model in detail. We use a conceptual

dynamic queuing model. The only important features are (1) the flow on a link is restricted to

capacity and (2) if demand exceeds capacity, a queue will grow upstream of the bottleneck. For

the extended abstract we assume that the vehicle speed up to capacity is the free flow speed. This

assumption simplifies the calculations in the following section, but is not essential for the concept.

Paper presented at TRISTAN VI; research sponsored by the Netherlands Organisation for Scientific Research (NWO)

461



(a) Without extra link (b) With extra link

Figure 1: Network

2 Network and demand

Figure 1a shows the very simple network which we will be considering in this paper. The effect

occurs for more networks, but this simple network will be used to show the relevant process. The

link capacity is indicated with C and the traffic demand is Q. For this network, C1 > Q and

C2 > Q (the properties of these links and all links which will be introduced are also shown in

table 1). Since the capacity is sufficient, there is no congestion in the network and, because in this

extended abstract we assume a free flow speed up to capacity, the average travel time (T avg
without) is

the sum free flow travel time on link 1 and link 2:

T
avg
without = T free flow

1 + T free flow
2 (1)

Now consider adding link 3 (figure 1b), which has a capacity C3 < Q and a free flow travel

time travel time T free flow
3 = (T free flow

2 + τ) with τ > 0. Since there is no bottleneck on link 2 or

link 3, traffic will be in free flow conditions. From the diversion point onwards, it will therefore be

faster to take link 3. In a Wardrop equilibrium [3], users will only take the path with the lowest

cost (in this case being travel time), meaning the traffic demand to link 3 is the full demand Q.

However, since C3 < Q this will create congestion upstream of the diversion point, i.e. on link 1.

All travellers, also travellers which might turn to link 2 will envisage this congestion. Therefore

the average travel time is

T
avg
with = T

cong
1 + T free flow

3 (2)

The difference in travel times can be calculated from the equation 1 and equation 2. In the

limit that τ → 0, the extra delay D is:

D = T
avg
with − T

avg
without = T free flow

1 + T free flow
2 − T

cong
1 − T free flow

3 = T free flow
1 − T

cong
1 > 0 (3)

This increase in travel time is only due to the addition of a link. As long as Q > C3 the queue will

grow and the delay will increase, theoretically to infinity. For the static network with link travel

times, the possible travel time is bounded to twice the original travel time [2]; this no longer holds

for the dynamic case.
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Table 1: Properties of the links

Link 1 2 3 3a 3b

Capacity C > Q > Q < Q > C3b = C3

Free flow travel time T free flow
1 T free flow

2 T free flow
2 + τ T free flow

3a = T free flow
3 − T free flow

3a

(a) Graph (b) Implementation in lanes

Figure 2: The solution avoiding extra travel time

Although the network might seem artificial, it is actually a situation which can often occur in

practice. Imagine a road approaching a town (link 1). To get to the other side, there is a motorway

around the town, or a highway through the town. Often the motorway link will be take more time

in case traffic in town is undisturbed.

3 Solution

To avoid this problem, the network designer has to make sure that the travel time on link 2 is

larger than on link 3, or that the queue because of the restricted capacity of link 3 will not delay

travellers turning onto link 2. This is possible by redesigning the network as shown in figure 2a. If

one designs the network such that C3b < C3a, a queue will arise if on link 3a the demand exceeds

the capacity of link 3b. If link 3a is long enough, traffic to link 2 is not delayed by this queue.

Furthermore, once there is a queue on link 3a, the travel time over link 3a increases, which will

make more travellers taking link 2 instead. In terms of road layout, this solution is relatively easy

to implement. An example is shown in figure 2b.

Another solution would be to artificially increase travel time on link by means of traffic man-

agement (for instance, by introducing traffic lights). However, also with the these solutions, the

total travel time will not be lower than the original travel time. If the link is not constructed for

travel time reduction but for other reasons (e.g., access to a part of the town), then these solutions

are useful.
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4 Conclusions

The paper presented a paradox based on the Braess paradox. It shows that even in a very simple

network layout the addition of an extra link can cause an increase of total travel time. It is

furthermore shown that this delay is not bounded. The paper also provides solutions to avoid the

extra delay. The network element which causes this delay is very common in real-world networks.

Future research should show how large this problem in fact is.
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1 Introduction and literature review

Often, travellers needs to be certain to arrive before a certain time, regardless of the road conditions.

They therefore tend to avoid routes that can have long delays, even if such delays are seldom.

This paper discusses a traffic assignment which takes risk avoidance into account. However, the

probability distribution of travel times on links and the probability of incidents on links is not

known to the travellers beforehand. They therefore have to make assumptions based on their

risk-attitude.

The approach to risk-averse route choice behaviour presented in this paper is introduced by

Bell [1]. He assumes that risk-averse drivers anticipate worst cases and minimise their exposure

to these. In fact the traffic loads influence which cases are worst. Bell and Cassir [2] extend

the concept using an demand-capacity relationship to determine the travel cost rather than two

possible fixed costs. In this paper, a blockade means a lower capacity, resulting in a new travel

time on the blocked link.

Nagae and Akamatsu [3] continue on this line of research. They point out that it might be

too extreme to expect the worst case situation to happen and relax the assumption of people

being completely risk-averse. They add two extra terms to spread the breakdown chances over the

different scenarios. This changes the perspective on route choice behaviour slightly, but moreover, it

makes the mathematical framework much easier to solve. Bell et al. [4] use the same but, compared

to the strictly risk-averse simulation, they just relax the perception of link failure probabilities (and

Paper presented at Tristan VII; research sponsored by the Netherlands Organisation for Scientific Research (NWO).
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not the route choice). The mathematical advantage then still holds.

Until now, this game theoretical approach to risk-averse assignment has only been combined

with static models and not with a dynamic traffic simulation. This paper fills this gap. The

risk-averse route choice model proposed here can be used in traffic assignment models. In the

future, this risk-averseness might be implemented in journey planners. One can conceive of an

on-line journey planner with a slide bar for risk-averseness. In general, risk-minimizing behaviour

is relevant for transport of special goods or persons, such as hazardous materials or VIPs.

2 Methodology

The model proposed here extends the work of risk-averse traffic modelling[1, 2, 3, 4]. For the sake

of simplicity, we formulate a single-destination model. A multi-destination network is easily fit into

this model by changing the destination-specific variables into separate variable for each destination

This method aims at computing the route choice vector (h(t)), giving the route fractions in

percentages over the different paths. Therefore, at each time instant t the elements of h(t) add

up to 1. The route choice depends on the travel time in each scenario (ttlinkijt ) and the anticipated

probability of each scenario, vector f, which size is the number scenarios. In this paper, a scenario

(j) is defined as an incident blocking link j. Therefore the number of scenarios equals the number

of links. In a general framework, the concept of scenarios (possible states of the network and/or

demand level) can be extended, including several disruptions of the network. In the context of

this paper it is important to note that the travel time on link i, ttlinkijt is time dependent and can

be calculated using any traffic simulator. Also, influences from downstream links might influence

ttlinkijt . The total cost for travelling under scenario j, Tj , can be obtained from the traffic simulator.

The key of a risk-averse approach [1] is that a risk averse user would count on the worst scenario

to happen most likely. Therefore, the following equations have to be solved:

f∗ = argmax
f

(⟨T (f,h∗(t))⟩) (1)

h∗(t) = argmin
h

(⟨T (f∗,h(t))⟩) (2)

With Nagae and Akamatsu [3] we argue that maximisation is perhaps too extreme and even risk-

averse users have a more balanced expectation of the scenarios. Due to the limited length of this

extended abstract, we will here only show the solution of the system; however, the full paper

will also show the derivation of this solution. The key is that the scenario which gives the worst

performance (anticipated cost of travelling), gets the largest anticipation in the risk-averse users’

perception. In this paper, this performance is chosen to be the travel time T . As shown [3], this

slightly modified equation 1 leads to a logit-like solution for the “incident anticipation” (f):

fj = exp (ϑTj) /
∑
j

exp (ϑTj). (3)
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Note the way the parameter ϑ works out in the solution: it indicates how smoothly the incident

probability is distributed over the scenarios. ϑ = 0 gives an equal probability to each scenario and

ϑ = ∞ gives only weight to the scenario with the highest disruption.

For the traffic assignment it is needed to have the anticipated link travel times,
⟨
ttlinkit

⟩
. These

can be obtained by taking a weighted average of the link travel times in each scenario:

⟨
ttlinkit

⟩
=

∑
j

fjtt
link
ijt (4)

Using the above elements, traffic can be assigned risk-aversely in the following loop. The

initial step is to start with an equal probability for each scenario, meaning all elements of f are

equal. Then, we fix the assignment of traffic over the fastest route according to the free-flow travel

time. With these initial values we start the optimisation loop. Using the traffic assignment, we

calculate the link travel costs for each scenario using a dynamic traffic simulation program which

gives the link travel times and the total travel times under each scenario. These, in turn, cause a

new anticipation on each scenario (equation 3), thereby causing new anticipated link travel times

(equation 4). With these travel times, a new one-shot traffic assignment (fastest route) is calculated

which is averaged with the previous one using a Method of Successive Averages [5]. Now, a new

iteration in the optimisation loop can be started. In practice, this loop converges to a solution for

both the route choice and the anticipated scenario. The full paper will discuss the computation

time and convergence speed, as well as methods to reduce these.

3 Results

The method is implemented and tested on a test-network, shown in figure 1, in which traffic has

to go from the bottom left to the upper right corner. The network consists of a motorway (links

at the left and top), secondary road (roads at the bottom and right) around links in a city centre

(the middle). The capacity and the speeds have been adapted to the type of link. Most travellers

would take the motorway in non risk-averse equilibrium conditions. Because of this high load, the

impact of a blockade on the motorway would be high and therefore risk-averse people anticipate

most on a blockade there. The distribution of the weights of the blockade is shown in figure 1a. As

expected, the highest anticipation is put on the motorway link at the end. Note that a blockade

at the end is more disruptive because that also blocks travellers which already passed the first

link, but that have not yet passed the last link at the moment of happening. Figure 1b shows the

resulting traffic assignment. This shows that not all travellers will take the motorway, which is the

faster route if risk-averseness was not taken into account, indicating that adding risk-averseness

changes the actual traffic assignment.
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(a) The anticipated blocking probability f – the width of

the line indicates the anticipated blocking probability

(b) Routes chosen by the travellers, h – the width of the

link indicates the number of drivers taking that route

Figure 1: The results of the test network

4 Conclusions

This paper introduces dynamic queuing into risk-averse traffic simulation. It is shown that with

an innovative approach, it is possible to integrate risk-averse traffic assignment with a traffic

simulation with realistic queuing dynamics. In this simulation the influence of the incident will

expend spatially and temporally, meaning travellers will avoid also other links than the incident

site also in other times than the incident itself.
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1 Introduction

Convective weather is a leading source of air travel delay. Pilots flying through areas where con-

vective weather is present select routes aiming to minimize risk and maximize efficiency. Air traffic

controllers suggest routes pilots may accept or decline, while also estimating airspace capacities,

scheduling aircraft landings, and performing a host of other activities all related to considerations of

risk and uncertainty. The goal of this research is to provide aircraft route guidance during periods

of convective weather. This work is differentiated from past work in that the problem is explicitly

modelled as a biobjective problem and solved to optimality, giving pilots flexibility to choose from

a set of non-dominated routes minimizing risk and maximizing efficiency. There are many different

efficient algorithms to solve such a biobjective shortest path problem to optimality [1]. There are

likewise many ways to define risk including methods based on the evolution of weather patterns

over short periods of time or pilot and controller reactions to given weather patterns [2].

2 Weather and Risk

The trajectories of aircraft flying through convective weather are most strongly related to two

forms of data currently collected: vertically integrated liquid and radar echo top measurements

[3]. Vertically integrated liquid data shows precipitation intensity by latitude and longitude at

different times, and is typically transformed to a six point scale known as VIP or NWS level.

Radar echo tops show cloud heights and are typically measured in thousands of feet. In much past
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research, aircraft are assumed or advised not to fly through discs, squares, or other convex shapes

covering all areas reporting VIP levels three and higher [4, 5]. Algorithms then select routes that

are optimal in terms of distance travelled. The assumption that pilots avoid VIP level three and

higher areas is common in aviation systems engineering and the various covering shapes are used

to ease computational burdens.

The past research ignores empirical evidence that VIP level three holds relatively little signifi-

cance for pilots; see [2, 6] and other studies. One case study found the VIP level three threshold

rule of thumb “in some cases, was too conservative” and in other cases “declared as passable regions

that pilots consistently avoided” [6]. Radar echo top data is actually a stronger predictor of pilot

behavior than VIP level; again see [2, 6] and other studies. Actually, aircraft altitude, echo top

height, and VIP data should all be considered [2]. A common, often unstated, finding of empirical

studies is that it is impossible to accurately select weather conditions pilots as a group will fly

through vs. those they will avoid. Different pilots will have different concerns, available options,

knowledge of the weather, etc.. It is also worth noting that it is notoriously difficult to predict

how weather patterns will evolve even over limited periods of time. Given all this, it is unrealistic

to assume as given a four-dimensional map bifurcating airspace into areas safe and unsafe to fly

through some time into the future.

3 Methodology

We model the route flown by an aircraft as a path in a flight network. The airspace is discretized

into a grid, where every grid cell is represented by a node. Nodes are connected to adjacent nodes

in the eight neighboring grid cells via arcs. A path in this network represents the approximation

of a possible route an aircraft may follow through airspace. For a preliminary study, we assume

a fixed flight level and a relatively short time period and thus obtain a 2-D flight network. It is

easiest to conceptualize the 2-D problem, so we focus on that in this extended abstract. In this

study, flight networks considered include hundreds of thousands of nodes.

We measure the efficiency of an aircraft route in terms of distance flown, which forms the first

route choice objective. The second objective is minimizing risk along the route. A risk factor is

assigned to each arc in the network, where the higher the risk factor, the less attractive an arc is.

In this study, higher risks are associated with weather conditions that fewer pilots were observed

flying through in the largest empirical study to date [2]. We wish to primarily capture the fact

that different pilots have different tolerances for the maximum level of risk they are willing to

accept in any part of their flight path. Secondarily, trajectories involving shorter paths through

unattractive weather are favored. In order to achieve the desired results, we transform the results of

the cited study and assign risk factors of varying orders of magnitude. For example, areas reporting
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conditions that anywhere between 30 and 40% of pilots avoided are assigned one risk factor while

areas reporting conditions that anywhere between 40 and 50% of pilots avoided are assigned a

significantly higher risk factor. [7] also consider exposure to weather as an objective component in

the form of “normalized weather intesity” but it remains unclear how the corresponding objective is

formulated. Only simulated radar reflectivity showing precipitation intensity is used to determine

weather cell severity but echo top measurements are not considered.

Let n ∈ N denote a node and (i, j) ∈ A with i, j ∈ N an arc in the flight network. The set

Ps,t is the set of paths (or routes) in the flight network connecting origin node s to target node

t. The length of an arc (i, j) is dij and its risk factor is rij . The distance traveled along a path

is obtained by summing the length of the arcs, d(p) =
∑

(i,j)∈p dij , and the risk along a path is

obtained correspondingly, r(p) =
∑

(i,j)∈p rij . The biobjective aircraft route choice problem is then

min

 d(p)

r(p)


s.t. p ∈ Ps,t.

(1)

Our aim is to identify efficient routes of (1) with the property that it is not possible to obtain a

route with better objective value in one component without worsening the other component. This

set of paths represents the best trade off solutions between the most direct and the safest paths

and thus constitute a route choice set for pilots – it is likely that pilots will choose one of these

routes, but which route is chosen may depend on pilot preference and experience.

While a similar problem has been approximately solved using heuristics [7], there does not

seem to be a need to do so as several exact algorithms as discussed in [1] are capable of quickly

identifying all efficient solutions. For one example instance involving weather reported around

Atlanta, Georgia on 5 May, 2007 at 11:00 GMT, we create a flight network with 122304 nodes

and 974236 arcs which is considerably larger (more than two orders of magnitude) than the one

considered in [7] and also based on real weather data. To solve (1) for this flight network, we use

a biobjective label setting algorithm which extends the single-objective label setting algorithm,

also known as Dijkstra’s algorithm, to the biobjective case. We are able to identify all efficient

solutions with this biobjective label setting algorithm on a standard desktop computer within 1

second without taking advantage of any speedup techniques or network preprocessing. Some of

the obtained efficient paths are shown in Figure 1, where origin and destination are circled. The

route shown in white is the most direct one, the left-most route shown in black is the safest one

and the other routes shown in green have intermediate safety and distance values.

In this study, actual flown trajectories have been compared to model recommendations, reveal-

ing both that our approach selects realistic routes and that different pilots have different behaviour

when trading-off risk and efficiency. Subsequent work will develop a decision-support tool for air

traffic controllers based upon the research presented here.
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Figure 1: Risky weather and efficient flight paths.

References

[1] A. Raith and M. Ehrgott, “A comparison of solution strategies for biobjective shortest path

problems”, Computers and Operations Research 36, 1299-1331 (2009).

[2] K. Kuhn, “Analysis of Thunderstorm Effects on Aggregate Aircraft Trajectories”, Journal of

Aerospace Computing, Information, and Communication 5, 108-119 (2008).

[3] D. Rhoda and M. Pawlak, “The Thunderstorm Penetration/Deviation Decision in the Termi-

nal Area”, AMS Conference on Aviation, Range, and Aerospace Meteorology, Dallas, 1990.

[4] J. Prete and J. Mitchell, “Safe Routing of Multiple Aircraft Flows in the Presence of Time-

Varying Weather Data”, AIAA Conference on Guidance, Navigation and Control, Providence,

2004.

[5] J. Pannequin, A. Bayen, I. Mitchell, H. Chung, and S. Sastry, “Multiple Aircraft Deconflicted

Path Planning with Weather Avoidance Constraints”, AIAA Guidance, Navigation and Con-

trol Conference, Hilton Head, 2007.

[6] R. DeLaura and S. Allan, “Route Selection Decision Support in Convective Weather: A Case

Study of the Effects of Weather and Operational Assumptions on Departure Throughput”,

Eurocontrol FAA ATM R&D Seminar, Budapest, 2003.

[7] S. Alam, M.H. Nguyen, H.A. Abbas, and M. Barlow, “Ants Guide Future Pilots”, in Progress

in Artificial Life, 36-48, Springer-Verlag, Berlin Heidelberg, 2007.

472



Development of Stated-Preference Survey System on 
the Combined WEB and GPS Mobile Phones  

 
Takahiko Kusakabe 

JSPS Research Fellow, Department of Civil Engineering 

Kobe University  

Rokkodai 1-1, Kobe, 657-8501, Japan 

Email: t.kusakabe@stu.kobe-u.ac.jp 

 

Kenichiro Sadakane  

Department of Civil Engineering 

Kobe University 

 

Ippei Yamanaka  

Department of Civil Engineering 

Kobe University 

 

Yasuo Asakura  

Department of Civil Engineering 

Kobe University 

 

 
1 Introduction 
 

In recent years, automakers and other manufacturers are developing new vehicles for individual 

travellers, called as “Personal Mobility” such as Segway, Toyota’s i-REAL and so on. The personal 

mobility is expected to be adopted as a new urban travel mode. In the following part of this paper, a 

personal travel mode is referred as the Low Speed Private Travel Mode (LSPTM) (see [1]). Various 

aspects of operational strategies should be discussed when the LSPTM is implemented in real urban 

areas. For example, vehicle sharing systems can be the alternative of the conventional ownership 

systems. The most important issue is to know how the LSPTM is accepted by travellers in their wide-

ranging urban activities.  

Stated preference (SP) survey is often conducted to obtain travellers’ preferences for transport 

modes under hypothetical situations. The SP survey can be adapted to investigate the transport systems 
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in the future that have not been realized in the target area. However the SP survey is not always 

sufficient to reflect actual situations that each examinee will experience. This point may cause biases to 

the results of the SP survey. In order to reduce those biases, previous studies have combined SP data 

with revealed-preference (RP) data under actual travel choice situations. Some of these studies created 

the questions of SP survey depending on the traveller’s revealed behaviour in the RP data (for example 

[2]). It is expected that examinees can answer the questions of SP survey more accurately in the 

combined survey as they remember their experience in actual situations. Conventional studies used 

interviews, web questionnaires, or paper-based questionnaires to obtain RP data. Data collection is, 

however, not easy when travel choice behaviour is observed under wide-ranging urban activities. 

A probe person (PP) survey was developed as an effective method to observe travellers’ 

behaviour (See [3]). During the PP survey, every examinee is asked to carry a mobile phone equipped 

with GPS. GPS mobile phones observe all the trajectories of the trips made by the examinee. These 

trajectory data can be used to find out the target trips that include the situations of travel choices for the 

SP survey.  

The aim of this study is to develop the data collection system for the travel choice survey 

using web based SP questionnaire based on the PP system. In this paper, we show the survey system 

and explain how the survey was conducted to observe the SP data of the mode choice between walk 

and the new travel mode. 

 

 

2 Survey System  
 

The survey system consists of three parts; the PP system, the web-diary system, and the web 

questionnaire system. The PP system is to observe traveller’s trajectory of each trip using GPS mobile 

phones and record it onto database. The web-diary system is an online system in which each examinee 

can write additional characteristics on their trips. The information consists of actual place of origin, 

destination, travel mode, and trip purpose. Following the web diary system, the web questionnaire 

system retrieves the trips that satisfy the conditions for the SP survey. Trip purposes, origins, 

destinations, travel modes, and areas can be set as those conditions of the retrieval. The system creates 

web questionnaires corresponding to the retrieved trips. 

 

 

3 Empirical Surveys 
 

An empirical survey was conducted from 7th through 13th of September 2009. The preference data of 

the travel mode choice for the LSPTM were collected in the central area of Kobe in Japan. The target 

area covers 1.9 km from east to west and 3.3 km from north to south. There are 100 examinees, 
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selected from people who live in Kobe or its neighbourhood areas and who have plans to visit the 

Kobe downtown during the survey period.  

Two types of SP survey were carried out in order to compare the results of the developed 

method with the conventional methods. The one is the combined method of PP plus WebSP. The other 

is a stand-alone SP survey for several scenarios of hypothetical trips. The target trips of the PP+WebSP 

are the trips including more than 5 minutes walk in the target area. In both surveys, the examinees were 

asked to answer questions: “Would you have switched to the LSPTM from walk if the LSPTM were 

available in the displayed conditions?” The conditions of the LSPTM consist of the access distance, 

waiting time, travel time and fare. The access distance is the distance from the observed starting place 

of a walking trip to the LSPTM pool. The waiting time is the time for waiting for the LSPTM at the 

pool. The travel time is the time from the pool to the observed destination of the walk. The fare is the 

charge of one time use of LSPTM. In addition, the stand-alone SP survey also specified the conditions 

of the steepness and weather. Note that the questions are repeated 5 times for each trip with different 

conditions of the LSPTM in the PP+WebSP. In the stand-alone SP, they are repeated 12 times. 

2173 trips were observed by the PP+Web diary system though the trajectories of 312 trips are 

not correctly observed mainly because of GPS errors. The remaining 1861 trips were the candidates of 

the retrieval for the web questionnaires. The trips less than five minutes walk in the target area were 

excluded. Note that the trips that had the same route as the previous trips of an examinee were also 

excluded to reduce the examinees’ burden. There were 85 trips remained and used to the PP+WebSP. 

There were 94 examinees who responded to the stand-alone SP survey. As the result, 425 samples of 

mode choice data were collected by the PP+WebSP and 1128 samples were collected by the stand-

alone SP. 

The logit model is applied for both the PP+WebSP data and stand-alone SP data. The 

parameters of the logit models are estimated with each data set separately, as well as with both data 

sets together. When the parameters are estimated from combined data sets, the variances of random 

terms of the utility functions in the PP+WebSP model and stand-alone SP model are assumed as: 

( ) )(SPVarWebSPPPVar μ=+   where μ is the scale parameter  (1) 

 

Table 1 shows the results of the estimation. The coefficients of the utility functions are represented in 

the leftmost columns (Each coefficient are included in the utility functions that are shown in the 

parentheses). As the results of the standard logit models, the PP+WebSP model has larger 2ρ  than that 

of the stand-alone SP. The results of the combined model show that the scale parameter is significantly 

smaller than one. These results show that the PP+WebSP data has smaller random noises than that of 

the standard SP data. 
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Table 1. Estimation Results (t-statistics in parentheses) 

Coefficient PP+WebSP Stand-alone SP Combined Model

Constant (LSPTM) (PP+WebSP) 0.076 (0.131)  -0.060 (-0.205) 

Constant(LSPTM) (SP)  -0.438 (-1.522) -0.313 (-1.003) 

Access Distance [m](LSPTM) -0.021 (-4.862) -0.010 (-5.396) -0.013 (-5.395) 

Waiting Time[min.](LSPTM) -0.300 (-3.843) -0.178 (-5.031) -0.223 (-5.064) 

Fare [yen](LSPTM) -0.021 (-4.916) -0.014 (-7.461) -0.017 (-6.212) 

Travel Time [min.](LSPTM) -0.211 (-2.614) -0.165 (-5.780) -0.193 (-5.099) 

Travel Time [min.](Walk) -0.263 (-4.746) -0.187 (-9.782) -0.218 (-6.844) 

Weather Dummy (LSPTM) 

(Rain :1 Otherwise: 0) 

 0.728 (5.022) 0.859 (4.122) 

Steep Dummy (LSPTM) 

(Up-hill:1 Otherwise:0) 

 0.611 (3.814) 0.711 (3.267) 

Scale Parameter μ    0.827 (6.589) 

N  425 1128 1553 

( )0L  -294.59 -781.87 -1076.46 

( )β
)

L  -142.32 -599.09 -766.12 

2ρ  0.517 0.234 0.288 

2ρ  0.510 0.232 0.286 

 

4 Conclusions 
 

This study developed the survey system that aims to obtain SP data for analysing the newly introduced 

private travel mode: LSPTM. The SP data were obtained from the questionnaires based on the PP 

survey. The empirical analysis shows that the results of the SP survey can be improved by using 

developed system. 
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1 Extended Abstract 

Analyzing probability distributions from traffic volume time series and calculating the first passage 

time distributions gives the probability of firstly exceeding a given threshold corresponding to a 

congestion of given scenarios. The method interprets traffic breakdown as extreme events.  

Stochastic traffic dynamics can be described as equation of motion for a collective variable, 

the vehicle cluster size or including fluctuations. The corresponding Langevin equation can be 

transformed into stochastic differential equation (Fokker Planck Equation) where not only the 

equilibrium distribution can be deduced but also the time can be calculated when firstly exceeding a 

given extreme threshold (first passage time). This results is a consequence of statistics of extreme 

events and opens new insights in probabilistic description and prognosis of the traffic breakdowns. 

 

Three different traffic situations can be distinguished: 

(a)   Stable traffic flow where any fluctuations decay over time 

(b)   metastable traffic flow where fluctuations neither decay nor grow and 

(c)   unstable traffic flow where a breakdown can be expected for sure if the observation time is  long       

enough. 
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This first passage time gives the time when reaching a critical extreme value. The probability 

of finding a congestion of a given critical length is calculated by the temporal drop of the probability 

of finding a congestion anywhere between critical length to zero and describes the probability change 

as the probability outflow over the boundary “critical length”.  Treating the congestion length or 

cluster size n as a continuous variable and expand the balance equation, translates the jam formation 

into a Brownian motion in a potential which shows the above mentioned different scenarios where the 

system state tends either to n free traffic flow shows bistability or tends to completely congested 

traffic.  

The traffic dynamics is translated into a first passage time distribution. This describes the 

distribution of time periods observing for the first time the formation of a traffic jam of a certain length 

or number of vehicles. The distribution contains a time lag, a maximum corresponding to a time period 

of a Brownian motion drift reaching the critical jam length, and a tail describing exceptional long 

waiting times for jam formation. The corresponding stochastic movement of the state variable 

described by the Fokker-Planck equation is compared with the frequency of breakdowns for different 

traffic volumes data observed on the autobahn München Holledau with and without speed control.  The 

corresponding stochastic differential equation starts with the discrete balance equation for cluster 

formation and the associated Fokker-Planck equation which is simplified by a diffusion approximation.  

For this aim we consider a straight traffic flow on a freeway section and study the 

spontaneous formation of a jam regarded as a large car cluster arising on the road. To get rid of some 

boundary conditions like entries and exits we can idealize the section by a circular road of length L 

with N cars moving on it. All the cars are assumed to be identical vehicles and can form two phases. 

One of them is the set of freely moving cars and the other is the congestion called single car cluster. 

The cluster is specified by its size n, the number of aggregated cars. Its internal parameters, namely, 

the headway distance and, consequently, the speed of cars in the cluster are treated as fixed values 

independent of the cluster size n. We note that in the model under consideration there can be only one 

cluster on the road. The free flow phase is specified also by the corresponding headway distance that, 

however, depends strictly speaking on the car cluster size n. The larger the cluster is, the less is the 

number (N - n) of the freely moving cars and therefore the larger is the headway distance. When a 

vehicular cluster arises on the road its further growth is due to the attachment of the free cars to its 

upstream boundary, whereas the cars located near its downstream boundary accelerate to leave it, 

which decreases the cluster size. These processes are treated as random changes of the cluster size n by 

± 1  and the cluster evolution is described in terms of time variations of the probability function P(n,t) 

for the cluster to be of size n at time t.  From the probability density the cumulative distribution of 

observing a breakdown within a given  observation time can be calculated and fitted to a Weibull 

distribution as typical distribution for the probability of surviving. 

The cumulative first passage time distribution can be interpreted as breakdown probability 

distribution for a given traffic volume. It outlines corresponding probability when reaching a 
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breakdown in an assumed observation time. It leads directly to the probabilistic definition of the 

capacity as a traffic volume leading to an unstable traffic pattern with a given probability within a 

given observation time. This definition can substitute the existing definitions for the capacity of a 

freeway and opens the possibility to quantitatively describing the influence of traffic control systems 

on the traffic flow. 
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Consider a general pricing model involving two levels of decision-making. The upper level

(leader) imposes prices on a specified set of goods or services while the lower level (follower)

optimizes its own objective function, taking into account the pricing scheme of the leader. This

model belongs to the class of bilevel optimization problems where both objective functions are

bilinear. See e.g. [1] for an overview of bilevel optimization.

Let x and y be real vectors that specify the levels of taxed and untaxed activities and T be a

tax vector attached to the activity vector x. Also, let c represent the“before tax” cost vector of

the activity vector x and d the cost vector of the activity vector y. For a given tax level vector T,

in control of the leader, the follower strives to minimize its operating costs (c + T )x + dy, while

the leader seeks to maximize its revenue Tx from taxes. The bilevel program can be written as

follows:

maxT Tx

minx,y (c + T )x + dy

s.t. (x, y) ∈ Π

In this talk, we review this class of hierarchical problems from both theoretical and algorithmic

points of view and then focus on some special cases. Among others, we present complexity results,

identify some polynomial cases and propose mixed integer linear formulations for those pricing

problem.

In the first problem, tolls must be determined on a specified subset of arcs of a multicommodity

transportation network. In this context the leader corresponds to the profit-maximizing owner of

the network, and the follower to users travelling between nodes of the network. The users are

assigned to shortest paths with respect to a generalized cost equal to the sum of the actual cost of

travel plus a money equivalent of travel time. This Network Pricing Problem has been considered,
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among others, by [2], [3], [4], [5] and [6].

An extension of the Network Pricing Problem is obtained by optimizing the design of the

network and the set of tolls on a subset of open arcs, given that users travel on shortest paths, see

[7].

The third problem is a special case of the Network Pricing Problem in which the taxable arcs

are connected and form a path, as occurred in toll highways. When users travel on at most one

taxable subpath, the problem can be reformulated as a Network Pricing Problem on an auxiliary

clique graph, [8]. Interestingly this problem is also equivalent to that of determining optimal prices

for bundles of products given that each customer will buy the bundle that maximizes her/his own

utility function, [9].
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1 Introduction

The French railway infrastructure manager RFF1 delegates some maintenance tasks to the French

railroad company SNCF2. One of them is rail defectoscopy, the detection and survey of defects

inside the rails. These actions are performed with ultrasonic propagation analysis. The more

loaded the railroad tracks are, the more frequently they must be checked. With the increase in

railroad traffic, the need to improve the schedule of these inspection becomes a prevalent task.

Inspection frequencies range from 6 months to 20 years. 2/3 of the total inspection distance is

due to tracks that should be visited once or twice a year. These tracks are called primary tracks.

They constitue a yearly homogeneous subnetwork. The remaining inspections (secondary tracks)

are planned each year.

The problem we are facing is to visit a given set of tracks tacking into account inspection tasks

time windows, track outages and vehicle speeds. Furthermore, vehicle speeds depend on its type

and circulation mode (either inspecting or not). These vehicles have limited working capacity

defined by the amount of water which can be brought on board. This water is needed to keep

coupled sensors and rails. For organisational purposes, tanks can only be refilled at the end of

a shift. The objective is to minimise the total deadhead distance. We named this problem the

Railroad Track Inspection Scheduling Problem (RTISP).

1http://www.rff.fr
2http://recherche.sncf.fr
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2 Literature review

The railroad track inspection scheduling problem (RTISP) can be seen as a general arc routing

problem. It consists in visiting, with a heterogeneous fleet, a given set of arcs during valid time

windows. Good introductions to arc routing problems are the book (1) and the reviews (2), (3).

The water capacity constraint can be modelled by using a capacitated arc routing problem

(CARP)(4), which consists of visiting arcs with vehicles of limited capacity. The heterogeneous

capacitated arc routing problem (H-CARP) generalises it by allowing different velocity and capacity

characteristics for each vehicle type. A common variant is the one with time windows on arcs

(CARP-TW). In the capacitated arc routing problem with intermediate facilities (CARP-IF),

vehicles can be refilled at given points at any time. The RTISP is a generalisation of all these

problems. It has time windows defined on arcs, vehicles and nodes (refill). Furthermore, two

limited capacities are constraining daily circulation: shift duration and water tank size. As the

authors of (5) notified, industrial vehicle routing problem are rich, models to solve them are often a

generalisation of academic works and input data size can be huge. The RTISP is a good illustration

of this fact.

Related industrial problems have been solved in the literature. Some of them are about road

weeding, winter road maintenance, waste collection or postal delivery.

3 Model

Train unit circulation are modelled by a graph which contains arcs and edges representing either

inspection tasks, deadhead traversals or complex moves in a train station. Arcs are used when the

railroad track is unidirectional whereas edges are used when the railroad track has bidirectional

equipment. Nodes describe stations and communications between railroad tracks.

Because refill can only be performed at the end of a shift, every shift is constrained to start

and end at a refill station. Hence, every shift is a trip between two refill stations having a total

distance to inspect lower than the capacity of the water tank, and a total trip duration lower than

the duration of a work shift. Given all the feasible shift paths, the RTISP becomes the problem

of selecting and scheduling them in order to satisfy all inspections with the lowest total deadhead

distance.

Train unit maintenance rendezvous, vehicle reservation and track outage minimum duration

are set to one shift for organisational purposes. Inspection task duration can vary from minutes

to hours. Vehicles can be constrained to move on a subpart of the complete railroad network.

4 Column generation based heuristic
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The proposed algorithm is based on a mathematical de-

composition which is heuristically solved in three phases.

During Phase I simple tasks are aggregated into work

shifts with the use of a column generation algorithm. The

generated continuous solution is used as an incumbent for

Phase II. In Phase II a rounding greedy heuristic is used

to get an integer solution. This new integer candidate so-

lution is tested against calendar day assignment to check

if all selected shifts can be assigned to a calendar day. If

it is not, a cut is generated. If it is, the new candidate solution will be used to generate a con-

straint program for a complete feasibility test during Phase III. This last stage is about testing if

scheduling the set of work shifts is feasible. If this test fails, a cut is added to the master problem.

Otherwise, a solution with minimum total deadhead traversal distance is selected.

5 Conclusion

In this paper, we presented the railroad track inspection problem and proposed a mixed integer

program formulation for it. To tackle its resolution we choose to solve it by an original column and

cut generation framework. The computational tests, which has been performed on the collected

data of the year 2009 (750 nodes, 1340 arcs, 752 edges, 2 vehicles), highlight the quality of the

solution obtained after 4 hours of computing. The algorithm successed in scheduling the 700 tasks

of year 2009. The goal of attaining a performance ratio (inspected distance / total distance) greater

than 50% has been achieved. A team of experts are actually validating these results.
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1 Introduction

This paper proposes a game theoretic framework for the problem of designing an uncapacitated

railway transit network in the presence of link failures and a competing mode. It is assumed that

when a link fails, another path or another transportation mode is provided to transport passengers

between the endpoints of the affected link. The goal is to build a network that optimizes a certain

utility function when failures occur. The problem is posed as a non-cooperative two-player zero-

sum game with perfect information. The saddle points of the corresponding mixed enlarged game

yield robust network designs.

The design or the extension of a Railway Transit Network (RTN) is a primary concern in many

cities. The reduction of traffic congestion, travel times, energy consumption and pollution justifies

investment in these networks, typically metro systems and suburban railways. A number of studies

have been devoted to the design of metro and suburban train networks in a deterministic context.

Unfortunately, railway networks do not always work as expected because of uncertain input data

or unforeseen events. In addition, such networks cannot easily be modified at short notice once

they are in place. Therefore, one would like the RTN to optimally work under many possible

scenarios, that is, it should be robust. Robustness is a difficult term to define because its meaning

highly depends on the context to which it applies. According to the Institute of Electrical and

Electronic Engineers, robustness can be defined as the degree to which a system or component can

function correctly in the presence of invalid inputs or stressful environmental conditions. In railway

planning, robustness is generally considered with respect to fluctuations of input parameters (e.g.

demand), to disturbances or disruptions, and to integration with other planning phases.

In transportation network design problems three agents are involved: a planner, the users and
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an evil agent called demon. The planner usually optimizes general goals, such as trip coverage

or total travel time. The users seek to optimize individual utilities such as comfort, travel time

and cost. The demon is unpredictable and makes the system work suboptimally by means of

bad weather conditions, natural disasters, human errors, etc. User behavior is normally described

through equilibrium models, which have been widely analyzed in the transportation literature. This

paper differs from previous studies on robust transportation network design in a number of ways.

Since we restrict our analysis to the design of railway networks, the following two assumptions can

be made: the travel times of the railway network to be built are minimally affected by congestion

(capacity is assumed to be sufficient), and users take the fastest route, either on the railway

network or by using an alternative transportation mode. These assumptions allow us to simplify

our analysis since user behavior is known. Therefore, from a game theoretic point of view, only

two agents are acting in our problem: the planner and the demon. We wish to design RTNs

that will react well to link failures. More specifically, our goal is to ensure that the network

will be operative for the largest possible number of passengers in case of failure. Given a known

link failure probability distribution, we can optimize the expected utility of the network. This

problem is called the Probabilistic Railway Network Design (PRND) problem. A generalization

of this situation arises when the probability distribution of link failures is unknown. One way of

tackling the latter problem is to consider the worst case scenario, that is, to maximize the utility

of the network when the link that most reduces the utility fails. The solution to this problem is

a maxmin network. This problem constitutes a stochastic version of the PRND problem and is

called the Stochastic Railway Network Design (SRND) problem, which we model in this paper as a

non-cooperative two-person zero-sum game with perfect information, where the first player is the

operator and the second is a demon who wants to attack some of its links. The payoff matrix of

this game is the utility of the network built by player I when the link chosen by player II fails.

2 Models

We now formulate the PRND and the SRND problems. Let K(r) be the utility function to be

maximized (e.g. trip coverage) of network r ∈ R, where R is the set of all feasible networks that

can be built. We model the physical network by a graph, its stations by nodes and its links by

edges. In what follows, the notation i may refer to a station or to a node, similarly e may refer to

a link or to an edge. We denote by E the set of all edges of the graph, and we assume that any of

these edges can fail. The utility of the network is adversely affected by link failures. Let K(r,∆)

be the utility function of network r ∈ R when all links in ∆ ⊂ E fail. Note that K(r, e) = K(r)

if link e does not belong to network r. We assume that any link can fail and we consider that no

more than one link can fail at the same time.
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If the probability that edge e fails is known and equal to γe, the construction of a robust network

is a probabilistic problem and can be solved by optimizing the expected utility under all possible

scenarios (no failure scenario and single link failure scenarios), that is, by finding a solution to

max
r∈R
{(1−

∑
e∈E

γe)K(r) +
∑
e∈E

γeK(r, e)} . (PRND) (1)

Unfortunately, the probability distribution of failures is normally unknown, which brings more

uncertainty into the problem. Our way of dealing with this uncertainty is to seek an RTN that

maximizes the utility function under a worst case scenario, that is, when the link that most affects

the utility of the network fails. Therefore, our problem becomes

max
r∈R

min
e∈E

K(r, e) . (SRND) (2)

If K is to be minimized, for example when it represents a disutility like the total travel time, the

problem to be solved is minr∈R maxe∈E K(r, e).

In general, the problem defined by (2) can be expressed as

maximize z

subject to K(r, e) ≥ z, e ∈ E

r ∈ R .

(3)

The output of the model is a robust RTN consisting of a number of railway lines and maximizing

the minimum trip coverage under the failure of one link. The complexity and size of the problem

defined by (2) make it difficult to solve. Our practical approach consists of reducing the number

of feasible networks under consideration. This makes sense since the maxmin optimal network

may not have a competitive trip coverage when failures do not occur (which is the usual case).

Therefore we will impose that the resulting network should have at least some proportion of the

trip coverage corresponding to the optimal network. The idea is to repeatedly solve the RND

problem described in [1], because it is faster to solve than (3). This can be justified since RND is

a particular instance of SRND and has fewer variables and constraints. Once we have built a set

of “good” networks, we choose one maximizing the minimum utility when a link fails, that is, a

solution to the SRND problem.

3 A Game Theoretic Approach

The main novelty of this paper is to show that the SRND problem defined as a maxmin problem in

(2) and (3) can be modelled as a non-cooperative two-player zero-sum game with perfect informa-

tion. In our problem, the players cannot make agreements and what one player gains is lost by the

opponent. Player I is the RTN designer and operator and has as many (pure) strategies r ∈ R as
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the number of networks that can be built. Player II, a demon, has as many (pure) strategies e ∈ E

as the number of links that can fail. General non-cooperative two-player zero-sum games can be

simply represented by a matrix A = (aij), where aij is the payoff obtained by player I if he chooses

his ith strategy and player II chooses his jth strategy. Player II then obtains a payoff equal to −aij .

In the SRND problem player I wants to maximize his utility by building an RTN, while player II

aims at minimizing it, by making a link fail. Therefore, the payoff of player I is the utility function

of the network built if the edge chosen by player II is inoperative, whereas the payoff of player II

is the opposite. Denoting by K(r, e) the utility of network r ∈ R when edge e ∈ E fails, a pair of

strategies, (r∗, e∗) is called a saddle point if K(r, e∗) ≤ K(r∗, e∗) ≤ K(r∗, e), ∀ r ∈ R, ∀ e ∈ E.

Thus, K(r∗, e∗) is the guaranteed trip coverage for player I against any edge player II chooses. It

is also the maximum damage that player II can inflict to any network player I constructs. If the

game has a saddle point, then it satisfies

K(r∗, e∗) = max
r∈R

min
e∈E

K(r, e) = min
e∈E

max
r∈R

K(r, e) , (4)

and (r∗, e∗) is a Nash equilibrium strategy, which means that no player can benefit by changing

its strategy unilaterally.

If no saddle point exists it is possible for players to enlarge the available set of strategies by

considering probability vectors, and look for a saddle point in the enlarged game, in which players

can choose a convex combination of their pure strategies, thus defining a mixed strategy. The

mixed strategy rβ = r(β1,...,β|R|) for player I means that he builds network ri with probability

βi, for every i = 1, . . . , |R|. Analogously, the mixed strategy eγ = e(γ1,...,γ|E|) of player II means

that he will attack link ei with probability γi. The Von Neumann minmax theorem ensures that

there always exists such a saddle point in the enlarged game. Note that the saddle point of the

enlarged game leads to a better expected payoff for player I than the strategy obtained by solving

the maxr mineK(r, e) problem. This mixed-strategy Nash equilibrium yields an expected utility

that does not depend on the actual edge failure distribution and, therefore, the solution is truly

“robust”.

The reader may note that we have only considered the single-failure case. A simple extension of

the models proposed gives us the possibility to deal with multiple failures, although the complexity

of the corresponding problems dramatically increases. For more details, see [2].
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1 Introduction 
Nonlinear pricing is prevalent in many industries and generally refers to a case in which the price or 

tariff is not strictly proportional to the quantity purchased.  For example, railroad tariffs are based on 

the weight, volume, and distance of each shipment.  However, discounts are often given to full-car 

and/or long-distance shipments.  In utilities, the price or rate per kilowatt hour is different for different 

types of users.  Heavy users of electricity particularly during peak hours generally pay a higher rate.  

Airlines routinely offer discount tickets for advance purchase, non-cancellation restriction, round-trip 

travel, and in competitive markets.  In each of these examples, the average price paid per unit varies 

depend on characteristics of the purchase such as its total size, time of purchase or usage, type of 

markets, and restrictions. 

Economists have been studying nonlinear pricing since Dupuit’s discussion of its 

manifestations in railroad pricing in 1894 and Pigou’s later categorization of the phenomenon in 1920.  

However, the same is not true for road pricing.  De Borger [1] and Wang et al. [5] opine that nonlinear 

pricing has been largely overlooked in the road pricing literature.  On the other hand, road pricing in 

practice is often nonlinear.  Area-based or cordon pricing schemes in Singapore, Norway, London, and 

Stockholm are forms of nonlinear pricing.  On Interstate 15 in Utah, solo drivers can pay $50 per 

month to use its Express Lanes.  In addition, a number of road pricing schemes offer quantity 

discounts.  London’s Congestion Charge offers monthly and annual passes for frequent users at an 

approximately 15% discount over its daily access fee.  

2. Overview  
In this presentation, we consider nonlinear pricing in the context of managing travel demand, reducing 

congestion, and environmental impact in a given area.  In the literature, an area is often assumed to 

consist of connected roads or roads in a connected geographical area.  However, this is unnecessary in 
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theory and in practice.  For example, an “area” can consist of roads, not necessarily connected, but 

under the jurisdiction of a single entity (a government agency or private company).   

Specifically, we consider pricing schemes that may vary with the distance traveled inside a 

restricted area by the users.  Mathematically, we let a function ܶሺℓሻ represent the toll amount, where ℓ 

denotes the distance.  When ߚ, ଶ are appropriately chosen, letting ܶሺℓሻߤ ଵ andߤ ൌ min ሼߤଵℓ, ߚ   ଶℓሽߤ

or max ሼߤଵℓ, ߚ   ଶℓሽ captures common nonlinear pricing functions in the economics and road pricingߤ

literature (see, e.g., [5] and [6]).  Below, we also refer to the two nonlinear functions as ܶ୫୧୬ሺℓሻ and 

ܶ୫ୟ୶ሺℓሻ, respectively, and illustrate them graphically in Figures 1 and 2 for various parameter values. 

Figure 1: Various forms of ܶ୫୧୬ሺℓሻ.  

 
Figure 2: Various forms of ܶ୫ୟ୶ሺℓሻ. 

 
In Figure 1, case (a) represents a distance-based pricing structure that offers a discount to 

heavy road users because, as drawn, ߤଵ   ଶ.  (Although it may be a practical form of pricing in manyߤ

industries, case (a) may not alleviate congestion.)  Case (b) allows users to either pay an access, ߚ, or a 

distance-based fee at rate ߤଵ.  The later is more economical when the distance traveled inside the 

restricted area is sufficiently short.  In case (c), ܶ୫୧୬ሺℓሻ becomes linear when ߚ and ߤଶ are both zero.  

For ܶ୫ୟ୶ሺℓሻ, the pricing function for case (a) in Figure 2 consists of an access, ߚ, and a distance-based 

fee with a rate ߤଶ.  Economists refer to this case as a two-part tariff.  Similar to (a), the function in case 

(b) consists of both an access and a distance-based fee.  However, the latter only applies when the 

distance traveled exceeds a threshold.  In economics, case (b) is called a three-part tariff.  Instead of 

giving a discount to heavy users, case (c) in Figure 2 discourages heavy road usage by charging a 

ߚ

 ଵߤ

 ଶߤ

ℓ 

ߚ
 ଵߤ

ℓ

 ߚ
 ଶߤ

ℓ 

(c) ߚ, ,ଵߤ ଶߤ  0 (b) ߚ, ଵߤ  0; ଶߤ ൌ 0 (a) ߚ, ଶߤ  0; ଵߤ ൌ 0 
ܶሺℓሻ ܶሺℓሻ ܶሺℓሻ

 ଵߤ ߚ

 ଶߤ

ℓ 

(a) ߚ, ,ଵߤ ଶߤ  0 

 ଵߤ

ℓ

(b) ߚ, ଵߤ  0; ଶߤ ൌ 0

ߚ

 ଵߤ

ℓ 

(c) ߤଵ  0; ,ߚ ଶߤ ൌ 0 

ܶሺℓሻܶሺℓሻ ܶሺℓሻ
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higher rate when the distance traveled exceeds a threshold.  In addition to those shown in the two 

figures, ܶ୫୧୬ሺℓሻ ൌ ܶ୫ୟ୶ሺℓሻ ൌ ଵߤ when ߚ ൌ ଶߤ ൌ 0.  In this case, both ܶ୫୧୬ሺℓሻ and ܶ୫ୟ୶ሺℓሻ become 

area-based pricing (see, e.g., [3]), a pricing scheme that only charges an access fee. 

In transportation literature, many (e.g., [3]) state tolled user equilibrium conditions in term of 

paths.  To illustrate, let Ω be the set of links in the road network.  We represent an arc or link in Ω as ܽ 

or a pair ሺ݅, ݆ሻ, where ݅ and ݆ denote two distinct nodes in the network.  Associated with each arc, there 

is a travel time or link performance function, ݏሺڄሻ, and ࢙ሺڄሻ א ܴା
  is a vector of these functions, where 

 is the cardinality of Ω and the “+” sign in the subscript indicates that each component of the vector is ܮ

nonnegative.  (Herein, the bold typeface indicates vectors of variables or functions.)  In addition, the 

length of arc ሺ݅, ݆ሻ is denoted as ℓ.  For travel demands, ܭ denotes the set of origin-destination (OD) 

pairs and ݀ is the demand for OD pair ݇ א  Associated with each OD pair, there is an inverse  .ܭ

demand function ܦ
ିଵሺڄሻ that determines the value of ݀.  Additionally, ࢊ א ܴା

 and ିࡰଵሺڄሻ א ܴା
 are 

vectors of these demands and their inverse functions, respectively.  To satisfy demands, ܲ denotes the 

set of all possible paths for OD pair ݇.  Then, ܸ represents the set of all feasible flow-demand 

distribution, denoted as ሺࢌ, is a vector in which each of its components, ݂ ࢌ ሻ, whereࢊ
, represents the 

amount of flow on route ݎ א ܲ and the other, ࢊ, is as defined above.  Then, one description of ܸ is 

as follows: 

ܸ ൌ ൝ሺࢌ, :ሻࢊ  ݂


אೖ

െ ݀ ൌ 0, ;݇ ݂
  0, ݀  0, ,݇  .ൡݎ

In our setting, Ω is partitioned into two subsets, Ωଵ and Ωଶ, where the former contains arcs 

inside the restricted area and the later consists of those outside.  By definition, Ωଵ ת Ωଶ ൌ  and  

Ω ൌ Ωଵ  Ωଶ.  As mentioned previously, the subnetwork induced by Ωଵ, i.e. the restricted area, need 

not be connected.  Similarly, ܲ is divided into two subsets.  One subset, ܶܲ, consists of paths 

containing arcs in Ωଵ and using these paths requires paying toll.  In general, paths in ܶܲ may contain 

arcs in both Ωଵ and Ωଶ in order to connect origins to destinations.  On the other hand, paths in the other 

subset, ܰܲ, contain no arc in Ωଵ and are thus toll-free.  For a given set of ߚ, ,ࢌଶ, ሺߤ ଵ, andߤ ሻࢊ א ܸ is 

in tolled user equilibrium if the following hold: 

ܶ ቌ  ℓߜ
אఆభ

ቍ   ሻ࢜ሺݏߜ
אఆ

ൌ ܦ
ିଵሺ݀ሻ ݎ א ܶ ାܲା

 , ݇ א ,ܭ                 ሺ2.1ሻ

ܶ ቌ  ℓߜ
אఆభ

ቍ   ሻ࢜ሺݏߜ
אఆ

 ܦ
ିଵሺ݀ሻ ݎ א ܶ ܲ

, ݇ א ,ܭ ሺ2.2ሻ

 ሻ࢜ሺݏߜ
אఆమ

ൌ ܦ
ିଵሺ݀ሻ ݎ א ܰ ାܲା

 , ݇ א ,ܭ ሺ2.3ሻ

 ሻ࢜ሺݏߜ
אఆమ

 ܦ
ିଵሺ݀ሻ ݎ א ܰ ܲ

, ݇ א .ܭ ሺ2.4ሻ

 

In the above, ߜ (equals 0 or 1) indicates whether arc ܽ is on path ݎ and ࢜ א ܴା
  is a vector of 

aggregate link flows, i.e., ࢜ has ݒ ൌ ∑ ∑ ߜ ݂


אఆא  as its components.  In (2.1) and (2.2), ܶ ାܲା
 ൌ
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ሼݎ א ܶܲ: ݂
  0, ݎ א ܲሽ, i.e., ܶ ାܲା

  is the set of utilized paths using the restricted area and ܶ ܲ
 ൌ

ሼݎ א ܶܲ: ݂
 ൌ 0, ݎ א ܲሽ is the set of non-utilized paths.  The sets ܰ ାܲା

  and ܰ ܲ
 are similarly 

defined for paths not using the restricted area.  In words, the above conditions essentially state that, at 

equilibrium, all utilized paths for every OD pair, using the restricted area or otherwise, must have that 

same generalized cost that equals to the value of the inverse demand function evaluated at the 

“realized” demand ݀.  As pointed out in [3], the generalized cost expression in (2.1) and (2.2) is not 

linkwise additive.  Moreover, ܶሺڄሻ, the pricing function, is not necessarily differentiable.  These 

observations lead many (e.g., [3]) to mistakenly conclude that there exists no link-based user 

equilibrium conditions when a nonlinear pricing function is present and to develop specialized 

algorithms to find equilibrium flow distributions. 

Our goal in this presentation is to show that, for a significant number of parameter values (i.e., 

,ߚ  ,ଶሻ, there exist link-based user-equilibrium conditions equivalent to (2.1) – (2.4).  In factߤ ଵ, andߤ

these link-based conditions are the Karush-Kuhn-Tucker conditions of the standard traffic assignment 

problem with some flow-balance equations either fully or partially replicated.  For those parameter 

values without equivalent link-based equilibrium conditions, we show how to modified standard 

algorithms such as the Frank-Wolfe algorithm and its variants (see, e.g., [2]) to find equilibrium flow 

distributions under nonlinear pricing.  In most cases, the modified algorithms require solving two 

shortest path problems per iteration.  Some of these problems may have side constraints.  Methods for 

finding optimal parameter values are also discussed. 
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1 Introduction

Macroscopic traffic flow models constitute a very useful tool for traffic management, simulation and

planning at a network level. They are parcimonious in terms of computational needs and model

identification, as they require very few parameters, and as boundary and initial conditions are

easily estimated. For most applications it is sufficient to consider models which do not distinguish

lane specific traffic dynamics.

The LWR model ([13], [16]) is the simplest of such models. It is based on the hypothesis that

traffic flow can be described by three variables dependent on location x and time t: the density

ρ(x, t), speed v(x, t) and flow q(x, t), related by the following relations:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ρ
∂t + ∂q

∂x = 0 conservation equation

q = ρv definition of v

v = Ve(ρ, x) behavioral equation.

(1)

or simpler as:
∂ρ

∂t
+

∂

∂x
Qe(ρ, x) = 0 , (2)

with Qe and Ve the equilibrium flow- resp. speed-density relationships (Qe(ρ, x)
def
= ρVe(ρ, x)).

This model admits a simple and efficient numerical solution, the Godunov scheme ([9], [7], [2],

[8]), which can be extended to networks by including boundary conditions and node models ([1],

[11], [12]). These node models do not accomodate multi-lane links at this point.
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In some important situations, traffic dynamics depend strongly on lanes, for instance in urban

networks (intersections with strong and interacting turning movements) or motorways with off-

ramp constraints or significant conflicts related to on-ramps. The problem of extending macroscopic

traffic flow models in order to accomodate multi-lane traffic has attracted the attention of the

research community. Some models have been proposed, which describe only the overall impact of

lane change on traffic flow ([5], [6]), without describing explicitly the dynamics of traffic on each

lane. Indeed, lane interactions are complex ([18], [10], [15], [17]).

Other models describe the interaction between lanes as flow transfers between lanes ([14], [15]),

or represent a multi-lane link as a succession of multi-link nodes ([11], based on a supply/demand

approach, [4], [17]). One last approach, on which the present paper expands, considers that the

essential mechanism between lane change is the formation of local equilibrium between lanes ([3],

[11]): users will chose the most advantageous lane.

2 The proposed model

2.1 Lane assignment

Let us recall the lane assignment model in [11], which generalizes the model [3]. Let I be the set

of lanes, D the set of user classes (for instance, d ∈ D will refer to the driver destination), Id the

set of lanes accessible to vehicles of class d, γiρmax the maximum density of lanes i, ρd
i the density

of vehicles d in lanes i, ρd the total density of vehicles d . Then the ρd
i are the unknowns of the

lane-assignment problem and are subjet to the following constraints:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρd
i ≥ 0 ∀d , ∀i ∈ Id

∑

i∈Id

ρd
i = ρd ∀d

∑

d/i∈Id

ρd
i ≤ γiρmax ∀i

(3)

The ρd constitute the dynamic data (analogue to OD data in classical deterministic assignment

on networks problems) and the γi and Id constitute the geometric data of the lane assignment

problem.The unknowns ρd
i can be determined by solving

Max
∑

i∈I

∫

∑

d/i∈Id

ρd
i

i∈I

Ve(s)ds (4)

(Wardrop optimum), with constraints (3). Optimizing (4) under constraints (3) results in the

following lane assignment: all vehicles of class d share a common speed νd, which is equal to the

speed

vi =
def
= Ve





∑

d/i∈Id

ρd
i
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of any of the lanes i used by users d ( i.e. ρd
i > 0 ), and is greater to the speed v` of lanes ` which

are not used by users d ( i.e. ρd
` = 0).

This is a user equilibrium, and usually the total flow is not maximized.

The partial densities ρd satisfy a system of conservation equations:

∂ρd

∂t
+

∂

∂x

(

ρdνd
)

= 0 ∀d ∈ D (5)

Note that νd is a function of the partial densities ρ
def
=
(

ρδ
)

δ∈D
.

2.2 A stochastic lane assignment model

The analysis of the system of conservation laws (5) is difficult, mainly because the speeds νd are

implicit. The only known solution concerns the two type of vehicles - two lanes case ([3]). Further

the model allows for no variability in the behaviour of drivers or in their perception. In order to

improve the model and make it easier to analyze, we propose the following stochastic assignment

model. The model is obtained by replacing (4) with

Max
∑

i∈I





∫

∑

d/i∈Id

ρd
i

i∈I

Ve(s)ds + λ
∑

δ/i∈Iδ

H
(

ρδ
)



 (6)

with H(x)
def
= x (ln(x) − 1).This model yields a Logit assignment of partial densities in lanes:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρd =
∑

i∈Id

ρd
i ∀d ∈ D

ρd
i = ρde−(vi/λ)/

∑

`∈I

e−(v`/λ) ∀d ∈ D, ∀i ∈ Id

vi = Ve,i

(

∑

d/i∈Id

ρd
i , x

)

∀i ∈ I

(7)

Other stochastic models could be proposed along similar principles. Note that the limit of model

(7) as the inverses sensitivity parameter λ → 0 is the model (4).

The paper will analyze the properties of the model (7), and discuss discretization schemes and

examples.
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2002.

[12] Lebacque J.P., Khoshyaran M.M. First order macroscopic traffic models: intersection mod-

eling, network modeling. In: Transportation and traffic theory, Flow, dynamics and human

interaction. H. Mahmassani ed. Elsevier 2005.

[13] Lighthill, M.H., Whitham, G.B. ” On kinematic waves II: A theory of traffic flow on long

crowded roads”. Proc. Royal Soc. (Lond.) A 229: 317-345. 1955.

[14] Michalopoulos, P.G., Beskos, D.E., Yamauchi, Y. ”Multilane traffic flow models: some macro-

scopic considerations”. Transportation B, 18, 377-395, 1984.

498



[15] Ngoduy, D. Macroscopic discontinuity modelling for multiclass multilane traffic flow opera-

tions. TRAIL thesis series. Delft University Press 2006.

[16] Richards, P.I. Shock-waves on the highway. Opns. Res. 4: 42-51, 1956

[17] Schnetzler B, Lebacque JP, Haj-Salem H, Louis X. ”Behavioral factors and lane changes near

intersection” accepted for publication in Transportmetrica. 2009.

[18] van Winsum W., de Waard D., Brookhuis K.A. ”Lane change manoeuvres and safety margins”.

Transportation Research F 2, 139-149. 1999.

499



Real-Time Traffic Estimation Using Data

Expansion

Roger Lederman

Columbia Business School, Uris Hall, 3022 Broadway, New York, NY 10027, USA

Email: rlederman13@gsb.columbia.edu

Laura Wynter

IBM Research, PO Box 704, Yorktown Heights, NY 10598, USA

Email: lwynter@us.ibm.com

1 Introduction

Real-time traffic data is readily available in many cities around the world. Real-time data comes

from numerous sources; some of these sources have been available for decades, such as inductive

loops present at traffic signals, and others are more recently prevalent, such as GPS data from

equipped vehicles, and digital video. Increasingly, traffic authorities are interested in leveraging

these types of data for real-time traffic analytics. Real-time traffic analytics include such capabil-

ities as route guidance and real-time information provision on the road condition for drivers, as

well as tools for network operators to use in improving traffic flow. All of these new and emerging

capabilities require an accurate estimation of current and near-term predicted traffic on the road

network.

In order to address these important challenges, a first step is to assess the availability in real time

of traffic data across the road network. In many cases, while the data is available in principle, it

includes many gaps, both spatially and temporally. Gaps in the real-time data availability present

a serious impediment to the effective use of certain applications. For instance, traffic-dependent

route guidance requires estimates of the traffic across the links of the network. Missing data on

parts of the network can lead to route suggestions that are highly sub-optimal for the current and

future traffic levels. The same predicament arises for network managers who wish to optimize the

flow of traffic in real time. If the incoming real-time data has significant gaps, or any gaps on

critical links, operational decisions cannot necessarily be made with confidence.

In this paper, we present a method for estimating traffic volumes across a full-sized urban road

network in real time. Urban networks are typically characterized by:
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1. a large number of links and origin-destination pairs, requiring extreme scalability of any

real-time applications.

2. limited data availability in comparison to the more controlled setting of freeway systems.

3. a multiplicity of viable routes between origin-destination pairs, so that driver routing deci-

sions may vary substantially according to the current traffic conditions.

Networks of this type present a sizeable challenge for estimating link volumes in real-time.

Our focus will be on these specific computational and data availability issue, rather than a more

complete description of traffic conditions that would include other parameters such as speed, oc-

cupancy, and travel time. An estimation procedure, when embedded in a full infrastructure with

data transmission and database latencies, must complete all calculations in a matter of seconds.

Hence, the challenge in this work was to devise a method that can accurately reproduce missing

link volumes with very little computational overhead in real time.

The data that can be assumed to be available is a set of historical link volumes that cover

some but not all of the network as well as the same type of data as a real-time feed, stored in

a database. An example of the cadence of the real-time feed is that a new set of average link

volumes is available every five minutes. In the cases of interest, a significant portion of real-time

five-minute-average link volumes are missing in the majority of time periods in which data is

collected. Typically, in such cases, the missing link volumes cover a portion of the network which

is simply not equipped with sensors, but there is also some spatial variation due to faulty network

connections or erroneous data that has been filtered and removed from the real-time data feed. In

other words, traffic volumes are available some of the time on some of the links, but seldom all of

the time or on all of the links.

Consequently, statistical techniques for filling in very limited missing data from a feed of link

volumes cannot be used; in the setting in which we are working, the gaps are too large and

too persistent. Rather, data can be estimated via the methods more traditionally used in traffic

planning, such as traffic assignment or simulation. The difference, however, is that we require

those traditional traffic planning approaches to provide estimates in real-time on ultra-short time

scales. When used for planning, these approaches do not readily incorporate the real-time traffic

characteristics, but rather are based on a typical set of parameters. Typical parameters include

origin-destination demands as well as link cost functions. These parameters tend to reflect well

average-case conditions, but may not reflect as well the real-time attributes of the traffic at any

point in time.

Our approach recognizes that critical parameters may vary from their average-case values,

and that real-time data, although limited in our context, provides an important indication of the

prevailing conditions. By combining the measured traffic volumes with a model of driver behavior
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in equilibrium, we formulate estimates of the missing volumes that reflect the current conditions,

rather than the long-term averages of traffic on these links. In particular, we hypothesize that

current link volumes conform to a static traffic equilibrium, reflecting an unobserved set of origin-

destination demands which may not be consistent with their long-term averages. In this way we

model the dependency of current conditions on random events that may effect the usage of the

traffic network. The equilibrium paradigm we adopt incorporates the routing adjustments made

by urban drivers on a day-to-day basis in the face of such events.

While traffic flow is clearly a dynamic phenomenon, and huge strides have been made in the

past decades in the field of dynamic traffic modeling, our work simplifies this aspect of traffic flow

to permit its use on full city-wide urban networks in real time. Although advances have been

made in both computation capacity and algorithm design, we are not aware of dynamic traffic

assignment being used in practice for real-time traffic operations. As regards traffic simulation and

its use in real-time operations, we believe that our method can provide more accurate results and

provide them faster than simulation in a real-time setting. A significant reason for this is the heavy

computational burden that simulation programs and dynamic traffic equilibrium models demand

and the inability to leverage their full power in real-time operations.

The Data Expansion Algorithm (DEA) consists of two phases: a real-time estimation phase,

and an offline calibration phase. The real-time phase is computationally lightweight and is param-

eterized by a set of link-to-link splitting probabilities which indicate the proportion of turns taken

by drivers at each intersection. The offline phase uses the historical collection of real-time feeds to

calibrate these parameters in accordance with the most likely traffic equilibria. The next section

provides a review of relevant literature. We give an overview of the algorithm in Section 3. Section

4 concludes with a brief discussion of the merits of our approach as well as some extensions of our

model to incorporate additional information that may be available for some road networks.

2 Review of related literature

The problem of expanding link flows is closely related to that of origin-destination (OD) matrix

estimation. If OD demands can be estimated from a partial set of links flows, then the full set of link

flows can be computed using a traffic assignment model. The static OD matrix estimation problem

is often formulated as a bilevel optimization problem, where the lower level problem enforces

equilibrium conditions on demand and link flow estimates, and the upper level minimizes some

combination of a distance metric between estimated and observed link flows, and the distance form

a target set of demands. Nguyen [9] was the first to formulate the problem to include equilibrium

conditions. Fisk [5] put the problem into a bilevel optimization framework. The bilevel formulation

is non-convex, and heuristic approaches to its solution remains an active area of research [11, 7].
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As traditional static estimation approaches work with long-run average volumes, our motivation

is closer to that of dynamic traffic simulation applications (e.g. DYNASMART and DynaMIT, see

[12] for a survey) which combine historical and real-time information to estimate traffic flow. As in

the static OD-estimation problem, these mesoscopic simulators seek to match estimated flows to

observed flows, where estimated flows are constrained to satisfy equilibrium conditions. However,

equilibrium flows are determined, not analytically, but with a micro-simulator that must be solved

iteratively in conjunction with demand estimation [2]. Such a procedure is unsuitable for the large

networks and the ultra-short time frames we consider.

In a spirit similar to ours, a few authors have proposed simplified models, typically involving

a linear relationship between OD demands and link flows, that can be calibrated using historical

data. Cascetta [3] proposed a least-squares OD-estimation problem, where drivers choose routes

in fixed proportions. Fixed route proportions have also been assumed in various Kalman filtering

approaches, beginning with Okutani [10]. Ashok et al [1] apply Kalman filtering to deviations from

initial estimates that are computed offline. In each of these references, the approach is tested on

freeway networks, where the number of routes is small, and proportions may be fairly constant. It

is unclear how these methods would perform on a large urban network. We also note that while

the deviations-based filter uses a historical estimate of demands as starting point for its real-time

estimates, reaction to events on the current day is still a result only of the statistical tracking.

Mahmassani and Zhou [8] make this criticism, and replace the commonly used autoregressive

model with a polynomial trend model that is more responsive to current conditions, but continues

to assume fixed route proportions so that deviations are tracked statistically.

Another linearized real-time model is proposed by Lam and Tam [6], and applied in an urban

setting in Hong Kong for estimation of travel times. The authors use an offline simulation com-

ponent to calibrate a variance-covariance matrix for link travel times, all measured at a particular

instant. This enables a real-time updating step, based on the deviations of observed travel times

from average travel times.

The problem of estimating turning proportions at intersections, as we do in our offline phase

has been studied in the context of a single complex intersection by, for example, Cremer and Keller

[4]. Here, the interpretation of turning proportions is closer to that of OD demands, since a single

turning decision determines a driver’s ultimate destination. Link-to link splitting probabilities of

our type also figure prominently in some microsimulation models; e.g. [13], where are they in fact

determine each driver’s simulated route choice.
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3 Data Expansion Algorithm Overview

The Data Expansion Algorithm is divided between a very lightweight real-time phase and a more

compute-intensive offline calibration phase. The primary purpose of the offline phase is to de-

termine the most likely historical link traffic volumes across the network, according to traffic

equilibrium principles. To be useful as a reflection of the real-time traffic, the offline phase needs

to be re-run often. This may be once per day or once per week. Time is handled discretely, so that

each time period involves a run of the offline calibration algorithm. Then, in real-time, the current

link volumes are obtained on those links that have no real-time data available. The connection be-

tween the offline and the real-time phases of our algorithm are what we call splitting probabilities.

These are analogous to those parameters used in some microsimulation programs: the percent of

vehicles at a node which enters each outgoing link from the node.

Figure 1 shows a table of the current link volume data, and a series of historical estimates

taken from the same time period, for some portion of a network. Note that for most links there

are temporal gaps in the series of observations, and each observation is missing data from some

links.

Link ID 03-04 03-05 03-06 03-09 03-10 03-11 03-12

0111 37 - 45 - - 71 47

0112 98 106 103 95 110 102 111

0113 12 - - 9 - - 7

0114 0 - 4 0 0 2 0

0115 - 84 - 56 - - -

0116 22 30 29 15 30 31 35

0117 5 20 - 35 7 - -

0118 - - - - - - -

0119 - 178 200 154 - 205 220

0120 70 - 120 150 140 65 72

0121 - - - - - - -

Link ID Current Sensor Output

0111 -

0112 102

0113 -

0114 0

0115 40

0116 30

0117 -

0118 -

0119 180

0120 -

0121 -

Figure 1: Sample of historical and current link vol-

ume data with spatial and temporal gaps for a given

time of day.

Figure 2 diagrams the way in which the offline and real-time phases interact, and historical

and real-time data is combined, to produce real-time estimates for the current period. To calibrate

spitting parameters for the current time period, s, we use historical observations (l1, l2, etc.) taken

from the same time period on prior days (in the figure, time is divided within days only, although

segmenting can be by time and day of the week as well). By our modeling assumptions, the link

volumes in each of these historical time periods, as well as in the current period, conform to a static

equilibrium assignment of the demand for that day and period. This demand, which is unobserved,

varies randomly from day to day, but daily demands for the same period follow the same probability

distribution. Within a single day and period, demands, and consequently link flows are treated as

stationary. Obviously, if links flows are entirely stationary across a time period, the current flow
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time period

day

Estimation

Real-Time

Calibration

Offline

CURRENT DAYHISTORICAL DAYS

Figure 2: DEA framework for combining real-time and historical data, including the historical

expanded (estimated) link flows, l̂H and resulting splitting probabilities p.

can, in theory, be estimated only once for the entire time period. In practice, of course, volumes

are estimated each time the real-time feed is updated to ensure that prior estimates continue to

match the current observations. In any case, the duration for which the current volume estimates

remains useful does not detract from the need to compute current estimates quickly when they are

needed, which is our motivation.

For the real-time, estimation problem we propose a least-squares formulation with linear equal-

ity constraints. Its purpose is to find the most likely set of link volumes that satisfy the given

splitting probabilities, based both on the offline volume estimates as well as on the real-time link

volumes, where they are available. The real-time estimation problem can be solved efficiently even

over large networks with very moderate computational complexity. It should be noted that while

the offline calibration provides a set of splitting probabilities assumed to be valid over the given

time interval, the filled-in link volumes that result from the real-time phase are not constant over

the time interval. Indeed, the splitting probabilities are applied in the real-time phase every time

a new data set arrives in to the system (for example, every five minutes). The real-time problem

is solved using the new real-time data and the splitting probabilities as constraints.

The parameters of that estimation problem are determined through the offline calibration prob-

lem. Our approach to solving the offline calibration problem is to solve, repeatedly, static traffic

assignments over the network, one for each time period, based on recent estimates of the origin-

destination demand. In other words, the origin-destination demand for each time period must be

re-estimated, via OD-matrix estimation, and then fed into a static traffic assignment routine. This

procedure is run and re-run on a daily or weekly cadence, once for each pre-determined time period.

We assume then that the cross-time-period dynamics can be neglected. The choice of this approach
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to the offline calibration phase was made based on number of considerations including computa-

tional complexity and availability of data. Other approaches, for example simulation, could be used

as well for the offline calibration algorithm. The offline calibration problem in our implementation,

takes the form of a bi-level program. The formulation which we develop and present here can be

calibrated using only historical averages of link volumes stored over the previous weeks. Hence, to

summarize, the key considerations are that the offline problem can be solved periodically and that

the real-time problem can be solved over a city network in a matter of seconds.

4 Conclusions

We presented an overview of our method for traffic estimation via an approach that we call the data

expansion algorithm, or DEA. The goal of the method is to fill in missing values in real-time traffic

volumes. This is important for enabling real-time traffic data to be used in many new and emerging

traffic applications. Indeed, in practice, real-time data on the network flows is often missing, both

spatially, with gaps on some links, as well as temporally, with gaps at some points in time. Such

gaps in the real-time traffic data render difficult the use of analytic tools such as those for real-

time route guidance and network control. We sought a method that would meet those objectives

while being computationally lightweight enough to run in real-time. Realizing that much of the

computational overhead comes from reading and writing to database, the method itself needs to

run in a matter of seconds on a city-wide traffic network.

The method we developed works in two phases. The offline phase involves the resolution of

a set of bilevel programs for a number of pre-determined time periods. The online phase of our

method is designed to be fast and scalable so that it can be run in real-time and makes use of the

parameters computed in the offline phase along with real-time data on traffic flows. Our method

was tested on two networks from Germany and shows excellent results, both in terms of accuracy

as well as in terms of coverage of the missing values on the network.

Within the two-phase framework we present, there are a number of variations to the specific

approach we have implemented. Depending on the details of the problem setting, it may be possible

to achieve a closer approximation to path-based estimation. Another interesting extension of this

work involves the use of different assignment algorithms, some of which may offer more spreading

of flow across paths, a characteristic that would be of use for this particular application. Finally,

a desirable extension of the data expansion algorithm is to develop a real-time module to better

capture non-recurrent congestion and the effect of incidents.
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1 Problem Statement and Motivation 

High traffic demand and the resulting traffic congestion lead to an increased demand for dynamic 

traffic management systems (DTMS). Many DTMS rely heavily on a proper knowledge of the actual 

und near future traffic state, expressed through appropriate traffic parameters, e.g. travel time. 

Unfortunately, today’s typical data collection setup does not provide direct network-wide 

measurements of these relevant traffic parameters – and naturally no prediction. This leads to the need 

for estimation and prediction models that operate on the available scattered traffic data. One class of 

such models is regression or data mining models. Regression models have two basic requirements: 

1. A training database with observations of dependent variables y (to be estimated) and 

patterns of independent variables X=x1, …,xn that can serve as a predictor for y 

2. Independent variables X that are continuously available, i.e. they can be accessed at any 

point in time  

In medium or large scale urban agglomerations and corridors there are typically local detector data 

available. They – though limited in their explanatory power for certain DTMS applications like 

network wide traffic information – can serve as independent variables x, as they are continuously 

available and contain information about the actual traffic situation. On the other hand, there may be 

travel times collected from time to time by other systems (e.g. position data from taxi fleet vehicles, 

temporarily installed license plate readers or by communicating vehicles in the future) that are well 

suited to be used as dependent variables y.  

The goal of a regression model is to find a suitable function that solves y' = f(X) given a set of 

observations (y, X). Various methods can be applied, such as analytical regression models, artificial 

neural networks and adaptive expert systems. In this paper, we propose an instance based learning (IL) 

model (also known as "non-parametric Regression" or "k-Nearest-Neighbour"); a model class that has 

been used for estimation and prediction purposes in traffic engineering for almost two decades (e.g. 

[1], [2] and [3]). The proposed method here is novel in that it uses spatio-temporally weighted traffic 

data from the network together with calendar variables (day of week and time of day) in a combined 

approach.  
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2 Methodology 

In order to make a prediction through IL, the database is searched for similar patterns of measures and 

these patterns are used to fit a local function. What distinguishes IL from other methods is that there is 

no global function needed to fit all data observations. Instead the data is approximated locally; i.e. only 

relevant data close to the actual observation are used. Figure 1 demonstrates the working principle of 

the local approximation (right) in comparison to the global function approximation (left). 

 

Figure 1: approximation by global (left) and local (right) function 

Advantageous properties of IL models are that they are quite intuitively understandable (no 

"Black-Box"), are adaptive by nature (new observations are simply added to the existing database) and 

that highly complex functions do not need to be approximated globally. A drawback is that IL models 

need a lot of computational power as each function approximation is performed during runtime. 

In the following, we describe how IL is applied to travel time estimation and prediction in 

networks using travel time observations as dependent variables y and local occupancy as independent 

variables X. X is extended by calendar variables in order to consider the time dependency of traffic 

demand. Figure 2 shows an overview of the prediction process:  

 

Figure 2: Prediction process 

If a prediction y'r(t+Δt) is queried (e.g. travel time on route r for a prediction horizon Δt), for 

all observations yr in the database, the relevant features are identified to form the pattern Xr. Xr consists 

of measurements that are spatially and temporally close to yr, together with the respective day of week 

and time of day.  

The dissimilarity D of two situations is calculated as 

ܦ  ൌ ܩ ൈ ܦ  Cܦ    ,Mܦ

Identifying and weighting g
of features x ∈ Xr

Asking for 
prediction yr

Predicting y‘r

Calculating dissimilarities 
D(i) = |Xr,act-X(i)r,hist|searching the 

Archive

Local approximation 
of y’

Calculating weights w(i)

choose the k nearest 
historical patterns
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where DV is the dissimilarity of the traffic patterns, GV is a weighting factor, DC is the dissimilarity of 

the calendar features and DM is a penalty for missing data, i.e. incomplete traffic patterns.  

The dissimilarity of two traffic situations DV is calculated as 

,,ܦ  ൌ
ቈ∑ ቆೕሺௗ௦,ௗ௧ሻൈቚ௫,ೕ

ೌೖሺௗ௦,ௗ௧ሻି௫,ೕ
ೞሺௗ௦,ௗ௧ሻቚ

ೖ
ቇೕ 

భ
ೖ

∑ ቀೕሺௗ௦,ௗ௧ሻቁൈ௫ҧ
ೌೖ

ೕ
  

with 0  ݃  1 being a factor to weight the local traffic data points j in pattern i xi,j according to their 

relevance for yr. gj could for instance be derived by correlation analysis or assignment that quantifies 

the relevance of xj for yr. In this work, gj is calculated based on the spatial proximity ds (defined as the 

downstream distance from the detector station to the route) and the age dt of the data point. This 

assumes that information in urban networks travels mainly in flow direction and that the relevance of a 

measurement decreases with increasing age. ke is the weighting penalty for single large differences in 

the pattern. 

The weight gj is calculated as  

 ݃ሺ݀ݏ, ሻݐ݀ ൌ ݔܽ݉ ቄ0;  1 െ ௗ௦
ௗ௦ೌೣ

െ ௗ௧
ௗ௧ೌೣ

ቅ 

with dsmax and dtmax determining the rate at which the weight decreases with increasing distance and 

age of the information, respectively.  

The calendar dissimilarity DC,i of two patterns is calculated as  

,ܦ,൫ሺܦ   ܶሻ, ሺܦ௧, ܶ௧ሻ൯ ൌ ቀܧ௬ሺܦ, ܶሻ െ ,௧ܦ௬ሺܧ ܶ௧ሻቁ തൗݕ  

with Ey being the expected values for the dependent variable y of the actual instant and respective 

instant belonging to the historical pattern I, respectively, divided by the mean value of all historical 

observations yi. Through the inclusion of DC we reach a preference of a traffic pattern that was 

observed at a similar time of day and day of week as the actual pattern. The penalty DM  is calculated 

as the difference between the number of potential data points in the pattern nall and the actual available 

features nvalid, divided by nall. DM is reduced with increasing prediction horizon tpred, based on the 

assumption that the traffic patterns' relevance decreases with increasing prediction horizon. 

ெ,ܦ  ൌ ೌ,ିೡೌ,
ೌ,

ൈ 1 െ ௧ೝ

௧ೝ,ೌೣ
൨ with 0  ௗݐ    ௗ,௫ݐ

 Now, each observation yi is associated with a weight wi, which is calculated using a Gaussian 

kernel function, 

ݓ  ൌ ݁
ವ ವ,ൗ

Κೢ  

with KW being the kernel width, which determines the smoothing of the estimate and Di,min being the 

minimum dissimilarity of all k selected observations. Finally the estimate y' is calculated as 

ᇱݕ  ൌ ∑ ௪ൈ௬
ೞೖ

సభ
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3 Calibration, Application and Results 

The proposed IL model has six parameters (smoothing, spatio-temporal weighting, weight of traffic 

pattern in relation to calendar variables, penalty for single large differences in the pattern). The 

parameters are optimized using a Genetic Algorithm applied to a training data set of two weeks with 

the objective to minimize prediction errors. 

The method has been tested for several routes in the City of Graz, Austria (using local 

occupancy data X and taxis as probe vehicles to collect travel times y) and in the city of Munich, 

Germany (using vehicle re-identification to collect travel times y and local traffic volume data X). 

Figure 3 shows some sample plots of estimated and reference travel times. Congestion induced delays 

can be estimated and predicted if the archive contains relevant traffic patterns. Figure 4 shows a 

comparison of the results obtained with the proposed instance based learning method (IL), estimations 

obtained using a multilayer feed forward neural network (NN) and a purely calendar-based approach 

(using typically expected travel times).  

  

Figure 3: Est. travel time, training data from vehicle re-identification (left) and taxi probes (right) 

 

Figure 4: Comparison of different prediction methods (instance based, calendar, neural network) 
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1 Introduction

The macroscopic approach in modelling highway traffic is usually based on a monodimensionnal

assumption whatever is the number of lanes of the highway link under consideration. These models

are all assuming that the value of relevant quantities (such as density, speed, flows) are the same

for each lane at a longitudinal point of the network, as well for first order model [1] than for second

order models [2] [3] [4] [5]. This is obviously wrong in principle, but as been neglected according

to the troubles allready meet when dealing with this weak assumption [6]. In this paper, we will

set a model for taking into account parts of the effect caused by lane changing, leading us to a

third order model that follows the independant dynamics of density velocity and desired speed

W (t, x) = (ρ, v, vd)(t, x) for each lane of the highway link. The model obtained will turn out to

be hyperbolic and the tools to solve it as well analytically than numerically are the wellknown

introduced by P Lax[10] and S Godunov[11] in the sixties. To deal with multilane links, one can

considere microscopic approach, for instance in [16], another interesting way has been using initial

kinetic approach [14] ’macroscopized’ through moments method.

The main idea is to use a concept of internal state node ISN (with real and non zero length)

adapted to the connexion of different links described by second order macroscopic models [14].

We decompose any multilane link in a sequence of parallel nodes ISN (see Fig 1.), the undelying

system of conservative equations of each node is choosed in this very first approach to be based

on a ARZ type model even if better second order GSOM model as those newly established in [15]

would be better, this adaptation-improvment being quite straitforward to write and code. So the

first step is to set the evolution in each node started from the hyperbolic system modeling a link’s
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case :

∂tρ+ ∂xρv = 0,

∂tρI + ∂xρvI = 0.
(1)

with ρ the density, v the velocity, I = v−Ve(ρ), a lagrangian caracteristic assumed permanetly

or temporiraly constant (this second case involves a negative source term with a caracteristic time

see [5]) along a trajectory dI(t,X(t))
dt = 0, which yields the second equation of the system (1) since

dX
dt = v combined with the first. Ve(ρ) is a fundamental diagram, strongly concave in the fluid

domain and weakly - almost linear - in the congested one, of which values (Qc, ρx, ρc, Vx) are set

by calibration considering mesured data of each link.

The solution of the Riemann problem relative to this system is fully described in [8] and [9]

for the supply-demand [7] formulation, which is a technic (equivalent to the classical one of wave

positionning) of practical interest when dealing with node, or change of fundamental diagram. To

summarize what is to be known solving (1), this system is hyperbolic with one genuinely non linear

field λ1 = v+ρV ′e (ρ) and a linearly degenerated one λ2 = v, leading to the determination of a single

constant intermediate state W1 = (V −1
e (vr − Il), vr) where r and l stand for right and left initial

states, since this system is of Temple’s type [5] with common parametrization for the crossing of

the first wave (as well for shock than for rarefaction wave) : [I] = 0, while the LD second wave

gives [v] = 0. In the case of a intersection, the node has a matrix of turns γij ratio of the amount

incoming in i entry and outgoing in j exit. The consequences of this is that for any node with any

numbers of entries Nin and exits Nout, we introduce the density of those exiting by j, and have

the second step which leads the evolution of the state Wn in the node:

∂t
∫
ρnj dx =

∑Nin

i=1 γijqin,i −
∑Nout

j=1 qout,j ,

∂t
∫

(ρI)ndx =
∑Nin

i=1 qin,iIin,i −
∑Nout

i=1 qout,jI
n.

(2)

with ρn =
∑Nout

j=1 ρnj , with dx = Segment Lenght.

The values for the flows q are obtained for instance from supply/demand (Ω/∆) approach which

considers partial supplies and demands, according to each in (l for ’left’) and out (r for ’right’)

flows:



Ωni (ρ, I) = βiΩi(ρ, IJZ),

∆n
j (ρ, I) = ρn

j

ρn ∆,

qin,i = min(Ωni ,∆
l
i),

qout,j = min(∆n
j ,Ω

r
j),

(3)

The βi and IJZ are computed accorded to Jin and Zhang rule [12] (offer proportional to demand
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extended here with internal intention IJZ composed with upstream ones in the same proportional-

ity). Now, lanes exchanges are modelled if we considered that a link is a sequence of block of node,

each one standing for a lane. To introduce the will for lane change, three things need to be consid-

ered. First, the Origin Destination (OD) which (the same approach could be used with as many

partial densities as possible destinations, leading to a fully OD model) could be summarized here

by a global matrix of turns Γij that would impose or force the local γij near each real intersection

(not the one used to mimic lanes), for instance in the segment upstream the intersection, or in

many more upstream segments (say two or three according to reasonnable anticipation). Second,

the will to maintain a desired velocity, and then this introduces the need for a third independant

variable, the so called ”‘desired speed”’, which is supposed to be constant along trajectories leading

us to set the very similar system


∂tρ+ ∂xρv = 0,

∂tρI + ∂xρvI = 0,

∂tρvd + ∂xρvvd = 0.

(4)

This purely advected variable which does not pertub the solution presented above (adding

[vd] = 0 through the first wave and a second eigenvector for the second wave) may seem to be

useless, as long as one does not notice that this allows the integration of the multilane behaviors

through the use of dynamical γij , for instance setting ckk′ = |vdk−vk′ | and pkk′ = eαckk′−εδkk′ and

at last γkk′(ε, α) = pkk′∑
k′ pkk′

, the two coefficients beeing to be set through calibration procedure,

like the one of the fundamental diagram. And third, the partial demands for lane, when the fluxus

are coming from a single lane onramp (from recent considerations based on observations).

(ρn, vn, vnd )
∆i

qi

Ωn

qj

∆n

Ωj2

Ωj1

MultilaneLink

For each Then
Segment Segment Segment Segment

... Same

Fig 1.

k=1, 2, 3 k’=1, 2, 3

dx

This model has being programmed in the MFC-C++ based platform Ouranos, and is in phase

of experimentation.
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The Liner Service Network Design Problem (LSN-DP) is the problem of constructing a set

of routes for a heterogeneous vessel fleet of a global liner shipping operator. Routes in the liner

shipping context are non-simple, cyclic routes constructed for a specific vessel type. The problem

is challenging due to the size of a global liner shipping operation and due to the hub-and-spoke

network design, where a high percentage of the total cargo is transshipped. We present the first

construction heuristic for large scale instances of the LSN-DP. The heuristic is able to find a

solution for a real life case with 234 unique ports and 14000 demands in 33 seconds.

Literature overview: A MIP model of the LSN-DP consist of a highly unconstrained routing

problem subject to a large degree of symmetry and a multicommodity flow problem dominating

the constraint set and accountable for a large fraction of the cost. Previous work on liner service

network design may be found in [1],[2], [3] and [4]. The models are distinct with regards to

transshipments and the vessel fleet. In the early paper of [1] transshipments are not supported,

whereas they are supported in [2], [3] and [4]. Transshipment costs are accounted for in the

objective function of [2],[4] as opposed to [3]. The characteristics of the fleet differ as to whether

it is heterogeneous for every vessel [1],[2] or consist of a heterogeneous fleet of homogeneous vessel

classes [3],[4]. Non-linear capacity constraints are found in [1],[2] assuming that a vessel may

complete its route an integral number of times during the planning horizon. Integrality is not

imposed by [4]. The weekly frequency constraint is introduced by [3] assuming a number of

homogeneous vessels assigned to each service to offer a weekly visit to each port en route with the

capacity of the vessel class in question. Optimal results for smaller instances are presented by [2]

and [4]. The approaches of [1],[2] and [3] have focused on solving the liner service network design

problem with traditional decomposition and integer programming methods and fail to produce
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results for realistic network sizes of a global liner shipping operator anno 2009. This is addressed

by [4] benchmarking a tabu search approach presenting results within 3-5% of the optimal solution

for up to 7 ports. The multicommodity flow problem is solved in each iteration, which is reported

by [4] to become computationally expensive already for the 7 port instance. A case study of 120

ports in [4] show that a heuristic approach may scale to large instances but no execution time is

reported and the quality of the solution is hard to evaluate. It is reported to visit important ports

infrequently. A global network connects several hundred ports worldwide and the corresponding

forecasted cargo demand comprises a commodity set of 4 orders of magnitude. Methods based on

relaxation of the proposed models or simply evaluating the objective function during a search is

not computationally efficient for large scale problems.

Heuristic approach: A solution to the LSN-DP is a set of routes covering the ports serviced

by the shipping operator and transporting the forecasted cargo demand. Viewed as a graph

partitioning problem the solution is a set of strongly connected components with a high degree of

interconnection. The construction heuristic is based on the Multiple Quadratic Knapsack Problem

(MQKP) and relies on a graph of the current schedule, which is divided into a set of dense subgraphs

related by demand, expected transshipment flow and geographical proximity. A solution found by

the construction heuristic is expected to be feasible and realistic, but the quality of the solution

cannot be guaranteed as the heuristic cannot account for the flow problem and the transshipment

cost. In MQKP a set of mutually exclusive items i ∈ V are placed in R knapsacks with different

weight bounds Cr. The objective is to maximise the profit of the knapsacks defined by the profit

matrix P .

maximize(MQKP ) =
∑
r∈R

∑
i∈V

∑
j∈V

pijx
r
ix
r
j +

∑
r∈R

∑
j∈V

pjx
r
j (1)

subject to: ∑
i∈V

wix
r
i ≤ Cr ∀r ∈ R (2)

∑
r∈R

xri ≤ 1 ∀i ∈ V (3)

xri ∈ {0, 1} ∀i ∈ V (4)

The variables xri indicate whether item i is included in the r’th knapsack. The knapsack constraint

(2) makes the total item weight obey the bound Cr and constraints (3) ensure that items are

mutually exclusive to the knapsacks. When the MQKP is applied to the LSN-DP the knapsack

items i ∈ V are the accumulated port visits of each port t ∈ T and the knapsacks r ∈ R represent

services, which are a specific vessel class visiting a sequence of ports. Let A be the set of vessel

classes and let Na denote the number of available vessels of class a ∈ A in the fleet. Let Ca

denote the capacity in TEU of a single vessel of class a ∈ A. The number of services/knapsacks

is dependent on the expected rotation time of a service σ(Ca). σ(Ca) depends on vessel capacity
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as large vessels are typically assigned to cross regional services and small vessels are assigned

to regional services. The number of knapsacks for the LSN-DP is hence |R| =
∑
a∈A |Ra| =∑

a∈Ad
Na

σ(Ca)e. The profit matrix P defines each entry pij = f(lij , dij , hij) where lij is the sailing

distance in nautical miles and dij is the demand between ports i, j ∈ V . hij is the potential

hub flow between port i ∈ V and a hub port j ∈ H ⊂ V , where H ⊂ V are ports with a small

percentage of demand compared to the terminal capacity. A port t ∈ T may be visited multiple

times mt by multiple services according to the capacity and schedule requirements of a port. Let

M be a vector of size |T | containing the number of weekly visits to each port t ∈ T . In the MQKP

port t ∈ T is duplicated mt times for the knapsack items i ∈ V , V = {T ×M} to represent the

current schedule of ports. It is important to observe the weekly frequency constraint of the original

problem in order to obtain a feasible solution to the LSN-DP using the construction heuristic. To

ensure feasibility, each knapsack r ∈ R is required to provide a Hamiltonian cycle of the items in

knapsack r. The length of the cycle cannot exceed the mileage coverable by the vessels assigned

to knapsack r. Edge variables yrij and enumeration variables uri are introduced in the MQKP to

order the ports in each knapsack into a simple, cyclic route constrained by σ(Ca). taij express the

sailing time between ports i and j and tai is the expected time spent in port i for vessel type a.

maximize(MQKP ) =
∑
r∈R

∑
i∈V

∑
j∈V

pijx
r
ix
r
j +

∑
r∈R

∑
j∈V

pjx
r
j (5)

subject to: xrix
r
j ≥ yrij ∀i ∈ V, j ∈ V, r ∈ R (6)∑

j∈V
yrij −

∑
j∈V

yrji = 0 ∀i ∈ V, r ∈ R (7)

∑
j∈V

yrij ≤ 1 ∀i ∈ V, r ∈ R (8)

uri − urj + yrij
∑
i∈V

xri ≤
∑
i∈V

xri − 1 ∀i ∈ V, j ∈ V, r ∈ R (9)

∑
i∈V

∑
j∈V

yrij(tij + ti) ≤ σ(Ca) ∀r ∈ Ra, a ∈ A (10)

∑
r∈R

xri = 1 ∀i ∈ V (11)

xri ∈ {0, 1} ∀i ∈ V, r ∈ R (12)

yrij ∈ {0, 1} ∀i ∈ V, j ∈ V, r ∈ R (13)

uri ∈ Z+ ∀i ∈ V, r ∈ R (14)

Constraints (6) ensure that an edge variable can only be activated if both endpoints of the arc

are included in the knapsack. Constraints (7) ensure a cyclic route. Constraints (8) ensure that

the cyclic route is simple and constraints (9) that the route is connected. Constraints (10) are the

weekly frequency constraint ensuring that the simple, cyclic route has a voyage duration less than

the expected rotation time.

518



The MQKP is solved using a greedy heuristic, where the knapsacks apply the football teaming

principle taking turns at picking the best remaining item max ∆f(lij , dij , hij), i ∈ r, j ∈ V̄ where

V̄ are the unassigned items.

In a hub-and-spoke network design large vessels are deployed on deep sea services to achieve

economies of scale[6], while smaller vessels are deployed between spoke and hub. The algorithm is

multilayered to reflect the hub-and-spoke network design of major liner shipping operators. The

function f(lij , dij , hij) is adapted to each layer of the network and the ports are correspondingly

assigned to the layers according to their capacity requirements.

Computational results: The computational results are based on a real life case from Maersk

Line with 234 unique ports and 14000 demands. The MQKP is able to find a solution in 33

seconds for the entire network with some ports unplaced. The solutions have been evaluated

by optimization managers at Maersk Line regarding them as realistic with some modifications.

Current work is on implementing layer specific seeding to improve the number of unplaced ports.

We evaluate the actual flow and the network cost of the solution. We believe that meta heuristic

approaches are needed to optimize liner service networks of global shipping operators and are

working on specializing the Adaptive Large Neighbourhood Search [5] VRP framework towards

the context of transshipments and cyclic routes. The first step is the construction heuristic for

the LSN-DP presented here. The ALNS is to search for an improved solution according to a more

sophisticated objective function and cargo allocation detection.
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Building upon the plenary talk of Martine Labbé, I will try to convince this audience that 

every optimization process should lead to a bilevel program. As a corollary, life itself is 

bilevel. Since the time allotted to this talk is limited, the elegant proof of this result, which 

involves the paradigms stated in the above title, will be deferred to a forthcoming Tristan 

conference. So will be the numerical results, based upon a parcimonious implementation 

of Wolfe's universal algorithm. 
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1 Problem Description

Creation of an Approximate Dynamic Programming (ADP) solution for a specific optimization

problem requires both a number of design decisions and a number of decisions on the values

of parameters to be set. Taking these decisions the question of the robustness of the resulting

algorithm arises, where robustness is defined with respect to variations of the attributes of the

problem instance considered.

We provide and analyze a robust ADP algorithm for a dynamic vehicle routing problem with

a single vehicle and stochastic customer requests. Details about the relevant problem attributes

considered in our analysis are provided in Section 3. The remainder of this section is devoted to

the basic description of the vehicle routing problem considered.

In our one vehicle problem, both location and request probability of each customer are known.

The goal is maximization of the total number of customers served within a given time horizon.

Customer requests appear randomly over time, with each customer requesting at most once. A

request has to be either confirmed or rejected after becoming known.

At time t = 0 a set of customer requests is already known (early requesting customers). An

initial route comprising each of the early request customers and leading from a given start depot

to a given end depot is determined. A new route is determined each time new customer requests

have been confirmed after completion of a vehicle operation. In particular, completion of a vehicle
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operation entails the following events:

• New customers requests (occurring during the previous vehicle operation) become known.

• The new requesting customers are either confirmed or rejected.

• A number of routes including each of the new requesting as well as confirmed customers is

determined.

• The next vehicle operation is determined. Possible vehicle operations are either waiting at

the current location or proceeding to one of the remaining customers.

This problem emerges within the field of dynamic and stochastic vehicle routing (see, e.g.

[5, 4]). It is of practical relevance e.g. in the context of package express or less-than-truckload

applications. A similar problem has recently been considered in the literature [2].

2 Solution Methods

A Dynamic Programming formulation of the problem is derived. This model serves as a precondi-

tion for our ADP algorithm. In addition a number of heuristic solution methods for the problem

are considered. Comparison of the performance of these specific methods to the performance of the

ADP algorithm provides deeper insights into the robustness of the ADP approach. In particular

three types of solution methods are consulted:

• Approximate Dynamic Programming: We formulate Bellman’s Equation for the problem

around the post-decision variables as proposed by Powell [3]. Subsequently a value iteration

algorithm is derived based on the procedure we proposed in [1].

• Waiting strategies: The performance of the ADP approach is compared to the performance

of a number of waiting strategies similar to the waiting heuristics developed by Thomas [2].

• Greedy heuristic: The results of a greedy heuristic serve as a baseline for the assessment of

the performance of both the waiting strategies and the ADP approach.

3 Robustness Analysis

The robustness of the ADP approach is analyzed with respect to the following attributes of a

problem instance:

• Geographical distribution of the customer locations. We analyze the performance of

the ADP algorithm on three types of instances. In particular, we consider instances with

geographically clustered customer locations, instances with equally distributed locations and

semi-clustered instances.
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• Number of early requesting customers. We consider instances with 20%, 40% and 80%

of the requesting customers being early request customers.

• Distribution of the request probabilities. We analyze the performance of ADP with

respect to request probabilitites generated from different distributions.

The computational results show that the approach leads to good solutions for any of the fairly

different problem instances considered. Moreover, analysis of the ADP results in comparison with

the quality of the solutions derived by the heuristic methods identifies crucial problem attributes

for the performance of ADP.
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Abstract 
 

Increasing globalization and inter-dependence of various world economies is leading to a tremendous 

positive growth in the seaborne trade industry. In particular, highly-containerized trade by liner 

shipping is the fastest growing sector and occupies the most major place in the global seaborne trading 

transportation. AXS-Alphaliner (2007) reported that the shipping capacity in terms of the TEU 

containers deployed on the liner shipping service trades has been increased more than double from 

January 2000 to January 2007. UNCTAD (2008) highlighted that the increase trend of the global 

container traffic for a long-term horizon. To cope with the period-dependent container shipment 

demand pattern within a long-term time horizon, a liner shipping company thus has to project its fleet 

size, mix and deployment on its shipping service routes, which is referred to as the long-term liner ship 

fleet planning (LTLSFP) problem.  

The container shipment demand between any two ports along each liner trade routes operated 

by the liner container shipping company is input of this problem. The port-to-port container shipment 

demand at one period, say one year, within a long-term planning time horizon for a liner shipping 

company is usually estimated or predicted by some time series forecasting methods. The historical 

container shipment data fully shows uncertainty of the forecasted container shipment demand. A 

possible explanation is that the liner shipping company encounters many unknowns in the face of 

container shipment because shippers are allowed to cancel their container shipping contracts signed 

with the liner shipping company. This paper therefore focuses on model development and solution 

method design for the LTLSFP problem by taking into account uncertainty of container shipment 

demand. 
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To formulate uncertainty of the forecasted container shipment demand, it is assumed that the 

number of containers transported from one port to another port during a particular period within the 

planning time horizon is a discrete random variable taking a limited number of possible values with a 

given probability distribution. In other words, each of these possible values reflects a demand scenario 

with a known occurrence probability. It is further assumed that there are a number of predetermined 

fleet size and mix plans comprising ship types and number of ships at each period. A fleet size and mix 

plan is determined by the planners in the liner shipping company according to their experiences and the 

budget available. According to a fleet size and mix plan proposed for a particular period, the liner 

shipping company is able to determine the number of ships purchased or chartered. Given a specific 

fleet size and mix plan for a particular period with the stochastic container shipment demand, we build 

a two-stage stochastic programming model to determine the best fleet deployment plan (deploy ships 

on each service route) by maximize expected value of the profit gained during this period. The induced 

two-stage programming model can be solved by using a dual decomposition method based integrating 

sample average approximation method and Lagrangian relaxation method (Schütz et al, 2009). The 

proposed LTLSFP problem is thus formulated as a multi-period stochastic programming model 

comprising a sequence of interrelated two-stage stochastic programming models developed for each 

period in order to maximize the expected value of the total profit within the planning time horizon. 

We further show that the multi-period stochastic programming model can be equivalent 

transformed into a shortest path problem defined on an acyclic network. Hence, we can apply any 

shortest path algorithm for solving the LTLSFP problem with the container shipment demand 

uncertainty. Finally, a numerical example is carried out to assess applicability and performance of the 

proposed model and solution algorithm.  
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1 Introduction 

The design of a public transport system operated by buses requires the optimization of planning variables, 
such as routes, fleet composition and frequency. Even though operational variables, such as the frequency, 
are optimized for different periods and lines, it is difficult to regularize the movement of buses as they are 
affected by different disruptions as the day progresses, such as traffic congestion, unexpected delays, 
randomness in passenger demand (both spatial and temporal), irregular vehicle dispatching times, incidents 
and so on. In the literature, as an attempt to reduce the negative effects of service disturbance, researchers 
have devoted significant effort to develop flexible control strategies, either in real-time or off-line, 
depending on the specific features of the problem. The absence of a control system in a bus network 
usually results in vehicle bunching due to the stochastic nature of traffic flows and passenger demand at 
bus stops. It also leads to an evident increase in bus headway variance and a consequent worsening of both 
the magnitude and variability of average waiting times (and also of the number of passengers per vehicle). 
This in turn impacts heavily on the level of service as perceived by users given that their subjective 
valuation of this component of total trip time is higher than that of any other (access time, in-vehicle time) 
[1]. 

These strategies have been designed to allow the operator reacting dynamically to real-time system 
disturbances. The most studied strategy of this type in the last years is the holding strategy, in which 
vehicles are held at certain stations for a determined time, in most cases designed to keep the headway 
between successive buses deterministic as far as possible. Hickman [2] developed a stochastic holding 
model at a given control station, obtaining a convex quadratic program in a single variable corresponding 
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to the time lapse during which buses are held. More recent research has explored holding models relying 
on online vehicle location. Among them, Eberlein [3] and Eberlein et al. [4][5] developed deterministic 
quadratic programs under a rolling horizon scheme. In their approaches, the holding decision for a specific 
vehicle affects the operation of a specific subset of the precedent vehicles. The authors concluded that 
having two or more holding stations over a corridor is not necessary. On the opposite, Sun and Hickman 
[6] concluded that holding multiple vehicles in several control stations would be better than having a single 
station to hold buses.  

The vehicle capacity constraint is addressed in Zolfaghari et al [7], who formulate a problem in which the 
objective function minimizes the waiting times both of users who arrive at a stop and those who have to 
await more than one bus due to the activation of the capacity constraint. The authors do not, however, 
consider the extra waiting time endured by passengers held at a stop. Puong and Wilson [8] extend this 
case by including the latter factor in their objective function in the context of interruptions in train service. 
They propose a non-linear mixed-integer model in which dwell time is assumed to be constant at any given 
station. The problem is solved in a reasonable amount of time using a branch-and-cut strategy. 

In this study we will focus at comparing the impact of different holding–only control strategies determining 
which buses are to be held where and for how long. The comparison study is based on two approaches: one 
deterministic able to optimize over the entire simulation period, but assuming that future stochasticity only 
depends on the mean values of demand at stops: the second approach is stochastic, based on a hybrid 
predictive control formulation, which assumes explicitly the stochastic behavior for future demand 
prediction, but only considering a finite number of steps ahead to perform the online optimization. 
Different scenarios regarding design frequency and demand levels (capacity being reached and not 
reached) will be studied to identify under which conditions each strategy outperforms the other. 

2 Problem Formulation and Control Strategies 

The network is a one-way loop route, with P equidistant stops and b buses running around the loop, under 
the control of the dispatcher. Passengers arrive at each station at a certain rate by following a negative 
exponential distribution, with destinations randomly chosen among the stations downstream the station 
where the passenger is boarding. In addition, batch arriving processes can be considered in case of 
observing group arrival patterns. From historical data, a representative stop-to-stop demand matrix can be 
estimated for each modelling period; this is crucial for adding the predictive feature in the real-time model 
of the system. Online demand data can also be used as a complement to the offline demand matrix to 
improve this predictive aspect. It is assumed that at any time instant we have real-time information on the 
position and number of passengers aboard each bus as well as the number of passengers waiting at the 
various stops. The events are triggered when a bus arrives at a bus stop, which determines a variable time-

step. Hereafter, we denote t as the continuous time, k as the event, and kt  as the continuous time at which 

event k occurs. Note that an event k is always associated with the arrival of a specific bus to a specific bus 
stop. 

2.1 Deterministic control strategy 

The first control approach is based on a deterministic non-linear mathematical programming model, which 
is used on a rolling horizon framework to update operational plans [9].  Each time a bus arrives to a stop 
the model is solved and determines the holding times of the buses at the various stops along the corridor by 
each departing bus at each stop, assuming that average travel times between stops and arrival rates of 
passengers at each stops would occur.  The model objective is to minimize the total travel times of 
passengers from the moment they arrive at a stop to the moment they reach their destination.  Since vehicle 
running times are assumed to be constant, the objective is to minimize both in-vehicle and at-stop waiting 
times, including explicitly the waiting time experienced by passengers who must await more than one bus 
due to the capacity constraint.  Among the key elements of this model are: i) capacity constraints on buses 
are considered explicitly without using binary variables which would increase the solution times, thus 
allowing to consider a long planning horizon at each update; ii) an objective function that distinguish 
between waiting time at-stop, in-vehicle delay due to holding, and waiting times of passengers forced to 
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await more than one bus due to capacity constraints, allowing to consider different weights for each one; 
and, iii) the duration of each holding can take any continuous value. 

The system is then completely determined by the following state variables: id distance between bus i and 

the last stop upstream, ie stop immediately upstream from bus i (if bus i is at stop p, then 1ie p= − ), 1iipeB +

number of passengers on bus k who boarded at stop i, before arriving at the stop immediately downstream 
from bus k. (∀ p < 1ie + ) and pΓ number of passengers waiting at stop p [9]. The objective function of 

this model is formulated as follows: 

 ���       ����	
�� + ���	����� + ������
�                  (1) 

The first term in (1) refers to the at-stop waiting time experienced by passengers as they wait for the first 
bus to arrive after the update epoch. This term lends the objective function its non-linear nature given that 
total waiting time for all users is proportional to the square of bus headway. As for the second term in (1), 
it states the in-vehicle waiting time for passengers on-board a bus i being held at stop p. The third term 
represents the extra waiting time of passengers who are prevented from boarding bus i because it is at 
capacity.  Each of the three terms is multiplied by a different weighting factor,1θ , 2θ , and 3θ . The 

objective function in (1) is quadratic in iph but not convex, whereas the model’s constraints are linear. To 

obtain solutions, this mathematical programming model was solved using MINOS. 
 
2.2. Hybrid predictive control strategy 

The second approach corresponds to a hybrid predictive control strategy (HPC) proposed in Sáez et al.[10] 
and Cortes et al. [11] for a real-time bus system optimization, which is based on a state-space model and an 
ad-hoc objective function. The model is of stochastic nature, then it considers explicitly the uncertainly of 
future demand in the prediction but over a shorter horizon than that used in model 2.1. In this work the 
manipulated variable is the holding ( )ih k  action associated with bus i and event k, which is the lapse 

during bus i is held at the stop associated with event k. The output variables correspond to the estimated 

passenger load ̂ ( 1)iL k + , the estimated headway ˆ ( 1)iH k +  of bus i that triggers the event k , with respect 

to its precedent bus i-1 when it reaches the same stop The analytical expressions for such a dynamic model 
be summarized as follows in [10], [11]. The corresponding objective function for HPC is given by: 
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where ( ) ( ){ }, ..., 1u k u k Np+ −  is the control-action sequence with ( 1) ( 1)iu k h k+ − = + −l l  when bus i 

triggers event 1k + −l . Np  is the prediction horizon and b is the number of buses in the fleet. Note that 

{ }( 1) 1,...,i i k b= + − ∈l , { }( 1) 1,...,p p k P= + − ∈l , if we consider that the future event 1k + −l  is 

triggered by one bus ( 1)i k + −l  arriving to a specific station downstream ( 1)p k + −l . In expressions (2), 

, 1,...,4,j jθ =  are weighting parameters, and have to be tuned depending on the specific problem to be 

treated and on the physical interpretation of the different components as well.  ˆ ( )iTr k  is the estimated time 

associated with passenger transference (maximum between the boarding and alighting times). H  
corresponds to the desired headway (set-point) designed for servicing the system demand during a certain 
time period. The first term in (2) quantifies the total passenger waiting time at stops and depends on the 
predicted headway along with the bus stop load. The second term captures the regularization of bus 
headways, to maintain the headway as close as possible to the design headway. The third component 
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measures the delay associated with passengers on-board a vehicle when they are held at a control station 
due to the application of the holding strategy. The fourth component corresponds to the extra travel time 
incurred by the passengers on board due to the transference of passenger process. We use genetic 
algorithms in order to dynamically solve the formulation in (2) with operational constraints. 

3. Simulation Results 
 
The proposed model is now applied, to a prototype of a public transport corridor with 10 km of length, 
comprising 30 evenly spaced bus stops. Vehicle operating speed between stops for all of the buses is 
assumed to be 26 Km/h, while boarding and alighting time per passenger is set at 2.5 and 1.5 seconds 
respectively. In order to evaluate and compare the proposed model under different operational conditions, 
two different frequency levels are tested in scenarios in which bus loads are concentrated around the center 
of the corridor: (a) high frequency services are operated and bus capacities are reached; (b) medium 
frequency services are operated and bus capacities are not reached. For every combination of strategies and 
scenarios, 30 replications were conducted, each of them representing 2 hours of operation. A warm-up 
period of 15 minutes is considered for all scenarios, before any control strategy is applied. The next table 
shows the results with both strategies under the two scenarios defined. 

Control strategy 
(scenario) 

Waiting Time 
(mean) [min] 

Waiting Time 
(std) [min] 

Holding 
Time  
(mean)[min] 

Holding 
Time (std) 
[min] 

Deterministic (a) 8994.3 429.0 3229.8 271.3 
HPC (a) 10117.6 510.7 2746.2 219.3 
Deterministic (b) 6625.8 171.7 754.6 101.0 
HPC (b) 6917.7 268.0 1751.3 136.6 

 
Results show the trade off between strategies. Among the scenarios tested the deterministic approach 
assuming a perfect knowledge of the future conditions reports better results. We are now testing different 
demand conditions under which each approach can result in better holding decisions. The comparison is 
also being extended to other control rules, such as station skipping, overtaking and so on.  
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1. Introduction 
 

Metropolitan regions in Asia and Africa are growing in terms of their economy, population and spatial 

extension and as economies grow and focus of development shifts from Industry based to trade and 

commerce base. Fast economic and urban growth coupled with planning and control methods practices 

followed in these contexts have caused decentralization of population, jobs and services from inner 

dense core of the cities to less densely developed suburbs [1]. The recent reforms and developments in 

a country like India sets up the need to add to the debate on efficiency of diverse urban forms and its 

impact on travel behavior; which till now is mostly focused on the Anglo-American setting. As the 

area and the context is not well researched several questions need to be answered as in how and if 

decentralization of jobs has happened, and polycentric development as in new employment center 

formation has caused a change in travel characteristics like trips length and choice of mode. Therefore, 

this paper studies employment trends and change in spatial concentration from 1985 to 2007 to 

determine the transformation of employment locations to explain the emergence of new centers of 

employment and their growth pattern. This is then related to the change in average trip length and 

modal split during the same time period. To develop an understanding on the relation between trip 

length, mode choice and choice of the employment centre, choice of the employment centre is related 

to distance individuals travel by different modes for work and shopping purpose trips. 

 

2. Distances Travelled and Choice of Mode and Sub-centers 
 
The concept of polycentric urban areas has been well researched. The characteristics of the non-mono-

centric city as defined in Bhandari [1] and Alpkokin P. et al [5] wherein, CBD is still the strongest 
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center, but loses its share of relative metropolitan employment, and its absolute growth is light as in 

comparison to growth elsewhere in the region. In literature the mono-centric or non-mono centric 

structure of a metropolitan region or an urban area has mainly been related to commuting time. Dubin 

[11] discusses as cities get larger in terms of area and population, they might produce more cross 

commuting and individual will tend to reduce their travel time by taking up new opportunities. Other 

authors (e.g. [12-13] [12-13] also suggest that sub-urbanization of employment from the employment 

centre tends to reduce commuting time and commuting distance. Contrary to this Cevero and Kang Li 

[14] found that there was a significant modal shift and changed commuting time from 1980 to 1990 in 

San Francisco area. The effect of de-concentration of traditional city centers has also been analyzed for 

its effect on modal split. Gordan and Richardson [15] have analyzed the effect of de-concentration on 

modal split in San Francisco area in terms of the shift in commuting behavior from using public 

transport to personal modes of transport, similar effects were found to exist for Oslo [16]. 

 

Thus it can be observed that mono-centric or poly-centric character of urban form and de-

congestion of the employment centre has been studied extensively in relation to change in travel 

patterns over time. It is the function of availability and spatial distribution of opportunities, the urban 

form of the location and socio-demographic of individuals. 

  

3. Data and Methods 
 

For the city of Ahmedabad data on jobs in the year 2001 and job projections for the year 2011 is 

available from [17] at the scale of Traffic Analysis Zones (average size of 550 households). 

Interpolated values for 2007 from this data were disaggregated to 100 m. x 100 m. grid cell using data 

derived from combining data on building footprints[18], land use[19] and building heights generated 

using a digital elevation model created using IRS Cartosat -1 data [20]. For the year 1985 land use map 

prepared by AMC was updated by Jain [21]. Employment estimates from TCS [22] study on 

Ahmedabad done in the year 1986 was used to quantify spatial job distribution in 1985. Clusters of 

employment and city centers were qualified based on methods used in Giuilano and Small [7, 23], 

where the minimum jobs in a contiguous area with minimum density more than 300 person/acre of 

10,000 was considered as a qualifying mark for identifying the city centre. 

 

To determine change in trip length and mode choice Ahmadabad transport study conducted by 

Central Institute of Road Research, Pune in 1988[22] for Government of India, the feasibility study for 

IPTS alternatives for Ahmedabad by Louis Berger Group Consortium for Gujarat Infrastructure 

Development Board in 2001-02[17] and recently (2005-2006) conducted study for Bus Rapid 

Transport System in Ahmedabad by CEPT University for Ahmedabad Municipal Corporation were 

used. A survey of 4500 households across the city was conducted and geo-referenced to the location of 

residence of the respondent to analyze the relation of trip length with the choice of employment centre. 
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Trip made for shopping and work purposes were analyzed, distance traveled for work trips was 

computed from base location (place of residence) and distance for shopping trip was computed from 

origin of the trip, which could be place of residence or workplace or else.  

 

From the analysis done on spatial concentration of jobs six centers of employment could be 

identified, of these three centers were trade and commerce centre (Cn1) and three industrial centers ( 

Cn2) . Discrete choice model (binary logit with one predictor) with the choice of a particular centre (as 

against choice of all other centers within the choice set (Cn1; The set Cn2 is not analyzed as very little 

change in employment concentration levels was observed) as a dependent variable and trip length as an 

independent variable was developed to understand the relation between trip length and employment 

centre choice. 

 

4. Main Findings and Conclusion  
 

The economy of Ahmedabad has shifted over the past three decades from manufacturing and industrial 

based to trade and commerce based [24-25], this is reflected in de-concentration of jobs but to a large 

extent addition of new job. The result is the formation of two additional city centers, which satisfy the 

criterion mentioned earlier. It is observed that the two of these main centers are representative of the 

old centre (the tradition centre was the walled part of the city called walled city and the area that has 

grown in a continuum on the western part of river running through the centre of the town). The growth 

of activities has shown negative growth in the walled city area, the outer areas, including CG road, 

which is representative of a recently developed poly centric node in the city has grown at a fast rate in 

the past two decades. More than 80 percent work and shopping purpose trips get consumed between 

Wall city and CG road employment centers, which are located in the central parts of the town.  

 

Looking changes in mode spit in from 1985 to 2007 it is observed that overall, there is small decline in 

trip made by walking but it still accounts for the maximum share of trips. Share of two wheelers for 

work trips has almost doubled in two decades; the shift has been from public transport and non-

motorized decades; the shift has been from public transport and non-motorized modes. 

 

The total trips increased from 5.55 million in 1988 to 6.54 million in 2006 but the average trip 

rate/person decreased from 1.57 in 1988 to 1.1 in 2000 and 2006 survey. The decrease in trip rates in 

Ahmedabad to 1.1 is indicative of fewer non-obligatory trips like shopping and recreation made in the 

city. The average trip lengths have increased from 4.6 km to 5.6 km in 2001 and to 6.2 in 2006. 

However, it is still observed that most of the trips are short distance trips very few trips are longer than 

10 km. for work purpose and 2.5 km. for shopping purposes. The increase in trips length is negligible 

and in the scenario that the city would have remained mono-centric the average lengths could have 

been 7.25 km. which is larger than observed average trip lengths. Thus development of poly centers 
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has reduced trips lengths in the city to a considerable extent but increase share of private motorized 

modes. 

 

When the choice of these two city centers are analyzed against distance traveled it is found that walled 

city centre has a negative beta value whereas CG road centre has a positive beta value and similarly 

odds ratio are also found on different sides of one (higher than 1 for CG road lower than 1 for Walled 

city). So it can be said that the traditional centre is losing its gravity over other centre’s as the distance 

travelled increase, both in the case of shopping purpose and work purpose trips. Because the average 

trip distance in Ahmedabad are relative low at about 5 km., wall city is still the preferred destination, 

but as the city expands or congestion level or travel distance increases more jobs will shift out from the 

wall city area to new place in the city.  

 

In terms of mode choice, it is found that wall city is more interesting as the destination for people who 

use non-motorized transport, and public transport modes. Higher β were observed for all modes for 

trips made to wall city area, indicating more utility for short trips, but the odd ratio values observed for 

CG road are very close to 1 for trips made using car and motor cycle as a mode, where as these values 

are in the range of 0.7 for trips made to walled city area, explaining the choice of mode and trip lengths 

to these centers. The fact that individuals with private mode are willing to travel more to the new 

center/s of employment is also indicative of better opportunities available in these areas. 

 

The implication of the result presented here on the city development is quite significant. It basically 

helps us to understand the driver of poly-centricity in the city and also to establish that poly-centricity 

does affect travel distance and also contrary is also true. Decentralization of urban land use and 

development of non-mono-centric urban structure seems to lead to more use of private modes of 

transport, which may be related to how these centre’s are planned and connected to the network. 
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1 Introduction 
 

This paper deals with the sensitivity analysis of the velocity and fundamental diagrams derived in 

steady uniform flow conditions and based on a detailed analysis of the individual behavior of the 

driver-vehicle subsystem. As known [1,2], these diagrams represent the mean velocity and the flux, 

respectively, of vehicles according to the hydrodynamic description, namely by locally averaged 

macroscopic quantities.  

An extensive review of the existing literature is available in papers [1,2] and [3], which report 

that traffic flow phenomena can be modelled at three different scales (macroscopic, microscopic and 

kinetic) as documented by the literature on the field. The book of Kerner [4] offers a detailed 

interpretation of the physics of traffic phenomena. Many specific phenomena observed in traffic flow 

conditions are reported in [4] from the viewpoint of physics.  

The knowledge of the velocity and fundamental diagrams is an essential requirement to derive 

the greatest part of models at the macroscopic scale also in the case of crowd dynamics modelling, as 

documented in [5]. Indeed, several models (almost all) are based on the assumption that vehicles have 

a natural trend towards equilibrium. On the other hand, some recent papers have shown that a detailed 

modelling of the behaviors of the driver-vehicle micro-system leads to models that naturally describe 

the afore mentioned trend without artificially imposing it. This result is achieved in [6] at the 

macroscopic scale, and in [7] in the case of kinetic type models. This result is confirmed in [8] in the 

case of multilane flow. The above contributions [6-8] motivate the contents of the paper focused on the 

derivation of the velocity and fundamental diagrams by a detailed analysis of the dynamics at the 

microscopic scale. This modelling approach is useful for several reasons.  
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Among others:  

(i) it provides a unified representation rather than a broad variety of experimental data collected by 

different devices in different environmental conditions; 

(ii) the representation is useful at all scales, namely microscopic, macroscopic and kinetic;  

(iii) the velocity (and fundamental) diagrams need only one parameter corresponding to the quality 

of the road in a broad sense, namely including weather conditions and traffic control actions; 

(iv) the representation includes the transition from free to congested flow corresponding to different 

values of the parameter characterizing the model.  

The content of this extended abstract is developed through two more sections. Specifically, 

Section 2 develops the modelling of the velocity and fundamental diagram, while in Section 3 a 

sensitivity analysis of the model is proposed.  

 

 

2 Velocity model 
 

The derivation of the equilibrium velocity diagram, the original focus of the research, can be 

pursued by a detailed analysis of the behavior of the driver-vehicle micro-system; experimental data 

are used only subsequently to the definition of the model to compare results. 

The general principles followed to achieve such a result can be summarized as follows:  

(i) drivers adjust the velocity of vehicles according to the local density, namely they attempt to 

maintain the velocity below a limit corresponding to the braking distance;  

(ii) the velocity corresponding to the braking distance also depends on the quality of the road and 

environmental conditions and also on traffic control strategy;  

(iii) we look for a minimal model characterized by one parameter corresponding only to the road-

weather system.  

According to the above reasoning, the behavior of the vehicle is modelled deterministically, 

while a stochastic generalization will be developed in the next section. Bearing all the above in mind, 

let us consider the one-directional flow of vehicles along a one lane road.  

The modelling of the velocity diagram should reproduce qualitative behavior. The 

phenomenology of the system suggests [9] to approximate the safety distance between vehicles as a 

power expansion of the velocity truncated at the square power. Using dimensional variables yields:  

ds= L +  t*V + c V2 , (1) 

where L is the mean length of vehicles, t* is a time approximating the psychological-technical 

delay and c is a constant with dimension of the inverse of an acceleration.  

Eq. (1) can be written by dimensionless variables, resulting  as follows 

s = 1 + ve + ve
2 , (2)  

where  represents the dimensionless delay time, ve the mean velocity depending on the local 

density  and  = c L/Tr
2. Reference values can be obtained using L = 6:6m, VM=120 km/h and t 2 s 
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which yield Tr=0:2 and 10. Other relations concern the density range in which velocity is constant: 

this means that when c ve=1, otherwise ve<1. Considered that when ve=1, Eq.2 leads to  

=1/c(1-) and putting s = 1/Eq.2 can be rewritten as: 

1/ = 1 +  ve + (1/c1-)ve
2 , (3)  

c assumes the meaning of model parameter describing the quality of the road-environment 

system. The velocity diagram is then obtained: 
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More details of this model can be found in [10]. Figures 1 show different curves of velocity 

and fundamental diagram (the latter is derived according the classical relationship q=v) by varying 

the value of c. 
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Figure 1: Velocity and Fundamental diagrams varying c. 

 

 

3 Sensitivity Analysis 
 

The effect of c on diagrams shows how environmental conditions (road and meteorological 

state) affect flow circulation, modifying the phase transition value of velocity and capacity (the 

maximum allowed flow). These results are obtained by assuming constant some parameters like 

reaction time t* (and hence ). 

Therefore it is of interest to investigate how other values of t* modify the shape of diagrams. 

It must be underlined that t* is generally considered a stochastic variable ranging in a wide interval 

from 0.7s to values greater than 3s. 

Figure 2 analyses the effect on velocity and fundamental diagrams by varying To help 

reader instead of  the corresponding value of t* is reported in the legend. As expected a lower value of 

 means lower capacity and above all a fast decay of performance after the transition point  set by c.  

Figure 3 takes into consideration the combined effect of varying both  and c and it compares 

the effect of  when two different values ofc are considered (0.033 and 0.2). In particular when c is a 

high (0.2) the effect of  is more evident and generally leads to very different performance: a high 
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value (t*=3s) means a fast decay both in the velocity and fundamental diagrams. A low value of c (for 

example 0.033) is not greatly affected by . In synthesis roads with large c (that is high level roads) 

are more sensitive to  for high values of density; vice versa roads with low c (that is low level roads) 

are less sensitive to  since their performance are largely low. 

 -v 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

density, 

s
p

e
e

d
, v

0.7

1.0

1.5

2.0

2.5

3.0

 t* [s]

 -q 

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

density, 

fl
o

w
, q

0.7

1.0

1.5

2.0

2.5

3.0

  t* [s]

 
Figure 2: Sensitivity to  (candn=150 [veh/km]) of Velocity and Fundamental diagrams. 
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Figure 3: Sensitivity to the combined effect ofc and  of Velocity and Fundamental diagrams. 
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1 Text

Traffic management and routing in logistic systems are optimization problem by nature. We want

to utilize the available street or logistic network in such a way that the total network “load” is

minimized or the “throughput” is maximized. This lecture deals with the mathematical aspects of

these optimization problems from the viewpoint of network flow theory and scheduling. It leads

to flow models in which—in contrast to static flows—the aspects of “time” and “congestion” play

a crucial role.

We illustrate these aspects on several applications:

(1) Traffic guidance in rush hour traffic (cooperation with DaimlerChrysler).

(2) Routing automated guided vehicles in container terminals (cooperation with HHLA).

(3) Timetabling in public transport (cooperation with Deutsche Bahn and Berlin Public Trans-

port).

(4) Ship Traffic Optimization for the Kiel Canal (cooperation with the German Federal Water-

ways and Shipping Administration).

All these applications benefit from new insights into routing in graphs. In (1), it is a routing

scheme that achieves traffic patterns that are close to the system optimum but still respect certain

fairness conditions, in (2) it is a very fast real-time algorithm that avoids collisions, deadlocks, and

other conflicts already at route computation, while for (3), it is the use of integer programs based

on special bases of the cycle space of the routing graph. Finally, (4) combines techniques from (2)

with special purpose scheduling algorithms.
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Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture

Notes in Computer Science, pages 3–40. Springer, Berlin/Heidelberg, 2007.

542



Solving a Rich Vehicle Routing Problem in a 
cooperative real-world scenario 

 
Andrea Nagel 

Department of Information Systems 

University of Hagen, Profilstrasse 8, 58084 Hagen, Germany 

Email: andrea.nagel@fernuni-hagen.de 

 

Giselher Pankratz 

Department of Informations Systems 

University of Hagen 

 

Hermann Gehring 

Department of Informations Systems 

University of Hagen 

 
1 Problem description 
 

In this contribution, we examine a cooperation of four first-class producers in the food and beverages 

industry. Each of the companies is specialized in a well defined range of high-quality products which 

are complementary to the products offered by the other companies. A solid and free delivery of goods 

within a short time period is crucial in this business. In order to improve customer satisfaction and to 

generate logistics cost savings, the companies have decided to coordinate their distribution activities by 

inter-organisational transportation planning. In this way the producers jointly plan to establish a virtual 

full-range supplier while staying focused on their respective core product, thus guaranteeing high 

quality and full flexibility. 

Some of the distributors use own vehicles for delivery. These vehicles are located either in the 

neighborhood of the company location or in distant regions with high demand. To supply the vehicles 

in the regions with goods for delivery, an additional transport by a freight company is needed (in the 

following denoted as long-distance transport). These long-distance transports start at the company 

location and finish at a transshipment location near the vehicle location. Orders that cannot be 

delivered using own means of transport are shipped through external food and beverages courier 

services. A schematic representation of the special situation the cooperation deals with is shown in 

figure 1. 
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Figure 1: Schematic representation of the distribution structure using the example of 2 distributors. 

The different possibilities for delivery are specified according to figure 1 as follows:  

a) Distributor 1 delivers with own means of transport from the company location directly 

(without transshipment) to the customers. 

b) Distributor 1 delivers via courier service from the company location directly to the customer. 

c) Distributor 1 delivers indirectly, hiring a long-distance transport to a regional transshipment 

location from where own vehicles undertake last mile delivery. 

d) and e) Distributor 2 (who does not own a fleet of vehicles) delivers indirectly, hiring a long-

distance transport to the company location of the cooperating distributor 1 or to a regional 

transshipment location from where vehicles of distributor 1 undertake last mile delivery. 

 

The task of finding a solution for the delivery of goods in the above described network under 

the given planning scenario can be well interpreted as a Rich Vehicle Routing Problem (RVRP). This 

RVRP combines widely discussed VRP restrictions like 

 limited vehicle capacity (weight and volume), 

  a heterogeneous fleet of vehicles, 

 time windows for order delivery, 

 backhauls of empty boxes and 

 a given maximum driver’s time 

with the following non-standard problem extensions:  

• a dynamic inflow of orders and 

• the simultaneous planning of own-name transport and subcontracting  

under the objective of minimizing total variable transportation costs, which consist of the direct costs 

of company-owned vehicles and all transportation charges paid to freight companies. 
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The motivation for the two non-standard requirements can be explained as follows: 

Orders are not completely known in advance, but become available during the day, when 

physical distribution has already started. Moreover, binding advance notices have to be made to the 

courier companies at different but given times. Due to the concurrency of order inflow and order 

execution, the planning situation is continuously changing. Thus a dynamic way of planning is 

considered appropriate.  

To decide which orders should be delivered by company-owned vehicles (possibly inducing 

an additional long-distance transport) and which orders should be delivered by a courier service is far 

from being trivial since the cost savings caused by a planning option for a given request will strictly 

depend on which other requests are assigned to the same means of transportation. 

 

2. Basic Procedure based on Large Neighborhood Search 
 

An algorithm that copes with the depicted RVRP has been developed extending the algorithm in [3]. 

This algorithm allows simultaneous planning of own-name transport and subcontracting, while taking 

into account heterogeneous time windows, varying vehicle capacities and a maximum drivers time. 

Additionally, the algorithm implements a comprehensive handling of backhauls restrictions. The 

algorithm was embedded in a dynamic planning framework that allows solving temporary static 

problems in a rolling horizon fashion.This approach comprises a Large Neighbourhood Search (LNS) 

[4] which is combined with a threshold accepting criterion [1] in the following manner: 

The construction of a feasible solution uses a simple insertion heuristic, which first tries for 

each order to assign it to a company-owned vehicle; if applicable, also a long-distance transport has to 

be planned. If own-name transport is not possible, the order is assigned to a courier service. To 

improve this starting solution, a metaheuristic approach is used which is a variant of the LNS technique 

[4]: A certain proportion of orders is removed from the last solution and cost-effectively re-inserted in 

a randomly chosen sequence. To overcome local minima, a Threshold Accepting [1] procedure is used, 

which allows a temporary decline of solution quality. After a pre-specified time interval (e.g. 10 

minutes), the optimization phase is stopped and the algorithm asks for new orders. At the same time, 

all parts of the currently best solution which represent irreversible decisions are fixed for all further 

calculations. Such irreversible decisions are, e.g., orders which have been irreversibly assigned to 

tours, tours which cannot be further loaded because they have already started, and courier transports 

which cannot be changed because they have already been bindingly announced. The new orders are 

inserted according to the rules of the insertion heuristic. Finally, the improvement heuristic is re-started 

using the updated solution as the best known solution.  

Former tests showed that this LNS-procedure yielded cost savings up to 20% when comparing 

the cooperative scenario to the situation without any cooperation (isolated scenario). 
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3. GRASP method 
 

The recent research activities primarily focussed on further improving and stabilizing the calculated 

results. Former results showed that a longer calculation time usually could indeed improve the test 

results but not to the desired extent – possibly due to the highly randomized (re)insertion procedure. 

Therefore, a Greedy Randomized Adaptive Search Procedure (GRASP) [2] was implemented. 

The GRASP starts with assigning a weight to the orders that currently have to be included in 

the transportation plan. The weight reflects the importance of choosing a specific order for insertion 

and depends on the costs that would occur if the order would not be inserted first. The most important 

orders are accepted as elements of the so called Restricted Candidate List (RCL). One order out of the 

RCL is now chosen randomly for greedy insertion in the last feasible transportation plan, thus allowing 

to use the insertion heuristic explained in chapter 2. After having inserted this order it is removed out 

of the RCL. The weights of all remaining orders are updated and a new RCL is built for the next step. 

Once all orders are inserted, a neighborhood search starts. A modified version of the above described 

LNS procedure is used for this purpose. Unlike in the above described LNS, in the modified version 

the GRASP-insertion method is used for re-inserting and the threshold criterion is omitted. 

At the moment, the GRASP is subject to intensive testing using randomly generated problem 

instances and a simulation engine. Preliminary tests have shown promising results. The behaviour of 

the two procedures in different situations will be compared to each other. Detailed results will be 

presented at the conference. 
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1 Introduction 
 

Traffic signals are a vital tool in the efficient and safe use of road space and control of traffic in congested 

urban networks. Consequently, a great deal of work has been carried out over many decades to develop 

techniques for determining the optimal timings for signals either at isolated intersections or in a 

coordinated manner in networks of junctions. In order to find the optimal timings, a traffic model is 

required that will predict the traffic flow pattern, delays and stops that would result from the 

implementation of any proposed set of timings, or control policy. Such traffic models come in a variety of 

forms, macroscopic and microscopic, deterministic or stochastic; some have purely numerical outputs 

whilst others provide graphical displays.  Whilst responsive control has become increasingly prevalent, 

fixed-time control is still an important and widely-used form of control in many urban networks. Fixed 

time plans can be set up for the demand pattern expected at different times of day.  The problem of 

finding the optimal timings, according to the predictions from the assumed form of traffic model, is 

usually far from straightforward except in the case of a single intersection, since there are typically an 

enormous number of feasible solutions and a very large number of local minima, and especially if re-

routeing of drivers in response to signal timings is possible.  The problem of finding the global minimum 

is a complex combinatorial optimisation problem for which many alternative approaches (including, for 

example, evolutionary algorithms, ant colony optimisation, simulated annealing) have been proposed and 

tried, but for which there is as yet no fully accepted method. 
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The research described here is concerned with the application and testing of a relatively new 

approach to such problems: the cross entropy method, proposed by Rubinstein [1].  The method, which 

has an appealingly simple structure and a sound theoretical underpinning, will be applied to a number of 

different forms of signal optimisation problem. 

 

2 Problem formulation  
 

We consider a network of signalised junctions, operating under fixed-time control.  The set of signal 

timings to be implemented consists of the green times for the various stages at each junction, and the 

offsets between the junctions.  A set of timings will be referred to as a solution and denoted by x = (x1 , x2 

, …xm), a vector made up of m elements, in some appropriate form, representing the greens or stage start 

times at each junction, and the offsets, each expressed as an integer number of seconds.  Typically the set 

X of all possible solutions will be very large. 

The choice between alternative solutions will be made according to the traffic model adopted for 

any particular case.  In the examples considered here, drivers are assumed to respond to any set of timings 

by re-routeing, and this is described through a traffic assignment model. Running the traffic model with a 

solution x leads to a set of outputs, from which the value of an appropriate objective function or 

performance index (such as the total network travel time) can be calculated.  This will be denoted by z(x).  

The aim is to determine the optimal solution x* that minimises this objective function. 

 

3 The cross entropy method  
 

The cross entropy method (CEM) is an iterative process, at each stage of which a set of solutions is drawn 

randomly from a set of discrete probability distributions pij (i = 1, ..  m; j ∈ Ji) in which Ji is the set of 

possible values for element i in the solution vector.  Each of the N solutions generated is evaluated using 

an appropriate model and its objective function value z obtained.  These N solutions are ranked and the 

best N* identified (with N* typically being 5% of N).  In this “elite” sample, for each element i, we count 

up the number of cases rij in which it takes the jth value.  From this information the parameters of the 

discrete probability distributions are then updated using a weighted average of the old pij and the observed 

rij/N*.  These are then used to generate the solutions in the next iteration.   

The process starts with uniform distributions assumed for the pij : that is, for each element, all 

possible values are equally likely.  Through the process of selection and updating of parameters, the 

quality of the solutions generated steadily improves, and the distributions steadily become more clustered 

around a small number of values until no further improvement occurs.  The best solution found during the 

iterative process is the estimate of the global optimum.  There is no guarantee, of course, that the global 

optimum will be found, since the process itself contains random elements.   

 

4 Previous work  
 

Previous work [2] by one of the authors has applied the CEM to the problem of optimisation of fixed-time 

signal timings on a six-arm signalised roundabout with the cell transmission model being used to describe 
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the cyclic flow of traffic, and the build-up and decay of queues, under the assumption of constant OD 

flows.  In this case, the traffic model was deterministic and macroscopic and there was no route choice.  

For that problem, it was calculated that there were of the order of 1016 possible (nominally 

undersaturated) solutions. At each iteration N = 2000 solutions were generated, and it was found that the 

CEM worked very well, with steady improvement through the iterative process and effective convergence 

occurring in around 15 iterations.  It seemed therefore to provide an efficient and appealing approach to 

such combinatorial optimisation problems. 

 
4 New applications  
 

The current work is to apply the CEM to signal optimisation problems in a network.  It has long been 

recognised (see [3], [4] and [5] for example) that changing the signal timings in a network will generally 

cause some re-routeing of traffic, and that repeatedly optimising the signal timings assuming that the 

current flow pattern will remain fixed may lead to a steady deterioration in network performance (the 

resultant solution is referred to as the “mutually consistent” (MC) solution, because the flow pattern is a 

function of the timings and the timings are a function of the flows) .  On the other hand, if this potential 

re-routeing effect is recognised and taken account of, it may be that signal control can be used 

beneficially to persuade drivers into a more preferable routeing pattern.  Therefore the impact of a 

solution x will be described using a traffic assignment model for the given OD matrix, and the consequent 

total network performance measure z(x) calculated from the assignment output.  Previous work [6] has 

also tackled this type of problem, using a combination of a genetic algorithm (GA) for the optimisation, 

and the TRANSYT traffic model and logit-based SUE assignment to model the traffic flows and re-

routeing.  The work showed there were appreciable potential benefits from the use of this “farsighted” 

approach in contrast to the “shortsighted” MC solution approach. Our primary aim here is to apply the  

CEM for the optimisation of the signals in the network, using a (deterministic) UE assignment model to 

describe the route choices of drivers in response to any signal timings.  The results from the CEM will be 

compared with those from a GA approach to the same problem, considering both the quality of the final 

solutions obtained and also the computational demands of the two approaches. 

In the second application, assignment is carried out using a Monte Carlo, probit-based SUE 

model (sometimes referred to as the “Burrell method”).  In this case, because of the Monte Carlo nature 

of the assignment, the outputs are subject to random error or noise.  Ideally we want to choose the 

solution x that minimises the true, long-run average network performance measure z0(x) but what we 

observe is not z0(x) but a noisy version of it: z(x) = z0(x) + e where e is a random error, whose variance s2 

is a decreasing function of the number of MSA iterations used in the assignment.  We can obtain accurate 

estimates, but only at the cost of long run times in the SUE assignment.  If two trial solutions x and y are 

compared, and z(x) < z(y), it is not necessarily the case that z0(x) < z0(y).  Hence, the ranking of a set of 

solutions on the basis of their z values is made less efficient or reliable the greater is the amount of noise.  

The more the noise dominates, the more the ranking becomes effectively random. 

Previous work [7] by one of the authors has studied the general nature of this problem and 

proposed how the CEM should be modified to deal with such noisy combinatorial optimisation problem, 

including how the assignment run time should be chosen for the evaluation of z(x) for solutions at each 

549



stage of the iterative process, in order that the ranking of solutions generated in any iteration can still be 

efficient.  The application there, though, was with artificial noise: the true value z0(x) was obtained from a 

deterministic traffic model and a random error e was generated and added to give z(x) for any solution x.  

This enabled the performance of the CEM to be evaluated in a controlled environment.  In the current 

work, however, a real Monte Carlo assignment model is employed and the aim is to investigate the 

feasibility of this approach, and establish how best to estimate the value of s for any assignment run and 

the manner in which this is dependent upon the number of iterations, in order to see whether it is 

practicable and efficient to use such Monte Carlo assignment models to optimise signal settings in a 

network with re-routeing.  The tests are carried out on a network similar to that used in [5] and [6]. 
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1 Introduction

The m-Peripatetic Vehicle Routing Problem (m-PVRP) is defined on a complete undirected graph

G = (V,E) where V = {0, ..., n} is the node set (node 0 is the depot and V ′ = V \{0}) and E is

the edge set. Each client i ∈ V ′ has a demand di and Q is the capacity of vehicles. A cost ce is

assigned to each edge e ∈ E. The objective of the m-PVRP is to identify a set of edge-disjoint

routes of minimal total cost over m periods so that each client is served exactly once per period.

The m-PVRP was introduced in [5]. So far its best known upper and lower bounding procedures

are the b-matching and the hybrid tabu search of [6]. Applications include money collection,

transfer and dispatch when it is subcontracted to specialized companies. For security reasons,

peripatetic and capacity constraints ensure that no sequence of clients is repeated during the m

periods and the amount of money allowed per vehicle is limited. The m-PVRP can be considered as

a generalization of two well-known NP-hard problems: the VRP (≈ 1-PVRP) and them-Peripatetic

Salesman Problem (m-PSP ≈ m-PVRP with a single vehicle).

2 Column Generation approach

The new lower bounding procedure described in this section consists in two dual heuristics H1

and H2 that identify good dual feasible solutions for the linear relaxation of the aggregated set

partitioning formulation, following the approach used for example in [2] for the VRP. Let < be the
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set of feasible routes, cr with r ∈ < the cost of route r, <i the set of routes crossing node i, <(e)

the set of routes crossing edge e and yr the binary variable equal to 1 if and only if route r is used.

The aggregated set partitioning formulation (APF) of the m-PVRP is:

(APF) min
∑
r∈<

cryr (1)

s. t. ∑
r∈<i

yr = m, ∀i ∈ V ′ (2)

∑
r∈<

yr ≥ m

⌈∑
i∈V ′

di
Q

⌉
(3)∑

r∈<(e)

yr ≤ 1, ∀e ∈ E (4)

yr ∈ {0, 1}, r ∈ < (5)

This formulation is not suitable for solvers because of its exponential number of variables. Its

constraints can be dualized by associating respectively penalties λi ∈ R with i ∈ V ′, λ0 ≥ 0 and

µe ≤ 0 with e ∈ E. The linear relaxation of the resulting model (APF(λ, µ)) still requires an

exponential number of variables, justifying the use of a column generation approach.

The first dual heuristic (H1) is based upon three key ideas: the approximation of routes with

non-elementary routes called q-routes, the use of a column generation approach to handle the

exponential number of variables and the use of dual ascent to estimate the best dual variables

values. A route of total load q does not autorise cycles, whereas a q-route does and can be

generated with a pseudo-polynomial algorithm. These cycles are then penalized via a Lagrangian

relaxation, to obtain a heuristic fast and efficient. H1 does not require the use of Cplex R© or any

other solver to solve each master-problem obtained after generating q-routes of negative reduced

cost. The violations of degree constraints are quantified then used in a subgradient procedure

to correct the values assigned to the dual variables, until the improvements become negligible or

during a predefined number of iterations. This procedure, known as dual ascent, outputs the best

dual variables values that will be used to generate new q-routes of negative reduced cost. If no

new q-routes can be generated, then the dual solution found provides a valid lower bound for

the m-PVRP. The dual ascent remedies the dual variables stability problems of classical column

generation algorithms.

The second heuristic (H2) is applied after two consecutive iterations of H1 without generating

any q-route of negative reduced cost. It uses procedures similar to H1’s, but generates elementary

routes instead of q-routes. Its dual variables must be initialized with H1 to reduce the computing

time and memory required, since the generation of elementary routes of negative reduced cost is an

NP-complete problem ([3]). H1 is also used to compute lower bounds required by the dominance

properties applied within H2 to optimize the generation of elementary routes.
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3 Branch-and-cut applied on the edge-based formulation

The branch-and-cut algorithm BCEF described in this section is applied on the edge-based m-

PVRP formulation (EF) where K = {1, ...,m} is the set of periods of the m-PVRP, δ(S) is the

set of edges having one node in S ⊆ V ′ and the other node outside. r(S) =
⌈∑

i∈S
di

Q

⌉
is a lower

bound of the number of vehicles necessary to serve the total demand of S and xke is the binary

variable equal to 1 if and only if edge e is used within a route during period k ∈ K.

(EF) min
∑
k∈K

∑
e∈E

cex
k
e (6)

s. t. ∑
e∈δ({i})

xke = 2, ∀k ∈ K,∀i ∈ V ′ (7)

∑
e∈δ(S)

xke ≥ 2r(S), ∀S ⊆ V ′, S 6= ∅,∀k ∈ K (8)

∑
k∈K

xke ≤ 1, ∀e ∈ E (9)

xke ∈ {0, 1}, e ∈ E, k ∈ K (10)

The branch-and-cut algorithm BCEF starts from the linear relaxation of (EF ) without the

O(m2n) constraints (8). The valid inequalities sought-after result from the generalization of effi-

cient VRP inequalities applicable on each of the m periods of the m-PVRP: capacity cuts, strength-

ened combs cuts and multistar cuts. It is important to note that not all VRP cuts are generalizable

to the m-PVRP. For example, constraints based on a fixed number of vehicles can not be used for

the m-PVRP because its number of routes is not limited and can vary from one period to another

(e.g. generalized capacity constraints or hypotour constraints ([1])). The branching is performed

on the variable whose value is the closest to 0.5.

4 Branch-and-cut for the aggregated formulation

The aggregated edge-based formulation (AEF) results from the aggregation over k of constraints

(7) to (9), the introduction of binary variable ye =
∑
k∈K x

k
e for each edge e ∈ E and the deletion

of the aggregated constraints (9) because of their redundancy with the aggregated constraints (10).

A solution of (AEF) is a subset of edges which satisfy aggregated degree constraints, but are not

specifically assigned to any of the m periods. It may not correspond to a valid m-PVRP solution.

In addition, it can be shown that even if this set of edges contained a feasible m-PVRP solution,

partitioning the edges between the m periods to extract this solution would be NP-complete. In

spite of that, (AEF) is easier and faster to handle than (EF) not only because of the reduced

number of variables, but also because of the aggregated constraints which reduce the number of

violated valid inequalities to identify.
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The branch-and-cut algorithm BCAEF starts from the linear relaxation of (AEF) amputated of

the 2n aggregated capacity constraints. Valid inequalities sought-after are the aggregated capacity

cuts, the aggregated strengthened comb cuts and the aggregated multistar cuts. The branching is

performed on the variable whose value is the closest to 0.5.

5 Implementation and Results

All algorithms were tested by adding m ≤ 7 periods to classical instances from the VRP literature

(type A, B, P and VRPNC of 19 to 200 nodes). The upper bounds needed were obtained from [6].

H1 is coded in C. The q-route generator of H1 is then replaced with an adaptation of the

procedure GENROUTE (in Fortran) from [2] to obtain H2. Results show that H1+H2 complement

the b-matching because, contrary to the latter, it performs faster and better for small values of m.

BCEF and BCAEF required a package of separation routines adapted from CVRPSEP [4].

Cplex R© was used to solve the linear problems identified after adding valid cuts. With a time limit

of 3 hours, the results show an improvement of 5 to 10% of the ratios between best upper bounds

and lower bounds known so far, and one third of the instances have been solved to optimality.

References
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1 Introduction

Disruption management in the passenger railway context is the process of dealing with the effects

of a disruption and getting back to normal operations afterwards. As part of the process, the

rolling stock is rescheduled according to a disrupted timetable. Rolling stock here refers to all the

vehicles that utilize the railway network. For early planning, seat demand is given as passenger

estimates based on historical data for each timetable service; the stochasticity of the passenger

estimates is dealt with by assigning slack capacity. However, passenger flows are dynamic in nature

and are highly responsive to changes in the timetable. Such changes may be due to disruptions

or delays, but also due to planned infrastructure maintenance. This study considers the rolling

stock rescheduling process in the real-time disruption management phase in a railway system. We

consider the situation where there is no seat reservation system and passengers occupy the seats

on a first-come first-served basis.

The analogous problem in the airline context has been studied by [1]. There are a number of

similarities between the airline and railway situations. In both cases vehicles with limited capacities

are to be rescheduled, and there are passengers with origins and destinations who wish to use the

available capacity. The major difference is that in the airline industry the operator can control

the flow of passengers by assigning seats to the passengers; in the railway situation the passengers

decide which trains to board as far as capacity is available.

In practice, the overall rescheduling process consists of three steps; (i) adapt the timetable

to the change in environment, (ii) reschedule the rolling stock to serve the trains in the adapted
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timetable, (iii) reschedule the crew accordingly. Although there is some interdependency between

the steps they are still solved with only limited integration.

The problem we consider in this study comes from the major Dutch railway operator Neder-

landse Spoorwegen (NS). Some of the most important features of the railway operations at NS are

that the railway network is heavily utilized and there are often several possible traveling routes be-

tween each pair of stations. This, combined with the fact that there is no seat reservation system,

means that passenger flows are hard to control.

The problems arising in the disruption management process are solved manually, often without

taking the dynamics of passenger flows into account. Our aim is a model for rescheduling the

rolling stock in such a way that sufficient capacity is available to the passengers. In our approach,

we also integrate a few timetable related rescheduling options.

2 Problem description and model

We consider the problem of rescheduling the rolling stock to a modified timetable. The passengers

are assumed to act as autonomous agents who try to get to their destination on their own using

the available train services. As there is no centralized control of the passengers, it is part of the

problem to predict the passenger behavior.

We assume that each passenger wants to travel as fast as possible from his origin at a given

starting time to his destination. The passenger plans his journey based on the information that is

available to him. The available information is the timetable, but not the capacity of each train.

For simplicity, we aggregate passengers with identical intended journeys into passenger groups.

A passenger has a planned arrival time at the destination according to the trip planned in the

regular timetable. The delay of a passenger is measured as the difference between the actual arrival

time and the planned arrival time. Some passengers may not even reach their destination due to

train cancellations and delays.

A rolling stock schedule is an assignment of the rolling stock to trains that respects limitations

on train length, fleet size and possibilities for train length adaptations. The rolling stock schedule

implies a pattern of shunting operations at the stations throughout the network. Shunting refers to

the low level operations inside stations when train lengths are adjusted. Shunting is locally planned,

so any changes to the rolling stock schedule must be communicated to the local dispatchers.

The rolling stock assignment decides the capacity of the trains in the network. Together,

the timetable and the rolling stock assignment imply a passenger flow and thereby the passenger

delays as well. We measure the quality of the rolling stock rescheduling by the following criteria:

(1) number of changes to the shunting plans, (2) the sum of passenger delays, (3) number of

passengers who do not reach their destination. In short, the intention is to balance the process and
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efficiency oriented goals related to the operation of the rolling stock, and the service oriented goals

related to passenger delays. Our model for passenger oriented rolling stock rescheduling attempts

to reschedule the rolling stock in such a way that it maximizes the quality measure.

3 Solution approach

It is difficult to solve the model directly since the rolling stock decisions and passenger flows can

not easily be integrated in one computationally tractable model. We therefore propose an iterative

heuristic approach. In each iteration we reschedule the rolling stock according to the modified

timetable. Then we simulate the passenger flow in the time expanded network capacitated by the

current rolling stock schedule. The passenger flow is evaluated to determine delays and a feedback

mechanism penalizes features of the rolling stock assignment that are likely to incur delays for the

passengers. This iterative process continues until a stopping criterion is reached.

Rolling stock rescheduling

We use an extension of the Mixed Integer Linear Programming model by [2] to reschedule the rolling

stock for the modified timetable. The basic model is well tested, and used by NS for medium-

term planning on a daily basis. The extended model allows the decision maker to reschedule the

rolling stock and to perform minor modifications to the timetable as well, such as deciding whether

certain key connections are maintained. The objective function of the extended model is based on

an estimate of how the decisions contribute to the mentioned quality measure of the schedule. The

estimates come from a feedback mechanism from the passenger flow simulation. We note that a

similar extension of [2] has been described by [3].

Simulation of passenger flows

The passengers choose their routes based on the shortest paths in the time expanded network,

and greedily compete for seats in the trains. The passenger groups take up seats proportional to

the size of the groups. Once a passenger enters a train, he keeps his seat until he exits the train.

Therefore other passengers may not be able to enter a train due to lack of capacity; in that case

they immediately re-compute their journeys and thus compete for capacity in the trains on their

new route.

Feedback mechanism

The flow of passengers implies the passenger demand on each train. We can therefore evaluate

which trains have too little capacity and thereby are likely to cause passenger delays. Assigning

more capacity to those trains is encouraged through modifying the objective function in the next

round of the rolling stock rescheduling process.
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4 Input data

Our approach relies on a large amount of data; in the ideal case we would use real-time data on the

traveling patterns of every single passenger to simulate the passenger flow in the time expanded

network. Such detailed data is not available, however. We therefore use data from early planning

to estimate the traveling patterns. In the near future, better information on passenger flows will be

available through the implementation of an electronic traveling card system. This system directly

retrieves the starting and ending station, and time of each journey in the network.

5 Computational tests and future work

We are in the process of applying the solution scheme to a number of instances based on real-life

cases from NS. The instances concern the situation where a part of the infrastructure is blocked.

We assume that the disrupted passenger demand is equal to the normal demand. Preliminary

results indicate that it is possible to significantly improve the service aspect of the rolling stock

assignment at the cost of more shunting operations.

The approach can also be used to investigate questions on how different levels of passenger con-

trol can improve the service perspective. Such measures include improved traveling information

and seat reservation systems. They can be implemented in the approach by changing the assump-

tions on how passengers move in the time expanded network. Furthermore, the approach can

be used in short-term planning as well when adapting the rolling stock schedules during planned

maintenance projects. In this case more time is available to evaluate the different possibilities due

to the planning horizon.
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1 Problem Description

In this paper we focus on the aspect of risk on delivery tours for disaster relief supplies.

Especially in a post-disaster situation, which is characterized by a high grade of instability it

is important for the affected people to be able to rely on the regular delivery of disaster relief

supplies. This concerns not only the time of delivery but also the locations, where the critical

items are put at the disposal of the people in need. Therefore it is crucial to plan the routes such

that they remain accessible in case of aftershocks or augmenting water levels after inundations.

The contribution of this investigation is threefold. First of all, we develop and apply five

approaches in order to evaluate the risk of delivery tours for disaster relief supplies to become

impassable, regarding correlated as well as uncorrelated measures. The different risk approaches

are included in a multi-objective Covering Tour Problem (CTP) as a third objective function in

addition to the two objectives already investigated in Nolz et al. [2] - on the one hand a combination

of the minisum facility location criterion and the maximal covering location criterion and on the

other hand the minimization of travel time. Secondly, an extension of the Memetic Algorithm

(MA) introduced in Nolz et al. [2] is developed. While a straightforward adaptation of the MA

is applied to three of the five risk measures, the algorithm is extended by an enrichment phase

for the remaining two risk approaches. At last, it is shown that solution quality can be improved

by the developed solution method, contributing good compromise solutions for the potentially

Pareto-optimal front.
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2 Risk Approaches

Five approaches to measure the risk along the water distribution tours are introduced in the

following.

Minimal Travel Time. The risk between two nodes of the street network means the proba-

bility that the path between the two nodes does not remain accessible. For any connection between

two population centers, the total risk is determined as the maximal risk value of all arcs along that

path. Taking the maximum is adequate, as the risk values along a path are correlated and should

therefore not be summed up.

Considering the risk and travel time values of all possible paths between two population centers,

the connection with the smallest travel time and the according risk value is chosen for the minimal

travel time approach.

Minimal Risk. The second approach considers the smallest risk value and the according

travel time among all possible connections between two population centers. The risk of a solution

is determined as the maximum threat of all arcs included to become impassable. Between each

pair of population centers the connection with the smallest risk value and the according travel time

is considered.

Number of Alternative Paths. In contrast to the two approaches introduced so far, which

consider the threat of a specific path to become impassable, the third approach takes the number

of alternative paths between two nodes into consideration. This means that we do not measure

the probability of a path not to be accessible any more, but how many connections could be used

between two population centers. Paths between any two nodes are said to be alternative, if they

differ at least in two arcs. We do not consider totally arc-disjoint paths, as in a post-disaster

situation in a developing country it is more appropriate to avoid critical arcs, such as bridges, that

can cause the failure of a whole path even if all the other arcs remain accessible.

Reachability. We include the specifications of the first three risk approaches into a global

measure by considering not only the number of alternative paths between two nodes but also their

threat of becoming impassable. We call this approach reachability, as it determines how vulnerable

a population center elected as water distribution point is not to be reachable any more.

Reachability is calculated as the sum of the risk values of all possible connections between

two nodes. Figure 1 shows four alternative Pareto-optimal paths between two nodes and their

according reachability-values.

Risk in Category. The last approach models the risk based on the composition of a path

between two nodes. Here we do not consider the maximal risk value, but the number of arcs that

have a probability of becoming impassable greater than α. Therefore, the number of arcs belonging

to a specific category of risk values > α is determined for each connection between two nodes.
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Figure 1: 4 alternative Pareto-optimal connections between two nodes (travel time, risk: 0.424,

0.97/ 0.515, 0.96/ 0.556, 0.87/ 0.7, 0.81)

3 Solution Procedure

An adapted version of the bi-objective MA introduced in Nolz et al. [2] is applied to three of the five

risk measures, complemented with an additional objective. For the remaining two risk approaches

the MA is extended by an enrichment phase, contributing good compromise solutions for the

potentially Pareto-optimal front. The whole process performs as follows. In phase 1, a potentially

Pareto-optimal front of the three-objective problem is determined by our MA. Location decisions for

water tanks (population nodes visited within the CTP) and as a consequence the objective function

value for minisum criterion and MCLC are fixed. In phase 2, by applying Martins’ algorithm [1]

paths between two nodes in a solution can be modified. Therefore, all possible combinations

of paths between the nodes included in the potentially Pareto-optimal solutions are computed.

Between each pair of nodes every alternative path is combined with each alternative path between

all the other nodes. The solutions found in this way are evaluated considering only travel time and

risk as objectives and dominated ones are eliminated. The remaining bi-objective Pareto-optimal

solutions are regarded in detail in order to update the travel time and risk matrices used for the

MA. The whole process is repeated until the original potentially Pareto-optimal front cannot be

improved. With this procedure, it is possible to generate Pareto-optimal solutions with lower risk

values that would not have been discovered otherwise. The enrichment phase is performed for the

minimal travel time approach and risk in category. For the other approaches it is not useful, as

for minimal risk this could only generate higher risk values. Number of paths and reachability are

global measures already considering all existing travel time- and risk values between two nodes,

where this procedure cannot be applied.

4 Computational Results

The different risk approaches are tested on a real-world instance from Manab́ı, Ecuador, where an

earthquake with a magnitude of 6.5 in the epicenter occurred.

Considering the minimal travel time approach we were able to enrich the potentially Pareto-
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optimal front by applying our two-phase approach. The risk values of the solutions contained in

the initial potentially Pareto-optimal front range from 0.98 to 0.97. By updating the travel time-

and risk matrices the risk values of the solutions proposed by the three-objective algorithm can

be enriched, now ranging from 0.98 to 0.81. The potentially Pareto-optimal front for minimal risk

contains only paths with a probability of 0.83 to 0.81 to become impassable.

In order to be able to compare the solutions of two Pareto set approximations regarding their

multi-objective nature, we applied a performance measure introduced by Zitzler and Thiele [3].

The set of solutions generated with the minimal travel time approach and the according risk values

outperforms the Pareto set approximation generated with the number of paths approach. While

33 % of solutions considering minimal travel time are dominated by or equal to the solutions

considering the number of paths measure, 46 % of the latter are at least weakly dominated.

The reachability approach gives a set of solutions that is more secure evaluated in terms of

risk associated with minimum travel time, than only considering risk values. About 60 % of

solutions considering minimal travel times are (weakly) dominated, while only 40 % of the Pareto

set approximation generated with the reachability approach are dominated by or equal to these

solutions.

The risk in category measure is outperformed by the minimal travel time approach.

Concluding, it can be observed that the reachability approach provides the most global and

efficient approach for measuring the risk on the paths of the water distribution tours. It is shown

that the approximated Pareto set can be enriched by our two-phase approach.

Financial support from the Austrian Science Fund (FWF) by grant #L362-N15 is gratefully ac-

knowledged.
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1 Extended Abstract 
 

As more airports become congested, it is increasingly common to observe network-wide delay 

propagation.  For example, poor weather on any given day at a few critical airports in the United States 

or in Northwestern Europe often results in disruptions of airline operations in major portions of the 

entire air transport systems in these parts of the world.  The mechanisms through which such nearly-

chaotic conditions spread are complicated and the impacts they have on different types of users are 

hard to predict without the aid of advanced tools.   This paper describes the Airport Network Delays 

(AND) model, which has been developed to study such complex phenomena, and presents the results 

and insights obtained through this model.   

AND is concerned with computing delays at individual airports within a large network of 

major airports and, more important, with capturing the “ripple effects” that lead to the propagation of 

local delays to other airports in the network.  The model is entirely analytical and is based on queuing 

theory.  It therefore does not require multiple runs for some given set of input parameters, as is the case 

with stochastic simulation models.   To increase computational efficiency, a network decomposition 

approach has been adopted.  The model operates by iterating between its two main components: a 

stochastic and dynamic queuing engine (QE) that computes local delays at individual airports and a 

delay propagation algorithm (DPA) that updates flight schedules and demand rates at all the airports in 

the model in response to the local delays computed by the QE.  The model’s conceptual approach and 

a three-airport prototype implementation were originally described in Malone [1] and Malone and 

Odoni [2].  The ongoing research involves the complete re-design of the model, including a new DPA 

and data structure, programming in java, numerous improvements to the logic, large-scale network 

implementation (see below), and the addition of several important new features (see below).  Related 
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references include [3], [4] and [5], all of which use a queuing theory approach, and [6], [7], and [8], 

that use simulation.     

The QE treats each airport as a queuing system with non-stationary Poisson arrivals, k-th 

order Erlang service times, a single-server and infinite waiting room, denoted as a M(t)/Ek(t)/1 system 

in queuing theory.  Because of the flexibility of the Erlang family of probability density functions, one 

can approximate with this model queuing systems with “general” (“G(t)”) distributions of service 

times, such as those encountered at airports.  This is done by selecting the value of k that most closely 

matches the coefficient of variation of the service times, as measured through field data.  Values of k in 

the range of 3 to 12 are typical, depending on the mix of aircraft types and the type of operations 

(landings, take-offs, or mixed) on each airport’s runways.   

In order to approximate an infinite capacity system, the number of states, N, of the queuing 

system must be chosen large enough so that PkN(t), the probability that the system is full at any time t, 

is very small.  For large values of k (i.e., when the service times have a small coefficient of variation 

or, in practical terms, are nearly constant) the number of states of the system, kN+1, can then become 

very large and the numerical solution of the system’s equations time-consuming.  For these reasons, 

the QE uses a very fast and accurate approximation scheme (Kivestu [9] and Malone [1]) that solves a 

system of N+1 difference equations (independent of k), instead of the system of kN+1 first-order, 

differential equations required for the exact solution of M(t)/Ek(t)/1 systems.  

The Delay Propagation Algorithm (DPA) takes advantage of the fact that airline schedules 

assign an itinerary to each aircraft in an airline’s fleet, i.e., each aircraft must execute on any given day 

a sequence of flight legs through the network of airports according to a planned set of departure and 

arrival times.  Airline schedules include some “slack”, both in the planned gate-to-gate time-lengths of 

flights and in the “turnaround times” on the ground between consecutive flights of any given aircraft.  

When these scheduled slacks are insufficient to absorb any long delays that may occur on a particular 

day, then delay propagates, e.g., from a late departure of an aircraft from airport A to a late arrival at 

the next airport B and from a late arrival at B to a late subsequent departure of that aircraft from B – 

the latter leading to the dreaded announcement that “there will be a delay due to a late-arriving 

aircraft”.   The DPA algorithm uses highly-efficient data structures and state-updating approaches to 

capture this delay propagation effect on a network-wide scale.  It also keeps track of how much of the 

total delay incurred by any aircraft arriving at or departing from any airport X is due to (i) “local” 

delay, because of congestion at X, and (ii) “upstream” delay (or “reactionary” delay, in European 

terminology) because of delays at airports that this aircraft has visited prior to X.       

The model has been fully implemented for a network consisting of the 34 busiest airports in 

the continental United States.  These airports collectively handled 1.12 billion passengers in 2007 or 

73% of the total.  A large database has been assembled for this purpose with information available 

through NASA and the US Federal Aviation Administration.  The database consists of: detailed 

demand data for each airport, including demand for general aviation and other non-scheduled flights; 

airport capacities under different weather conditions for each airport; and, most important, the 
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scheduled itineraries (i.e., the sequence of flight legs to be flown, along with scheduled arrival and 

departure times) for the entire fleet of aircraft of each of the twelve major carriers in the United States.   

As noted already, this last set of data is necessary for estimating through the DPA how delays at any 

airport will spread to others.  As of March 2010, a similar implementation for the network of the 34 

busiest airports in Europe is in progress, using data supplied by Eurocontrol. 

The AND model is fast computationally, requiring between 2 and 5 minutes, depending on 

the level of congestion in the network, on typical laptops to run through 24 hours of operations at the 

34 airports and compute delay-related statistics for every landing and take-off of each individual 

aircraft.   (By comparison, the state-of-the-art simulation model [8] currently in use by NASA and the 

FAA requires several hours for a single run, due to its highly-detailed representation of the national air 

transportation network.)  AND thus makes possible the exploration, at a macroscopic level, of the 

implications of a large number of policy alternatives and future scenarios on system-wide delays and 

associated costs.  Issues that have been investigated to date include: the relative importance of specific 

airports as potential generators of delays that may disrupt the entire national system; and the system-

wide effect on delays of changes in airport capacity resulting from some local interventions, e.g., a new 

runway at a specific airport.  Other expected future applications include analyses of the effects of: 

national programs designed to increase air traffic predictability (e.g., 4-D trajectories); innovative air 

traffic flow management approaches; alternative configurations of some airline networks (e.g., 

configurations that may de-emphasize hub-and-spoke operations);.and airline scheduling strategies that 

reduce (or increase) the amount of time aircraft spend on the ground at airports between arrival and 

departure, or the planned “block” times in flight schedules.   

The model has already provided new insights into the complex interactions through which 

delays propagate across airports and into the often-counterintuitive consequences of these interactions.  

For example, our results demonstrate how the propagation of delay modifies the original schedule of 

daily demand profiles at individual airports by pushing more landings and takeoffs into the late 

evening hours.  Due to the resulting “smoothing” of the peaks and valleys of demand, delays at the 

local level are smaller than they would have been with the original demand profiles.  An unexpected 

consequence of this phenomenon is that certain flights and airlines may benefit from the smoothing of 

demand profiles, by experiencing smaller delays than they would have in the absence of delay 

propagation.  At the same time, other airlines suffer a disproportionately high cost.  Airlines that 

emphasize hub-and-spoke operations at habitually congested hubs are particularly likely to fall into 

this second category.  To immunize themselves from sharing disproportionately in the costs of delays, 

these airlines must typically position a significant number of “spare” aircraft at the congested hubs – a 

measure that also carries a heavy cost, as such spare aircraft are typically underutilized. 

Some enhancements of the model have been implemented and are described in the paper.  

These features are optional and can be activated at the users’ behest.  The three most important are: 

(a) Alternative Queuing Engine:  While the primary stochastic and dynamic queuing engine In 

AND treats each airport as a M(t)/Ek(t)/1 queuing system,  a deterministic and dynamic model that 
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treats each airport as a D(t)/D(t)/1 queuing system has also been implemented.  By treating the demand 

and service processes as dynamic deterministic ones, this alternative QE can provide a lower bound on 

the delays to be expected in a system of airports. 

(b) Airline Recovery Optimization Model:  The AND model in its basic configuration treats 

the airlines as “passive” participants, i.e., does not capture the tactical actions that airlines take on a 

daily basis to mitigate in “real time” the impact of delays, as they occur, on their schedules.  A user 

option incorporated into AND, provides a model that attempts to replicate an airline’s reaction to long 

delays at one or more airports in the network.  This model optimizes airline schedule “recovery” from 

delays [10] through the use of a combination of flight cancelations, aircraft re-routing and adjusting the 

departure times of flights.  

(c) Ground Delay Programs:  An option of initiating ground delay programs (GDPs) when 

delays at one or more airports exceed a specified threshold has been added to the AND model.  This 

option replicates, within the logic of the delay propagation algorithm (DPA) of AND, the traffic flow 

management practice of delaying aircraft on the ground before take-off to prevent large airborne 

delays, when a flight is headed to a congested airport.  The option permits observation of the “side 

effects” of GDPs, such as the added surface congestion and additional departure delays at the airports 

whence ground-delayed flights originate.   
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1 Introduction

Since microscopic simulation tools can provide accurate network performance estimates in the

context of scenario-based analysis or sensitivity analysis, they are often used to evaluate traffic

management schemes. Nevertheless, using them to derive optimal traffic management schemes is

a difficult task.

An optimal traffic management scheme can be formulated as:

min
x,z∈Ω

E[f(x, z, p, ε)], (1)

where the objective is to minimize the expected value of a suitable network performance measure

f . This performance measure is a function of a decision or control vector x, endogenous variables

z, exogenous parameters p and a random component ε. The feasible space Ω consists of a set of

constraints that link x to z, p and f .

For instance, a traffic signal control problem can take f as the travel time and x as the green

splits for the signalized lanes. Elements such as the total demand or the network topology will

be captured by p, while the capacities of the signalized lanes will be captured by z. The random

component ε describes the noise associated with a given realization of f .

In order to identify optimal schemes, these models need to be integrated within an optimization

framework. This is intricate for several reasons: the detailed underlying models lead to noisy non-

linear performance measures with no closed form available, their evaluation is also computationally

expensive, not to mention the cost of evaluating derivative information.
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Given the complexity of performing simulation-based optimization, a common approach is to

construct a simplified model of the simulation model. This lower fidelity model is referred to as a

surrogate or a metamodel. It is less realistic but is also typically less expensive to evaluate.

Metamodels are classified in the literature as either physical or functional metamodels [6]. Phys-

ical metamodels consist of application-specific metamodels, whose functional form and parameters

have a physical or structural interpretation.

Functional metamodels are generic (i.e. general-purpose) functions (e.g. polynomials, splines),

that are chosen based on their analytical tractability. The optimization algorithms that are based

on these models, take advantage of their mathematical properties to ensure global convergence.

These general-purpose metamodels can be used to approximate any objective function, but capture

little information about the structure of the underlying problem. Furthermore, they require a large

initial sample to be fitted, and are thus inappropriate for applications with a tight computational

budget.

We believe that in order to perform simulation-optimization given a tight computational budget,

the metamodel should combine both a structural and a functional component. In this paper we

propose such a metamodel. This metamodel is integrated within a derivative-free trust region

algorithm. The framework is used to solve a fixed-time signal control problem for a subnetwork of

the Lausanne city center.

2 Metamodel

This section presents the main components of the proposed metamodel.

Simulation model. We use a calibrated microscopic traffic simulation model of the Lausanne city

center. A detailed description of this model is given in [3]. For a given decision vector x the

simulator provides a realization of a random variable f(x, z, p, ε) (presented in Equation (1)).

Analytical queueing model. This model resorts to finite capacity queueing theory to capture

the key traffic dynamics and the underlying network structure, e.g. how upstream and

downstream queues interact, how this interaction is linked to network congestion. The model

consists of a system of nonlinear equations. It is formulated based on a set of exogenous

parameters θ that capture the network topology, the total demand, as well as the turning

probabilities. A set of endogenous variables y describe the traffic dynamics, e.g. spillback

probabilities, average rates at which a spillback diffuses. For a given decision vector x the

network model yields the objective function T (x, y, θ).

A detailed description of the queueing model and a case study illustrating how the endogenous

variables describe the formation and diffusion of congestion is given in [5]. Its formulation
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for an urban road network appears in [4], where it has been successfully used to solve a

fixed-time traffic signal control problem.

We now describe how f and T are combined to derive the metamodel m. The functional form

of m is:

m(x, y; α, β, θ) = αT (x, y; θ) + φ(x; β),

where φ is a quadratic polynomial in x, and α and β are parameters of the metamodel. The

polynomial φ is quadratic with diagonal second derivative matrix.

At each major iteration of the trust region algorithm, the parameters β and α of the metamodel

are fitted using the available sample by solving a weighted least squares problem, where the weights

capture the importance of each point with regards to the current iterate.

We integrate the metamodel within the derivative-free trust region algorithm proposed in [2]. It

is formulated for unconstrained problems. We extend its use to constrained problems as suggested

in [1].

3 Traffic signal control

We illustrate the use of this framework with a signal control problem for a subnetwork of the city

of Lausanne. We consider a fixed-time signal control problem, where the objective is to minimize

the expected travel time.

We consider as initial point a uniformly drawn random signal plan. We allow for 1000 simulation

runs. The performance of this metamodel is compared to that of a quadratic polynomial with

diagonal second derivative matrix, (i.e. the metamodel consists of φ). After 1000 simulation runs,

each one of these two methods derives an ‘optimal’ signal plan. The performance of these signal

plans is then evaluated by running 50 replications of the simulation model.

Figure 1 presents the cumulative distribution functions of the average travel times across the

50 replications, considering the initial random plan (x0), and the ‘optimal’ plans derived by the

proposed metamodel (m) and the polynomial (φ). It also presents the performance of an existing

plan for the city of Lausanne, which is denoted as base plan [3].

This figure illustrates how the proposed metamodel yields improved performance in terms of

travel times, when compared to the initial plan, the plan proposed by the polynomial and also the

base plan. This shows how the structural information provided analytically by the queueing model

allows for improvement given a tight computational budget.

With no initial sample, and a tight computational budget, our method is able to identify

signal plans that improve the distribution of the average travel time. This framework is therefore

an attractive approach for derivative-free applications with a limited computation budget, where

short-term performance is of main interest.
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Figure 1: Empirical cumulative distribution functions of the average travel times starting from a

random initial plan and allowing for 1000 simulation evaluations.
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Traffic microsimulations have become popular tools for the evaluation of transportation manage-

ment and control schemes. Their major advantage over analytical models is that they explicitly

simulate the individual entities of the transportation system (vehicles, traffic lights, pedestrians,

...). However, this very property also limits their tractability: Microsimulations constitute non-

linear and noisy mappings of their input parameters on their outputs. It is therefore desirable to

combine the expressive power of microsimulations and the mathematical convenience of analytical

models. The objective of this work is the further development of an existing methodology for the

optimization of urban signaling plans within a simulation/optimization (SO) framework [6] that

combines a detailed traffic microsimulator with an analytical queueing model of traffic flow [5].

In the SO framework, the purpose of the analytical model is to act as a surrogate for the

microsimulation in the optimization, leading to smooth and deterministic objective functions and

constraints. The SO framework is based on a derivative-free trust region method [2]. However,

since the analytical model is only an aggregate representation of the microsimulation, some means

to compensate for the deviation between simulation and analytical model are desirable. In previous

work, essentially a quadratic regression model was calibrated from a sample of simulated obser-

vations at each major iteration of the optimization procedure to represent the deviation between

the analytical model and the simulation. The use of a quadratic polynomial and an appropriate

sampling strategy leads to a globally convergent method (i.e., starting from any initial point, it

will lead to a local stationary point) [2].

However, it also comes with drawbacks:

• A polynomial regression model captures little to no structural information about the problem

under consideration.

• The coefficients of the regression model require a large number of simulations to become
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statistically significant.

The new approach presented in this work is that we adjust the analytical queueing model itself to

the microsimulation. This resolves the aforementioned issues in the following way:

• The analytical queueing model is based on structurally meaninful equations such that the

parameters that guide these equations are readily interpretable and likely to be significant.

• The analytical queueing model can be initialized with plausible parameters before the opti-

mization is started and hence provides relevant information from the very first iteration.

Discarding the supplementary regression model also removes the convergence guarantees it brings

along. For now, we concentrate on gaining a deeper understanding of how a direct calibration

of the queueing model helps to solve the optimization problem. It still is feasible to again add a

possibly further simplified regression model if that is desirable.

Apart from its operational relevance, the new approach has an interesting methodological facet.

A calibration of the queueing model against the simulation is itself an optimization problem in

that some distance measure between the simulator’s output and the queueing model’s output is

minimized. Since the signal plans are optimized subject to a given parametrization of the queueing

model and the queueing model is in turn calibrated from simulation responses that depend on the

signal plans, we are dealing with two possibly coupled optimization problems.

The difficulty of the combined optimization/calibration problem depends to a large extent on

the calibrated parameters. If they represent structural model properties that are independent of

the controls then both problems are decoupled and the signals can be optimized based on an a priori

calibrated queueing model. For example, this applies to all parameters that reflect the network

geometry. If, however, the parameters depend on the controls, then the problem becomes one of

bilevel programming in that the upper-level problem (optimization) needs to account for the effect

a change in the signaling has on the parameters of the queueing model through the lower-level

problem (calibration).

The SO framework developed so far relies on an analytical queueing model that is calibrated

once before the optimization starts. Hence, all parameters that are independent of the controls

can be assumed to be set to reasonable values. We therefore focus on those parameters that are

fixed in the original analytical queueing model but actually should reflect the microsimulation’s

response to variations in the signal plans: traffic flow turning fractions at intersections and demand

levels at the boundaries of the analysis zone.

The bilevel problem in its entirety is difficult, in particular in combination with a stochastic

microsimulator. We therefore begin by experimenting with simpler and operational techniques

borrowed from the field of origin-destination (OD) matrix estimation. The OD matrix estimation

problem for congested networks constitutes a bilevel problem that is strongly related to our control
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problem, and it has received substantial attention in the literature, e.g., [3, 4, 7]. However, the full

bilevel problem specification clearly provides a multitude of further research opportunities.

Preliminary Results

We consider a fixed-time traffic signal control problem, where the objective is to minimize the

expected travel time. A subnetwork of the Lausanne city center during the evening peak perior

(17h-19h) is considered. The calibration of the analytical queueing model is constrained to the

turning proportions, the realizations of which can be directly obtained from the microsimulation.

Denote by xk the signal control plan in iteration k of the iterative optimization procedure, by

θk the parameters (turning fractions) of the queueing model as calibrated in the same iteration,

and by T (x, θ) the analytical objective function (total travel time), which evaluates a control plan

x based on the queueing model only. Furthermore, let Θk be the simulated counterpieces of θk,

i.e., the simulator’s response in terms of turning fractions. We implemented a first bilevel heuristic,

which we describe in the following together with a preliminary result.

Algorithm 1 Bilevel heuristic

1. set k to zero and initialize x0 and θ0

2. repeat until stabilization

(a) feed control plan xk into the simulation and obtain Θk

(b) increase k by one

(c) update θk = 1

k
Θk−1 + (1 − 1

k
)θk−1

(d) calculate new control plan xk = argminx T (x, θk)

The algorithm is started with a random initial signal plan and uniform turning proportions.

In every iteration, it feeds the current signal plan into the simulation, uses the simulated turning

fractions to update the turning fractions in the queueing model by the method of successive averages

(MSA), 1 and re-optimizes the signal plan based on the updated queueing model.

The performance of the final signal plan is evaluated by running 50 replications of the simulation

model. Figure 1 presents the empirical cumulative distribution of the average travel time in the

simulation. For comparison, it also shows the distribution of the initial plan, which is evaluated in

the same manner as the final plan.

A clear improvement can be observed. This shows that a calibration of the queueing model

within the simulation loop is a meaningful approach. The most recent advances of this ongoing

1The use of MSA is for illustrative purposes; there are more efficient methods at hand [1].
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Figure 1: Empirical cumulative distribution functions of the average travel times for a random

initial signal plan and the optimized signal plan.

project will be presented at the conference.
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1 Introduction

In this study, we introduce a new selective and time windows constrained routing problem, called the 

science-on-wheels routing problem (SWRP), which is motivated by a project of ILKYAR, a non-

governmental organization. The project is based on on-site activities performed in the selected junior 

boarding schools and is applied once a year. The SWRP plays an important role for the success of the 

project and involves two main decisions partitioned into two levels. In the first level, a set of schools is 

selected according to a given criterion subject to the special time windows constraints in a given 

project period. In the second level, a selected school is assigned to a project day. The problem is 

modeled using bi-level programming methods. The solution approach is implemented on the test 

instances that are compiled from the real-life data. Computational results show that our approach 

generates good solutions in short times.

2 ILKYAR’s the Science-on-Wheels Project

ILKYAR, a non-governmental organization focusing on educational programs, develops and organizes 

several supportive programs for the students in the rural areas enrolled in junior boarding schools
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(BSs) [1]. In the last decade, ILKYAR visited more than 250 BSs and these visits were organized as a 

part of the science-on-wheels projects. 

In a two-week science-on-wheels project, a number of BSs are visited in a selected region. In

each school, the project team presents an on-site activity based program, spends all day together with 

the students, stays in the school for a night, and leaves the school early in the next morning for the next 

BS chosen. The types of activities are vast. The region is chosen in a higher decision making level and 

not the part of the SWRP. Since the project period is narrow, it is not possible to visit all the schools in 

the selected region during a project. The SWRP involves two main decisions partitioned into two 

levels. In the first level, a set of schools is selected among the candidate schools in the pre-specified 

region in order to maximize the number of students. In the second level, a selected school is assigned 

to a project day.

Because of widespread geographic distribution of the BS sites in rural areas, it may require 

traveling over relatively long distances between two successive school sites during a project. 

Therefore, there is an upper limit on the travel length between two successive visits, which is called the 

major limit. In returning back to home at the end of the project, the travel length between the last 

school site and home site should not exceed a particular value, which is called the minor limit. 

Minimizing the total tour length is not the main concern of the project, but the total tour length should 

not exceed a given threshold value because of side constraints. These limits are made of the special 

time windows constraints for the SWRP. In summary, the SWRP is mainly to identify the schools that 

will be visited during the project and to decide the order of BSs to visit in a given project period. The 

SWRP is quite different than the classical routing problems with time windows in the literature and the 

traveling salesman problem (TSP) [2].

3 A Bi-level Model for the SWRP

For ILKYAR, it is very important to reach as many students as possible in a project, but minimizing 

the route length is very secondary. However, if there is a better way of routing the project without 

sacrificing the main objective, one should pursue the better route (since minimizing the travel time 

would maximize the time spent in the school sites). Since the first objective is much more important 

than the second one for ILKYAR, the SWRP is formulated as a bi-level model.

In a bi-level mathematical programming, there are two optimization problems. The first 

problem is called the upper-level (or leader) problem, whereas the second problem is called the lower-

level (or follower) problem. The lower-level problem is optimized under a feasible region that is 

defined by the upper-level problem [3].

In the bi-level SWRP model, the first level is to select BSs in a given region that maximize 

the total number of students while satisfying the feasibility of the time windows constraints, whereas 

the second level is to find an optimal route of the selected schools. In the first level of the bi-level 
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SWRP, in order to deal with a feasible route, it is needed to develop a valid sequence of selected 

schools so that the time windows constraints can be satisfied. 

When the SWRP and the bi-level formulation of the VRP proposed by Marinakis, Migdalas 

and Pardalos [4] are compared, both formulations have similarities since they make the assignments 

(selections) first and then they find the route for these assignments (selections). However, development 

of the lower-level problem is done differently than [4] because we apply strict hierarchy between the 

two objectives in the levels. A verbal bi-level model for the SWRP is given below.

Verbal Bi-level Model for the SWRP:

(leader) maximize the total number of students

s.t.

selection of the BSs in a given region,

developing a sequence of the selected BSs to construct a feasible route 

satisfying the time windows constraints,

         where

(follower) minimize the total route length for the selected BSs

s.t.

TSP related constraints.

We solve the leader problem of the SWRP first and then solve a TSP for the BSs that are 

selected in the leader problem of the SWRP. The leader problem is formulated as 0-1 programming 

model whereas the follower problem is formulated as a TSP model.

4 Experimental Results and Conclusion

In our experimental analysis for the assessment of the solution quality of our approach and the solution 

effort, all computations are carried out on the test problems derived from the last nine years data of the 

ILKYAR’s science-on-wheels projects. Actually, this is the entire available data for a two-week

project because it is implemented only once a year since 2000.

We coded our models using GAMS IDE 23.1 and used CPLEX 11.2. For the lower-level 

problems, CONCORDE [5] which is a powerful TSP solver developed by Georgia Institute of 

Technology is called from a C code that converts the original distance matrix to a symmetric one and 

modifies the symmetric matrix to satisfy the time windows constraints. All the experiments were 

conducted on Pentium IV 3.20 GHz CPU PCs with 1 GB of RAM.

In the first part of our experiments, we made a brief comparison of the results obtained using 

the leader problem with two different objectives; namely, the total number of students and the total 

number of girls enrolled in the BSs to be visited. It is found that our solutions under both criteria are 

either dominating or non-dominated solutions when compared with the realized figures of the past 

ILKYAR’s projects. The differences between the lengths of the visiting tours (in the follower problem) 
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under the two different criteria are quite insignificant, which would make the decision process easier.

The maximum solution time is less than 100 seconds for the entire set.

Since the selection of the major distance limit would have a direct impact on the objective 

function value, we tested six different limits, ranging from 30 km to 180 km. Each problem instance is 

solved six times by incorporating these limits into the instance data. At the end of this part of our 

experiments, the major distance limit is suggested as 90 km because the results with major limit of 90 

km are much more comparable with ILKYAR’s results and a longer travel does not yield any 

significant amount of increment on the objective function value.

The minor distance limit on the return to hometown is another important factor in the project 

planning since the team members have to start their activities at home right after the project is over. To 

analyze the effect of the distance limit on the return, in the third part of our experiments, the SWRP

model is run under the different settings of the distance limit, changing from 100 km to 1400 km with a 

step size of 100 km. The problem turned out to be infeasible when the distance limit was less than 800 

km. It is found that a minor distance limit about 900 km is very reasonable.
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1 Introduction

Motivated by the problem situation faced by an Austrian infrastructure service provider, we develop

solution methods for what we call the service technician routing and scheduling problem (STRSP):

a given number of technicians have to be scheduled in order to fulfill a given number of service tasks.

Each task demands a technician that disposes of the appropriate skills of at least the demanded

level. Maximum shift lengths have to be respected and lunch breaks have to be scheduled. In

addition, two technicians’ tours may have to be synchronized at certain points in time in order to

complete those tasks that demand two technicians.

Recent publications originating from the field of service technician routing and scheduling

include the work of Cordeau et al. [3]. The authors consider a service technician scheduling problem

arising in large telecommunications companies. Travel times between the different locations of the

tasks to be scheduled are neglected. The focus is put on the configuration of teams and the

assignment of tasks to teams according to the required skills and skill levels, respecting task

priorities and precedence relationships between the tasks. The objective is to minimize a weighted

combination of the makespan of each priority class. In Xu and Chiu [8] staff scheduling is also

performed for a telecommunication company. Each technician disposes of a certain skill level for

each task. These skills are, however, modelled in a different way than in [3]. While Cordeau et

al. use discrete skill levels, Xu and Chiu use percentages. Furthermore, in Cordeau et al. [3] this

aspect is modelled in terms of constraints. In Xu and Chiu [8], on the other hand, each technician

is associated with a certain proficiency level for each task in the system. The objective function

maximizes the number of tasks to technicians weighted by the technicians’ proficiency levels. Each

task is thus more likely to be assigned to a technician with a high proficiency for this task than to

a technician with low or no proficiency for this task.
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2 Problem definition

The STRSP is a static problem. As in Tricoire [7] and Bostel et al. [2] the planning should be

done for several days in advance, on a rolling horizon basis. Some tasks have a validity period of

several days or weeks, while others have to be carried out on a specific day during a pre-defined

time window. Every task is associated with a given service time. Additional tasks come in every

day. As in Cordeau et al. [3] and Xu and Chiu [8] technicians dispose of different skills and skill

levels (we consider discrete skill levels). A technician can only be assigned to a task if he or she

disposes of the appropriate skills of at least the demanded level. Moreover, on most of the days a

lunch break has to be scheduled within a given time window. The lunch break can be held at any

location and may interrupt a task. The length of a technician’s working day is limited by labor

regulations concerning maximum shift lengths. We distinguish between regular, extra and over

time, expressed in terms of differing wage costs. We currently assume that vehicles are not subject

to choice, i.e. each technician is associated with a given vehicle. However, distance-based vehicle

costs vary from vehicle to vehicle. Technicians are not available every day and they sometimes

start and/or end their working days at their home locations. Normally they depart from and

return to a central depot at the beginning, respective end, of their shifts. Each technician starts to

work at a given point in time. Thus, shift lengths cannot be reduced by delaying the beginning of

the technicians’ working days. In some rare cases, however, some technicians have to start earlier

in order to fulfill tasks that have to be completed before the regular beginning of the respective

working day. Finally, a given number of tasks demand two technicians to meet at the respective

task sites in order to be completed. This introduces an aspect of tour synchronization into the

problem. The objective is to minimize total costs; the different cost components are the following:

• regular, extra- and overtime wages for the technicians,

• distance-based costs for gas and maintenance regarding the vehicles,

• outsourcing costs for tasks that cannot be fulfilled by the available technicians.

3 Solution methods

An exact as well as a heuristic solution method for the problem at hand are developed. In a first

step, the STRSP has been formulated in terms of a polynomially sized mixed integer program

(MIP). We use several pre-processing steps (time window tightening, variable fixing) in order to

reduce the solution space. Additional valid inequalities are added in a cutting plane fashion. The

STRSP is related to the vehicle routing problem with time windows (VRPTW). However, capacity

restrictions are not considered. Therefore, all known families of inequalities that rely on vehicle

capacity cannot be employed. Another complicating aspect refers to the fact that only some tasks
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are associated with time windows. Thus, depending on the percentage share of tasks associated

with a time window, time related valid inequalities, such as infeasible path inequalities (lifted into

tournament constraints [1] and separated by an enumeration procedure) are not always useful.

Subtour elimination constraints in their standard form, integrating the outsourcing aspect, and

D+
k and D−k inequalities, initially developed for the asymmetric traveling salesman problem [5]

and separated as described in Fischetti et al. [4], are also generated in a cutting plane fashion

in order to strengthen the formulation. Furthermore, a greedy solution construction heuristic has

been implemented in order to provide an initial upper bound. Note that due to the possibility

to outsource those tasks that cannot be scheduled in a feasible way, despite the fixed number of

technicians, a feasible solution can always be computed from scratch. Exact solutions for small

problem instances can be computed by means of the branch-and-cut algorithm. However, as

expected, instances of realistic size cannot be solved. These involve up 600 tasks, up to nine

different technicians and a planning horizon of up to ten days.

In order to solve real-world problems, we develop a heuristic method. The two most trouble-

some issues concern the necessary synchronization of two technicians’ routes in such a way that

they perform certain tasks together and the insertion of the lunch break. In the greedy solution

construction heuristic, the first issue is dealt with in the following way. We first insert those tasks

that demand two technicians and we then tighten their time windows to a feasible point in time.

This avoids dealing with synchronization in the heuristic scheduling algorithm. As soon as all

tasks demanding synchronization have been assigned to technicians, the remaining tasks are in-

serted using feasible cheapest insertion, ignoring the lunch break. After every successful insertion

the location of the lunch break is re-adjusted. All eligible positions are tried and the one caus-

ing the least number of time window and route duration violations is identified. Then, a greedy

task removal procedure deletes tasks from the respective route until feasibility is re-attained. All

removed tasks re-enter the pool of currently unassigned tasks and may be inserted again in a

subsequent iteration. In order to avoid cycling, they cannot be assigned a technician’s route they

were previously deleted from.

This initial solution is then improved as follows. In an iterative fashion, following the variable

neighborhood search idea [6], different neighborhood operators are employed, deciding which tasks

should be removed (outsourced) and which tasks should be re-inserted. Every task that has been

selected for insertion in the current iteration is either assigned to a day and/or to a technician,

depending on the chosen assignment procedure. In a similar vein, neighborhood operators are

defined that re-assign tasks that are currently scheduled to other days and/or technicians. Like

Xu and Chiu [8], the resulting scheduling subproblems are solved to optimality by means of the

branch-and-cut algorithm.
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4 Outlook

Possible additional real-world aspects involve scarce tools and large spare parts. The tooling aspect

concerns, on the one hand, portable equipment which can be loaded into any type of vehicle, and,

on the other hand, specific vehicles providing certain equipment, e.g. long ladders that are attached

to the roof top or flashing blue light.

Acknowledgements Financial support from the Austrian Research Promotion Agency (FFG)
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1 Introduction

We investigate the optimization of tolls and other control measures in a traffic network, taking into

account several sources of uncertainty. The goal is to produce controls that are robust to changes

in the uncertain parameters. Since such hierarchical problems are modelled as mathematical

programs with equilibrium constraints (MPEC), we are here considering their stochastic extension,

the stochastic mathematical program with equilibrium constraints (SMPEC), as introduced in [6].

Let (Ω, Θ, P ) be a complete probability space and consider the problem

(SMPECΩ) min
(x,y(·))

Eω[f(x, y(ω), ω)] :=

∫
Ω

f(x, y(ω), ω)P (dω),

s.t. x ∈ X,

y ∈ C; F (x, y, ω)T(z − y) ≥ 0, ∀z ∈ C, P -a.s.,

(1)

where y : Ω → R
m is a random element of the probability space (Ω, Θ, P ). Further, f : R

n×R
m →

R, y ∈ R
m, C ⊆ R

m is a polyhedron, and F (x, ·) : C → R
m is smooth.

The vector x ∈ R
n represents the design (or primary) variables and y ∈ R

m is the response (or

secondary) variables. The nonempty, closed and convex set X ⊆ R
n specifies the set of feasible

designs. In view of stochastic programming with recourse, SMPEC is considered as a here-and-now

type of problem, where the decision x should be taken before any realizations of uncertain data.

The authors have been much involved in the development of SMPEC and its applications, in

particular to the case of traffic control and pricing. The existence of solutions to the general SMPEC
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problem was investigated in [6, 3]. In [4, 5] and in [1, 2] we have analyzed the stability of optimal,

respectively, stationary solutions to the SMPEC when the underlying probability distribution is

itself uncertain. This is motivated by practical applications as discussed previously, since any

control scheme implemented should be robust to changes in the underlying data of the problem.

In the latter references, it is also shown how to discretize a continuous distribution using sample

average approximation (SAA) and that such an approximation will converge. This is important, as

we then may utilize any efficient means to solve the deterministic problem. The SMPEC formalism

has also been extended to cover both risk and multiple objectives.

2 A motivating example

The main objective in a network design problem is to influence the travel costs and the demands

such that some criterion is optimized. The design problem can be formulated as an MPEC, where

the traffic equilibrium is described by a system of mixed complementarity constraints. An example

of a network design problem is given by setting link tolls through the design parameter x ∈ R
n,

with n ≤ |E| (the number of links), such that the total travel cost f(x, v) :=
∑

l∈E

tl(x, v)vl is

minimized, and where, for a given design x, the link flows v is given by the user equilibrium

conditions. We present a small numerical example in the application of network design under user

equilibrium. The deterministic example is known as Braess’ paradox, demonstrating that adding

an extra link to a network can cause an increase in the total travel cost. The figures (graphs I and

II) below show the network graph with four and five links, respectively.
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We have one OD-pair (A, B) with a fixed demand of d = 6 units. The original network

has two paths, using the links (1, 4) and (3, 2), respectively; graph II has three paths, using the

links (1, 4), (3, 2) and (3, 5, 4), respectively. The link travel costs are ti = 50 + vi for i = 1, 2,

ti = 10vi for i = 3, 4, and t5 = 10 + v5. Given theses costs, the user equilibrium flows for graph

I are v = (3, 3, 3, 3)T, h = (3, 3)T, with equilibrium travel cost π = 83. For graph II, the user

equilibrium flows are v = (2, 2, 4, 4, 2)T, h = (2, 2, 2)T, with equilibrium travel cost π = 92.

We now consider adding a toll x on the new link, thus altering the travel cost to t5 = 10+v5+x,

and consider the problem to minimize f(x, v)+ τx2 over x ∈ X = { x ∈ R | 0 ≤ x ≤ 14 } and τ > 0

is a penalty parameter against setting a too high toll value. For a sufficiently small value of τ ,
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the optimal solution is x∗ = 13 and the optimal total travel cost is f(x∗, v∗) = 498. The optimal

solution x∗ = 13 is the threshold value for which there will be no flow on link 5, which in turn will

give a lower total travel cost.

Now consider the case when the travel costs are stochastic. In particular, assume that ti =

10vi + ωi−2, i = 3, 4, and that each component in ω is independent and drawn from a normal

distribution with mean 0 and variance 1. The corresponding SMPEC model is solved using the

discretization scheme SAA; since travel costs here are strongly monotone, optimal and stationary

solutions are stable w.r.t. changes in the probability distribution, and SAA converges.

For a run with a maximum of 500 samples, the solver converged to the stationary solution

x∗ = 14. Below we plot histograms of the resulting objective values and equilibrium travel costs.
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In order to illustrate the influence of the variance of the uncertain parameter on the solution,

we also show histograms of the equilibrium travel cost for stationary solutions corresponding to the

four values σ2
j ∈ {0.01, 0.025, 1, 4}, j = 1, 2 of the variance of the stochastic variable. The results

are not surprising: a larger variance implies a larger spread in the response. Having access to

histograms for responses, i.e., equilibrium solutions, is a feature of SMPEC which may be valuable

for getting specific insights into an application.

3 Numerical examples

The main new contribution of the presentation compared with the existing literature will be numer-

ical examples of solutions of toll optimization problems, both large-scale ones for the deterministic,

MPEC, case using global solvers, and for the stochastic, SMPEC, case, using SAA and local solvers.

If time permits, we will also investigate the utilization of equity objectives, which is quite naturally

included as risk measures.
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1 Context and Problem Description 

Traffic simulation models are helpful or even indispensable while planning or managing an evacuation. 

A multitude of dynamic traffic models have been developed to this end to understand and predict 

evacuation conditions on a road network, and the effect of traffic regulations and control measures 

hereon. In many earlier studies, evacuation is recognized as a special case regarding different travel 

demand patterns, driver behavior, traffic management, etc., resulting in new models dedicated to 

evacuation (e.g., OREMS [1], CEMPS [2], DYNEV [3], MASSVAC/TEDSS [4]). More recently, a 

large number of evacuation studies are conducted using traffic models originally developed for regular 

day-to-day traffic applications, including both microscopic models (e.g., PARAMICS, CORSIM, 

VISSIM) and macroscopic models (e.g., DYNASMART, DynaMIT, VISTA, CONTRAM). In several 

studies using microscopic models, model parameters describing driving behavior (headway, 

acceleration, reaction time) have been adjusted for the case of emergency evacuation.  

These models used in past evacuation studies typically focus on traffic flow dynamics to 

identify bottlenecks where congestion is likely to occur and compute expected evacuation times. They 

do so by using a dynamic traffic assignment (DTA) model describing travel behavior and traffic flow. 

In spite of advances in evacuation modeling research, main shortcomings remaining in DTA models 

used for evacuation studies relate to (i) route choice behavior (user-equilibrium assumptions, invalidly 

disregarding travelers’ unfamiliarity with evacuation traffic conditions), (ii) compliance behavior 

(actual travel decisions are modeled equal to instructed departure times, destinations and routes, 

invalidly disregarding travelers’ preferences and compliance decisions), and (iii) network dynamics 

(road infrastructure is static, invalidly disregarding the impact of DTM measures and road network 

disruption due to the hazard). These essential aspects are typically neglected in current evacuation 

models, and hence in the scenario analyses when applying these simulation models. The consequences 

are 1) unreliable and likely wrong model outcomes and 2) being unable to, e.g., evaluate the impact of 

variations in traveler compliance, or test robustness of an evacuation strategy towards uncertain hazard 

conditions. In this paper, we propose the new DTA model EVAQ specifically tailored to the case of 

evacuation thereby solving the abovementioned shortcomings. The EVAQ model is described and 

applied to a large-scale case study of the evacuation of the Dutch metropolitan area of Rotterdam. 
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2 Evacuation Model Framework 

The evacuation model EVAQ predicts travel behavior and traffic conditions on a road network for a 

wide range of emergency situations, such as hurricanes, bush fires and floods. Compared to other 

evacuation traffic models, the advantageous distinguishing features of EVAQ are: (i) modeling of 

dynamic road infrastructure, (ii) incorporation of adaptive route choice behavior towards network 

dynamics and travel information, and (iii) incorporation of evacuation instructions and traveler 

compliance behavior. EVAQ models time-dependent road infrastructure, meaning that speed limits, 

capacity and flow direction can be time-varying due to the hazard’s progress in space and time (e.g., 

links becoming inaccessible due to flooding) and prevailing traffic regulation and control measures 

(e.g., contraflow operations to increase outbound capacity). While other models typically relate time-

varying road infrastructure only to an impact in traffic flow propagation (e.g., lower speeds results in 

drivers experiencing higher travel times), in EVAQ this also affects en-route travel choice behavior 

(e.g., lower speeds leads to drivers adapting their routes at the next intersection). This same rerouting 

behavior is expressed when travelers receive new information on current traffic conditions. Both pre-

trip and en-route route choice behavior are thus modeled by implementing a hybrid route choice model 

[5]. Traveler compliance towards instructions regarding departure time, destination and route is 

modeled by internalizing the generalized costs of deviating from these evacuation instructions, where 

these generalized costs are a function of the difference between the preferred travel decision and the 

 
Figure 1: DTA components of EVAQ 
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instructed travel decision. A parameter is introduced dictating the relative weight of this cost term 

representing the travelers’ willingness to comply and the authorities’ enforcement to control. This way, 

subtle and behaviorally sound thresholds are built into the traveler choice model components allowing 

the researcher to analyze the impact of variations in traveler information and compliance behavior [6]. 

The model framework is depicted in Figure 1, showing the three model components for 

departure time decisions, route decisions, and traffic flow, and the three model inputs relating to 

instructions, information, and network dynamics (affected by the hazard). In the paper, we give a 

mathematical formulation of the model components modeling travelers’ decisions regarding departure 

time and route (implying destination), and elaborate on how we incorporate the impact of travel 

information and instructions on these decisions. Subsequently, we present the traffic flow component 

simulating the traffic conditions, and show how network dynamics due to traffic control and network 

disruptions are modeled. 

3 Model Application 

To illustrate the scalability and potential of EVAQ, the model is applied to a case study describing the 

evacuation of the Dutch metropolitan area of Rotterdam (see Figure 2). With a population exceeding 

600,000 inhabitants, the municipality forms the second largest in the country. The road network used 

in this study consists of the Rotterdam ring road, motorways connected to this ring road, main 

(provincial and urban) arterials, and collector roads, leading to approximately 500 links and 220 nodes, 

including 80 origins. EVAQ is implemented in Matlab. In case of applying a time step of 20 seconds in 

the traffic simulation model and simulating a time horizon of 48 hours, the CPU running time on a 

Windows XP computer with 2.2 GHz processor ranges from 10 to 20 minutes.  

 

Figure 2: Rotterdam evacuation network 
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Rotterdam being a large harbor city, evacuation due to flooding, industrial accidents, or 

terrorist threats can be considered conceivable. Multiple simulations have been run varying in possible 

network exit points, traffic information levels, evacuation instructions, traveler compliance behavior, 

and network dynamics. These behavioral and control settings determine dynamic travel demands and 

route flow rates, and thus traffic states and network outflow utilization, where these relationships are 

shown to be (in some cases highly) non-linear and non-monotonic. Network clearance times for the 

different settings vary from 24 to 48 hours. More on the evacuation study can be found in [6]. 

EVAQ outputs link inflow and outflow rates, departure and arrival patterns, travel times, 

average speeds, queue lengths, etc. This dynamic information can be used to make founded decisions 

on, e.g., the latest possible time to start evacuation, the best evacuation routes, the impact of traffic 

information and evacuation instruction provision including compliance behavior, the most suitable 

dynamic traffic control measures, etc. 

4 Discussion 

This contribution presents the evacuation DTA model EVAQ, dealing with several shortcomings of 

current evacuation models, as mentioned above. The model framework is discussed and each of the 

components is described, as well as the manner in which these interact. The scalability and potential of 

EVAQ is illustrated by a real-life application describing the evacuation of the Dutch municipality of 

Rotterdam. In conclusion, the model framework and formulation, case results, discussion and 

conclusions presented in the paper can be used 1) to give direction to further research along this line on 

incorporating traveler choice behavior, compliance behavior, and network dynamics in evacuation 

simulation models, and 2) to understand the role of these aspects in the evacuation process and their 

assessment in evacuation planning studies. 
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1 Introduction

Airport congestion is a serious problem in many cities around the world. In 2007, flight delays cost

passengers, airlines and the U.S. economy more than $40 billion. Unfortunately, increasing capacity

is not an option in many cases. Despite a vast amount of literature on tolls in ground transportation,

the classical results on road congestion are not applicable to airport. The fundamental difference is

that road users are non-atomic while an airport is served by a relatively small number of airlines.

In particular, an airline experiences additional delays imposed on its own flights if it schedules an

additional flight at a congested airport.

In air transportation, Daniel [2, 3] was the first to illustrate the potential benefits of congestion

pricing with a simulation model. Brueckner [1] and Pels and Verhoef [4] show that an airline should

only pay for the congestion damage that it imposes on other airlines.

The main goals of our work are to determine when congestion pricing is beneficial, to quantify

its potential efficiency gains, and to explore novel ways to implement it such that both airlines and

passengers can benefit. In particular, the main contributions of this paper are:

• Contrary to most existing literature which focuses on identical airlines, we allow asymmetry

across many airlines with multiple types of aircrafts.

• We capture the reality that only part of the toll revenue collected may be used to benefit

airlines and passengers.

• We analyze the problem from the societal perspective and quantify the individual impact on

airlines and passengers.

• We propose an alternative implementation approach which is based on welfare sharing and

achieves both efficiency and fairness.
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2 Model

We consider an airport in a single period when congestion is always present. To reduce notation

and enhance the transparency of the model, we only describe the setting for multiple airlines with

one type of aircraft in this abstract. The results extend to the case with multiple aircrafts per

airline.

In this setting, there are n airlines competing by deciding how many tickets to sell, q =

(qi, ..., qi), where qi is the number of tickets sold by airline i. We adopt the assumptions in

[4], where each airline’s price demand function pi(q) and average congestion cost li(q) are linear

functions of the total volume of traffic in the airport. However, contrary to [4] which studies an

identical duopoly setting, we allow pi(q) and li(q) to vary across airlines.

We analyze a three-level model: at the base level, passengers choose airlines according to the

Wardrop Equilibrium Principle, that is, selecting the cheapest and fastest way to travel; the airlines

form the middle level and participate in an oligopolistic quantity competition to maximize their

own profit; at the highest level, the airport regulator maximizes the total social welfare by imposing

a toll on each aircraft that uses the airport.

Airline’s profit, πi, is obtained by deducting its operating cost and congestion cost from

the revenue generated from ticket sales. Under quantity competition, taking the competitors’

optimal output q∗−i as given, each airline solves the following profit-maximizing problem, i.e.,

maxqi≥0 πi(qi,q∗−i).

The regulator acts as the Stackelberg leader and determines tolls anticipating that airlines will

select their ticket quantities according to a Nash equilibrium. To better reflect reality, we introduce

a parameter ρ ∈ [0, 1] to denote how efficiently the regulator utilizes the toll revenue. ρ = 1 arises

in the ideal situation that all the toll proceeds have been used to improve social welfare.

The total social welfare incorporates the consumer surplus (CS), all airlines’ profits (PS), and

the actual utilization of the toll revenue (TR), ρTR. For a fixed toll utilization rate ρ, the regula-

tor’s welfare-maximization problem is defined as follows,

maxt w(ρ) = CS(q(t)) + PS(q(t)) + ρTR(q(t))

s.t. q(t) = arg max
qi(t)≥0

πi(qi,q∗−i), ∀i = 1, 2, ..., n. (1)

3 The “Price” of Decentralization

We denote the optimal total social welfare obtained by solving (1) and the total welfare under the

no-toll setting as w∗(ρ) and wuo respectively.

Lemma 3.1 w∗(ρ) increases in ρ and there exists ρ̄ such that w∗(ρ̄) = wuo.
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The results give a criterion for when congestion pricing should be implemented: if ρ ≤ ρ̄, the

regulator should not intervene in the market. It is interesting to note that ρ̄ is often larger than

0.8, which implies a rather stringent requirement on the regulator’s ability of utilizing the toll

revenue in order to justify imposing congestion pricing.

When ρ = 1, i.e., all toll revenues directly benefit society, the optimal total social welfare, w∗,

is achieved. We use wuo

w∗ as a measure of efficiency loss in the no toll setting.

Definition 3.1 The congestion sensitivity ratio is defined as γ = mini
l′i(q)
p′

i
(q) .

While l′i(q) measures the airline’s marginal profit loss due to congestion (e.g., increase in fuel ex-

penses and crew costs), p′i(q) measures the marginal revenue from selling an extra ticket, excluding

the impact of congestion. A high γ indicates that airlines are more sensitive to congestion, imply-

ing a serious congestion problem in that airport. On the other hand, when γ is small, airlines are

not too concerned about congestion.

Theorem 3.1 When γ ≤ 1, wuo

w∗ ≥ 3
4 ; when γ > 1, wuo

w∗ ≥ 1
1+γ .

When γ is small, the no-toll setting loses at most 25% of the total welfare compared to the

setting with optimal tolls. However, when γ is large, i.e., the congestion problem at the airport

is severe, the loss of welfare can be arbitrarily large, which implies large potential efficiency gains

can be achieved from implementing congestion pricing.

4 Welfare Redistribution

As pointed out in the previous section, when ρ > ρ̄, the total social welfare exceeds wuo (social

welfare without tolls). However, both airlines and passengers are worse off. The producer sur-

plus PS(ρ) decreases because airlines are forced to produce under the profit-maximizing quantity.

Meanwhile, a smaller number of traveling passengers results in a lower consumer surplus CS(ρ). We

are interested in finding out how to redistribute the toll revenue such that airlines and passengers

will have higher surpluses than their counterparts PSuo and CSuo under the no-toll setting.

Suppose the regulator plans to utilize ρTR by giving φ portion of the toll revenue to airlines

and the rest to passengers. We denote the new producer surplus and consumer surplus after the

welfare redistribution as PS and CS respectively, whereby PS = PS(ρ) + φρTR, and CS =

CS(ρ) + (1− φ)ρTR.

Theorem 4.1 If the toll revenue is redistributed according to φ∗, where φ∗ = PS(ρ)
PS(ρ)+CS(ρ) , then

PS ≥ PSuo and CS ≥ CSuo.

The result incorporates the notion of “fairness” into welfare sharing, i.e., the fraction of the toll

revenue given to airlines and passengers is proportional to their original surplus. In addition, when
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the toll revenue is divided according to φ∗, both airlines and passengers are better-off than the

no-toll setting. One natural question is how to implement the welfare sharing in practice. While

toll revenue could be given to airlines as some form of rebate, it is not immediately clear how to

pass it on to passengers.

In view of this difficulty, we propose an alternative way to implement congestion pricing which

is efficient and both airlines and passengers enjoy higher surpluses.

Theorem 4.2 There exists a price function p̃i(q) = pi(q) + f(φ∗), such that the total social

welfare in the no-toll setting achieves w∗. In addition, airlines and passengers achieve PS and CS

respectively.

Instead of charging a toll on each flight and then giving back part of the toll revenue to achieve

higher surplus, the regulator could impose a surcharge on fares, f(φ∗). Under the new price demand

function, the society operating at the Nash equilibrium achieves the optimal total welfare, w∗. This

is because the increase in fare prices reduces the demand, consequently reducing congestion in the

airport. At the same time, higher fare prices allow airlines to achieve higher profits and traveling

passengers enjoy higher utility. Simulation results show that the surcharge is usually small, e.g.,

less than 5% increase in price.

This alternative approach of implementing congestion pricing (i.e., modifying the price function

with a surcharge) bypasses the difficulty of physically redistributing the toll revenue to airlines and

passengers. It is also efficient as the society achieves optimal welfare. Furthermore, since this

approach promises airlines higher earnings, it is more likely to gain support and acceptance in

practice.
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1 Introduction

The CVRP can be described as follows: A set of customers, each with a demand, needs to be

serviced by a number of vehicles all starting and ending at a central depot. Each customer must

be visited exactly once and the capacity of the vehicles may not be exceeded. The objective

is to service all customers traveling the least possible distance. In this abstract we consider a

homogeneous fleet, i.e., all vehicles are identical. The VRPTW extends the CVRP by imposing

that each customer must be visited within a given time window. The overlap of the CVRP and

the VRPTW will in the following be referred to as the VRP.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRP is to split the

problem into a master problem (a Set Partitioning Problem) and a pricing problem (an Elementary

Shortest Path Problem with Resource Constraints (ESPPRC), where capacity (and time) are the

constrained resources). A restricted master problem can be solved with delayed column generation

and embedded in a branch-and-bound algorithm to ensure integrality. Applying cutting planes

either in the master or the pricing problem leads to a Branch-and-Cut-and-Price algorithm (BCP).

[1] implemented a successful BCP algorithm for the VRPTW by applying sub-tour elimination

constraints and two-path cuts, [2] generalized the two-path cuts to the k-path cuts, and [3] applied

a range of valid inequalities for the CVRP based on the branch and cut algorithm of [4]. Common

for these BCP algorithms is that all applied cuts are valid inequalities for the VRPTW respectively

the CVRP with regard to the original arc flow formulation, and have a structure which makes

it possible to handle values of the dual variables in the pricing problem without increasing the

596



complexity of the problem. The BCP algorithm was extended to include valid inequalities for

the master problem by applying the subset row (SR) inequalities to the Set Partitioning master

problem in [5] and later by applying Chvátal-Gomory Rank-1 (CG1) inequalities in [6]. [7] use an

approach where columns with potentially negative reduced cost is enumerated after good upper

and lower bounds are found, this sometimes leads to memory issues with difficult instances. After

enumeration a general MIP solver is called. Recently, [8] presented an new decomposition model

based on bounded partial paths, where the solution space of the pricing problem is limited by

bounding some resource.

We propose to combine the latter two strategies, i.e., enumeration of columns with potentially

negative reduced with the columns being bounded partial paths. The main ideas of [7] would be

utilised until the enumeration step where the partial path columns would be used instead of the

much larger set of elementary routes, thus hopefully solving the memory issues notied in [7]. The

gap between the lower (LB) and the upper bound (UB) of the master problem obtained with the

elementary routes can be maintained by bounding LB.

2 Mathematical Model

The VRP can formally be stated as: Given a graph G(V,A) with nodes V and arcs A, a set R of

resources R = {load (and time)} where each resource r ∈ R has a lower bound ar
i and an upper

bound br
i for all i ∈ V and a positive consumption τ r

ij when using arc (i, j) ∈ A : i ∈ C, find a set

of routes starting and ending at the depot node 0 ∈ V satisfying all resource limits, such that the

cost is minimized and all customers C = V \ {0} are visited.

In the following let cp be the cost of partial path p ∈ P , λp be the binary variable indicating

the use of p, and T r
ij (the resource stamp) be the consumption of resource r ∈ R at the beginning

of arc (i, j) ∈ A. Let δ+(i) and δ−(i) be the set of outgoing respectively ingoing arcs of node i ∈ V .

Finally, let LB be a given lower bound. The master problem:

min
∑

p∈P

cpλp (1)

s.t.
∑

p∈P

cpλp ≥ LB (2)

∑

p∈P

∑

(i,j)∈δ+(i)

α
p
ijλp = 1 ∀i ∈ C (3)

∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V (4)

∑

p∈P

λp = K (5)

∑

(j,i)∈δ−(i)



T r
ji +

∑

p∈P

τ r
jiα

p
jiλp



 ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (6)
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ai

∑

p∈P

α
p
ijλp ≤ T r

ij ≤ bi

∑

p∈P

α
p
ijλp ∀r ∈ R, ∀(i, j) ∈ A (7)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (8)

λp ∈ {0, 1} ∀p ∈ P (9)

Where α
p
ij is the number of times arc (i, j) ∈ A is used on path p ∈ P and sp and ep indicate the start

respectively the end node of partial path p ∈ P . Constraints (3) ensure that each customer is visited

exactly once. Constraints (4) link the partial paths together by flow conservation. Constraint (5)

is the convexity constraint ensuring that K partial paths are selected. Constraints (6) and (7)

enforce the resource windows.

3 Algorithmic Overview

The algorithm is inspired by the one of [7]. Heuristics can be applied where ever being beneficial.

i By the use of column generation with columns being elementary routes and all advantageous

cuts being utilized (e.g., (SR)), find a big LB and a small UB.

ii Solve the LP-relaxed master problem (1)–(9) with the LB from i.

iii Due to the bounds (9) each column in P cannot be in a solution more than once, hence, any

partial path p ∈ P in an optimal solution must satisfy: c̄p ≤ UB−LB, where c̄p is the reduced

cost of column p in the last iteration of ii. Enumerate all these.

iv Apply all the columns from iii to the master problem, add the cuts of Section 4, and give the

problem to a general MIP-solver of your own choice.

4 Tightening Bounds

Constraints (6) and (7) can be tightened by:

∑

p∈P :ep=i

(ap + τp)λp ≤
∑

(i,j)∈δ+(i)

Tij ∀i ∈ C (10)

∑

p∈P,sp=i

apλp ≤
∑

(i,j)∈δ+(i)

Tij ≤
∑

p∈P,sp=i

bpλp ∀i ∈ V (11)

where ap, bp, and τp are bounds on the partial path p and due to integrality on p can yield tighter

bounds. Lower bound ap for p is defined as the latest possible departure time from the start-node

s without changing the earliest possible arrival time at the end-node e. Upper bound bp for p is

defined as the latest possible departure time from s while p still being feasible. Travel time τp is

defined as the time spend on p, i.e., traversing edges and waiting for windows to open. It is noted

that τp is always constant given ap and bp as defined above no matter which departure time t :
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ap ≤ t ≤ bp, since the traversal times of edges are constant and a difference in waiting time would

yield a conflict with the definition of ap. As a consequence of this, ap = bp if there is waiting time

on p, and if ap 6= bp then no waiting time occurs on p.

Even though the influence on the reduced cost with these cuts can be handled in the pricing

problem, experience points to it not being easy and not without negatively influencing the running

time. In the context of enumeration the dual cost of these cuts do not have to be handled since they

are added after the enumeration procedure, thus obtaining the smaller solution space for “free”.
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1 Problem description

Passengers using public transport systems often experience waiting times when transferring be-

tween two scheduled services. We propose a planning approach which seeks to obtain a favourable

trade-off between the conflicting objectives of operating cost and quality of passenger service as

part of the vehicle scheduling process for such systems.

The well-known Vehicle Scheduling Problem (VSP) is concerned with determining a set of

vehicle schedules to operate a given timetable at the lowest possible cost. This problem is often

encountered within bus operation in public transport.

The Simultaneous Vehicle Scheduling and Passenger Service Problem is based on the VSP, with

two significant modifications: First, the trips of the timetable are allowed to be shifted by a few

minutes to an earlier or later departure time, in the hope that this increased flexibility can lead

to a lower operating cost, without introducing significant changes to the timetable. Secondly, a

measure of passenger service is introduced for the evaluation of solutions, in order to control the

effects of this timeshifting.

The measure of passenger service used in the calculations is based on the passenger waiting

times at transfers between different lines. These transfers can take place between two lines that

are both under the control of the model (and thereby have varying departure times), or to/from

a line that is external to the model (and thereby has a fixed timetable). It should also be noted

that passenger waiting times considered in this work, are only waiting times at transfers and not

those experienced by passengers entering the system.

An application from the Greater Copenhagen Area is studied, dealing with the network of local

express buses, which is build up around the local train network. A schematic overview of this

network can be seen in Figure 1, where the dashed lines represent train lines (roughly with the
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form of a fan), and the solid lines (all shades) show the available bus lines, of which most are

perpendicular to the train lines.

Figure 1: The structure of

the overall public transportation

network in the Greater Copen-

hagen Area

The SVSPSP takes as input existing timetables and data

regarding passenger flow at transfer points. For the SVSPSP

these passenger flows are assumed to be fixed and independent

of the operated timetables. The set of input timetables dictates

the required level of service, and the number of departures is

unchanged by the solution. Additionally, each departure can

only be timeshifted by a limited number of minutes, meaning

that the overall distribution of departures over the span of the

day is not changed significantly.

To the authors’ knowledge, no existing literature deals with

a problem identical to the SVSPSP, and few similar prob-

lems have been treated, integrating vehicle scheduling and

timetabling problems. The integration of timetabling and

multi-depot vehicle scheduling is studied in [2] with the aim of

reducing costs (reducing the number of vehicles) while ignoring

passenger waiting times. The approach allows the trip starting

times for each line to be timeshifted to allow greater flexibility

in the vehicle scheduling part. The paper presents integer pro-

gramming models as well as a local search algorithm that solves

a network flow problem in each local search iteration. [1] also

integrates vehicle scheduling and timetable synchronisation in

an optimisation problem. The authors consider several terms

in the objective function: number of vehicles required, number

and quality of transfer possibilities and the so-called headway evenness. The second term aims at

minimising passenger inconvenience, while the last term attempts to make regular arrivals on each

line. These three terms are weighted together.

2 Data issues

The problem has been solved on a dataset derived from real-life data from the Greater Copenhagen

Area, providing the geographic information and route networks. The currently operated train

timetables have been used as fixed input, and the current bus timetables have been used as the

starting point for the solution.

Real-life data regarding numbers of (dis)embarking passengers at each stop are unfortunately
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not available at present, and have instead been estimated depending on line, location, and time

of day. Furthermore, a percentage distribution of (dis)embarking passengers among lines available

for transfer has been estimated. Finally, the combination of these numbers has led to the number

of transferring passengers at each existing connection.

The units of the different objectives (operating cost and passenger waiting time) have been

combined by conversion to a common monetary unit, by using the value of travel time recommended

by the Danish Ministry of Transport.

3 Solution and results

The SVSPSP has been solved using a Large Neighbourhood Search (LNS) approach [3], where

the initial solution is constructed using a greedy VSP heuristic on the existing timetable. The

destroy operator removes trips either at random, or based on similarity with previously removed

trips, where the measure of similarity is based on shared trip end points or proximity in time. At

insertion each trip may be timeshifted with a certain percentage, and the procedure is then based

on a cheapest insertion principle. The acceptance criterion for a new solution is based on simulated

annealing.

The solution algorithm has been tested on instances of 3 different sizes based on subsets of

increasing size of the real-life data. First a “small” instance, containing 3 bus lines (black in

Figure 1), which all have quite many (5–6) intersections with the train network, but few connections

between buses. These lines have a rather high passenger intensity, and a total of 538 trips per

day. The “medium” instance contains 5 bus lines and is a superset of the small instance (black

and dark grey in Figure 1), with on average slightly fewer intersections with the train network,

and not quite as many passengers (792 trips per day). Finally, the “large” set contains all 8 bus

lines that are in current operation in the real-life dataset, with a mixture of transfers to trains and

buses and a total of 1400 trips per day.

cost red. empty time shifts

3 lines 3.3% −8.9% 18.1% 73.8%

5 lines 3.2% −7.8% 22.5% 78.2%

8 lines 2.0% −7.1% 16.4% 76.4%

Table 1: Solution improvements for different problem sizes

Table 1 summarises the results obtained by running the LNS heuristic for 24 hours, with

reductions compared to a reference solution obtained using the same heuristic without allowing

timeshifting. The table shows the total cost reduction, the reduction in empty mileage (a negative

reduction indicating that empty mileage has increased), the reduction in passenger waiting time,
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and the number of trips that have been timeshifted.

The total cost that is considered in the table is a combination of operating cost and cost of

passenger waiting time, and the results show that a certain reduction of this cost (2–3%) can be

obtained by the suggested solution procedure. This happens at the expense of empty mileage

(increasing by 7–9%), but leads to a considerable reduction of passenger waiting time at transfers.

Finally, we can see that around 75% of all trips have been timeshifted in the final timetable,

indicating that timeshifting certainly has an impact.

Furthermore, we can consider the degree of “memorability” of the obtained solutions, which we

use to express that the timetable is easier for passengers to remember if buses depart at regular

intervals. This is appreciated by operators, but has not been included in the optimisation. For

the solutions reported above, the memorability is in the range 35–50%, which is a considerable

reduction in comparison to the reference solution, where these values are in the range 72–84%.

4 Further work

Some suggestions for further work on the problem presented here would be twofold; first, it could

be interesting to obtain better data for the passenger movements in the case study, and second,

some improvements concerning the solution procedure are possible.

In particular, the SVSPSP could be treated as a multiobjective problem, regarding the operating

cost and passenger waiting time as separate objectives, for example by considering the improvement

of passenger waiting time, that can be obtained by limiting the allowed increase of total operating

cost (possibly to zero).

Furthermore, the memorability of a solution could be considered an additional objective and

added to the solution procedure. The results so far indicate that this value does indeed deteriorate

under the current solution approach.
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1 Introduction 

Airport congestion and flight delays are among the main problems faced today by the air transportation 

industry, being at the origin of important losses for the airlines and for the economy as a whole (see [1] 

and [2] for information about the US). In this article, we present a mixed-integer optimization model for 

airline network design where the implications of airport congestion and flight delays are taken into 

account. An application of the model made for a simplified version of the TAP Portugal network indicates 

that the model can provide very useful results within reasonable computation effort. 

2 Problem 

We focus on the problem of an airline wanting to determine the “next season” flight schedule and fleet 

assignment that maximizes its profit. The airline has a given fleet, serves a given number of markets with 

a hub-and-spoke network, and operates mainly in slot-constrained airports. Vehicle costs per aircraft and 

leg and airport costs per aircraft are assumed to be known, as well as the average revenue per leg.  The 

unconstrained forecast demand for non-stop and connecting itineraries is also known. This demand can be 

satisfied in non-stop and one-stop itineraries, the latter made either by the airline or by partner airlines in 

one of the flight legs. Market share is a function of the flight frequency in the market, assuming that the 

airline infers what the competitors will do. In each airport the number of slots that the airline can use are 

known – they can be fixed in time or vary within a given time period. Finally, the arrival distribution 

pattern per airport and hour, which is related with the “level of congestion”,  is known for the last season. 

It is important to underline that this is a short-term model, i.e. these are tactical decisions for the next 

season based on recent data from airports and airlines and from short-term forecasts.  

3 Optimization model 

Consider the following notation: 

Sets: A = {1, …, A} - set of airports; P = {1, …, P} - set of O/D travel demand periods; T = {1, …, T} - 

set of slot time windows; F = {1, …, F} - set of aircraft types. Two sub-sets are needed: A0 = {1, …, A0} 

- set of hubs airports; TP = {1, …, TP} - set of slot time windows belonging to each demand period p.  

Parameters: r
N

jk  - average revenue for non-stop itineraries on market jk ($ per passenger); r
C

jk - average 

revenue for connected itineraries on market jk ($ per passenger); cVjkf  - vehicle cost for an aircraft of type f 
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on flight leg jk ($ per flight); cAjf  - airport cost for an aircraft of type f in airport j  ($ per flight); α
N

jkp – 

recapture rate on market jk for demand period p on non-stop itineraries; α
C

jkp – recapture rate on market jk 

for demand period p on connected itineraries; cDf – delay cost for an aircraft of type f ($/slot time 

window); pjt,t’-t – probability of a flight set to arrive on airport j on time period t being delayed more than 

(t’-t) slot time windows; cT
MIN

j  – minimum connection time for passengers on airport j (measured in slot 

time windows); cP - average cost for each disrupted passenger ($/pax); tjk - travel time without delay 

between airports j and k; sAjt - available slots on airport j in slot time window t; nf  - number of aircraft of 

type f ; nf  - number of aircraft of type f; d
N

jkp - demand for non-stop itineraries on market jk in period p; 

Mjk – airline market share on market jk; d
C

jkp - demand for connected itineraries on market jk in period p; 

sVf  - capacity of an aircraft of type f;  

Decision Variables: q
N

jkt - passengers that fly non-stop between airports j and k in time window t; q
C1

jhkt - 

passengers on itinerary j-h-k that fly from airport j to hub h taking off from j in time window t; qC2
jhkt - 

passengers on itinerary j-h-k that fly from hub h to airport k taking off from h in time window t; xjkft - 

number of flights by aircraft type f on leg jk that take off in slot time window t; z
N

jkp - spill passengers on 

non-stop itineraries on market jk in period p; z
C

jkp - spill passengers on connected itineraries on market jk 

in period p; wjhktt’ - waiting passengers at airport h on itinerary j-h-k that are set to arrive on airport h in 

time period t and depart from airport h on time period t’; yjft - number of aircraft of type f that are ready to 

take off from airport j in slot time window t. 

Using the notation above, an airline network design problem can be represented with the 

following optimization model:  
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The objective function (1) of this model expresses the maximization of the operational profit (Π) 

of the airline. The revenues are average values for non-stop and connecting itineraries. The costs 

considered are: vehicle costs (e.g., fuel, crew, maintenance) airport costs (e.g., landing fees), spill costs, 

and delay costs. Spill costs are the loss in revenue due to not been able to satisfy the potential demand. 

Aircraft delay costs are the direct costs to the airline of having an aircraft delayed – fuel and crew costs 

and possible costs at the airport.  Mathematically, the aircraft delay cost is equal to the average unit 

aircraft delay cost multiplied by the probability of a flight being delayed more than (t’-t) time windows. 

Passenger disruption costs are the costs to the airline of having a passenger that misses a connection due 

to delays in a previous flight-leg. It is defined by the multiplication of the average unit cost of a disrupted 

passenger by the probability of having a delay higher than the connection time and by the number of 

passengers in that itinerary. Both congestion costs (aircraft and passengers) assume that the delay patterns 

at an airport follows a probability function which depends on the airport and period of day. The 

probability function is derived from historical data. 

Twelve sets of constraints are included.  Capacity constraints (2) restrict the use of an airport to 

the existing slots. Balance constraints (3) ensure that at the end of the time plan the number of take-offs 

and landings is equal per aircraft type and airport. Availability constraints (4) limit the use of aircraft to 

the existing fleet. Continuity constraints (5, 6) guarantee aircraft continuity in each airport, time period, 

and aircraft type. Demand equation (7) specifies for non-stop passengers whether the airline demand for 

each market is either satisfied or spilled. The non-stop demand is the number of passengers willing to 

travel in the period multiplied by the airline market share plus the passengers that were transferred from 

the previous period. Constraints (8) play a similar role for connecting passengers, while taking into 

account whether both legs are flown by the airline or one of them is flown by a partner airline. In both 

demand equations (7 and 8), the market share (M) is a piecewise linear approximation of the frequency 

share of the airline, assuming that rival airlines offer a known frequency. In connecting itineraries with 

both legs flown by the same airline the passengers in the first and second flight-legs must be the same – 

constraint (9). Constraints (10) guarantee that in each flight the number of seats must be higher than the 
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passengers assigned to the flight. Constraints (11) and (12) define the number of waiting passengers in the 

hub airport of each connecting and their waiting time.  

4 Model application 

The model was applied to TAP Portugal, an airline that flies non-stop to more than 60 airports, half of 

them with a weekly frequency of at least 7 flights (the ones used to test the model). Preliminary results 

show that the profit can be increased up to 5% by including the delay considerations and the market share 

approximation in the model. The results show that the main TAP Portugal hub (LIS) gains flight 

frequency from the secondary hub (OPO) and that domestic frequency is decreased from Lisbon to 

Azores and Faro. The reduction of flights from OPO is accompanied with an increased in frequency to 

that markets from Lisbon, an airport in which competition is higher (Figure 1). It also noteworthy that 

daily flight frequencies varies at most 1 flight/day. The percentage of delay costs in the total costs is 

between 10% and 13% which is a little higher than usual because it includes possible costs with passenger 

disruption. The passenger waiting time is increased around 10% to around 100 minutes but expected costs 

due to disruption can be reduced by 30%.  The average number of feasible connections per flight is 4 and 

the number of flights without any feasible connection diminishes. In transcontinental flights this number 

can go up to 29, which reveals the importance of considering passenger disruption. For hub-and-spoke 

networks with few hubs (TAP Portugal case), instances with 30 airports, 100 legs, and 300 markets can 

be solved with a top-quality optimizer in around 3 minutes when slots are known, and in 5 minutes when 

they can be chosen (within a given maximum number of slots per day in each airport). 
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1 Introduction 
 

Different Adaptive Traffic Control Strategies (ATCS) for traffic signal control in urban 

networks exist. Well-known strategies are SCOOT and SCATS. An example of a more recent strategy 

is TUC. In Germany, BALANCE and MOTION are used in several cities. The improvement of traffic 

modeling techniques and increasing computing power promote enhancement and further development 

of such sophisticated ATCS systems. 

This abstract sketches the conceptual design of a newly developed ATCS with emphasis on 

three alternative algorithms for offset optimization. The performance of each algorithm has been 

assessed in a comprehensive microsimulation study. Some condensed results are presented as well. 

 

2 Conceptual Design 
 

The strategy consists of different modules. It is designed for use in interconnected urban sub-

networks containing several signalized intersections. The strategy optimizes signal plans and 

coordination patterns for consecutive time intervals of 15 minutes. These signal plans are used as 

continuously updated fixed time plans. It is also conceivable to use them as framework plans in traffic 

responsive controllers. The following modules are executed every 15 minutes: 

Forecasting of detector counts and subsequent OD demand, route and link volume 

estimation: A forecasting technique using current and reference space-time-patterns of detector counts 

is used, followed by an iterative procedure of traffic assignment and OD matrix estimation in order to 

estimate traffic flows on all links and routes in the network for the next optimization interval. A 

detailed description can be found in [1], [2]. 

Cycle length and green split optimization: While other research projects tried to use 

heuristics to optimize the whole range of signal plan settings (e.g. [3]), analytical methods have been 
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used in this work where possible. Therefore cycle length and green splits are adapted to the forecasted 

traffic demand by using either the Webster formula or a saturation based approach. A common cycle 

length is chosen that is dictated by the most heavily loaded intersection. 

Strictly speaking, this approach only applies to undersaturated or nearly saturated conditions. 

A strategy for oversaturation has not yet been implemented into the prototypical ATCS. 

Offset optimization: Emphasis of the ATCS is on the offset optimization. While choosing 

offsets for arterials might be less difficult, it is more complex in interconnected networks. In a network 

with n intersections and a common cycle length tc the solution space comprising all possible offset 

combinations has a size of . To solve this problem, an offline method has been presented in [4]. It 

has now been transformed into an online application. Offsets are optimized using Genetic Algorithms 

in combination with the Cell Transmission Model (CTM) [5], [6]. This allows assessing hundreds of 

different offset combinations within only a few minutes. The CTM has been extended in such a way 

that even complex intersections and permitted left turning movements can be modeled. It is used to 

calculate the fitness of a solution, i.e. the total delay induced by a certain offset combination given the 

forecasted demand. The effects of necessary transitions from the previous to the new coordination 

pattern are considered as well. They may have a detrimental effect on otherwise possibly good 

solutions (cp. [7]). 

1n
ct
−

Two variations of Genetic Algorithms have been tested. The Parallel Genetic Algorithm 

(PGA) optimizes offsets of all intersections simultaneously, whereas the Serial Genetic Algorithm 

(SGA) starts with optimizing only the offsets of the intersections along the heaviest loaded route, 

followed by those along the second heaviest loaded route and so on until all intersections have been 

considered. A third algorithm called Sequential Enumeration (SE) has also been tested. All offsets are 

set to zero in the first place. Then, a complete enumeration and evaluation of all possible offsets 

between zero and tc-1 is done successively for every single intersection in the order of decreasing 

traffic load on the routes. The best offset found for the current intersection is kept before proceeding to 

the next intersection. After all intersections have been considered, the whole process is repeated again 

and again until no further improvement is achieved. 

 

3 Evaluation 
 

Several microsimulation studies employing Aimsun NG have been conducted to assess the 

performance of the ATCS. In the first case (whose condensed results are presented below) traffic 

demands of all optimization intervals have been assumed to be known exactly (i.e. the real demands 

fed to the system during simulation have been used for optimization). This approach allows assessing 

the potential of the plain optimization algorithms while neglecting the imprecision of traffic demand 

estimation. 
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A real sub-network in the city of Hanover, Germany, with 10 signalized intersections has 

been modeled. Figure 1 shows the network in Aimsun and its CTM representation. Varying traffic 

demand patterns for 56 consecutive time intervals of 15 minutes have been used with two peak hours 

starting at 8am and 5pm respectively. 

 

Figure 1: Test network modeled in Aimsun NG (left) and as Cell Transmission Model (right) 

Figure 2 (left) shows the evolution of fitness for all three offset optimization algorithms for 

one sample optimization interval during peak hour. Since the two GA variants are stochastic 

algorithms, their respective graphs show the averages of six different optimization runs. Considering 

all six runs, the final fitness varied in a range of 725 veh·s (PGA) and of 547 veh·s (SGA) respectively. 

SE as a deterministic algorithm always produces exactly the same result given the same demand. It can 

be seen that both GA find an equally good and stable solution after 150 seconds which makes the 

ATCS real-time capable. SE finds a slightly better solution in even shorter time while a clear benefit of 

the GA had been expected in the first place because of its capability to use the whole solution space. 

  

Figure 2: Comparison of offset optimization using GA and sequential enumeration 

Figure 2 (right) shows how the signal plans calculated by the different algorithms affect the 

results of the simulation. The figure comprises the whole duration of the simulation, i.e. the 
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aforementioned optimization has been executed 56 times for each algorithm. All three algorithms 

achieve a comparable performance with only little statistically significant differences. Note that even 

though figure 2 (left) suggests that SE performs best, it reflects only one sample interval. When more 

intervals are considered (figure 2, right), the performance of all three algorithms is more or less the 

same on average. Furthermore, the fitness of a solution is expressed in total delay [veh·s] whereas the 

results during simulation are given in average travel times [s/(veh·km)] which makes differences even 

smaller. 

As a reference, a TRANSYT 7F optimized fixed time control with two signal plans designed 

 used. The results are shown in figure 2 (right) as 

are the strategy to other ATCS such as SCOOT, 

ode is not at the authors’ disposal. 

 overall travel times for the whole system but also 

 network has been used. However, its presentation 

stract. 
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1 Introduction

Effective disruption management is a key to a good operational performance for passenger railway

companies. Within the disruption management process (see [2] for a detailed discussion), the

ability to reschedule the main resources rolling stock and crew is crucial. In recent years Operations

Research based approaches for these problems have been proposed by the scientific community (see

[3], [5], [4], and [6]). The models for crew rescheduling do assume that an accurate estimate about

the duration of the disruption is available at the time the rescheduling is done. The same holds

for models developed for crew rescheduling in the airline industry (see [1] for a recent literature

review). However, this assumption is not realistic.

Let us consider a small illustrative example taking place in the north of the Netherlands. Due

to a broken power supply, no train traffic is possible between Hoogeveen (Hgv) and Beilen (Bl)

from 7:10 on. It is estimated that the repair works will last between 3 and 4 hours. The timetable

will be updated according to a pattern described by an emergency scenario. In this case, the trains

of the train lines 500, 700 and 9100, operated between Zwolle (Zl) and Groningen (Gn), will be

turned at intermediate stations. In Figure 1 we show how the timetable between Zwolle (Zl) and

Groningen (Gn) would be updated. Since the repair works will take at least 3 hours the turning

pattern will be applied for sure for three southbound and three northbound trains of each the

three involved train lines. For the trains in the fourth hour after the start of the disruption, it is
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Figure 1: Time space diagram showing how the timetable between Groningen (Gn) and Zwolle

(Zl) would be updated, if the route between Beilen (Bl) and Hoogeveen (Hgv) is blocked.

uncertain if the trains will take their normal routes (dashed lines in Figure 1) or if they will be

turned as well (dotted lines in Figure 1).

Current crew rescheduling approaches would deal with this situation as follows. At time point

t1 it is estimated that the blockage will be over by 10:10. Therefore, the modified timetable that is

given as input to the crew rescheduling assumes that the trains 727, 736, 529, 538, 9129 and 9138

can run between Beilen and Hoogeveen as planned. However, it might happen that at time point

t2, 9:40 in the example, new information saying the route will be blocked until 11:10, becomes

available. This means that the timetable has to be updated again and that the trains 727, 736,

529, 538, 9129 and 9138 must also be turned at intermediate stations. At t2 the crew schedule

would be rescheduled again given the new information.

If at t1 the uncertainty about the duration of the disruption, and therefore the uncertainty about

the timetable that will be operated, is not taken into account, above procedure will correspond to

a wait-and-see approach. Two research questions arise from that.

1. How does wait-and-see perform compared to the case when the perfect information would be

available at time t1?

2. Could the uncertainty be taken into account at t1 such that the resulting rescheduling problem

stays computationally tractable?
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In this paper we try to answer both questions. First, we are going to present a case study

presenting the results of applying the wait-and-see approach to some rescheduling instances of

Netherlands Railways. Second, we present a quasi robust approach to crew rescheduling under

uncertainty.

2 Problem description

We consider crew rescheduling under uncertainty as a two stage process. In stage one at t1 an

estimate of the duration h1 of the disruption is know. In the case of a malfunctioning switch

for example, this estimate could be be based on the initial judgment of a repair crew. Based on

the estimated duration, the original timetable T0 will be adjusted according to the unavailable

infrastructure. The result is an adjusted timetable T1. Then the crews are rescheduled according

to this adjusted timetable. Later, at time t2 it becomes clear when the infrastructure can definitely

be used again. Often this is later than the expected time t1+h1. Usually this means that timetable

T1 can not be operated and instead another adjusted timetable T2 will be operated. This could

mean that the crews need to be rescheduled again according to T2.

Assume that the timetable that will be operated in the end must be one of small number of

possibilities. We refer to these possibilities as scenarios s0 . . . sn, where s0 corresponds to the most

likely scenario which would be used for the first rescheduling at t1 in a wait-and-see approach.

The crew rescheduling problem under uncertainty can be stated as follows. Given a most likely

scenario s0 and a set of alternative scenarios s1 . . . sn, find a new crew schedule valid for s0 such

that the cost of this schedule and the cost for the additional rescheduling at t2 are minimized.

The crew rescheduling problem can be written as a set covering problem with side-constraints.

The decision variables in this model are feasible completions of the planned original duties. The set

covering constraints correspond to the train driving activities of the modified timetable. Moreover,

the side-constraints ensure that exactly one feasible completion is selected for each original duty.

3 A quasi robust approach

The idea behind this approach is to use feasible completions that are quasi robust against all

scenarios and in this way minimize the effort that is needed at time point t2 if a scenario other

then s0 occurs. We will give an informal definition of quasi robust feasible completions. A feasible

completion is called quasi robust if all tasks corresponding to a train activity that are covered in

scenario s0 can still be covered in every other scenario. In the rescheduling at time point t1 we

only allow quasi robust feasible completions. A resulting crew schedule has the property that,

if at time point t2 it becomes certain that the timetable will be operated according to scenario

s1, rescheduling can be done using already know alternatives for the feasible completions that are
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affected by the timetable changes. Moreover, in the assumed case when the differences between

the timetables for s0 and s1 are well defined, all tasks can be covered by the new crew schedule.

We will solve the quasi robust crew rescheduling problem with an adapted version of the column

generation based heuristic proposed by [4]. We modify the pricing problems which are modeled

as shortest path problems with resource constraints on directed acyclic graphs. We use additional

resources in order to only generate quasi robust feasible completions. The bounds of the resource

windows for these additional resources are determined in a preprocessing step. We will present

computational results for instances provided by Netherlands Railways. Moreover, we will compare

the results to the wait-and-see approach.
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1 Introduction 
 

Transportation accounts for considerable cost in the supply chain. The Vehicle Routing and scheduling 

Problem with Time Windows (VRPTW) is a useful tool employed by logistics firms to optimize their 

operations. The classical VRPTW is defined for static input values such as fixed customer locations 

and static travel time. However, the traffic conditions in urban areas change with time due to varying 

congestion levels and incidents resulting in varrying travel time on the infrastructure links. With the 

introduction of the Intelligent Transportation Systems (ITS) such as the Vehicle Information and 

Communication System (VICS) in Japan, it is possible to collect and store such dynamic travel times 

on a link. As far as the logistics is concerned, changes in the travel time may affect the distribution or 

pick-up routes of the delivery vehicles resulting in unexpected long delays if the routing is fixed and 

based on a static value of travel time (such as the average travel time). 
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   In the VRPTW related literature, a routing system is defined as Dynamic Vehicle Routing 

and scheduling Problem with Time Windows (D-VRPTW), in which, complete or a part of input 

information (such as number and location of customers or travel time on arcs) is not available to the 

decision maker at the start but it is revealed during the scheduling horizon (day of operation), and if the 

decision maker reacts to this new information by evoking some sort of re-optimization mechanism [1]. 

There exists a large body of literature on the dynamic customers case of the D-VRPTW but 

the dynamic travel times-related literature is rather scant. In fact, only two references could be found 

dealing with the dynamic travel times, viz. Taniguchi and Shimamoto [2], and Flieschmann et al [3]; 

both considering the Dynamic-Vehicle Routing and scheduling Problem with Soft Time Windows (D-

VRPSTW). Taniguchi and Shimamoto [2] have used a macro-simulation scheme to generate the 

dynamic travel time data for a theoretical test network, whereas, Flieschmann et al [3]
 
have used the 

data from an ITS implemented in Berlin, Germany, named as LISB, which provides the travel time 

data on links for every 5 minutes slot. However, both of these research works have adopted heuristics 

approaches to solve the D-VRPSTW. The heuristic techniques are sometimes faster and easily 

implemented than exact solutions, yet they do not guarantee to identify the exact solution or state how 

close to the exact solution a particular feasible solution is [4]. Therefore, this research proposes a 

column generation based exact solution approach for the D-VRPSTW with dynamic travel times to fill 

the existing research gap. The exact approach can be used for small to medium instances (25 to 50 

customers) as well as for the evaluation and calibration of the heuristics approaches. 

 

2 General Framework 
 
The proposed Dynamic Vehicle Routing and scheduling Problem with Soft Time Windows (D-

VRPSTW), only considers the travel time uncertainty, therefore, all remaining information such as 

customers' locations and demands are assumed to be known and fixed. The soft time windows enable 

delivery after the close of customer specified time windows with an associated late arrival penalty, 

however the waiting is allowed without any penalty. The D-VRPSTW would be modeled using the 

rolling horizon scheme, in which the complete scheduling horizon is divided into various time slots, 

each representing a time-based scenario. Thus initially, it can be defined on a complete Graph ���  for 

the first time slot (T1), which consists of all customers with vehicles (ki) stationed at the central depot 

(as shown in Figure1(a)). The routes for the time slot T1, would be planned as per the average travel 

times. No divergence is allowed once a vehicle leaves to visit a customer, i.e. the first customer on the 

route of an en-route vehicle is fixed. The time slots are marked with vehicle-based events, which 

means a new time slot is initiated as soon as any of the vehicle reaches the first customer on its route. 

With no diversion allowed, the locations of all vehicles are forecasted and the Graph is 

updated (���  (Figure 1(b))) showing vehicle locations along with all customers except those which are 

either serviced or are the first customers of an en-route vehicle. The arcs in ���  contain the updated 
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algorithm would be embedded in a branch and price algorithm. In order to track and keep the total 

number of vehicles in the system, a new branching scheme would be needed. 

 

4 Results and Discusions 
 

Changing traffic conditions and incidents cause the travel time variation in urban areas. If the 

operations of a logistics company is planned, by ignoring this reality, it may affect the distribution or 

pick-up routes resulting in unexpected long delays. On the contrary, dynamic vehicle routing and 

scheduling can result in better route selection, avoiding congested roads due to incidents or any other 

reason. This would help logistics firms in reducing their distribution/prick-up costs as well as in 

improving their reliability because the delays and related late arrival penalties would also be 

minimized. Furthermore, the amount and distribution of the environmental emissions would also be 

changed if the delivery/pick-up vehicles would follow updated routes, diverting from pre-defined 

routes containing congested roads. 

Results obtained on benchmark and reallife logistics instances would be included in the final 

submission and would be presented at the conference.  
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1 Introduction

Traffic assignment is a key component in the conventional four-stage transport planning model.

It models travel behaviour in terms of route choice. Being able to model route choice decisions

correctly is essential to accurately forecast travel demand and most importantly to enable the

correct assessment of the benefits/disbenefits of changes in transport policies and infrastructure

developments. The presence of road tolls influences the route choice of travellers. Instead of

considering a linear combination of travel time and (toll) cost, we explicitly distinguish time and toll

cost as separate route choice objectives. This leads to the concept of biobjective traffic assignment

(BTA), where we assume that “[. . . ] traffic arranges itself in such a way that no individual trip

maker can improve either his/her toll or travel time or both without worsening the other component

by unilaterally switching routes”, see [1].

2 Literature

One frequent assumption made in the literature on traffic assignment is that travellers choose

their route with the aim of minimising a linear combination of time and (toll) cost, where time

is multiplied by a so-called value of time (VOT) e.g. [2]. Others assume that there exist different

classes of network users each with their individual VOT value, e.g. [3]. Others assume that VOT

follows a distribution, e.g. [4, 5, 6]. All these approaches have in common that a linear combination

is considered rather than treating the two objectives separately. However, there do exist other

routes that are efficient in the sense of the definition of BTA without being optimal for such a

linear function, see Fig. 1 where z2 is such a combination of time and cost. Assuming a distribution

of VOT may assign flow to the paths corresponding to time/cost vectors z1, z3, z5, z6 but not to

z2, z4 (the latter is optimal only for a single VOT value). We believe that a solution of BTA should
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Figure 1: Time and toll cost for all paths con-

necting one OD pair.

Figure 2: RPT flow shares of efficient paths

given by size of corresp. non-dominated point.

permit flow on any of the efficient paths, which have a non-dominated time/cost vector in Fig. 1.

3 Solving Biobjective Traffic Assignment

For the standard traffic assignment problem, equivalence of the traffic assignment equilibrium

problem to other mathematical problems such as optimisation and variational inequality problems,

is exploited to develop solution algorithms. It is discussed in [7] that the corresponding equivalences

do not hold in the bi- and multiobjective case.

Here, we present heuristic solution algorithms instead. The popular method of successive

averages (MSA) can be adapted to solve BTA: The modified MSA initially assigns all travel demand

along the efficient paths assuming fixed travel time and cost derived from zero flow. Efficient paths

can be identified via any bi-objective shortest path algorithm, e.g. [8]. In subsequent iterations,

the efficient paths are calculated and assigned flow according to fixed time and cost with respect

to the current flow. In every iteration of MSA, decreasing portions of flow are re-assigned. There

is great liberty in how to assign the travel demand between the different efficient paths, we will

discuss a few assignment schemes in the following. The final solution of BTA of course depends on

how flow is assigned in each iteration.

[1] explore two simple ways to carry out BTA: (1) to split the demand equally between the

efficient paths (EQS); and (2) to split the demand based on cost per unit time savings assignment

(CTS), where flow is assigned to each of the efficient paths according to the cost per time unit

saved when compared with the cheapest path (z6 in the Fig. 1) for which a distribution is given.

CTS is obviously more realistic as compared with EQS.

We propose new traffic assignment schemes here. We briefly describe the different approaches,

but omit the details of the algorithms in this abstract. Firstly, in reference point (RPT) assignment,

a reference point is given that represents a time/cost vector to which network users are attracted.

621



25

20

15

10

5

0

0.
83

0.
87

0.
90

0.
93

0.
97

1.
00

1.
03

1.
07

1.
10

1
.1

3

1.
17

1.
20

1.
23

1.
27

1.
30

1
.3

3

1.
37

1.
40

1.
43

0

20

40

60

80

100

120

140

160

180

toll cost ($)

time (hours)

Figure 3: Possible distribution of users for ADO

assignment.

bc

bc

bc

bc

bc

bc dominated
non-dominated

bc

b

time

toll
cost

z1

z3

z4

z5

z6

z2

nonl. valuation fct.

b

b

b

b

b

b

Figure 4: Nonlinear valuation function, optimal

points are z1, z2, z3.

The closer one of the cost vectors in Fig. 2 is situated to the reference point, the more travellers

choose the corresponding path. The share of each path can be computed in various ways, Fig. 2

contains an example where the shares of efficient paths are indicated by the size of the circle

marking the corresponding non-dominated time/cost vector.

Alternatively, we propose area of domination (ADO) assignment. A survey of road users can

be conducted asking every user the question “How much travel time do you spend at the moment,

how much would you (realistically) want to save and how much money are you prepared to pay for

it?”. Then every road user can be represented by their own ideal point in objective space. A road

user would only select a path with cost vector dominating his/her ideal point (i.e. better or equal

in both criteria). If there is no such point, users must settle for a compromise (or not travel at

all) and thus we assume they choose the fastest path with lower cost than their ideal point. Fig. 3

shows the aggregated results as they might be obtained by a survey of 10000 network users.

Instead of the VOT value or VOT distribution, a non-linear valuation function may be given.

According to this valuation function, one or more of the efficient paths may be optimal, see Fig. 4.

In each iteration of MSA, all demand is assigned to path(s) optimal with respect to the valuation

function. For a non-linear valuation function, any of the non-dominated points may be optimal,

which removes the disadvantage of using a linear valuation function. In order to apply a non-linear

valuation function, it is necessary to first identify the efficient paths with respect to time and toll

as the problem can no longer be solved as a single-objective shortest path problem.

We finally propose a different approach to MSA, called path equilibration. For traditional

traffic assignment, one solution algorithm is known as path equilibration which was first proposed

in [9]. For a single objective, an initial assignment of all flow to the paths with minimal cost at

flow zero, is performed. In every iteration, and for every OD pair, the current shortest path and

the longest with postive flow are identified. Those two paths are the least in equilibrium. Flow

is re-assigned from the longest to the shortest path until their travel times are equal or the flow
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on the longest path is zero. The equilibration algorithm can be adapted to BTA: Instead of the

shortest path, the efficient paths are identified, together with one or more non-efficient paths (e.g.

one or more paths furthest away from the efficient paths). Again, flow is shifted from non-efficient

to efficient paths.

It can be observed that a BTA equilibrium has been reached by the path equilibration algorithm

when only efficient paths have positive flow. We are currently unable to confirm an equilibrium

has been obtained with the MSA approach as only link flow, but not path flow, is recorded in

MSA. We do believe that the solutions obtained by MSA are a good approximation of a true BTA

equilibrium.

Next steps include the application of the presented methods to a realistic transport network

and further development of assignment algorithms.
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1 Introduction

During the past decade natural gas has become an increasingly important mean to fulfill the worlds

soaring demand for energy. Traditionally, natural gas was transported by pipelines, and the option

of transporting the gas as liquefied natural gas (LNG) was considered economically undesirable.

However, the combination of higher prices, lower production costs, and rising import demand

has set the stage for increased LNG trade and more use of LNG ships as a mean to transport

natural gas. In addition to the rapidly growing demand for natural gas and more flexible long-

term contracts, a new spot market for LNG has surfaced in the recent years. The combination of

an increased number of ships and deliveries, and the new complexity introduced by the LNG spot

market, makes the distribution planning problems much harder to solve. Hence, there is a growing

need for decision support systems in maritime LNG shipping.

We consider a combined ship routing and inventory management problem for one of the world’s

largest producers of LNG. The problem is how to manage the producer’s inventory and fleet of

ships to create an Annual Delivery Program (ADP) that respects the long-term contracts at lowest

possible cost, while maximizing the expected revenue from spot contracts. It has some similarities

to the problem solved in [2], but has a different network structure, more ships and terminals, and

a longer planning horizon. For more literature in the area of maritime inventory routing see the

recent survey [1]. The purpose of this paper is to describe the mathematical model for the ADP

planning problem and to introduce a branch-and-price method in order to be able to solve real size
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problems.

2 Problem Description

The problem addressed in this paper is to design an ADP, which is a list of scheduled voyages,

where each voyage consists of the contract served, the ship used, the days of loading and unloading,

and the day the ship returns to the loading port. The ADP must respect the inventory constraints

on the supply side, but the producer has no inventory obligations at the delivery terminals where

the LNG is re-gasified (regasification terminals). The objective of the ADP is to minimize the total

cost of fulfilling long-term contracts while maximizing the expected contribution from spot sales ,

and abiding all physical constraints in the LNG value chain.

At the producer’s storage and liquefaction facility there is a variable production of two types

of LNG, namely rich LNG (RLNG) and lean LNG (LLNG). There is a limited number of berths

available for loading each type of LNG onto specially constructed LNG ships. The liquefied gas it

is stored in high pressure tanks to ensure that it is kept in a liquefied state throughout the voyage.

The producer’s fleet of ships is heterogeneous, with capacities ranging from 126 000 to 265

000 m3. If the producer does not have enough ships available at a given time, additional ships

may be chartered in. Several factors influence the availability and use of the fleet, one being that

a central depot does not exist. Hence, some ships may become available after the start of the

planning horizon. The ships may also be unavailable due to certain pre-allocated activities, e.g.

dry-docking for maintenance. Finally, not all ships can visit all regasification terminals due to

vessel acceptance policies at the ports, and the fact that some ships are owned by one, or a group

of customers, limiting them to only visit their owner’s regasification terminals.

A shipload must contain either LLNG or RLNG, but a ship can carry different types of LNG

on consecutive voyages without any intermediate preparations. The ship tanks are always filled

to their capacities at the loading port and visits only one regasification terminal on a scheduled

voyage. The cost of sailing a scheduled voyage is assumed to be dependent only on the capacity

class of the ship, the duration of the voyage and the regasification terminal visited.

The producer is obliged to deliver a certain quantity of a given type of LNG to a specified

regasification terminal each year according to a long-term contract. The contract may outline the

monthly demand that is to be delivered, or simply state that the LNG is to be delivered ”fairly

evenly spread” throughout the year. In addition to serving the long-term contracts, the producer

has the opportunity to sell LNG on the spot market.

625



3 Solution Approach

First, a MIP formulation of the ADP planning problem utilizing the underlying transportation

network, the voyage characteristics, and the spread requirements of the long-term contracts will

be presented. This model, called the Basic Voyage Model (BVM), is based on pre-generation of all

possible scheduled voyages for all contracts and ships within the planning horizon. The planning

horizon T = {T , . . . , T} is discretized on days. The main variables of the BVM, denoted xcvt, are

binary and indicate if ship v starts a voyage on day t to the terminal associated with contract c.

The demand constraints are implemented as soft constraints, meaning that you can deviate from

the contracted quantity, but you have to pay a penalty. Hence, variables representing over- and

under-delivery (y+
cp and y−cp) are also introduced in order to be able to penalize deviation from

contracted demand in period p. In the BVM, the demand constraints are expressed as follows:∑
v∈Vc

∑
t∈Tp

LCAP
v × xcvt + y−cp − y+

cp = Dcp ∀c ∈ CLT , p ∈ P (1)

where P is the set of all time periods and Tp = {T p, . . . , T p} ⊆ T is the set of days in time period

p. A time period can i.e. be a week, a month, or a year. CLT is the set of long-term contracts,

LCAP
v is the quantity delivered by ship v, and Dcp is the contractual demand of contract c in time

period p. Over- and under-deliveries are penalized in the objective function:

minimize
∑

c∈CLT

∑
p∈P

CD+
cp × y+

cp +
∑

c∈CLT

∑
p∈P

CD−
cp × y−cp + sailing cost− revenue (2)

where CD+
cp and CD−

cp are the cost of over and under-delivery, respectively. One problem with the

BVM is that the LP-relaxation is weak, mainly because it is always possible to deliver fractional

combination of ships in order to avoid penalties. We know that this is not possible in the MIP

solution, and hence it introduces a large gap between the LP-solution and the MIP-solution. On

a small test instance with an optimal MIP value of -63 270 we observe that the LP-solution has 0

contractual delivery penalty, while the optimal MIP-solution has a penalty of 35 173.

In order to reduce this gap, the BVM is reformulated using delivery pattern for each contract

c and each period p, and an additional set of variables (zcpi) is introduced. A pattern i stipulates

the number of deliveries by each specific ship to a given contract c during a period p, and the

total penalty in p. The pattern does not include the starting time of the various deliveries. In the

reformulation we replace (1) with∑
i∈Ycp

zcpi = 1 ∀c ∈ CLT , p ∈ P (3)

and ∑
t∈Tp

xcvt −
∑

i∈Ycp

Nv
cpi × zcpi = 0 ∀c ∈ CLT , p ∈ P, v ∈ V (4)
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where Ycp is the set of delivery patterns for contract c in time period p, and Nv
cpi is the number of

deliveries made by ship v to contract c in time period p in pattern i. We also change the objective

to include the pattern penalty instead of the penalties for over- and under-deliveries:

minimize
∑

c∈CLT

∑
p∈P

∑
i∈Ycp

CY
cpi × zcpi + sailing cost− revenue (5)

where CY
cpi is the penalty for pattern i. In this way we force the LP-solution to also incorporate

some of the penalty costs, reducing the gap to the MIP-solution. However, the number of possible

patterns is far too large to be generated a priori. This makes it necessary to generate the patterns

dynamically using column generation. There is one column generation subproblem per contract c

and period p. Such a subproblem is an IP containing the original contractual constraints, the non-

negativity constraints on the over- and under-delivery variables, and the integrality constraints

on the schedule voyage variables. It does not possess the integrality property, opening up the

possibility to raise the bound and, thus, reduce the gap.

4 Computational Results

Computational results for the branch-and-price-and-cut formulation will be presented and com-

pared to the results from running the BVM using commercial optimization software and different

heuristics.
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1 Introduction

With Advanced Traveler Information Systems

(ATIS) rapidly growing in both prevalence and

capabilities, effective analysis and prediction of

traffic demand requires proper accounting for

the impact that real-time information has on

travelers. While route choice modeling has

historically relied only on a priori information

about traffic conditions, the next generation

of modeling must account for information that

travelers receive en route to their destinations.

Adaptive choice behavior, such as that explored

in [1], allows for path alteration in response to

information received en route. Strategic choice

behavior extends this by anticipating en route

information and including possible detours in

the assessment of alternatives. Empirical veri-

fication of such behavior remains largely unex-

plored [3].

This research investigates several models for

route choice in risky networks with real-time in-

formation, using stated preference data from in-

teractive maps. The results will provide some

insight into the importance of acccounting for

strategic behavior.

2 Objectives

The primary objective of this research is to de-

termine the extent to which drivers think strate-

gically when choosing routes. “Strategic” think-

ing is defined as choice behavior which accounts

in advance for information that will be received

en route, and for any detours that might be

taken based on such information. Strategic

drivers choose routes according to a routing pol-

icy, a set of decision rules based on information

available at the time of each decision.

The specific questions being addressed are:

1. Do drivers think strategically when plan-
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ning routes in uncertain networks with real-

time, en route information?

2. Can observations of route choice be used to

estimate a predictive model that accounts

for both risk attitude and strategic think-

ing?

3 The Experiment

The experiment was conducted on the UMass

Amherst campus, with 74 participants recruited

from both UMass and the surrounding commu-

nities. Subjects answered an interactive survey,

using graphical maps with a point-and-click in-

terface. After completing several warm-up sce-

narios, each with an introduction from a study

coordinator, subjects completed six groups of

scenarios, with breaks between each. The study

coordinator introduced each scenario group to

provide context and highlight any changes. In

total, over 3500 choice observations were col-

lected.

Figure 1: Example map interface, with informa-

tion and detour

Two different map types are used in the sur-

vey: a simple two-path map, designed to mea-

sure risk attitude, and a more complex map with

a detour, designed to measure strategic think-

ing. Each risk scenario is presented in both map

types, which enables direct comparison of be-

havior in simple and strategy maps.

Simple Risk Maps

The simple risk maps are aimed at determin-

ing a subject’s risk attitude without the influ-

ence of real-time information or detours. The

subject decides between two routes, one with a

deterministic travel time, and the other with a

stochatic travel time. This network type is rep-

resented in Figure 2.

Figure 2: Abstract network for simple risk map

type

The user sees the exact travel time of the de-

terministic route (Link B) before the trip be-

gins. The stochatic travel time on Link A has

two possible outcomes, tH w.p. Pdelay, and tL,

w. p. (Pdelay − 1). Before the trip, the user is

shown the possible outcomes and probability of

delay, but the actual travel time of route A is

revealed only if and when the subject traverses
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the stochastic link.

Strategy Maps

The strategy maps (Figure 3) measure the ex-

tent to which a subject recognizes strategically

advantageous real-time information. Subjects

choose between a deterministic path and an al-

ternative which branches into a stochastic link

(C ) and a deterministic detour (link D). Sub-

jects who traverse link A will learn the actual

travel time of link C before they must decide

whether to use it. This allows the subject to

choose the faster of link C or D.

Figure 3: Abstract network for routing strategy

tests

Subjects who plan in advance for this in-

formed choice will recognize that they can al-

ways avoid the large potential delay of the

stochastic link. Such “strategic” subjects would

tend to assess the stochastic branch based on the

expected minimum travel time of links C and D.

“Non-strategic” subjects would instead tend

to view the stochastic branch as two individual

paths, with expected travel times E[tc] and td.

To more easily identify strategic behavior, the

experiment is designed such that both expected

times are higher than the strategic assessment.

4 Analysis of Results

Results from the survey are analyzed in two

stages. In the first stage, metrics are devel-

oped to validate the data and illuminate any

major trends. The findings are used to guide

the second stage, in which quantitative statisti-

cal models are developed and estimated against

the data.

Since strategic behavior is only distinguish-

able in the presence of risky alternatives, risk

attitude must be accounted for before attempt-

ing any analysis of strategy. This is done by an-

alyzing data from the simple risk maps, which

had no strategic component.

Risk Attitude

In the first stage of risk attitude analysis, a ben-

efit/risk ratio is calculated as a rating for the

stochastic alternative in each scenario. Benefit

is defined as expected savings in travel time over

the deterministic alternative, and risk is defined

as the standard deviation of outcomes for the

stochastic alternative.

An approximate benefit/risk threshold is cal-

culated for each subject, including a small “am-

bivalent range” of ratios for which the user’s

choice behavior was not consistent. The thresh-

old levels appear to depend heavily on delay

probability, with very risk-averse behavior ob-

served at low probabilities and very risk-prone

behavior observed at high probabilities. This is
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consistent with the findings in [2].

This dependency is further confirmed by

model estimation, which shows significant differ-

ences in the weighting of risk at different levels

of Pdelay . The model form used in this analysis

is

Vx = βettETTx + θp02 ∗ P02 ∗ σx

+θp05 ∗ P05 ∗ σx + θp08 ∗ P08 ∗ σx

+ASCx

where ETTx is the expected travel time of alter-

native x, σx is the standard deviation of possi-

ble outcomes for alternative x, and ASCx is an

constant applied only to stochastic alternatives.

The parameters θp02, θp05, and θp08 are dummy

variables to account for the three levels of delay

probability presented in the experiment.

While this model form is ideal for analyz-

ing the particular effects of the experimen-

tal variables, applicability to other research or

real-world data is limited. A more predictive

modeling framework, based on the cumulative

prospect theory (CPT) approach developed in

[4], is also explored in detail. The CPT model

defines a generally applicable functional form for

the behaviors observed in this experiment.

Strategic Thinking

Each strategy map has a corresponding simple

risk map with identical travel times and distri-

butions. A “strategic” subject who chose the

stochastic alternative in a simple map would be

expected to choose the stochastic branch in the

strategy map. A “non-strategic” subject, on the

other hand, would perceive a much larger poten-

tial delay in the strategy map and most likely

avoid the stochastic branch.

The first stage of strategy analysis compares

each subject’s choices in each simple map and

the corresponding strategy map. Overall per-

centages of distinguishably strategic and non-

strategic observations are calculated, as well as

an estimate of how many users can be consid-

ered “strategic”. These calculations yield upper

and lower bounds on the expected prevalence

of strategic behavior, and provide guidance and

validation for the second stage of analysis. This

analysis estimates an upper bound of approxi-

mately 84.2% strategic observations, and a lower

bound of approximately 30.6%.

The second stage of analysis uses latent-class

choice models to estimate the probability of an

observation resulting from strategic behavior.

The models incorporate the findings of the sim-

ple risk analysis, in order to control for the influ-

ence of risk alone. Estimation results are consis-

tent with the first-stage strategy analysis, find-

ing that significant levels of both strategic and

non-strategic behavior are present. The overall

estimated percentage of strategic observations is

approximately 81%.

The sample size was sufficient to obtain sig-

nificant results for all parameters of the models

based on expected travel time and standard de-

vation of travel time. Limitations of estimating

the CPT-based models given the sample size and

variability of the experiment are explored in de-

tail.
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1 Introduction

The vehicle routing problem (VRP) and its many variants have been extensively studied within

the operations research community (see [8]). Both innovative models and efficient algorithms have

been developed to formulate and solve these hard combinatorial optimization problems. However,

it should be noted that the majority of the research that has been done within this field has been

aimed at addressing deterministic versions of the VRP. When using a deterministic optimization

model to formulate a given problem, one makes the implicit hypothesis that all information con-

cerning the parameters of the model are readily available at the moment when the problem is to

be solved. This is rarely the case in practice, where one more likely has an idea of the distribution

of the different parameters without knowing the exact values that will be observed. Therefore, in

more recent years, stochastic versions of the VRP have been developed, where given parameters

are modeled using either random variables or possible scenarios. Our aim here is to address the

classical VRP with capacity constraints when client demands are stochastic.

In the VRP with stochastic demands (VRPSD), using a fleet of vehicles of limited capacity
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(we consider here the case where all vehicles have the same capacity), one must deliver, or pick

up, some amounts of an homogeneous good to a set of customers. The particularity of the present

problem is that, for each customer, the exact amount of demand is only revealed once a vehicle

arrives at the customer’s location. Given this characteristic of the problem, a vehicle may reach a

client and then face the situation where the residual capacity is insufficient to serve the observed

demand. In such a case, a route failure occurs and a recourse decision must be made to correct it.

Formulating the proper recourse decisions to consider has been an important focus of the

modeling effort conducted on the VRPSD. In classical models, these recourse decisions are defined

as return trips to the depot to reload (or unload) the vehicle whenever a route failure is observed.

However, more complex recourse policies may be considered. Examples of such policies are the

restocking rule [9], the reoptimization approach [7] or the pairing strategy [1]. In all cases, these

recourse decisions entail extra costs, either in terms of additional distances traveled by the vehicles

or in terms of additional resources used. What differentiates the stochastic VRP models from

deterministic ones is the fact that these extra costs are explicitly considered when establishing

the routes to be performed by the vehicles. Our study will focus on the extra costs incurred

when considering the classical recourse definition, which can serve as a benchmark for all possible

policies.

The VRPSD is formulated as a two-stage stochastic programming model. The first stage

corresponds to a planning phase where one constructs a series of routes (one for each vehicle)

that visit all clients once. It should be noted that capacity constraints are imposed to restrict the

total expected demand for the goods that are distributed (or collected) on each route to be less

than the capacity of a vehicle. By doing so, one may obtain more balanced routes. The second

stage represents an operation phase where the routes are executed and recourse actions are taken

according to the observed demands. The objective of the model then becomes to minimize the

sum of both the routing cost and the average recourse cost.

To obtain an optimal solution to this model, the 0-1 integer L-Shaped approach proposed in [4]

has been applied in several cases (see [2, 3, 5]). Given the complexity associated with stochastic

optimization problems, solving to optimality larger instances of the VRPSD remains a challenge.

Our main contribution is to propose a series of new strategies, derived from the inclusion of

local branching valid inequalities [6] and a generalization of the lower bounding functional (LBF)

originally proposed in [3], which will be shown to significantly enhance this solution approach

on the considered problem. As a consequence, the proposed strategies, which help improve the

bounds generated by the algorithm, allow us to successfully tackle larger instances of the problem.

In the next two sections of the present document, we will briefly present the 0-1 integer L-Shaped

algorithm as it applies to the VRPSD and give an outline of the various strategies that we propose

in order to produce a more efficient exact algorithm for the problem.
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2 The L-Shaped method applied to the VRPSD

The 0-1 integer L-Shaped algorithm is a branch and cut method that is based on the general prin-

ciples of Benders decomposition. When applying this solution approach to the case of the VRPSD,

in addition to replacing the recourse function by a valid lower bound within the master problem,

the integrality requirements on the variables as well as the subtour and capacity constraints are

also relaxed. The algorithm then proceeds by gradually imposing integrality requirements through

a branching process and adds both violated subtour and capacity constraints as they are obtained

by a separation strategy. Since the problem consists of finding in the first stage a series of feasible

routes, both subtour and capacity constraints serve as the feasibility cuts (i.e., valid inequali-

ties that are added to find first stage solutions that induce feasibility in the second stage) for the

VRPSD. It should be noted that the extensive amount of research that has been done in the case of

deterministic VRPs, to provide both valid inequalities and separation procedures aimed at finding

violated subtour and capacity constraints (see [8]), can again be used in the stochastic case. As for

optimality cuts (i.e., valid inequalities that are used to bound the recourse function), one is added

whenever a set of feasible routes is obtained. In this lies the main challenge to efficiently apply the

considered solution method to the VRPSD. Since a set of feasible routes must be obtained before

improving the lower bound on the recourse function and given that the information provided by

the added optimality cut is very local (see [4]), there is a risk of enumeration for the algorithm.

3 Enhancing the L-Shaped method for the VRPSD

In this section we briefly outline the different strategies proposed to improve the 0-1 integer L-

Shaped algorithm when applied to the VRPSD. These strategies include the use of both local

branching cuts and a set of extended cuts that generalize the LBF valid inequalities originally

proposed in [3].

3.1 Applying Local Branching cuts

It was shown in [6] how one can derive a set of valid inequalities for the relaxed master problem used

by the 0-1 integer L-Shaped algorithm following a local branching descent. These inequalities bound

the recourse function in different local branching neighbourhoods defined around a given point.

We propose to use this strategy to improve the optimality cuts generated by the algorithm, by

performing local branching descents around feasible routes. In addition to improving the bounds on

the recourse function, as was shown in [6], improvements to the upper bound for the solution process

can also be expected. Furthermore, we will propose a general separation strategy, based on local

branching, to produce a more efficient exploration of the subregions defined by the subproblems

processed by the algorithm.
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3.2 Extended LBF cuts

LBF cuts were developed to bound the recourse value associated with partial routes for the one

vehicle VRPSD in [3] and extended to the multi-vehicle case in [5]. It was shown in [5] that a great

number of these cuts have to be added to the master problem in oder to solve the multi-vehicle

VRPSD. We propose to generalize the definition of partial routes to produce a series of different

LBF cuts that can be used to bound the recourse value associated with a broader number of partial

solutions. An exact separation procedure is proposed to both identify general partial routes and

produce a series of violated LBF cuts. It will be shown that this strategy can greatly improve the

lower bound obtained by the algorithm.
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Sapienza Università di Roma, Italy
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1 City Logitics

For urban areas, the transportation of goods constitutes both a major enabling factor for most

economic and social activities and a major source of disturbances, e.g., [1, 6] and references within.

Several concepts have been introduced and several projects have been undertaken in recent years

to reduce the impact of freight-vehicle movements on city-living conditions and, in particular,

improve the congestion/mobility and pollution conditions, while not penalizing the city social and

economic activities. The fundamental idea which underlines most initiatives is to stop considering

each shipment, firm, and vehicle individually, but rather as components of an integrated logistic

system. The term City Logistic has been coined to describe such systems and the optimization of

their activities [7]. Several organizational models have been proposed, but it is acknowledged by

now that significant gains can only be achieved through a streamlining of distribution activities

resulting in less freight vehicles traveling within the city and a better utilization of these vehicles.

The consolidation of loads of different shippers and carriers within the same vehicles associated

to some form of coordination of the resulting freight transportation activities are among the most

important means to achieve these goals.

We focus on City Logistics systems appropriate for large urban areas, where consolidation and

coordination activities are performed at facilities organized into a hierarchical, two-tiered structure

with major terminals sited at the city limits and satellite facilities strategically located close to or
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within the city-center area, and particular vehicle fleets dedicated to each system tier [3]. Assume,

for simplicity of presentation, that demand is present at the first level of facilities as loads destined

for particular customers. Each customer demand for a given product is characterized by a quantity,

time of availability at the external zone, and delivery time window. Loads are transported on urban

vehicles from first-level facilities to satellites, where they are transferred to and consolidated into

city freighters, vehicles adapted for utilization in dense city zones, which perform the actual delivery

routes in the second tier of the system. Satellites operate according to a vehicle-synchronization

and cross-dock transshipment operational model, i.e., urban vehicles and city freighters meet at

satellites at appointed times, with short waiting times permitted, loads being transferred without

intermediate storage.

Similarly to any complex transportation system, City Logistics systems require planning at

strategic, tactic, and operational levels [1, 7]. Tactical planning aims to provide the means to

consolidation-based carriers and their customers for cost and service-quality efficient resource al-

location and operations, through a transportation plan and schedule to be operated repetitively

over a given planning horizon. For City Logistics, this efficiency must also be achieved for the city

traffic and environmental conditions. A modeling framework for City Logistics tactical planning

was introduced in [4], where the main focus was on building a detailed plan for the “next-day”

activities specifying the urban vehicle and city freighter routes and schedules, as well as the deliv-

ery routes from the major terminals, through satellites, to the final customers. Similar to most of

the City Logistics literature, the authors did not address uncertainty issues, nor did they study in

any detail the broader issue of defining a tactical plan for regular operations. Our goal is to start

filling this gap and present processes and models to build tactical tactical plans for two-tiered City

Logistics systems that account for the uncertainty in transportation demand.

2 Uncertainty and planning

Tactical planning is often performed using deterministic service network design models and fore-

casts for the values of internal (e.g., operation times) and external (e.g., demand) problem param-

eters [2]. Several recent contributions (e.g., [5]) have shown, however, that plans built considering

the variability of some of these parameters are qualitatively different from those obtained through

traditional approaches and offer increased flexibility and robustness. It is therefore not without

interest to explore these issues for City Logistics.

We focus in this presentation on the variability associated to demand and its treatment in

building tactical plans for the regular operations of the City Logistics system. The first issue that

needs to be discussed is the definition of the information process, the scope of the tactical plan,

and the actions to be left for the actual adjustment of the plan to actual demands and operational
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conditions.

Similarly to most processes for consolidation-based carriers, a tactical plan concerns a span

of time, the season, where demand is relatively stable (a slightly different plan may be built for

each day, but we will not address this aspect in this presentation). The plan is built some time

before the start of the season and it is then applied repetitively each day of that season, once it

has been adjusted to the particular conditions of the day. With respect to demand variability (or

one’s confidence in the forecasting processes) and the scope of the planning process, the problem we

address stands at some distance from the two classical extreme cases: total confidence, deterministic

model to plan and schedule all activities, and pay for extra resources when executing if needed,

on the one hand, and high variability, no or little a priori planning, and real-time decisions, on

the other hand. Demand is defined for products and demand zones, defined in [4] as homogeneous

geographical aggregations of customers with respect to the product and the delivery time window.

Given the cooperation and information system connecting customers, their suppliers and the City

Logistics system, a rather precise forecast may be assumed regarding the regular demand for each

customer-zone demand, as well as the expected variation. The plan is then built to allow the

allocation of the major resource groups for the season, in particular, the number of departures

from external zones, the satellite work loads, the allocation of customer zones to satellites, the size

of the vehicle fleets required. Then, for every day of the season, the actual demand is observed

at the individual customer level, and the plan is instantiated by, in particular, defining the routes

and schedules of the city freighters to perform the actual deliveries.

We therefore examine two-stage formulations with recourse: Minimizex∈X,ω∈Ω f(x)+Exi
(Q(x, xi(ω))),

where x stands for the first stage decisions, i.e., the a priori plan based on available information,

xi(ω) = d(ω) for the realization of demand for ω ∈ Ω, and Q(x, xi(ω)) for the cost of operating

the system using the a priori plan x, the realized demand xi(ω), and a recourse policy which

instantiates the plan once the uncertain data is resolved.

The first stage decisions concern the design of the first tier service network and the itineraries

delivering the demands to satellites, given an approximation of the delivery cost from satellites to

the customer zones. This corresponds to the restricted planning problem of [4]. We examine two

recourse strategies, increasing the amplitude of the recourse decisions.

The Routing recourse inherits from the first stage decisions the scheduled service network of

the first tier, and the number of city freighters, of each type, that leave satellites at each time

period. The second stage problem than aims to determine the work assignments - routes and

schedules for the day - of all city freighters given the stochastic demand. This part corresponds

to the synchronized, scheduled, multi-depot, multiple-tour, heterogeneous vehicle routing problem

with time windows introduced in [4]. The recourse is completed by including in the formulation

the possibility to use extra capacity (the urban-vehicle services and numbers of city freighters
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might not be sufficient for the realized demand) offered by city-freighters operating pick-up and

delivery-type of routes (with LIFO loading) linking external zones and customers.

The Service Time-Shift recourse starts from the same the first stage as previously inheriting

the selected urban-vehicle services and the bundles of customer zones to be served by each city-

freighter type at each satellite and time period. It then proceeds to examine each customer bundle

(by city-freighter type) and identifies satellite and service opportunity windows such that customers

could still be served on time. The recourse then optimizes a restricted planning problem (the full

model of [4]), where additional departures are permitted for the previously selected services and the

city-freighter work assignments are determined to deliver demand on time while respecting satellite

capacity constraints. The previous extra capacity utilization is also included in this formulation.

We will present and discuss the models for the different recourse strategies together with algo-

rithmic perspective and preliminary results.
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1 Introduction

The motivation of this work comes from the problem of designing routes to school buses in urban

areas. In this problem we have to approach two issues: bus stop selection for each student, and

bus route design for each vehicle. Therefore our problem fits in Location-Routing (see, e.g., [1]).

In most of previous approaches these two issues has been addressed independently (see, e.g., [2]).

To approach the two issues simultaneously, we present the Multiple Vehicle Traveling Purchaser

Problem (MV-TPP), defined as follows.

Let us given a set of pupils. All pupils are assumed to go to the same school. Each pupil is

assigned with a set of potential bus stops. A bus stop may be reachable by more than one pupil. A

fleet of homogeneous vehicles is available in a central depot with the purpose of carrying all pupils

to the school. In addition to the routing cost associated with each connection, there is a cost

associated with the assignment of a pupil to a potential stop. This cost is related to the distance

from the pupil home to the bus stop. We also consider a fixed cost for using each vehicle. The

aim of this problem is assigning a stop to each pupil and designing the routes such that the vehicle

capacity holds and the total cost (including routing and assignment) is minimized.

The combination of these two issues has already been approached from a heuristic point of view

following both location-allocation-routing (LAR) [3, 4, 5, 6] and allocation-routing-location (ARL)

[7, 8] strategies (see, [1, 8]). The LAR strategy determines in a first step a set of bus stops for a

school with the purpose of assigning the students to them. Thus, a second step generates routes for

the involved bus stops. On the other hand, ARL strategy allocate the students into clusters while

satisfying vehicle capacity constraints. Then, the bus stops are selected, and a route is generated

for each cluster. Exact approaches based on Mathematical Programming techniques have been

also proposed [9, 10]. Boding and Berman [3] proposed a specific heuristic approach for a school

bus routing problem with a constraint on the maximum allowable travel time for each pupil. In
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Dulac et al. [4] pupils are located on the street segment of which they live but, as in [3] these users

are assigned to the nearest stop. Their problem is constrained on the number of visited stops, the

transportation time for each vehicle and on the distance walked by each pupil. In Desrosiers et al.

[5, 6] consider that the upper bound of the length of each route in urban area is negligible because

of the high population density. The objective is then to generate a minimum number of routes

filling them as close as possible to their capacity. Chapleau at al. [7] and Bowerman et al. [8]

make use of the ARL strategy.

The MV-TPP generalizes the classical Capacitated Vehicle Routing Problem (VRP) [11] con-

sidering variable demand for each client. The MV-TPP is a clear generalization of the Traveling

Purchaser Problem (TPP) [12] in which a single vehicle without limit on its capacity has to collect

all users. As pointed in [13] the TPP becomes intractable [14] since it generalizes both the Traveling

Salesman Problem and the Uncapacitated Facility Location Problem. Figure 1 shows a feasible

solution of a MV-TPP with capacity Q = 5.
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Figure 1: Feasible solution of MV-TPP

2 Mathematical formulation

This section formulates the MV-TPP. Although the initial integer program for the MV-TPP is

based on a non-linear model, we derive later different families of linear inequalities replacing those

families involved in the non-linearity.

642



2.1 Notation

Let U denote the set of pupils to be carried, N the set of potential stops, and 0 represents the

school and central depot, where the fleet of homogeneous vehicles is available.

Because of the constraints on the distance walked by each pupil to the bus stop, we also denote

by N(u), for all pupil u ∈ U , the set of potential stops reachable by u. Conversely, U(i) denotes

the set of pupils able to reach the bus stop i, for all i ∈ N .

We model MV-TPP on a directed graph G = (V, A)), where V = N ∪ {0}. The set of arcs of

graph G is defined as A = {(i, j) : i ∈ N ∪ {0}, j ∈ (N ∪ {0}) \ {i}}. Each vehicle of the fleet has

a maximum and identical capacity of Q pupils. For each arc a ∈ A, ca is the routing cost of arc

a. For each pair (u, i) denoting a potential assignment, for all pupil u ∈ U and all stops reachable

by u, i ∈ N(u), cui is the cost of assigning u to i. For any subset of locations S ⊆ V , we define

δ+(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S} and δ−(S) = {(i, j) ∈ A : i 6∈ S, j ∈ S}. If S = {i}, we simply

write δ(i) instead of δ({i}). We denote by A(S, T ), for all S, T ⊆ V and S ∩ T = ∅, the set of arcs

going from each vertex of S to each vertex of T .

2.2 A non-linear formulation for the MV-TPP

Minimize
∑

(i,j)∈A

cijxij +
∑

u∈U

∑

i∈N(u)

cuizui

subject to

∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ N, (1)

∑

(i,j)∈δ+(i)

xij =
∑

(j,i)∈δ−(i)

xji ∀i ∈ V, (2)

∑

(j,i)∈δ−(i)

fji −
∑

(i,j)∈δ+(i)

fij =
∑

u∈U(i)

zui ∀i ∈ N, (3)

fij ≤



Q −
∑

u∈U(j)

zuj



xij ∀(i, j) ∈ A, (4)

fij ≥
∑

u∈U(i)

zuixij ∀(i, j) ∈ A, (5)

∑

i∈N(u)

zui = 1 ∀u ∈ U, (6)

fij ≥ 0 ∀(i, j) ∈ A, (7)

xij ∈ {0, 1} ∀(i, j) ∈ A, (8)

yi ∈ {0, 1} ∀i ∈ N, (9)

zui ∈ {0, 1} ∀u ∈ U, ∀i ∈ N(u). (10)
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2.3 Further details

During the talk we will show how we have linearized the previous model and how we strengthen

the LP relaxation. We will also present an alternative column-generation model. Merging the two

models, we have implemented a branch-and-cut-and-price approach to MV-TPP. We will present

and discuss computational experiments on randomly generated instances.
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) considered in this paper involves a fleet of

identical vehicles located at a central depot and a set of customers, each with a given demand of

goods to be supplied from the depot. Every route performed by a vehicle must start and end at the

depot, and the load carried must be less than or equal to the vehicle capacity. It is assumed that

the “cost matrix” of the least cost paths between each pair of customers is known. The cost of a

route is computed as the sum of the costs of the arcs forming the route. The objective is to design

vehicle routes (one route for each vehicle) so that all customers are visited exactly once and the

sum of the route costs is minimized. In this paper, the cost matrix is assumed to be symmetric.

The most effective exact algorithms for the CVRP are due to Baldacci et al. [1], Lysgaard et

al. [7], Fukasawa et al. [5], and Baldacci et el. [2].

Fukasawa et al. [5] described a Branch-and-Cut-and-Price (BCP) for solving the Set Partition-

ing (SP) model of the CVRP strengthened by the valid inequalities introduced by Lysgaard et

al. [7]. The lower bound is computed by a column-and-cut generation method that uses q-routes

(see Christofides et al. [4]) instead of feasible CVRP routes. This method is combined with the

Branch-and-Cut (BC) of Lysgaard et al. [7]. At the root node, Fukasawa et al. [5] decide which

algorithm to use: the BC or the new BCP.

Baldacci et al. [2] proposed an exact method for the CVRP based on the SP model that on

average outperforms all other exact methods on the main CVRP instances from the literature.
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Table 1: Summary results for the CVRP
Lysgaard et al. [7] Fukasawa et al. [5] Baldacci et al. [2] Our method

Class np nopt tAV G nopt tAV G nopt tAV G nopt tAV G

A 22 15 6,638 22 1,961 22 118 22 31

B 20 19 8,178 20 4,763 20 417 20 67

E-M 9 3 39,592 9 126,987 8 1,025 9 305

P 24 16 11,219 24 2,892 22 187 24 81

Avg 10,438 18,009 323 89

Tot 75 53 75 72 75

They proposed an additive bounding procedure that combines two dual ascent heuristics, called

H1 and H2, to derive a near-optimal dual solution used by a cut-and-column generation algorithm,

called H3, to initialize the master problem. H3 attempts to close the integrality gap by adding in

a cutting plane fashion both generalized capacity and clique constraints. The final dual solution

achieved is then used to generate a reduced SP problem containing only the routes whose reduced

cost is smaller than the gap between an upper bound and the lower bound obtained. The resulting

reduced problem is then solved by an integer programming solver.

In this paper, we further improve the method of Baldacci et al. [2] using new ideas introduced

by Baldacci et al. [3] for solving the VRP with Time Windows. In particular, we use a new route

relaxation, called ng-route, that strongly improves other relaxations of feasible routes proposed in

the literature for the CVRP and increases the efficiency of the pricing algorithms. We improve

procedure H3 using Subset-Row inequalities (see Jepsen et al. [6]) and a novel strategy for solving

the pricing subproblem. Finally, a new fathoming criterion based on the dual solution achieved by

H2 is used to speed up the solution of the pricing subproblems and reduce the size of the final SP

model.

2 Computational Results

In this section, we report a computational comparison of the new results obtained with those of

Lysgaard et al. [7], Fukasawa et al. [5] and Baldacci et al. [2] on five classes of CVRP instances

from the literature, called A, B, E, M and P (available at http://branchandcut.org/VRP/data).

The algorithm of Lysgaard et al. [7] was run on an Intel Celeron at 700 MHz while the

algorithms of Baldacci et al. [2] and Fukasawa et al. [5] used Pentium 4 processors running at 2.6

GHz and 2.4 Ghz, respectively. Our algorithm was run on an IBM Intel Xeon X7350 Server at

2.93 GHz. According to SPEC benchmarks, our machine is three times faster than the Pentium 4

processors of Baldacci et al. [2] and Fukasawa et al. [5] and ten times faster than the machine of

Lysgaard et al. [7].

Table 1 reports a summary of the computational results obtained by the four exact methods
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Table 2: Results on difficult CVRP instances
Lysgaard et al. [7] Fukasawa et al. [5] Baldacci et al. [2] Our method

Name z∗ %LB tLB tTOT %LB tLB tTOT %LB tLB tTOT %LB tLB tTOT

A-n54-k7 1,167 97.3 30 7,246 98.9 125 1,409 99.5 43 86 99.8 14 14

A-n64-k9 1,401 96.5 132 tl 98.9 265 11,254 99.5 32 120 99.6 21 24

A-n80-k10 1,763 97.0 201 tl 99.5 1,120 6,464 99.6 117 194 99.7 247 250

B-n50-k8 1,312 97.6 26 tl 98.7 97 2,845 99.7 640 662 99.8 118 147

B-n66-k9 1,316 98.7 80 tl 99.4 145 1,778 99.5 216 227 99.9 283 292

B-n68-k9 1,272 98.9 65 tl 99.3 260 87,436 99.5 254 6,168 99.7 336 526

E-n51-k5 521 99.6 24 59 99.5 51 65 100.0 13 13 100.0 2 2

E-n76-k7 682 97.7 72 118,683 98.2 264 46,520 99.0 146 3,371 99.8 290 291

E-n76-k8 735 97.7 136 tl 98.8 277 22,891 99.3 104 873 99.9 63 64

E-n76-k10 830 96.4 158 tl 98.5 354 80,722 99.5 60 174 99.5 19 21

E-n76-k14 1,021 95.0 181 tl 98.6 224 48,637 99.6 17 45 99.4 7 9

E-n101-k8 815 98.5 222 tl 98.8 1,068 801,963 99.0 250 - 100.0 638 638

E-n101-k14 1,067 96.2 555 tl 98.8 658 116,284 99.7 154 1,230 99.6 319 453

M-n101-k10 820 100.0 33 33 100.0 119 119 100.0 47 47 100.0 19 19

M-n121-k7 1,034 98.4 979 tl 99.7 5,594 25,678 99.8 944 2,448 99.9 1,247 1,249

P-n50-k8 631 95.4 28 tl 97.7 102 9,272 99.0 12 596 99.1 12 14

P-n55-k10 694 95.4 53 tl 98.2 107 9,076 99.3 16 66 99.3 6 8

P-n70-k10 827 96.2 90 tl 98.5 292 24,039 99.4 35 774 99.5 116 118

P-n76-k5 627 98.5 92 10,970 98.4 273 14,546 98.8 122 - 100.0 437 438

P-n101-k4 681 99.6 127 281 99.6 1,055 1,253 99.4 371 - 100.0 1,154 1,155

considered. Column np of this table reports the number of instances in the corresponding class.

For each method and for each class, the table shows the number of instances solved to optimality

(nopt) and the average computing time in seconds for solving the instances (tAV G).

The last two lines of Table 1 report the average computing times over all classes and the total

number of instances solved by each method. The method of Baldacci et al. [2] was not able to

solve to optimality 3 instances solved by Fukasawa et al. [5] and by our exact method. Taking the

different computers used into account, Table 1 indicates that our method is on average faster than

the method of Fukasawa et al. [5].

Table 2 reports a detailed comparison of the computational results of the four methods con-

sidered on a selected set of difficult CVRP instances. Column Name indcates the name of the

instance. z∗ is the cost of the optimal solution. Columns %LB, tLB and tTOT report the average

percentage ratio of the lower bound with respect to the optimal solution value, the average time

in seconds for computing the final lower bound, and the average total time in seconds for solving

the instance. For the exact method of Lysgaard et al. [7], “tl” indicates that the time limit has

been reached, and for the exact method of Baldacci et al. [2], “-” denotes that the memory limit

has been reached.
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1 Introduction 
In studies of vehicular gap-acceptance behavior, the choice to accept or reject a gap of a certain size is 

generally considered the result of a driver decision process which includes, as inputs, subjective 

estimates of a set of explanatory variables, given specific objective factors. These subjective 

evaluations are usually affected by a high degree of uncertainty, which can be properly treated both by 

classical probabilistic models (e.g. Logit [1]) and by fuzzy system theory [2]. In this paper we propose 

a comparative analysis among these two approaches to the representation of gap-acceptance behavior 

based on experimental data collected at a priority junction. The method used to carry out this 

comparison is the so-called ROC (Receiver Operating Characteristic) curve analysis, which, to our 

knowledge, has never been applied in the area of transport modeling.  

 

2 Experimental data 
The field data used in the analysis are gap-acceptance observations (driver decisions) collected at a 

rural three-leg priority intersection. All observations relate to the right turn movement from a minor 

street controlled by a “yield” sign. The identification/estimation of both Fuzzy and Logit models has 

been carried out using the same 70% random subsample (calibration dataset) of the full sample (2.340 

decisions, acceptance and rejections); the random subsample consisting of the remaining 30% of data 

has been used for model validation (validation dataset). 
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3 Logit model calibration 
Several Logit models of gap-acceptance behavior were specified and estimated in this study using the 

HieLoW® and Gauss® programs; here we report the results obtained from one of them, indicated as 

GA_L (Tab. 1). 
Model Rho-square Corrected Rho-square Percent Right 
GA_L 0,736 0,732 92,26% 

 
Alternative specific constant (acceptance) -6,602 (-17,72) 
Time interval size  +0,99 (19,20) 
Total delay +0,02 (2,47) 
Interval type  +2,25 (8,96) 

Tab. 1 – Calibration results: goodness-of-fit indicators , parameter estimates and corresponding 
Student’s t-statistics (within brackets). 

The GA_L model includes, as explanatory variables, the size s of the time interval (gap or 

lag), the driver’s total delay d on the minor approach (queuing delay plus stop-line delay), and the type 

of interval (represented by a dummy gl, which takes the value of one in the case of a lag and zero in 

the case of a gap). The estimated GA_L model has the following expression: 

( )
1

1 exp 6,602 0,99 0,02 2, 25acceptanceP
s d gl

=
+ − − + ⋅ + ⋅ + ⋅⎡ ⎤⎣ ⎦

. 

In which, as expected, the acceptance probability increases with both the interval size s and the total 

delay d ; also, for given values of interval size and total delay, the lag-acceptance probability is higher 

than the gap-acceptance probability (Fig. 1). 

 
 

Fig. 1 – GA_L model. Lag and Gap acceptance surfaces as a function of time interval size 
and total delay. 

 

4 Fuzzy model identification 
 
For the identification of the membership functions of the premise and consequence fuzzy sets, and 

rules of inferences the so-called FPA (Fast Prototype Algorithm [3]) has been used. A satisfactory 

value of goodness-of-fit has been obtained. The fuzzy system knowledge base was characterized by six 

trapezoidal fuzzy sets in the domain of the time interval size, five trapezoidal fuzzy sets in the domain 

of the driver’s total delay and by two “singletons” in the domain of the crisp variable representing the 

type of interval. A simple Mamdani-type method of inference has been adopted. The calibration 

process produced forty compensatory and two non-compensatory rules. 

Time interval size [sec] Total Delay [sec] 

GAP-acceptance 
probability 

Time interval size [sec] Total Delay [sec] 

LAG-acceptance 
probability 
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Acceptance surfaces obtained from the fuzzy model (GA_F) are shown in fig. 2. 

  
Fig. 2 – GA_F model. Lag and Gap acceptance surfaces as a function of time interval size and total 

delay. 
 

In agreement with the GA_L (Logit) model, the GA_F model shows that the value of the 

acceptance index increases with the time interval size and with the total delay on the minor approach, 

and suggests that lag acceptance behavior is more aggressive than gap acceptance behaviour for given 

interval size and total delay. 

 

5 Comparing the predictive ability of the models: preliminary results 
 

The predictive ability of the two models has been tested by means of the ROC curve analysis, a 

method used in various research fields for evaluating and comparing the discriminatory power of 

models having binary outputs [4]. Apparently, this method has never been applied before in the area of 

transport modeling. The basic idea of ROC curve analysis may be explained by considering an 

experiment with only two possible outcomes, A and B (for example, gap acceptance and rejection in 

our application). Suppose we are using a model that predicts the outcome of the experiment based on a 

classification threshold (“cutoff”), and denote by: 

True A: the situation in which the model predicts A and the actual outcome is A; 

False A: the situation in which the model predicts A but the actual outcome is B; 

True B: the situation in which the model predicts B and the actual outcome is B; 

False B: the situation in which the model predicts B but the actual outcome is A; 

Then we may define the probability of correctly identifying A as: 

PCA = n. of True A/(n. of True A + n. of False B) = TPR 

and the probability of correctly identifying B as: 

PCB = n. of True B/(n. of True B + n. of False A) = TNR 

Clearly, the discriminatory power of the model increases with both PCA and PCB. The ROC curve 

describes the relationship between PCA, called “sensitivity”, and (1-PCB), called “1-specificity”, for 

all possible classification thresholds. Since: 

1-PCB = n. of False A/(n. of True B + n. of False A) = FNR 

the ROC curve may be interpreted as describing the relationship between the “percentage of hits” and 

the “percentage of false alarms” obtained with the model. It is known that the area under the ROC 

Time interval size [sec] Total Delay [sec] Time interval size [sec] Total Delay [sec] 

LAG-acceptance index GAP-acceptance index 
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curve (AUC) is related to the accuracy of the model predictions, and increases with it; in particular, 

when this area is equal to one the model produces perfect forecasts, and when it is equal to 0.5 the 

model produces random forecasts (no discriminatory power). The AUC is equivalent to the Gini 

coefficient = 2*AUC-1, and also to the Mann–Whitney–Wilcoxon two-independent sample non-

parametric test statistic [5]. Additional performance metrics adopted are also: FPR=1-PCA, Precision 

metric, that represents the percentage of correct acceptance prediction, the F-measure, that is the 

harmonic average of Precision and PCA, and the percent right (or accuracy), that is the percentage of 

correct predictions globally made. 

Some preliminary results of the analysis are illustrated in Fig. 3. While the ROC curves (left-

hand part of the figure) seem to suggest a slight superiority of the Logit model, a more complete 

analysis using additional statistics (shown in the right-hand part) indicates that neither model definitely 

dominates the other. A detailed examination of all these indicators will be presented in the full paper. 

 
Fig. 3 – GA_L model vs. GA_F model. ROC curves and model performance comparison. 

 

References 
 
[1] S. Teply, M. I. Abou-Henaidy and J. D. Hunt. “Gap acceptance behaviour – aggregate and Logit 

perspectives: Part 1”, Traffic Engineering and Control  9, 474-482 (1997). 

[2] R. Rossi and C. Meneguzzer, “The effect of crisp variables on fuzzy models of gap-acceptance 

behaviour”, Proceedings of the 13-th Mini-EURO Conference “Handling Uncertainty in the 

Analysis of Traffic and Transportation Systems”, Bari (Italy), 240-252 (2002). 

[3] P.-Y. Glorennec. Algorithmes d’apprentissage pour systems d’inférence floue. Editions Hermès, 

Paris (1999). 

[4] T. Fawcett. “An introduction to ROC analysis”. Pattern Recognition Letters, 27(8), 861–874 

(2006). 

[5] J.A. Hanley and B.J. McNeil “The meaning and use of the area under a receiver operating 

characteristics curve”, Radiology 143, 29-36 (1982). 

652



Integrating Medium- and Short-Term Decisions

in Airline Crew Planning

Michael Römer
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1 Introduction

Airline crew planning can be viewed as a hierarchical planning process consisting of multiple stages

ranging from long-term decisions such as planning the crew size to short-term crew scheduling.

While Operations Research methods have successfully been applied at all stages, the short-term

planning step of crew scheduling is the most active area of research (for an overview cf. [1]).

In this paper, we focus on the interdependencies between medium-term crew planning tasks

and crew scheduling. Under the umbrella of medium- term planning, we subsume all planning

tasks that affect the availability of a given set of crew members for crew scheduling. In particular,

the assignment of absence periods (part-time and vacation leave) and the scheduling of non flying

activities such as training, simulator and office fall into this category. In medium-term planning,

the common approach to anticipate subsequent planning steps is to constrain the number of absent

crew members (globally or by domicile).

While the number of available crews is certainly the most important consequence for crew

scheduling, it is only an aggregated figure. In a more detailed view, medium-term planning affects

the time-dependent crew availability by determining the gaps in the roster of each crew member

that can be used for flying. In our ongoing research, we study the question whether it is possible

and beneficial to anticipate crew scheduling in a greater detail in the medium-term planning stage.

We present a modeling framework that integrates crew scheduling and medium-term planning tasks

and provide some experimental results based on real world problem instances.
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2 Modeling approach

Medium-term planning tasks can be modeled as network flow models with side constraints. For

every crew member, a separate network is constructed (see Figure 1). It contains a timeline which

includes nodes that represent the start and end events of the activities to be planned and arcs

that represent “idle time” of the respective crew member. Activities with a fixed start and end

time (e.g. already planned part-time absences, exact vacation requests) are represented by a single

arc in the network. If the duration of the activity is fixed but the start time is variable (e.g. 14

vacation days in a given time period), several arcs are generated for alternative start times in

conjunction with a bundle constraint. For activities with a variable duration, additional arcs are

added as shown on the right in Figure 1. Note that the network structure of the model implicitly

ensures that all planned activities are non-overlapping as the flow in a crew member network is

limited to 1 and a flow unit is required for every activity.

Michael Römer 4

Modeling Crew Member Activities

time

Figure 1: Example structure of crew member network used in medium-term planning

In order to apply this model structure to a specific medium-term planning task, problem-

dependent side constraints can be added. We successfully applied this modeling approach in a

decision support system for vacation planning that is in productive use at a medium-sized German

airline, see [2]. Autovacation supports the planners in different planning stages by automatically

processing and awarding the vacation requests of the crew members and by generating alternative

proposals for not awarded requests while accounting for all contractual and company rules.

Our approach to an integration with the crew scheduling problem is based on an aggregated

network flow model for the crew pairing chain problem (CPCP) proposed by Mellouli [3, 4, 5]. It

forms the key part of a decision support system that is used for crew scheduling at our partner

airline with 11 crew domiciles for several years. This model and the respective solution approach

to crew scheduling can be contrasted to traditional set partitioning approaches to the crew pairing

problem (CPP) (cf. [1]) in at least two ways: Firstly, instead of optimizing pairings separately, it

simultaneously optimizes pairings and their sequencing into pairing chains, explicitly integrating

aggregated capacities for pre-planned crew member activities and absences. Secondly, as the

underlying network enforces all pairing-related contractual and governmental rules (e.g. EU-OPS)

by construction, the model can directly be solved by a state-of-the-art mixed integer programming

solver instead of resorting to a decomposition method.
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The pairing chain model for the CPCP is a multicommodity flow model on a state-time network

where a commodity represents an anonymous crew member from a certain crew domicile, an arc

represents an activity or a connection between activities and a node corresponds to a crew state at

a point in time. The computed optimal flow in the network can be decomposed into a set of pairing

chains containing spaces for days off and for pre-planned activities. For every crew domicile there

is a timeline consisting of arcs representing idle crew members and nodes corresponding to activity

start and end events. Due to the state-expansion of the network, every deadhead and flight can

occur several times in the network. Pre-planned activities are represented as arcs with a fixed flow.

Additional side constraints ensure the regular distribution of days off and the balancing of flight

hours among the crew domiciles.

In both networks described above, a flow unit represents a crew member. The main difference is

that in the crew member network, a flow unit can be mapped to a concrete crew member whereas in

the pairing chain network the flow is aggregated and therefore anonymous. To combine the pairing

chain and the medium-term model, we first construct both networks separately. For every starting

and ending activity of an individual crew member, we then add one node to the respective domicile

timeline in the pairing chain network. The outgoing and incoming activity arcs of these nodes can

be seen as copies of the corresponding arcs in the crew member network, carrying the same flow

variables that represent the individual activities. Thus, in the mathematical model, these variables

occur in the flow balance constraints of the corresponding timeline nodes in both networks. As

a consequence, every individual activity requires one flow unit from both the aggregated and the

crew member network to begin and releases these units when it is finished.

Note that by keeping the crew member timeline in the model instead of simply adding the crew

member individual activities to the respective domicile timelines, an overlapping of of crew member

activities is still implicitly avoided in the model. In addition to the integration of the network

structure of the two models, some components of the pairing chain model (e.g. the constraints for

the distributing of days off) that depend on the medium-term activities are adapted.

3 Computational results and outlook

The aim of our first experiments is to study the potential benefits of integrating medium-term

planning with crew scheduling. For each problem instance, we compare the results of two different

models: First, we use the standard pairing chain model (CPCP) where all medium-term activities

are fixed. In the second model (CPCP+MT), we use our integrated approach in the following

way: Every pre-planned vacation or off period that completely falls into the planning period can

be shifted to a maximal extent of 3 days inside the planning period. In both models we restrict

the maximum length of a pairing to 3 days to reduce model size and computation time.
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We used several real world instances from our partner airline with a complete half month

planning period. All models are generated and solved on a personal computer (Intel Core 2, 2.4

GHz, 2GB RAM) using single-threaded CPLEX 10.2. One typical instance for first officers has the

following properties: 15 days, 41 aircrafts, 260 crew members distributed over 11 crew domiciles

and 3546 flights. The following table summarizes some key features of the model and its solution:

model columns rows gen. (min) solve (min) costs (%) shiftable periods

CPCP 155842 40232 35:21 8:10 100 -

CPCP+MT 156545 40475 35:39 6:13 98.3 123

The generation of the pairing chain model takes much more time than the solution of the model

itself. This is due to the complex steps to construct and aggregate the network for the pairing

chain model and the need to check all relevant working rules. We solved additional comparable

instances resulting in cost savings between 0.5 and 2.2 percent with similar running times.

As can be seen from the experimental results, our approach is computationally tractable for

real-life instances of a moderate size. Moreover, the provided flexibility concerning the medium-

term activities has a positive impact on the solution of the crew pairing chain problem. We plan

to conduct further research by applying the presented modeling framework to different medium-

term crew planning tasks. Furthermore, we think that our approach could be used in more general

settings as it allows to integrate aggregated and disaggregated network flow models in a simple and

efficient way. This could be valuable especially in cases where some aspects of the problem exhibit

a strong combinatorial nature and where other aspects need to be modeled in a more detailed way.
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1 Problem description

In this paper, we consider a distribution system consisting of a single warehouse from which a set of

geographically scattered customers S with constant demand rates di (i ∈ S) has to be replenished.

Because of the constant consumption rates, a cyclic distribution pattern is most appropriate, in

which the time between consecutive deliveries to a customer is always the same. Even if the

consumption rates are somewhat variable, the cyclic approach is still valid as the variability can

be buffered with a limited amount of safety stock at the customers [5].

In setting up the cyclic distribution for this system, the trade-off between distribution and

inventory costs has to be made. Distribution costs consist of fixed vehicle dispatching costs (ϕ0

per route), drop-off costs (ϕi per delivery, i ∈ S) and variable transportation costs (δ per km).

Further, because the cyclic plan is to be repeated over an infinite time horizon, the vehicle fleet is

also variable and a fixed cost ψ is incurred per vehicle used. Inventory costs on the other hand,

consist of holding costs (ηi per unit per day, i ∈ S) for the cycle stock at the customers. A

routing and an inventory management problem therefore have to be solved simultaneously, hence

the problem is called the cyclic inventory routing problem.

Replenishing a customer with a large quantity results in a larger inventory cost, compared

to when the replenishment quantity would be smaller, but the customer needs to be visited less
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often so distribution costs could decrease. However, the large quantity also means that there is

less space left in the vehicle to replenish other customers in the same route. Therefore, a larger

delivery quantity can also lead to an increase in distribution costs if an extra vehicle needs to be

dispatched from the warehouse.

Furthermore, a single vehicle can also be used for several different routes. E.g. the same vehicle

can be used to make two different full-day routes that both have to be repeated every two days,

but not to make two different full-day routes where one has to be repeated every two days and

the other every three days. This means that the cycle times of the different routes also need to be

aligned to limit the number of vehicles required and the corresponding fixed vehicle costs [3].

From this discussion, it is obvious that the cyclic inventory routing problem is very complex,

because it involves making the following interrelated decisions:

- What is the cycle time (and delivery quantity) for each of the customers?

- On which days are the customers being replenished?

- How are the different deliveries on any given day allocated to different routes?

- Which vehicle makes which routes?

The cyclic inventory routing problem can be viewed as a generalization of the periodic vehicle

routing problem (PVRP) that (i) includes an inventory cost component and (ii) considers the cycle

times of the customers as a decision variable instead of a given parameter.

2 Literature review

In the literature, several solution approaches for the cyclic inventory routing problem are pre-

sented. Many of these approaches use the so-called ‘fixed partition policies’, as introduced by

Anily and Federgruen (1990) [2]. In these approaches, customers are clustered geographically, and

all customers in a cluster are always replenished together in a single route.

Viswanathan and Mathur (1997) [6] take a more general approach by adopting a stationary

nested joint replenishment policy. ‘Nested’ means that if the replenishment interval of a given

customer is larger than that of another customer served by the same vehicle, the former is a

multiple of the latter. In other words, a customer that is assigned to a route, is not necessarily

visited during every iteration of that route.

Aghezzaf et al. (2006) [1] are the first to take fleet sizing into account. In their approach,

a single vehicle may make multiple routes, albeit all with the same frequency. This is further

generalized in the approach of Raa and Aghezzaf (2009) [4], who allow a vehicle to make multiple

routes with different frequencies. For each vehicle, a base cycle time is determined, and the cycle

time of each of the routes of the vehicle is an integer multiple of this base cycle time.
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3 Solution approach

In this paper, two new solution methods for the cyclic inventory routing problem are developed.

The first solution method generalizes the approach of Raa and Aghezzaf (2009) by relaxing the

following two restrictions that are inherent to that approach: (i) all customers in a route have the

same cycle time, and (ii) each route is always made by the same vehicle. The first restriction can

be relaxed by introducing the ‘nestedness’ concept of Viswanathan and Mathur (1997). The second

restriction can be relaxed by, instead of assigning a route to a vehicle, assigning each iteration of

a route separately to a vehicle.

In all solution methods described so far, every customer is always visited in the same route.

These solution methods all construct solutions by assigning customers to routes and then deter-

mining the best cycle time for each route to minimize total cost rates. The second solution method

presented in this paper steps away from this ‘route-centric’ approach and takes a more ‘customer-

centric’ approach. This new method determines the cycle time for each customer, then assigns

customers to days, and builds routes for each day afterwards.

4 Illustrative example

Consider the 4-customer example in Figure 1.

Figure 1: Illustrative example

With a route-centric method, customers 2 and 4 are replenished in a 5-hour route that is

repeated every two days. Customers 1 and 3 are replenished in an 8-hour route that is repeated

every four days. The cost rate of this solution is 355.00 euro per day.

2,4 1,3 2,4

Day 1 Day 2 Day 3 Day 4

With a customer-centric method, a solution with a cost rate of only 350.83 euro per day can

be obtained.
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Customer 2 is replenished every two days, customers 1 and 4 are replenished every three days,

and customer 3 is replenished every six days. On day 1 of the resulting six-day cycle, customers

1 and 2 are visited in separate routes because of the limited vehicle capacity. However, a single

vehicle can make both short routes. On day 4, customer 1 is replenished together with customer

3, whereas customer 1 has a separate replenishment on day 1. This would also possible be in the

route-centric method if the nestedness is incorporated (customer 3 is visited only every second

iteration of the route). Customers 2 and 4 are in separate routes on days 1, 2 and 3, while they

are in a joint route on day 4. This is only possible in the customer-centric approach.

2 1 4 2 1,3 2,4

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

5 Computational experiments

A wide range of computational experiments are performed on the datasets of Raa and Aghezzaf

(2009) [4] as well as on periodic vehicle routing benchmarks from the literature, to assess (i) the

performance of the different solution approaches, and (ii) the value of the additional flexibility that

the two proposed solution methods offer, i.e. their potential for further cost savings.

References

[1] E. H. Aghezzaf, B. Raa, and H. Van Landeghem. Modeling inventory routing problems in supply

chains of high consumption products. European Journal of Operational Research, 169(3):1048–

1063, 2006.

[2] S. Anily and A. Federgruen. One warehouse multiple retailer systems with vehicle-routing

costs. Management Science, 36(1):92–114, 1990.

[3] B. Raa and E.-H. Aghezzaf. Aligning frequencies in cyclic delivery scheduling. In Proceedings

of the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA), 2007.

[4] B. Raa and E.-H. Aghezzaf. A practical solution approach for the cyclic inventory routing

problem. European Journal of Operational Research, 192(2):429 – 441, 2009.

[5] B. Raa and W. Dullaert. Cyclic inventory routing under demand uncertainty. In Proceedings of

the Fourth International Workshop on Freight Transportation and Logistics (Odysseus), Çesme,
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1 Introduction

This paper is based on the work of Louis (2009) [6] and investigates the optimization of order picking

efficiency in picker-to-part warehouses with multiple blocks by integrating operational decisions

related on batch sizing, the composition of batches and the routing of order pickers to collect

the batches. Although there is an extensive literature on each of these three individual aspects of

order picking efficiency, integrated approaches are scarce to non-existing. When comparing routing

algorithms, most authors assume that the batches of orders to be picked on the same route are

already composed. We therefore start by briefly explaining the order batching and sorting process

before highlighting existing routing research and identifying the need for an integrated solution

approach.

1.1 Order batching

If orders are small relative to the capacity of the picker, it can be more efficient from a travel

time/distance perspective to group orders instead of picking them individually (single order picking,

discrete picking, pick-to-order). However, order batching will increase the processing time of orders,

which can call for separate or prioritized batching of urgent orders.
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The main order batching strategies are proximity or time-window based. Proximity batching

will assign orders to a batch based on its storage position compared to the position of the other

orders in the batch. Exact approaches have been developed for problems with a limited number

of orders. For more realistic settings, heuristic approaches have been proposed, of which the vast

majority consists of savings or seed-based construction heuristics. For the latter, addition rules,

based on comparing the aisle numbers in the batch and the aisle number in the order under

consideration, are quite efficient and therefore quite popular. More recently, data mining and

metaheuristic approaches are being explored.

Time window batching models the picking process as a queuing system to determine the required

number of pickers for a given service level. Time window batching is recommended if (i) a large

number of orders is to be processed, (ii) information on the orders is not known beforehand, (iii)

a limited number of pickers is available. Of the different approaches, only Won and Olafsson

(2005) [11] present a joint order batching and picking algorithm.

Although Roodbergen and De Koster (2001a) [8] and Vaughan and Peetersen (1999) [10] have

already pointed out that dividing the warehouse into several blocks (by introducing aisles and cross

aisles) can have a positive effect on the travel time of a picker, most seed and savings heuristics are

specifically designed for single block warehouses and only Le-Duc and De Koster (2007) [5] address

batching in a 2-block warehouse. As such, there is no evidence on the performance of existing

batching algorithms in real-life multi-block warehouses.

1.2 Composing orders

As a picker visits the storage locations of the various items on his list, he can sort these items

into separate orders as he travels from one location to the next (sort-while pick) or the orders can

be composed at a sorting station at the end of the picking route (pick-and-sort). Order batching

reduces travel time, but increases administrative and sorting costs to compose the indivial orders.

Order splitting amongst different order pickers can further reduce distance travelled, but it comes

at the expense of higher order sorting costs (see e.g. De Koster et al., 2007 [2]).

1.3 Routing order pickers

As order pickers spend about 50% of their time travelling from one storage location to the next,

the savings potential of improving order picker routing is significant. As a result, routing of order

pickers receives more scientific attention than any other operational warehouse decision problem.

The problem of sequencing and routing order pickers in conventional multi-parallel-aisle systems

classifies as a Steiner Travelling Salesman Problem [1]. The Steiner nodes indicate all “crossing

nodes” between two or more aisles and the objective is to visit all order locations (non-Steiner

nodes) once, at minimum overall cost. For this NP-hard Steiner TSP, exact algorithms only exist
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for warehouses with at most three cross aisles, while for other warehouse types literature provides

a selection of dedicated construction heuristics such as S-shape (a.k.a. traversal) heuristic, largest

gap and combined heuristics.

In Theys et al. (2010) [9] we examined how reformulating and solving the order picking problem

as a classical TSP leads to performance improvements compared to existing dedicated heuristics.

Average savings in route distance amounted to 47% when using the LKH (Lin-Kernighan-Helsgaun)

TSP heuristic, with solutions deviating only 0.1% from optimum on average. Computational testing

further revealed that by complementing existing construction heuristics with a first-accept 2-opt

local search operator, average distance savings of 10 to 42% can be obtained.

This paper wants to integrate (i) batching, (ii) sequencing, (iii) route construction and (iv)

improvement methods to provide a comprehensive approach to operational decision making in

multiple block warehouses. Moreover, we want to make a critical assessment of the impact of

existing approaches on the overall cost of operating a warehouse.

2 Computational experiments

To compose the batches of orders, four seed heuristics are developed: first-come-first-serve, two

extensions of the single-block selection rules of Ho and Tseng (2006) [4] and a new selection rule

based on the number of blocks in which the items of an order are located. The possibility of splitting

orders over multiple pickers is also considered. Sequencing procedures are used to determine picking

sequences. For the shortest path routing, the order sequence is obtained by a sequential insertion

heuristic. For the S-shape routing heuristic, the quality of the initial sequence is irrelevant as

routes are built from scratch. Previous research on routing order pickers has illustrated the value

of local search to improve solution quality [7, 9]. We therefore consider a swapping operator

for items reminiscent of [7] and a swapping operator to relocate orders between batches. In the

computational experiments all relevant combinations of these procedures are combined into 11

integrated approaches which are evaluated on an extensive set of benchmark instances based on

order features suggested in [3, 4].

3 Conclusions

To the best of our knowledge, this paper is the first to provide integrated approaches for order

batching, order sequencing and routing of order pickers. Computational experiments show that

(i) both the capacity of the picker and the number of blocks in the warehouse have a significant

impact on the performance of the algorithms, (ii) batching algorithms should consider both travel

distance and capacity utilization, and (iii) improvement heuristics have a significant impact on

solution quality. Order splitting is shown to reduce travel distances by up to 50%, depending on
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the integrated method used, illustrating that these cost savings will have to be traded off with

the resulting increase in sorting costs. At the conference, the different procedures, computational

experiments and results will be discussed in detail and directions for further research will be

presented.
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1 Introduction 
   

Air traffic has grown at an average annual rate of more than 4.0 percent over the last three decades, 

giving an important contribution to the development of the world economy [1]. The growth in air 

traffic has not been accompanied with a comparable increase in runway and terminal capacity. As a 

consequence, the number of delayed flights has been increasing every year, particularly in the largest 

airports. 

Airport congestion problems can be and are being dealt with at various levels (air 

transportation authorities, airports, airlines) and in many different forms. In the short-term, demand 

management measures such as slot allocation systems and congestion pricing can play an important 

role [2]. However, in the long term, air traffic can only keep growing at significant rates if the capacity 

of existing airports is expanded and/or new airports are built. 

The literature dealing with airport expansion and/or location problems at the network level is 

quite scarce. This is especially true for the optimization-based literature. Indeed, to our best 

knowledge, [3] is the only paper where an optimization model is applied to this kind of problems. 

In this paper, we present an optimization model for assisting air transportation authorities in 

their strategic decisions regarding the expansion of an airport network. The model determines in a 

comprehensive manner the best expansion actions to implement for each airport (or multi-airport 

system) while complying with a given budget. The objective is to maximize the revenue passenger 

kilometers (RPK) travelled in the network, taking into account the capacity of airports and the impact 

of travel costs upon demand. 
  

2 Model formulation 
  

The airport network capacity expansion (ANCE) problem can be formulated as a bi-level discrete 

network design problem: the upper level determines the optimal set of expansion actions to apply in 
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order to maximize RPK, and the lower level determines the link and airport flows subject to user 

equilibrium conditions. 

The following notation has been used to formulate the ANCE model: N = set of airports in the 

network; L = set of links in the network; Mj = set of expansion actions applicable to airport j; Rjk = set 

of routes available for travelling between airports j and k; Ljkr = set of links in route r connecting 

airports j and k; Njkr = set of airports in route r connecting airports j and k; djk = distance between 

airports j and k; qjk = number of trips between airports j and k; zj = final capacity of airport j; sj = initial 

capacity of airport j; gjm = capacity increase in airport j if expansion action m is applied; yjm =1 if 

expansion action m is applied to airport j, and 0 otherwise; ejm = expenditure for applying expansion 

action m to airport j; b = budget available for expansion actions; vjkr = number of trips on route r 

connecting airports j and k; ujk = number of trips on the link connecting airports j and k; wj = flow in 

airport j; cjkr = travel cost on route r connecting airports j and k; cjk = average cost between airports j 

and k. 

The upper level problem can be formulated as follows: 
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The objective function (1) expresses the maximization of the RPK. Constraints (2) define the 

capacity of airport j as the sum of its initial capacity and the capacity increase due to the expansion 

action applied. Constraints (3) ensure that at most one expansion action will be applied to each airport. 

Constraints (4) ensure that the total expenditure must comply with the budget available for expansion 

actions. Constraints (5) establish that the capacity of the airports must be able to accommodate the 

traffic flow. 

The lower level problem can be formulated as follows: 
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Constraints (6) define the number of passengers travelling between j and k as a function of the 

size of the cities, pj and pk, the competition between travel modes, represented by the split function �jk, 

and the average travel cost. Constraints (7) define the number of passengers travelling in route r 

between j and k as a function of the travel cost for that route. Constraints (8) define the cost of 

traveling in route r connecting j and k, which is given by the sum of the link costs for the set of links 

on that route and the airport costs for the set of airports on that route. The link costs are assumed to 

increase with distance and to decrease with the total amount of traffic (due to economies of scale). 

Airport costs are given by the sum of a fixed cost, f, a variable cost dependent on the airport occupancy 

rate, and a congestion tax, x. Constraints (9) define the traffic in the airports, and constraints (10) 

define the traffic in the links. α, μ, φ, β, and γ are statistical calibration parameters. 
  

3 Model solving 
  

The model presented above is extremely difficult (if not impossible) to solve to exact optimality. Thus, 

a heuristic algorithm was developed, based on similar algorithms applied to road network design 

models [4]. The upper level model, solved with a greedy-type algorithm, gives tentative expansion 

actions. With the new airport capacity values, the lower level model is solved in order to compute the 

link and airport flows, which are, in turn, used to evaluate new tentative expansion actions. This 

iterative process is repeated until there are no expansion actions within the given budget that can 

improve the best solution found. 

The set of experiments made up to now to assess the effort required to solve the model is 

limited to instances with up to 30 airports. The average time required to find the solution on a top-

market PC was about 20 seconds for 10-airport instances, 75 seconds for 20-airport instances, and 

more than one hour for 30-airport instances. As one could expect the computation effort increases 

sharply with instance size. 
 

4 Application example 
  

The type of results that can be obtained through the application of the optimization model are now 

illustrated for a small test instance. Consider a region with six cities, each one served by an airport. 

Both the population and the location of the cities were randomly determined. The set of expansion 

actions are: gj = {40, 60, 70, 80, 100, 120}×103 passengers/day. If no budget is assigned to expansion 

actions, the total RPK is equal to 332.3×103 pax×km/day, and three airports are very congested – see 

Figure 1 (left). The top left airport, in particular, is very congested, and the cost for passengers using 

this airport includes a congestion tax equal to 50$. If 23x108$ are assigned to expansion actions, the 

three congested airports are expanded and the total RPK increases to 399.8 pax×km/day (+20.0%) – 

see Figure 1 (middle). With half of this budget, only two airports are expanded and the total RPK is 

equal to 384.8 pax×km/day (+15.8%) – see Figure 1 (right). 

667



40 [1]

40

40 [1]

9

40 [1]

12

40 [1]

13

40 [1]

33

60[2]

55

70 [3]

50

40 [1]

9

40 [1]

13

40 [1]

15

40 [2]

37

100 [5]

69

60 [2]

49

40 [1]

9

40 [1]

13

40 [1]

14

60 [2]

37

60 [2]

56

 

Figure 1 – Solution obtained for: b=0$ (left), b=23×108$ (middle), b=12×108$ (right) 
  

5 Conclusion 
  

The objective of the model presented in this paper is to find the set of expansions actions to apply to an 

airport network that maximizes the number of revenue passenger kilometers travelled in the network, 

taking into account the capacity of the airports and the impact of travel costs upon demand. 

As illustrated for a small-size network, the model can be of great practical utility. An 

application to the US is currently under way, and another application to the EU is sought. In the future, 

some new features will be incorporated in the model. In particular, we plan to deal with the 

construction of new airports in addition to the expansion of the existing ones, consider an objective 

more relevant from the economic standpoint, and include equity, robustness and flexibility issues in the 

model.  
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1 Introduction

This work was motivated by the problem the Austrian Red Cross faces with patient transportation.

Patients can call in to place transportation requests between their home location and a hospital or

practitioner’s. Each such request is assigned time windows for the pickup and the delivery location.

Some of these requests are known in advance (i.e. a patient placed them the day before), whereas

others arise as the day progresses. The requests have to be served by a fixed fleet of vehicles based

at a common depot location. The aim is to design vehicle routes that accommodate all requests

and minimize tardiness, number of vehicles used, and route duration. Additionally, these routes

must not violate a set of additional constraints such as vehicle capacity and ride time limitations.

The problem of transporting persons from a given pickup location to a delivery location is com-

monly modeled as a dial-a-ride problem (DARP). Much effort has been spent in finding adequate

solution methods for this problem class (see e.g. [3] for a recent survey). However, the problem

at hand imposes an additional interesting aspect, as some information about the occurrence of

future events might be available. Let us think about a person who is regularly transported from

home to the hospital for dialysis and back home afterwards. Such a treatment normally consumes

a predictable amount of time, no matter whom the person is or when it takes place. Thus, it

might be possible to forecast the return transport and use this information when designing the

vehicle routes. The same procedure would of course make sense for every type of return trans-

port if the information is available. Note that for the dynamic transportation requests from the

patients’ home location to the hospital no stochastic information will be exploited. But for the

possible return trips from the hospital to the patients’ home available stochastic information will
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be used for the route planning in the applied sophisticated solution procedures. This stochastic

information is generated from the expected treatment duration for standard treatments. There

exist different approaches that considered the dynamic aspect of the problem (see e.g. [1]). To

our best knowledge the integration of stochastic information in the dynamic DARP has not been

studied so far.

The contribution of this work is to show the adaptation and applicability of existing solu-

tion techniques for the stochastic dynamic DARP. Therefore, we compared three different solution

approaches to tackle the dynamic and stochastic aspects of the problem at hand: Variable Neigh-

borhood Search (VNS, [4]), Multiple Plan Approach (MPA, [2]), and Multi Scenario Approach

(MSA, [2]). Section 2 gives a brief description of the implemented solution methods. The work

concludes with a short summary of the results and an outlook on future research in Section 3.

2 Solution methods

We implemented three different solution strategies for this problem: VNS, MPA, and MSA. All

three methods were adapted to the requirements of the problem at hand. Initial solutions are

generated using a greedy approach. All approaches simulate a 10 hour workday within 1 hour of

run time.

2.1 Variable neighborhood search

The concept of the well known VNS metaheuristic was first introduced by Mladenović [4]. The

implementation we used in this work is based on four shaking operators similar to the ones used

by Parragh et al. [5]: move, swap, chain, and zero split. Extensive tests have shown that the local

search step included in the traditional VNS structure does not improve the resulting solutions for

the specific problem at hand and we therefore decided not to use this step in our implementation.

Our VNS implementation accepts only improving solutions as a new current incumbent solution.

Deteriorating solutions and infeasible solutions are never accepted. New requests are inserted into

the current incumbent solution whenever they arise.

Move: the move operator randomly selects one route from which one randomly selected request

is removed. This request is re-inserted into the route in which it causes the lowest increase in the

objective function. For the κth neighborhood, this is repeated κ times.

Swap: the swap operator randomly selects two routes. For the κth neighborhood, a sequence of

up to κ consecutive requests is removed from each route, starting at a randomly selected position.

The removed requests are then re-inserted into the other route at the best position, respectively.

Chain: the chain operator randomly selects an origin and a destination route. For the κth

neighborhood, a sequence of up to κ consecutive requests is removed from the origin route, starting
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at a randomly selected position. The removed requests are then re-inserted into the destination

route at the best position, respectively. Next, the destination route is used as origin route, a new

destination route is randomly selected, and the procedure is repeated κ times.

Zero split: the zero split operator randomly selects one route and determines all its zero split

positions (positions between two services, at which the vehicle is empty). For the κth neighborhood,

up to κ consecutive sequences bounded by zero split positions are selected. The corresponding

requests are removed from the route and re-inserted into the route in which they cause the lowest

increase in the objective function, respectively.

2.2 Multiple plan approach

MPA was proposed by Bent and Van Hentenryck [2] for the vehicle routing problem with time

windows. It maintains a pool of solutions which is updated whenever new solutions are found, new

requests arise, or a solution becomes incompatible with the current decisions made. To continuously

generate new solutions from the solutions present in this pool, the VNS method as described before

was used.

At every point in time, one of the solutions in the pool is selected as current incumbent solution.

Extensive testing showed, that selecting the best available solution leads to much better results for

the specific problem at hand than the originally proposed consensus function (see [2]). New requests

are inserted into all solutions in the pool whenever they arise. At runtime, MPA continuously checks

if vehicle departures in all solutions are consistent with decisions made in the current incumbent

solution.

2.3 Multi scenario approach

MSA was also proposed by Bent and Van Hentenryck [2] and is a logical extension of MPA for

situations in which additional information about the underlying data can be exploited. Based

on MPA, the algorithm tries to create so called ”scenarios“ during execution, meaning, that the

algorithm creates a set of yet unknown future requests by sampling the given distributions. This

information is used when searching for additional solutions. This is aimed at creating gaps in

the schedule of known events that, at a later point in time, can be used to accommodate ”real“

requests when they arise.

By sampling the known distributions, MSA generates a set of possible future return transports

for already known transports. These additional sampled requests are inserted into the current

VNS starting solution. If VNS finds a new solution that does not yet exist in the pool of found

solutions, it removes all sampled requests and stores the resulting solution in the pool. This way,

all solutions in the pool contain only known requests. The remainder of the MSA structure is the

same as for the MPA described before.

671



3 Summary

Based on real world data provided by the Austrian Red Cross, we created 40 sets of test instances

consisting of 25 samples of the respective distribution parameters. Our results show, that all three

methods are effective solution approaches to the problem at hand. The results obtained by our

simple modified VNS procedure prove to be as good as the ones obtained by the more sophisticated

MPA and MSA methods.

Future research will shed light on the question, if incorporating information about daytime

dependent travel times can improve the solution quality of MSA when compared to the solutions

of VNS and MPA (not using this information).
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[4] N. Mladenović. A variable neighborhood algorithm: A new metaheuristic for combinatorial

optimization. In Abstract of papers presented at Optimization Days, page 112, Montréal, 1995.
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1 Passenger-oriented planning using OD-data

According to [2] the planning process in public transportation includes several phases such as

strategic planning (e.g. network design), tactical planning (as line planning or timetabling), oper-

ational planning (e.g. vehicle scheduling) and real time control. Many models for these planning

steps exist, some of them focussing on the costs, others on the benefit for the passengers. To this

end, data about the passengers is necessary and has to be included in the models, in particular in

the objective functions.

Many approaches assume a two-step procedure: in a first step, the data about the passengers

is distributed over the public transportation network using traffic-assignment procedures. In line

planning, e.g., one ends up with so called traffic loads we giving an (approximate) number of

passengers who want to use edge e. Also in timetabling and delay management it is usually

assumed that the number of passengers who want to take a certain vehicle at a certain station is

known beforehand. This reduces the complexity of the models but is not realistic from a practical

point of view since the routing decisions of the passengers depend on the lines or timetables which

are not known before the optimization problem is solved.

Only a few approaches integrate the routing decisions. In line planning this has been done

recently in [5, 9, 1, 7]. In delay management, a first integrated model allowing a re-routing of

passengers has been presented in [3]. The timetabling models we are aware of assume that the

673



passengers’ weights are fixed beforehand.

In this paper we reformulate some of the common models for line planning, timetabling and

delay management taking into account origin-destination data and including the routing of the

passengers in the optimization process. It turns out that the integration of line planning and

routing is NP-hard even in linear graphs and even with only one OD-pair. One ends up with a

type of (NP-hard) resource-constrained shortest path problem. Nevertheless, some special cases

will be identified in which the integration of routing and line planning can be solved in polynomial

time.

However, including the routing decisions of the passengers in aperiodic timetabling turns out to

be as efficiently solvable as aperiodic timetabling itself, if the start and destination event of every

OD-pair is known. If only the stations (with or without time window) are given for the OD-pairs,

the integration of aperiodic timetabling and routing is again NP-hard.

Delay management is by itself an NP-hard problem, so the NP-hardness of its integration with

passengers’ routing is not surprising. If only one OD-pair is considered, the integrated problem

can be solved in polynomial time.

In the following we will speak of vehicles which are meant to be busses or trains depending on

the transportation mode under consideration.

2 Line planning with OD-pairs

The goal of line planning is to determine a set of lines L together with their frequencies fl for all

l ∈ L. There exist cost-oriented and passenger-oriented objective functions, where the latter may

consider the number of direct passengers or the traveling time of the passengers. A few recent

approaches allow that passengers are freely routed (see [9, 1, 7]). Given a set of OD-pairs OD , we

investigate the following model

min
∑

(i,j)∈OD

W (i, j) s.t.
∑

l∈L

fl cost l ≤ Budget

in which cost l is an approximation of the (variable) costs of line l and W (i, j) contains the

traveling time for OD-pair (i, j). This traveling time includes the riding time and a penalty for

every transfer. It is hence a shortest path in a suitable defined network which depends on the

choice of the lines and is in this way integrated in our model. In the constraint we require that the

costs of the line system do not exceed a given budget.

Integrating the routing decisions leads to a difficult problem: Even in linear networks with lines

all having the same speed and where the penalties for transfers do not depend on the line or on the

station where the transfer takes place, the problem is NP-hard [9]. We show that for the case of

only one OD-pair, the problem is still NP-hard if we abandon any of the assumptions made above,
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that means if the public transportation network is not linear, the lines do not have the same speed,

or the penalties for transfers depend on the lines and stations. However, we present two different

solution approaches for special cases of the situation described above: one linear algorithm which

can be used if the costs bl for the lines are all equal and there is either only one OD-pair or the

penalties of the transfers are all 0, and a polynomial algorithm for the case of one OD-pair.

3 (Aperiodic) Timetabling with OD-pairs

Given the line plan, the timetabling problem searches for the arrival and departure times for all

lines at all stations. To this end, one models every arrival and every departure of a vehicle as

an event. The resulting events E are connected by driving, waiting, or changing activities. If πi

denotes the time of event i, and a = (i, j) an activity linking event i and event j, a timetable

(πi), i ∈ E is feasible if every activity a = (i, j) satisfies that

la ≤ πj − πi ≤ ua

for some given lower and upper bounds la and ua on the duration of activity a. Given a fixed

number of passengers wa for every activity a, the goal is to minimize the sum of traveling times.

The problem can be solved efficiently by linear programming [8].

In our model we do not start with such fixed weights wa but with a set of OD-pairs which can

be freely routed through the network. We are able to show that the complexity of the timetabling

does not change if we now minimize the sum of traveling times for the given OD-pairs as long as

the start event and the destination event of every OD-pair is known. The idea of our approach is

to add a virtual activity for every OD-pair and minimize the traveling times of these new activities.

Surprisingly, the problem gets NP hard if not the departure event but only the departure station

is known. Also here, the case of one single OD-pair can be solved in polynomial time.

We remark that for periodic timetabling even the feasibility problem is NP-hard (for an overview

about aperiodic timetabling see [6] and references therein), hence also the integration of periodic

timetabling and routing is NP-hard even in the case of one single OD-pair.

4 Delay Management with OD-pairs

Delay management is a part of real-time control and concerns the decision if a connecting service

should wait for a delayed feeder vehicle or if it should depart on time. As in timetabling the problem

has been treated with fixed passengers’ weights wa for every activity a. Most of its variants are

NP-hard (see [4]). In a recent study [3], the problem has been investigated allowing a re-routing

of the passengers in order to reach their destinations as soon as possible. In its general form it is
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NP-hard if re-routing is included in the delay management problem, even if all OD-pairs have the

same origin or the same destination. However, we are able to show that integrating the routing

decision of only one OD-pair with the wait-depart decisions of delay management can be treated by

a modification of Dijkstra’s algorithm making sure that delays of vehicles are correctly accounted

in the future in O(n2) time in the number n of given events.
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1 Introduction

This work is motivated by an industry project with a French small package shipping company.

Their routing operations have several distinguishing characteristics (cp. [1]), of which explicit

consideration of driver familiarity with routes and customers is deemed crucial by our industry

partner. One way to achieve driver familiarity benefits is to have the same driver visit the same

service territory on each delivery trip. Thus, the driver becomes acquainted with the territory and

the customer locations therein and is able to serve the customers more efficiently. The disadvantage

of such an approach is the flexibility forfeited by having fixed delivery areas and driver assignments.

Faced with varying demand, this yields route configurations that are suboptimal concerning the

total traveled distance. This tradeoff between driver familiarity benefits and routing flexibility

is investigated in comprehensive simulation studies by [2]. To balance the tradeoff, [3] introduce

the concepts of “cell”, “core area” and “flex zone” and explicitly consider driver learning in their

vehicle routing model. Moreover, they provide an extensive review of related literature.

However, both works neglect the existence of time windows, which strongly conflicts with

recent practical developments. Our industry partner states that up to 60% of their orders are

time-definite, which is consistent with the industry statistics given in [4]. If time windows are

considered, routing flexibility is not only needed to achieve distance-efficient route configurations

but also to fulfill customer delivery time requirements. Thus, the value of routing flexibility

increases, which is likely to have significant negative effect on the solution quality of any approach

based on (partially) fixed delivery areas. By fixing delivery areas, methods implicitly put too much

emphasis on driver familiarity while neglecting the value of routing flexibility.

To be able to find the optimal tradeoff, our routing method forgoes any fixing of delivery areas.
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Our vehicle routing model (see Section 2) explicitly considers driver knowledge by means of driver

specific travel and service times. Thus, drivers have an incentive to stay in familiar areas due to

shorter driving and service times while maintaining their flexibility. We develop an ant colony

optimization method specifically tailored to the described routing problem (see Section 3). The

numerical studies to investigate the performance of our approach are described in Section 4.

2 Model

The objective of our vehicle routing problem with time windows and driver familiarity model

(VRPTWDF) is to minimize the total driving and service time given a fixed number of vehicles

(drivers). This number can be computed by heuristic methods like e.g. [5] or is predetermined by

real-world requirements. The two main differences from [5]’s VRPTW are driver specific service

times sik for node i and driver k and driver specific travel times cijk for driver k when traveling from

i to j. These differences necessitate slight modifications to capacity and time window constraints.

Motivated by our industry partner, we consider hard time windows since cost penalties seem

unsuitable to cover the long-term effects of missing a time window, e.g. the loss in reputation caused

by dissatisfied customers. We add working hour constraints to comply with legal requirements.

3 Solution Method

Good solutions to our problem trade off driver familiarity and flexibility, but will probably employ

each driver roughly in the area he is most familiar with. This knowledge is incorporated into our

solution method, an ant colony system (ACS) based on [6]. ACS provides a natural way of solving

our problem; each ant is associated with a single driver and creates a route based on driver-specific

heuristic information and pheromone values that are traded off against each other. Our ACS

comprises the following steps: solution generation, local probability update, a local search step

and global probability update.

Solution generation For route creation, we use a parallel procedure, where each ant starts at

the depot and works in a separate process. This means that ants are competing to visit nodes,

which is resolved by means of a first-come, first-served rule. Let Jk(i) denote the set of nodes

that ant k can visit after node i without violating time window, capacity or cycle constraints. If

j 6∈ Jk(i), the probability of ant k taking edge (i, j) is zero, otherwise it is given by:

pk(i, j) = α · τ(i, j) + β · ηk(i, j) + γ · ϑ(j).

τ(i, j) is the pheromone trail on edge (i, j). The heuristic information ηk(i, j) is driver-dependent.

It is defined as the reciprocal of the sum of the driver’s travel time cijk from i to j plus his service

time value sjk at node j. To prioritize nodes that are critical in terms of fulfilling a given deadline
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or a capacity constraint, we use attractiveness values ϑ(j). α, β, γ are parameters weighing the

described measures. We apply the pseudo-random-proportional rule of [6] to determine the ratio

between search space exploration and exploitation. We allow infeasible solutions, where nodes have

not been visited after all ants return to the depot. Infeasible solutions are penalized.

Local probability update After tours are created, we perform the local pheromone update

described in [6] plus the following update of node attractiveness for critical nodes:

ϑ(j)new =

 ϑ(j)old + s0 if j 6∈ Vvisited

ϑ(j)old − (|V |−|Vvisited )·s0
|Vvisited | else.

Vvisited is the set of visited nodes. Parameter s0 ∈ [0, 1] weights the strength of the attractiveness

update. Solution generation and local probability update are run a given number of times. The

best feasible solution is used as input for the local search step described next. If no feasible solution

is found, the local search step is omitted.

Local search Our local search is based on [7], who present an efficient tabu search method

for solving VRPTW. To speed up the search and guide it towards promising regions, we move

or exchange nodes only between spatially close routes and/or try to shift nodes to the route of a

driver that is familiar with this node. To this end, we restrict possible exchange candidates and

the routes that exchange them as follows. For each driver, we determine a polygon connecting

the outermost nodes of the route returned by ACS and a polygon connecting the outermost of all

nodes that the considered driver is familiar with. Now, all nodes that belong to other routes but

lie within the union of nodes enclosed by the two polygons and a radial area around the depot

(cp. [3]) qualify as exchange candidates. Since this strongly reduces candidates, it does not seem

reasonable to use operators that simultaneously consider several nodes. We only use operators

that exchange few nodes, like e.g. relocation (one node is shifted from one route into another).

Global probability update Based on the solution found by local search, we perform the global

pheromone update described in [6]. In early iteration steps, the results of ACS and tabu search

may differ significantly In order not to put too much emphasis on the tabu search solution, we use

a low pheromone decay parameter that increases after each iteration step.

4 Numerical Studies & Outlook

The goal of our numerical studies are twofold. First, we create a set of VRPTWDF benchmark

instances to study the performance of our solution method for single instances. Parameter choice

is inspired by small package shipping characteristics (see [1], [3], [4]) and discussions with our

industry partner. To judge solution quality, we use the commercial solver CPLEX and put special

effort on determining lower bounds.

Second, we consider a series of δ consecutive days on which we solve VRPTWDF instances. To
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link consecutive days, we use a learning model similar to the one presented in [3]. It describes how

drive and service times have to be updated at the end of each day. We compare the performance

of our approach to the fixed delivery area method described in [8]. Moreover, we investigate the

following questions for the series of solutions produced by our ACS method: What are the shapes

of the areas visited by each driver in the δ days? How strong is the overlap between neighboring

areas? If we declare the resulting areas as (possibly overlapping) fixed areas, how do they perform

compared to our ACS and [8]’s method?
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1 Introduction 
 

The first-order traffic model is a rough traffic model assuming an homogenenous traffic, but some 

second-order hyperbolic macroscopic traffic flow models assume an heterogeneous traffic. For 

instance the traffic is a mixture of personnal cars and trucks. Traffic heterogenenity explains positive 

transferences within the congested part [1]. Moreover when taking into account this heterogeneity a 

better traffic forecasting is expected. The first-order model [2] is based on the vehicle conservation 

equation ( ) 0=∂+∂ vxt ρρ  and a fundamental diagram expressing the dependence between speed and 

density. Second-order hyperbolic models do not need an explicit reference to a fundamental diagram, 

which is replaced by a second equation. The Riemann invariant associated to this equation can take the 

place of the fundamental diagram. Anisotropic second-order models were revived ten years ago 

[3][4][5]. These anisotropic second-order models enter within the frame of a general formulation 

expressed by the “Generalized Second-Order Model (GSOM)” [6]: assuming that I is the second 

Riemann invariant, the second equation comes from .0=Id t  Then the second variable Iy ρ=  is 

carried by the traffic, where I depends on either a vehicle characteristics or a driver's attribute. 

Therefore a traffic which carries different values of invariant is a mixture. Within such a framework, 

the couple of variable is ( Iy )ρρ =,  and the speed is deduced from these two variables; this is the main 

difference between these models and previous models, such as the Payne's model or more generally 

gas-kinetic based traffic models, which depend on variables ( )v,ρ .  

• The reinterpreted ARZ (Aw-Rascle-Zhang) model is explained by the intention of the driver 

( )ρevvI −= , who wants to travel at a higher or lower speed than the equilibrium speed. A priori, any 

fundamental diagram ( )ρev   is admissible. 
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• The delayed acceleration model [7] assumes that some vehicle within a queue accelerates 

after a constant delay with respect to its predecessor. This hypothesis is admissible within the 

congested phase only. It yields the invariant definition , where τρ vI −= −1 τ  is the delay. Such a 

modeling produces linear congested fundamental diagrams such as . 1

max

−= ρI

• For comparison with the delayed acceleration model, the invariant of the Colombo's model 

is rewritten depending on variables ( )v,ρ . Let ( )ρρτρρ −−= −
MM vI 1  be the second Riemann 

invariant where Mρ  and τ  are two parameters. As the delayed acceleration model, this model applies 

to the congested phase only. Such a modeling produces convex or concave congested fundamental 

diagrams, depending on the invariant value. 

These three formalizations mean that each driver or vehicle carries the value of one parameter 

(the value of the invariant) of a generic fundamental diagram which is described by the analytical 

expression of the invariant. Now a practical use of such models must ensure that the diagrams match 

real data; generally speaking, some combination of parameters and invariant values are not admissible. 

 

2 Fundamental diagrams 
 

A fundamental diagram ( )ρQ  is a mathematical function which fits a set of points. Because the real 

traffic is a mixture and data are mean measurements, this function describes a mean behavior. 

Considering real data, there are many fundamental diagram patterns. But though there is a large 

variability some general properties are expected. Some parameters, which are mean values, are 

universal: the free-flow speed, the critical density, the capacity and the maximum density. The function 

is concave and the outflow tends to zero when the density tends towards zero or the maximum density; 

these rules apply wether the traffic is homogeneous or a mixture.  

 

Fig. 1. Outflow dependence on the vehicle length (four lanes highway). 

Dots are for high truck percentages (length greater than the mean length plus half of the standard 

deviation); crosses are for low truck percentages (length less than the mean length minus half of the 

standard deviation).  
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Considering current second-order models, the traffic is a mixture but it is assumed that each 

part depending on the same value of the invariant is homogeneous. In what follows, we will assume 

that the traffic is a mixture depending on  a vehicle characteristics and not on the driver's behavior. 

Because a physical characteristics is observable and more constant than a behavioral factor, the first 

interpretation is better. Our first traffic assumption is that the main physical characteristics is the 

vehicle class of which the two possible values are personnal car and truck; this class is deduced from 

the vehicle length. Thus, in what follows, the invariant value should depend on the vehicle length.  

Double magnetic loop provides three measurements: the outflow, the occupancy rate and a 

mean vehicle length. The vehicle length distinguishes between personnal car and truck and the 

observed mean vehicle length depends on the ratio of personnal cars to trucks. Measurements taken on 

the A1 highway, between Roissy Airport and Paris, show that the outflow depends on the mean vehicle 

length (see fig. 1). 

 

3 Admissible invariants 
 

Admissible invariants are proposed for the three models cited above. Of course the pattern of the 

fundamental diagram should not be the only one constraint to be taken into account.  

When using the Aw-Rascle-Zhang model (see fig. 2), the outflow at the interface is 

( ) ( ) IQQ e ρρρ +=  where ( )ρeQ  is the mean fundamental diagram and ( )ρevvI −=  is a constant 

translation. However such a modeling shows two drawbacks. First, there is an undesirable outflow 

discontinuity when maxρρ = . Second, because the needed property [ ] ( ) 0:, max <′∈∀ ρρρρ Qc , such 

modeling does not allow the use of any fundamental diagram ( )ρeQ  and any value I. To solve these 

problems, the ARZ model is generalized: the invariant definition ( )ρevvI −=  is replaced by 

( ) n

evvI )( max ρρρρ −−=  with  . This new definition means that the intention vanishes when 

the density tends towards either zero or the maximum density. 

1≥n

 

Fig. 2. Translated exponential fundamental diagram(s) by the ARZ model and its generalization.  
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When using the delayed acceleration model (see fig. 3), the invariant identifies to the inverse 

of the maximum density, i.e. the vehicle length 1 . To avoid confusion −
xρ maxρ denotes the mean 

maximum density and xρ  denotes the maximum density associated to some vehicle class. Such a 

modeling yields pattern the width of which increases with the density. So an alternate modeling can be 

used: considering the expression , given that τρ vI −= −1 τ  is a constant and , the expression 

 is equivalent. Thus a new second equation comes from the property 

1−= xI ρ

( 111 −−− −= vxρρτ ) 0=τtd . 

Though mathematical expressions are different, the new equation is equivalent to the previous one, and 

gives us a different parametrization of the fundamental diagram. 

 

Fig. 3. Fundamental diagram(s) of the delayed acceleration model.  
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1 Introduction

This paper presents an offline traffic state filter, which estimates macroscopic quantities like speeds

and flows, given raw traffic data provided by dual-loop detectors, for instance. The basis of this

method is the “Adaptive Smoothing Method” (ASM) by Treiber and Helbing [1]. The ASM

smooths the raw data over space and time to remove measurement noise and to estimate traffic

quantities between the observation points. The output is thus a continuous speed and a continuous

flow map.

The rationale behind the ASM is founded in kinematic wave theory [2, 3]; empirical observa-

tions show that the characteristics of traffic, like flow, speed and density, travel along the traffic.

Following from kinematic wave theory and the fundamental diagram, if the traffic is in congestion,

then the characteristics travel upstream, usually with a speed of about ccong = −20 km/h. In the

ASM, the traffic data are therefore smoothed along a rhomboid-shaped area

φ(x) = exp

(
−|x|
σ
−
|t− x

ccong
|

τ

)
, (1)

with the main axes parallel to this characteristic congested wave speed ccong, as shown in Figure 1.

The larger the distance between a detector location and the filter point, the smaller is the share

of the detector information in the filter result. There is a similar smoothing kernel for the case of

free-flow traffic; the characteristics travel downstream with a speed of about cfree = 80 km/h. The

ASM filter calculates a weighted average of the congested and free-flow filter estimates, in which

the weight is derived from the speed data. Further details are described in [1].

In order to filter the raw data, the ASM uses smoothing kernels of fixed size. The ASM does

not take the underlying road conditions into account, especially geographic road discontinuities

like on-ramps. This can lead to misestimations of the flow. Since vehicles enter the highway at this

on-ramp, the flow downstream of it is higher than upstream of it. The ASM, however, smooths the
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Figure 1: Comparison of the ASM [1] with the proposed ASM-svK

information observed upstream of this on-ramp into the part downstream of it. The traffic flow

downstream is thereby underestimated, and the traffic flow upstream is overestimated.

To solve this problem, we propose in this paper to adapt the kernel functions φ (1) of the

Adaptive Smoothing Method. In this method, called the ASM-svK, the discontinuities influence

the shape of the kernel functions, so that the information from the far side of a discontinuity have

a lesser impact, as illustrated in Figure 1. The ASM-svK estimates speeds and flows in the vicinity

of road discontinuities more accurately than the original ASM. In addition, this method can be

applied to temporal discontinuities as well, for example at accidents or bridge openings.

The remainder of this extended abstract explains the proposed ASM-svK in Section 2 and gives

an experimental setup and its results in Section 3.

2 Spatially Varying Kernels

We propose to change the kernel functions (1) in such a way that road discontinuities influence the

filter result, as shown in Figure 1. To every filter point xfilt, a specific kernel function

φxfilt
(x) = αxfilt

(x− xfilt) · φ(x) (2)

is assigned, where αxfilt
is a road geometry specific weighting function.

Consider, one wishes to estimate the traffic state (e.g. the speed) upstream of a discontinuity h,

such as an on ramp. Clearly, observations upstream this on-ramp should be weighted heavier than

observations downstream of this on-ramp. Accordingly, the weighting function αxfilt
in (2) should

increase up to location of the discontinuity xh and decrease fast downstream of it. This can be
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achieved as follows:

αxfilt
(x) =

ψh(x) if x > xh

1 else
(3)

with the discontinuity function

ψh(x) = exp

(
− |x− xh|

σ

)
. (4)

In case of multiple discontinuities, the weighting functions (3) are generalized to

αxfilt
(x) =

∏
h

ψh(x) if
[
(xh > xfilt) ↔ (x > xh)

]
1 else

. (5)

road sections

detectors

discontinuity

(a) Discontinuities caused by ramps and a lane opening, dividing the road into sections

0 500 1000 1500 2000 2500
0

0.5

1

Road Stretch

(b) Discontinuity kernels ψ (blue) and kernel factor αxfilt (black) for filter point xfilt = 1000

0 500 1000 1500 2000 2500
0

0.5

1

Road Stretch

(c) ASM-svK Smoothing Kernel φxfilt (blue) for filter point xfilt = 1000 in comparison with ASM Kernel φ (green)

Figure 2: Spatially dependent kernel of the ASM-svK, caused by road discontinuities

Figure 2 shows an example of a road stretch with discontinuities at locations x1 = 300, x2 =

1200 and x3 = 1700 (Figure 2a). Let the filter point be at xfilt = 1000. Figure 2b shows the

three discontinuity functions ψh (4) and the kernel weighting function αxfilt
(5). The resulting

kernel function φxfilt
(2) (Figure 2c) is equal to or less than the kernel function φ of the original

ASM. If the filter point and the detector lie within the same road section, then the kernel is not

changed. In contrast, if there is a discontinuity between the filter point and the detector, then the
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Figure 3: Error measures: ASM-svK (blue) against original ASM (green)

information from the detector is weighted less. The effect is that information from the same road

section is valued higher than information from the neighboring road section, which is disrupted by

the discontinuity.

3 Experimental Setup and Results

The ASM-svK is compared against the original ASM with simulated data from FOSIM. It mi-

croscopically simulates a highway stretch containing an on-ramp with a significant inflow, which

constitutes a large discontinuity in the road geometry. This road stretch is monitored by dual-loop

detectors every 500 m and every 60 sec. The dual-loop detector closest to the on-ramp is hidden.

The speeds and flows estimated by the AMK-svK and the ASM at the position of this hidden

detector are then compared with the actual observations of this detector. Figure 3 shows the Root

Mean Squared Errors (RMSE) and the Mean Absolute Percentage Errors (MAPE) between the

values estimated and values observed, for a simulation time of 2 h, averaged over 100 simulation

runs.

As Figure 3 indicates, the ASM-svK estimates speeds and flows more accurately than the ASM,

especially near road discontinuities. This method is thus suitable for travel time estimation. In

addition, with this method the traffic state between an off- and an on-ramp is estimated, enabling

the estimation of inflows, outflows and turn fractions of a highway.
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1 Introduction

Finding robust solutions of an optimization problem is an important issue in practice. In particular,

in timetabling and scheduling one aims to have a solution which is still OK in case of small

disturbances or delays. Various concepts on how to define the robustness of an algorithm or of a

solution have been suggested, see Section 2.

However, there is always a trade-off between the best possible solution and a robust solution,

called the price of robustness, see [3]. Most of the robustness approaches hence determine the

level of robustness beforehand and seek for the solution with best objective value with at least this

minimum level of robustness.

In this paper, we analyze this trade-off using a bicriteria approach. We treat an optimization

problem as a bicriteria problem adding the robustness of its solution as a second goal to the original

given objective function.

For defining the robustness, any of the established robustness concepts can be used. Formally,

let an uncertain optimization problem

(Opt(ξ)) min{f(x, ξ) : x ∈ F (ξ)}, ξ ∈ U

be given with its nominal objective f and its feasible set F (ξ) ⊆ F . The dependency of the

optimization problem on the input data is indicated by ξ. Roughly speaking, a solution is robust

if it is still suitable for all scenarios ξ ∈ U , where U is called the uncertainty set. Note that the

definition of “suitable” depends on the robustness concept used: In strict robustness, a solution is

“suitable” for ξ if x ∈ F (ξ), in light robustness x only needs to satisfy some relaxed constraints and

in recovery robustness “suitable” means that a recovery algorithm exists which is able to update

the solution x to a feasible one. For all robustness definitions, one can define a function R(x, ξ)

evaluating the level of robustness that a solution x has. It is usually assumed that the robustness
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of a solution is large if it is “suitable” for many scenarios, i.e. if the uncertainty set U is large. This

level of robustness is in most cases defined beforehand, often implicitly through the definition of

the uncertainty set. In our analysis we will extend the nominal problem by adding the robustness

as a second objective, i.e. we consider a vector optimization problem of the type


 min f(x, ξ)

maxR(x, ξ)

 s.t. x ∈ F (ξ)

 . (1)

We are mainly interested for which definitions of R Pareto solutions can be found without

increasing the time-complexity of the original problem (Opt(ξ)). To this end, we will analyze the

additional constraints to be added when using e.g. the ε-constraint method. Depending on their

structure the problem may be solved similar to the original problem (Opt).

2 Robustness concepts

In robust optimization, the objective – in contrast to stochastic programming – is purely deter-

ministic. In the concept of strict robustness ([1]), the solution has to be feasible for all likely

scenarios. The solution gained by this approach can then be fixed since by construction it needs

not be changed when disturbances occur. However, as the solution is fixed independently of the

actual scenario, strictly robust optimization leads to solutions that are too conservative in many

applications. Possible approaches to overcome this problem concern adjustable robustness ([2]) in

which dependent variables may be adjusted if the scenario is known, light robustness ([5]) where

the constraints are relaxed by adding slack to them, and recoverable robustness ([6, 4]). The latter

concept starts from the practical point of view that a solution is robust if it can be recovered

easily in case of a disturbance. This means the solution has no longer to be feasible for all possible

scenarios, but a recovery phase is allowed in which a recovery algorithm is applied to turn an

infeasible solution into a feasible one. To obtain a good solution, some limitations on the recovery

phase have to be taken into account. For example, the recovery should be quick enough and the

quality of the recovered solution should not be too bad.

3 Controlling the level of robustness in timetabling

Roughly speaking, the robustness of a timetable evaluates its sensitivity to unforeseen delays. It

is clear that the concept of strict robustness makes not much sense: If a delay occurs it is usually

not possible to keep all departure and arrival times as planned. The question is rather, how to

recover the timetable to allow the passengers to reach their goals with smallest possible delay. This

question is also known as delay management problem [8] and the special strategy used is important

for defining the robustness level of a timetable.
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Figure 1: Train 1 arrives at station A with a delay. Should train 2 wait or depart on time?

We hence first specify how a timetable is updated in case a delay occurs.

Let i be an arrival event of train 1 and let a = (i, j) be a transfer activity to train 2. Further-

more, let ã = (j, k) be the next driving activity of train 2, see Figure 1 for an illustration. Assume

that train 1 arrives at i with a delay of yi and let us denote the slack times of activities a and ã by

sa and sã, respectively. The following three rules can be used to determine if train 2 should wait

for train 1 or depart on time.

WTR1: Train 2 is not allowed to have a delay at its next station. Hence the maximal allowed waiting

time at event j is given by the slack time sã of its next driving activity ã = (j, k). The transfer is

maintained if and only if yi ≤ sa + sã.

WTR2: The maximal allowed waiting time at event j is n minutes where n is fixed beforehand. The

transfer is maintained if and only if yi ≤ sa + n.

WTR3: Train 2 is not allowed to have a delay of more than m (minutes) at its next station. Hence the

maximal allowed waiting time at event j is given by m plus the slack time sã of its next driving

activity. The transfer is maintained if and only if yi ≤ sa + sã + m.

An intuitive definition of robustness hence is the following. Let a fixed waiting time rule

(according to WTR 1,2, or 3 above) be given as well as a set of source-delayed events Edel ⊆ E .

A timetable (given by its slack values s ∈ IR|A|) has the robustness R(s) if all its transfers are

maintained whenever all source delays are smaller than or equal to R,i.e. the propagation of delays

will not cause a transfer to fail.

Analyzing the bicriteria problem (1) w.r.t this definition we will show that Pareto solutions are

in some sense extreme solutions:

Theorem 3.1 Let ã ∈ Adrive. Let prec(ã) be the set of its directly preceding activities. Let s be a

Pareto solution. Then for all three waiting time rules s satisfies:

sã = 0 or sa = ma for some a ∈ prec(ã),

where ma is a given upper bound on the slack time of activity a.
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We will furthermore present a solution approach which shows that solutions with a given level

of robustness can be calculated within the same (polynomial) time complexity as for the usual

aperiodic timetabling problem. This is achieved by adding virtual activities which ensure that the

propagation of delays is kept small.

4 Other timetabling and scheduling problems

We will show that robust project planning can be interpreted as a special case of robust aperiodic

timetabling and hence can also be solved efficiently for any given level of robustness. We will

furthermore derive special properties of the Pareto set for project scheduling based on the analysis

of the critical path and the resulting buffer times for the non-critical activities. As an extension

we will also model the periodic robust timetabling problem in a bicriteria setting.
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The deregulation and harmonization of the international trade, especially within Europe, have had 

significant impact on the business strategy and market positioning of road-based freight carrier 

companies. For them, the floor is prepared to act actively on the market by adjusting their products and 

services as a reaction to demand changes. However, systems and decision tools for supporting a profit-

oriented allocation of capacity (container, full truck loads or less-than-truckload) are hardly available 

because a one-to-one transfer of those technologies from other service industries is not possible. Due to 

the quite complicated interdependencies between process (routes, shipments) and customer orders 

(coupling effects) the determination of lower bounds for prices for particularly demanded transport 

services is not possible today [1]. 

Capacity control is part of the toolbox used in operational revenue management [2]. It is used 

to support the decision about the acceptance or rejection of requests that requires the allocation of 

scarce resources or resources that are likely to become scare during the booking phase for resources. 

Capacity control originates from civil airline industry applications but today capacity control 

techniques are used in various service industry applications [3] as well as in production contexts [4]. 

The major goal that drives capacity control is to exploit the available resources at highest efficiency. 

Typically, capacity control is compromised by missing knowledge about the exact future demand for 

the controlled resources. Therefore, concatenated acceptance/rejection decisions must be made 

consecutively whenever additional knowledge about the demand (e.g. additional requests for capacity) 

appear (dynamic capacity control, [5]) 

Traditionally, road-based freight carriage has been considered as a pure service provider for 

other value creation stages in a value creation system. The ability of freight carriage to create value 
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was ignored. However, since 1 and a half decade, important freight carriage companies have formed on 

the market that earned money offering innovation service products that often comprise additional 

services accompanying the pure transport service. Today, these companies are in a position that 

enables them to select the most profitable requests from the spot market only. However, an important 

prerequisite for such a request acquisition strategy is the availability of longer term contracts that 

ensures the carrier sufficiently high average capacity utilization. If this precondition is fulfilled then 

the freight carrier company tries to allocate the residual capacities for the most profitable requests 

found in the spot-market.  

In this contribution, we investigate the dynamic acceptance/rejection decision problem that a 

fleet disposition manager of a freight carrier has to solve. The decision support challenge in such a 

situation is two-fold. At first, a stream of incoming requests for capacity allocation on fixed service 

routes must be managed dynamically by the dispatcher. The dispatcher has to decide reactively about 

the initial allocation of resources for an arriving request, e.g. it is to decide if there is a vehicle that is 

able to fulfill the request profitably (external acceptance). Secondly, transport services in a network are 

often so called flexible products [6], [7] which means, that the carrier has several alternatives to fulfill 

a once accepted request. Internal re-assignments of requests to another vehicle become necessary in 

order to enable the dispatcher to utilize the available overall capacity at highest profitability. The 

application of capacity control is a rarely investigated subject in the context of road-based freight-

carriage and the application to road-based freight transportation has not received significant interest so 

far. Nevertheless, there is empirical evidence that the consideration of the specific requirements of 

flexible products enables the realization of additional profits [8]. An explicit control of internal re-

assignments in order to exploit the potentials of flexible products is not investigated. 

We start with the proof that the major application preconditions for a successful capacity 

control to the previously outlined decision situation are fulfilled [9]. At first, the operational flexibility 

of the resource capacity is low, e.g. it is not possible to extend the fleet spontaneously at reasonable 

efforts. Secondly, we have to integrate an external factor that is the unknown customer demand. 

Thirdly, the demand is heterogeneous and finally, the offered services can be standardized. 

To prepare the development of an automatic decision support tool for dynamic capacity 

control, we model the carrier’s acceptance problem as on online optimization Problem. Therefore, we 

deploy a resource scheme introduced in [10] and extend this scheme from the one-vehicle-application 

to the multi-vehicle-application in which a flexible product refers to different paths a package can use 

to travel from its pickup to its delivery location through a given transport network. If we use this 

scheme then we can formulated the combined request acceptance as well as the request re-assignment 

problem as a linear program. To solve an instance of this model, we can apply standard solvers based 

on the simplex-scheme and from the optimal simplex-tableau, we get the shadow-prices for the 

maintained resources. Using these shadow prices, we calculate the bid-prices which are lower bounds 

of the revenues associated with the incoming requests.  
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We have developed a rolling-horizon planning system framework. In each cycle of the 

framework a new capacity control model is determined and solved. From the solution of the model we 

can derive the bid-prices of the resources as well as the required request re-assignment decisions. We 

use the resource-specific bid-prices to calculate least revenues for additionally arriving requests and the 

re-assignment information for re-allocating capacities of the resources for already accepted requests. If 

additional requests are accepted (because the associated revenues are larger than their bid-prices) then 

we allocate resources on one of the vehicles of the available fleet. Otherwise, we reject the request. In 

addition, we explicitly check if internal re-assignments of already accepted requests among vehicles 

are useful in order to increase the performance of the capacity control approach 

The evaluation of the proposed decision support approach is reported. We perform extensive 

computation simulation experiments in which we deploy the online capacity control model. We 

propose parameterizable test cases and record several performance indicators during the simulation 

experiments. 

 
References 
 
[1] M.A. Figliozzi, H. Mahmassani, P. Jaillet, “Traveling Pricing in Dynamic Vehicle Routing 

Problems”, Transportation Science 41, 302-318 (2007). 

[2] R. Klein and C. Steinhardt, Revenue Management, Springer-Verlag, Berlin-Heidelberg (2008) 

[3] A. Ingold, I. Yeoman, U. McMahon, Yield Management: Strategies for the Service Industries, 

Thomson Learning, London, 2nd Edition (2007). 

[4] T. Spengler, S. Rehkopf, T. Volling “Revenue management in make-to-order manufacturing – an 

application to the iron and steel industry”, OR Spectrum 29, 157-171 (2007). 

[5] M. Koenig and J. Meissner, “Risk Management Policies for Dynamic Capacity Control”, Working 

Paper (available at http://www.meiss.com), Lancaster University management School (2009). 

[6] M. Müller-Bungart, Revenue Management with Flexible Products, Springer-Verlag, Berlin-

Heidelberg (2007). 

[7] G. Gallego and R. Phillips, “Revenue Management of Flexible Products”, Manufacturing & 

Service Operations Management 6, 321-337 (2004). 

[8] A. Petrick, C. Steinhardt, J. Gönsch and R. Klein, Using flexible products to cope with demand 

uncertainty in revenue management, accepted for publication in OR Spectrum. 

[9] A. Kimms and R. Klein, “Revenue Management im Branchenvergleich”, Zeitschrift für 

Betriebswirtschaftslehre, Ergänzungsheft 1 “Revenue Management”, S. 1-30 (2005) 

695



[10] J. Schönberger and H. Kopfer, “Kapazitätssteuerung in der Transportlogistik”, accepted for 

publication in Proceedings of Multi-Konferenz Wirtschaftsinformatik 2010, Göttingen, 

Februar 2010 

696



A heuristic based on clustering for the vehicle routing 

problem: a case study on spare parts distribution 

 

Mehdi Sharifyazdi
*
 

Rotterdam School of Management, Erasmus Reseach Institute of Management 

Erasmus University, Rotterdam, The Netherlands 

Email: sharifyazdi@ese.eur.nl 

 

Matin Bagherpour 

Department of Industrial Engineering 

University of Science and Culture, Tehran, Iran 

 

 

Introduction 

In this paper, a case is considered where a distribution center (warehouse of an auto spare parts 

company) receives orders regularly. Warehouse management is interested in assigning available 

vehicles to picked orders in such a way that lead time remains lower than a threshold, and 

transportation cost per unit (money) of received orders is minimized. Since the company receives 

orders dynamically and arrival of new orders can provide it with the opportunity to improve existing 

decided distribution paths, the problem better be solved several times a day in a dynamic manner.  

We will propose an event-oriented (dynamic) algorithm for this problem. That is, the 

algorithm is called whenever specific events happen in the system. These events include arrival of an 

order and end of picking an order. Regarding the fact that many orders are received on a daily basis, 

the algorithm must be called frequently. So, runtime of the algorithm, as well as quality of solutions 

are of great importance. Performance of proposed algorithm is evaluated in a real-world case in an 

automobile spare parts distribution company in Tehran. 

The mentioned problem can be classified in the category of Vehicle Routin Problems (VRP), 

but has several differences with the classical VRP [1] in the assumptions. There are different types of 

limited-capacity vehicles, time limits for delivery, different customers which must be served by 

different types of vehicles. Also, the most important of all, the problem has to be solved repeatedly, 

several times (per each order's arrival, completion and meet of dispatching deadline). Each node can 

also be visited several times by several vehicles. Although this problem has something in common 

with PVRP (periodic VRP) [2] and CVRP (capacitated VRP) [3], VRPTW (VRP with time windows) 

[3], it has its own specific characteristics which will be explained in the following sections. 

                                                 
*
 Corresponding Author 
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Probelm Definition and Formulation 

The main purpose to solve this problem is to determine the orders to be distributed together, the 

distribution route, and the vehicle to use. The case is when there are some orders which their routes 

and vehicles have been currently assigned. Now, one (or more) new order arrives at the distribution 

center. Then, the objective is to modify previous routes with assigning new orders to the previous 

primary routes or creating some new routes in such a way that cover newly received orders. This is a 

dynamic and continuous decision process. Based on the observations made in the real case, the 

following assumptions are made:  

(1) Information about received orders is available real-time; (2) Each order has a maximum 

acceptable delivery time (based on the type of customer as well as its distance to the distribution 

center); (3) There is always inventory available to satisfy the received orders in the distribution center; 

(4) The number of vehicles is infinite (since the vehicles are provided by a relativley big number of 

logistic service providers), so there is no need to worry about vehicle shortage when deciding on 

distribution routes and vehicle assignments; (5) All the vehicles start/end their route from/to the 

distribution center; (6) Total travel time of a vehicle (outside Tehran) is equal to the summation of 

travel time between cities, delivery, and pick up time. In other owrds, travel times within cities are 

negligible; (7) Always (if possible) a bigger vehicle is economically preferable to a smaller one. It 

means that the ratio of transportation cost to the volume of transported load (if the vehicle is used with 

full capacity), in all of the routes, is cheaper for big vehicles in comparison with small ones. In our 

studied case, six types of vehicles were available. According to the transportation contracts, this 

assumption is validated; (8) It is always preferable to use two vehicles in order to provide service to 

each city (cluster) than each vehicle covers a portion of the demand of each city; (9) To guarantee the 

existence of feasible solution for the problem, it is assumed that there is no order bigger than the 

capacity of the biggest available vehicle (trailer). Sometimes, this assumption may be violated. 

However, those big orders can simply be partitioned into smaller orders in such a way that none of 

them is bigger than the capacity of a trailer (the biggest vahicle available). Each of these partitioned 

orders is considered as a single order in the distribution system; (10) Violation from delivery time is 

not allowed; (11) Orders are collected according to their arrival time. 

In this problem, vehicle capacity constraints, vehicle weight constraints, delivery time constraints and 

customer assignment constraints are considered. 

Having such information as, customers' addresses, volume and weight capacity of the 

vehicles, volume and weight of orders, deadline of orders, travel times/expenses between customers 

and promised lead times, an integer programming model is made to determine the assignment of orders 

to routes and vehicles as well as dispatching times. With a special parameter setting, this model can be 

reduced to classical VRP and hence it is NP-Complete.  

The Algorithm 

Since the algorithm must be executed several times a day, its time efficiency is vital. To generate 

proper routes at the least possible time, we used a pre-structured framework of paths. To use this 

framework, cities (customer locations) are classified into groups namely "clusters". Each cluster 

includes the cities that can normally be served with a common vehicle (in a single route). After 
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construction, the clusters will remain fixed during routine and operational decision makings like 

routing and assignment of customers to vehicles. However, if new cities are added to the distribution 

network, the clusters will be updated.  

Hence, the algorithm has two phases: (1) Static phase: Clustering of the cities; (2) Dynamic 

phase: Routing through fixed clusters. Order processing and routing can be performed either in batches 

or one-by-one. In one-by-one processing, routing is performed per each new order arrival and the 

newly arrived order will be assigned to a vehicle. Ideally, all the previously constructed routes must be 

updated when a new order arrives. In batch processing, received orders are processed and routses are 

updated periodically (for instance, once an hour).  

For clustering, firstly, we built up a minimum spanning tree over the graph consisting of all of 

the cities (where at least one customer is located) as vertices and direct roads as edges. In this tree, 

each node (city) has an ancestor. The ancestor of a city is the city through which the city is connected 

to Tehran. In fact, Tehran is the root of this tree. To construct the clusters, first, each of the main roads 

branched from Tehran are considered as a main cluster and the cities on these roads are assigned to 

these main clusters. Then, at the points that each of these roads is branched to some other roads, each 

of these branches is considered as a  secondary cluster. This process is repeated for the secondary 

clusters. At the end, other cities which have not been assigned to any cluster, are assigned to the 

existing cluster with the minimum distance to them. Then, the whole tree is juxtaposed versus the 

pathes which experienced drivers suggested to reach each city from the root (Tehran). Based on this 

comparison, some modifications has been made to the clustering tree to make the pathes practically 

feasible. 

The second phase of the algorithm (routing and vehicle assignment) will be executed any time 

one of the following events happens: (1) Arrival of an order, (2) End of picking of an order, (3) Being 

prepared to be sent (for an order) and (4) Reaching the deadline for dispatching an order. The 

algorithm for the event of order arrival is designed for batch processing. However, it can also be easily 

used for real-time processing regarding the fact that it is a special case of batch processing (batch size 

= 1). In this algorithm, at the first stage, any newly arrived order or any other order already in the 

system which still has not been assigned to a finalized route, will be assigned to a separate route 

containing only one city. The routes where the volume of their corresponding order fills a minimum 

portion of a trailer (here 85%) will be finalized and planned for dispatching. Other routes (orders) are 

considered as incomplete one-city routes and will be merged with other routes or the next orders which 

will arrive later. Incomplete routes are merged only when it is time to dispatch one of the orders in an 

incomplete route. Meanwhile, in order to build economic routes, it is preferred to group the orders such 

a way that the total volume of the orders assigned to a route be close to the volume of a trailer. In order 

to merge orders (incomplete routes) within preferably the largest vehicles possible, firstly, the routes 

related to the same city will be combined (in a descending order with respect to the volume). The total 

volume of orders grouped in a route must not exceed the capacity of a trailer. Every new route where 

the total volume of the orders is more than the capacity of the largest vehicle will be finalized and 

assigned to a trailer. If even after merging, the total volume of the orders from the same city assigned 

to the same route is less than 85% of volume of a trailer, then, if it is possible, they will be merged 
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with the incomplete routes in the same cluster as theirs. If the trailer is not still full, the incomplete 

route will be combined to other incomplete routes of the child secondary clusters at first and if needed, 

to those of the parent clusters. Eventually, if a trailer cannot be filled in this manner, a treshold time, 

which shows the latest possible dispatching time (the earliest latest dispatching time among the orders 

assigned to the route), will be calculated for the incomplete route. If by the treshold time, the total 

volume of the orders cannot fill a trailer, then the smallest vehicle which can carry them, will be used.  

When an order is picked completely, the number of orders in the queue decreases by one (if 

there is a queue), the status of the picked order changes to "being packed", and the status of the first 

order in the queue changes to "being picked". When packing of an order finishes, status of that order 

changes to "ready for shipment". If the route assigned to this order is finalized, and all of the orders in 

the route are ready to be shipped, then the proper vehicle will be called to ship it.  

If a one-city route is "complete", its corresponding vehicle will be dispatched at the earliest 

possible time, and it is the best case with respect to cost, because the vehicle visits only one city and 

also the most economic and favorable vehicle (trailer) is used. However, if a route is "incomplete" at 

its latest possible dispatching time, it should be merged with other routes in order to make it more 

economic, in such a way that the promised delivery deadline is not violated. The reason that merging 

of the incomplete routes is postponed until the latest possible time, is to take advantage of the future 

orders to construct better routes.  

Any time the algorithm is executed, several routes (preferably complete) are constructed, 

from which only one is used. It is the route with an order whose dispatching deadline is reached. The 

reason that not merely a single route is constructed for the order which should be shipped, and instead, 

other orders (which are not due to be sent at that time), are also assigned to routes (these routes will be 

split in future) is that if the algorithm only focuses on one order to build up a proper route for it, then it 

is likely that the opportunity to construct proper routes for other orders may be lost. It means that the 

route may be good for one order, while totally, the whole set of routes constructed for all of the orders 

is not satisfactory. In this situation, the algorithm would be a greedy algorithm which is normally very 

fast, but the solutions are not very good.  

The Results 

The algorithm has been coded and  implemented in connection with the current integrated information 

and planning system of ISACO company. However, some further modifications and exceptions were 

needed to make it applicable. In a 6-month period between February and July 2009, the transportation 

cost per unit order has been decreased by 11.8% in comparison with the same period in 2008. Also, the 

percentage of the delayed orders, has been reduced from 2.6% to 0.06%. 
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1 Problem description and literature review

Oil and gas operators use supply vessels to service o¤shore installations from an onshore base.

Supply vessel expenses constitute a signi�cant cost component in the area of upstream logistics as

their daily charter rates may be as high as 80,000 US dollars. Our study is based on a real-world

problem faced by Statoil, the largest Norwegian o¤shore oil and gas operator. However, the model

and algorithms we provide are of wide applicability. We refer to the problem as the periodic supply

vessel planning problem (PSVPP).

The PSVPP consists of simultaneously determining a repetitive weekly sailing plan, made up

of scheduled voyages, and the �eet con�guration required to perform these voyages. Each voyage

is de�ned by a start day and a sequence of installations to visit. The objective is to minimize the

sum of the vessel charter costs and of the voyage sailing and service costs.

A number of practical constraints have to be respected. Voyage duration has to lie within

certain limits, i.e. there are minimum and maximum durations which are measured in days. A

practical restriction is that a voyage should last two or three days. This implies that a vessel
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can perform two to three voyages per week. There are also restrictions on the minimum and

maximum number of installation visits per voyage. In addition, vessel deck capacity should not

be exceeded. In reality vessels have two types of capacity: one for deck cargo and one for bulk

products. However, in the vast majority of the cases, deck capacity is the constraining factor since

bulk capacity is much larger compared to the demand.

Each installation has a weekly demand that must be ful�lled. Additionally, the installations

need to be visited a certain number of times per week. It is assumed that weekly demands

are uniformly distributed among the visits. The departures should also be fairly evenly spread

throughout the week. It should be noted that the capacity of the onshore base is limited, i.e. the

number of vessel departures on a given day is limited. Additionally, all vessels depart from the

base at 16:00 out of practical considerations as this is the end of the working day when all loading

operations are �nished. Some installations are closed at night, while others may be visited at any

time. Another practical restriction is that there should be no vessel departures on Sundays.

In Figure 1 we depict a weekly sailing plan involving three vessels (Star, Symphony, Foresight)

and �ve o¤shore installations (BID, BRA, DSD, HDA, GRA). The number in each cell of the upper

row corresponds to the end of an eight-hour slot. In this example each vessel performs two voyages

during the week. The voyages have a bold outline in the �gure. Each voyage is preceded by an

eight-hour period at the onshore base, when loading and unloading operations take place. In the

�gure these periods are shaded with diagonal stripes. It can be seen that vessel Foresight starts

its second voyage on Saturday at 16:00 (136 hours after the beginning of the week) and �nishes it

on Monday of the following week.

The PSVPP can be classi�ed as a periodic vessel routing and �eet sizing problem with time

windows and multiple use of vessels. A number of problem aspects stand out from the classi�cation,

namely periodic routing, �eet sizing and mix, and multiple use of vessels during the time horizon.

Relaxed versions of the PSVPP have been studied by [1] and [2].

Two exact methods for the PSVPP are proposed in [3]. The �rst uses an arc �ow model, while

the second is based on the pregeneration of all cheapest feasible voyages which are then used as

an input to a set covering model with numerous side constraints. The authors demonstrate that

the second method, referred to as the voyage-based formulation, is computationally superior to the

�rst one.
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2 Large neighborhood search heuristic and computational

results summary

We have developed a large neighbourhood search (LNS) heuristic for the PSVPP. The algorithm is

applied for a number of restarts. At each restart we randomly generate initial feasible solution and

then perform a number of LNS iterations. An LNS iteration consists of three parts: 1) Removal loop

(randomly remove several visits from several voyages and put them in a bank of uninserted visits

S). 2) Insertion loop (reinsert visits from S back into voyages using regret insertion heuristics).

3) If S = ; apply local improvement procedures which mostly involve reassignments of voyages to

other vessels and visit relocations.

We evaluated our heuristic on the instances from [3], which are based on actual data provided

by Statoil. There are 22 instances in total with the smallest involving three installations and the

largest involving 14 installations. Computational results are summarized in Table 1. Column "Gap

(%)" gives the percentage gap between the value of the best found solution and either the value of

the optimal solution (�) or that of the smallest valid lower bound (y). The optimal solution values

and the lower bound values are those of [3]. Column "Seconds" gives the CPU time in seconds.

The columns "Vessels" and "Voyages" report the number of vessels used and voyages performed

respectively.

Heuristic solutions are generally very close to optimal ones, with an average gap of 0.05% for

the instances with up to twelve installations. Moreover, LNS computation times are quite stable.

This heuristic is generally slower on the easier instances and faster on the more di¢ cult ones. As

a result, LNS can be applied when the exact method ceases to be practical.
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Instance Gap (%) Seconds Vessels Voyages

3-5-16-0 0.00 (�) 5.2 2 6

4-5-21-0 0.00 (�) 13.9 3 6

5-5-23-0 0.00 (�) 21.9 3 6

5-5-23-1 0.00 (�) 23.1 3 6

6-5-25-0 0.00 (�) 30.0 3 6

6-5-25-2 0.03 (�) 32.4 3 6

7-5-30-0 0.00 (�) 55.6 3 6

7-5-30-2 0.06 (�) 65.3 3 6

8-5-36-0 0.00 (�) 109.2 3 6

8-5-36-2 0.02 (�) 114.3 3 6

9-5-42-0 0.01 (�) 695.2 3 6

9-5-42-2 0.05 (�) 663.9 3 6

10-5-43-0 0.03 (�) 657.5 3 7

10-5-43-3 0.01 (�) 671.0 3 7

11-5-47-0 0.18 (�) 1 696.4 3 8

11-5-47-3 0.17 (�) 1 927.4 3 8

12-5-51-0 0.13 (�) 1 994.7 3 8

12-5-51-3 0.19 (�) 2 253.5 3 8

13-5-55-0 13.91 (y) 2 248.4 4 9

13-5-55-3 1.09 (y) 2 384.5 4 9

14-5-59-0 1.02 (y) 3 376.4 4 9

14-5-59-3 0.97 (y) 2 857.7 4 9

Average 0.81 995.3 3.14 7.00

Table 1: Computational results for the large neighborhood search heuristic
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The problem of selecting the optimal locations of link count sections for o-d matrix estimation has 

received much interest in transport engineering. Various methods have been proposed in the literature 

to date, following different approaches and objectives, either finding the minimal set for inferring all 

link flows in a network from the subset of counted flows, such as in [1] and [2], or updating/correcting 

prior deterministic o-d matrix estimates, e.g. through maximum flow or maximum coverage methods 

[3], or topological heuristics, e.g. the screen-line method [4]. Notably, none of the mentioned methods 

takes into account explicitly the degree of reliability of the prior o-d matrix estimate. Rather, such 

reliability is normally expressed either in terms of the reliability of the estimator (e.g. the MPRE 

measure [5]) or by means of other ex-post measures (e.g. the total demand scale [6]). 

This paper proposes a different approach, based on the availability of prior information about 

a space of feasible o-d matrices, i.e. the joint probability distribution of o-d demand rather than only a 

prior deterministic estimate. Notably, the distribution and its domain can be easily built on the basis of 

observable data, for instance upper and lower bounds of the domain may be linked to residential and 
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labour densities of each zone, and the functional form of the distribution may be related to the 

methodologies adopted for obtaining the prior o-d estimate (source and/or model). In this framework, 

equations represented by link counts allow for a reduction of the space of the feasible o-d matrices, in 

terms both of dimension and dispersion, the latter measured accordingly with the metric related to the 

chosen reliability measure. The research aims at showing that this approach is expected to give new 

insight on the link count location problem. By way of an example, in this abstract a toy network 

application is presented, in order to show how an heterogeneous level of knowledge across o-d pairs 

may lead to the choice of counting sections different from those resulting from the commonly adopted 

procedures. This is particularly true in presence of heterogeneous prior information, which has been 

addressed to date only in the choice of the estimator (e.g. [7]-[9]). In the final version of the paper, 

applications to real networks will be performed as well. 

To show the rationale of the approach, let us assume a static framework, i.e. linear 

relationship between the demand vector d and the link flows vector f through the assignment matrix 

M. Let also y be the subset of available link counts and M* the related submatrix of M; in the 

following, both M and y will be assumed error-free. As stated in the introduction, a joint distribution 

fd(d) with feasibility domain Sd can be hypothesized for d, based on prior knowledge. Consequently, by 

means of the usual equations M*d=y expressing link counts, a joint distribution fy(y) with feasibility 

domain Sy can be stated as well, based on fd(d) and Sd. The equations coming from link counts with 

their information lead to a new feasibility domain S
y
d and to a new joint distribution for the true o-d 

demand fd(d|y) conditioned on y. 

Therefore, a measure of the reliability of the correction procedure may be defined on the basis 

of S
y
d and fd(d|y). Apart from the volume of the set S

y
d (which is not practical due to the difficulties in 

calculating volumes of polytopes), an example may be a global dispersion measure based on 

distributions fd(d|y) and fy(y). In addition, an estimator can be taken into account, e.g. the barycentre of 

the distribution fd(d|y), or the projection of the prior distribution fd(d) on S
y
d. In general, given an 

estimator d*, another measure of reliability may be the mean of the distance between the true o-d 

matrix and the chosen estimator, that is: 

𝑀𝐸𝑟𝑟 =    𝐸𝑟𝑟 𝒅, 𝒅∗ 𝑓𝑑 𝒅 𝒚  𝛿𝒅
𝑆𝑑  𝑦 

 
𝑆𝑦

𝑓𝑦 𝒚  𝛿𝒚                      (1)  

where Err(d,d*) is the error distance function between the true demand and the chosen estimator. 

Accordingly, equation (1) can be introduced as objective function in the traditional formulation of the 

problem of optimal link count sections locations: 

𝒛 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 𝒛           s. t.  𝒛𝒊

𝒊=𝑵𝒍

𝒊=𝟏

≤ 𝑍𝑚𝑎𝑥  

where Nl is the number of links in the network, zi=1 if link i is a count section and Zmax is the 

maximum number of sensors (budget constraint).  
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In order to show how the preceding formulation may lead to a choice of count locations 

significantly different from the outcomes of the common methods, let us consider the following toy 

network (left side of the figure below) with 3 links, two o-d pairs (A-C and B-C), no route choice and 

naïve assignment matrix M{(1,0);(0,1);(1,1)}. Let also be Zmax=1. 

 

In a first step, the joint distribution of the true demand d=(dAC, dBC)=(d1, d2)=(f1, f2) may be 

hypothesized to be uniform in the ranges [0,d1max] e [0,d2max] respectively, with independent marginals. 

This means having only prior knowledge about Sd but not specific knowledge about fd(d). Clearly, the 

maximum coverage and the maximum flow interception methods lead to the choice of link 3 as sensor 

location. However, the right side of the figure above depicts the feasibility set S
y
d of demand flows for 

all the three possible sensor locations. Notably, S
y
d is always a straight line whatever link is chosen for 

sensor location; however, due the specific nature of the example, S
y
d depends on the (unknown) value 

of the counted flow only if count section is located on link 3.  

From the hypotheses above, fy(y) in the case of y{f3}becomes a trapezoidal distribution and 

the equation (1) can be applied for the calculation of the mean error. For this aim, the estimator is 

assumed to be the barycentre of S
y
d with y{f3} and the metric is the usual metric in 

2
. The results are 

(under the assumption d2max≥ d1max): 

MErr1=0.25  d2max      ;       MErr2=0.25  d1max       ;       MErr3=0.353  d1max  [1 - d1max/(3  d2max)] 

where MErri is the solution of equation (1) when link i is the count section. As a consequence, MErr3 

depends on the heterogeneity of the prior estimate and, for decreasing value of the ratio d1max /d2max the 

optimal link count section changes from link 3 to link 2 (see following table). 

  

d1max/d2max MErr1 MErr2 MErr3 Best Location 

1 0.250  d1max 0.250  d1max 0.237  d1max 3 

0.9 0.278  d1max 0.250  d1max 0.249  d1max 3 

0.8 0.321  d1max 0.250  d1max 0.260  d1max 2 

0.1 2.500  d1max 0.250  d1max 0.342  d1max
 2 

 

Alternatively, an independent normal distribution may be defined for both d1=N(µ1,σ1
2
) and 

d2= N(µ2,σ2
2
), leading to a normal bivariate vector d with diagonal covariance matrix. Therefore, if link 

1 or 2 are chosen as count section, one component of d is fixed and the inaccuracy of the estimate can 

be measured through the dispersion (i.e. variance) of the other unknown component. If link 3 is chosen 

instead, a change of basis can be performed adopting an horizontal axis parallel to the equation (see 
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figure above), through the rotation matrix B. As a consequence, d will be expressed in the current 

reference system as {d//,d⊥}= Bd with mean Bµ (µ{µ1, µ2}) being and dispersion matrix (no longer 

diagonal) Σ’=B
t
ΣB. Therefore, fixing f3 equals fixing the component d⊥ and the inaccuracy can be 

related to the dispersion of the component d// whose conditioned distribution f(d// | d⊥=
 2

2
 f3) is still 

normal distributed with mean and standard deviation respectively given by: 

𝜇𝑑//|
 2

2
𝑓3 = 𝜇𝑑// +

𝑐𝑜𝑣 (𝑑//,𝑑⊥) 

𝑣𝑎𝑟 (𝑑⊥)
(
 2

2
𝑓3 − 𝜇𝑑⊥)    and    𝜎𝑑//|

 2

2
𝑓3 = 𝜎𝑑// −

𝑐𝑜𝑣 (𝑑//,𝑑⊥)2  

𝑣𝑎𝑟 (𝑑⊥)
 

With the same calculation of above it follows: 

MErr1=2
2
       ;      MErr 2=1

2
        ;      MErr 3=22

21
2
 /  (2

2 
+ 1

2
)                                 

and the corresponding best location is reported in the following table for different values of the ratio 

2
2
/1

2
 (1

2
 equal to 1 for sake of simplicity). 

 

𝜎2
2/𝜎1

2 Err1 Err2 Err3 Best Location 

1 1 1 1 1-2-3 

1.2 1.2 1 1.09 2 

1.4 1.4 1 1.17 2 

1.6 1.6 1 1.23 2 

1.8 1.8 1 1.31 2 
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1 Extended Abstract

This paper explores the interplay between workforce management and routing decisions in the

Period Vehicle Routing Problem (PVRP). The PVRP, introduced in [2] and [9], is an extension

of the classic vehicle routing problem (VRP), with vehicle routes constructed to service customers

according to preset visit frequencies over an established period of time; see [6] for a review of

the PVRP. The objective of the PVRP is to create a set of tours for each vehicle on each day in

the period to minimize the routing costs, while satisfying operational constraints such as vehicle

capacity and customer visit frequency.

When routes are constructed over multiple days, issues of workforce management arise. In [5],

the authors consider workforce management in terms of the operational complexity of a solution,

which is defined as the difficulty of implementing a PVRP solution for both service providers and

customers. The authors develop several metrics for quantifying operational complexity, including

crewsize, which measures the number of different drivers visiting a customer over the period. The

1
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metrics are calculated a posteriori to evaluate the complexity of periodic routing solutions obtained

with objectives of minimizing travel time and maximizing visit frequency. In [8], the authors

introduce the Consistent Vehicle Routing Problem (CVRP). Workforce management is considered

in the modeling and solution phases of a periodic routing problem by adding a constraint for

customer service. A customer must be visited by the same driver throughout the service period.

Importantly, the work in [8], as well as related work in [13], is motivated by the express package

delivery industry, where trucks visit sets of customers over the course of a week [12]. Workforce

management is critical in this industry. For example, customers may prefer to be serviced by the

same driver over the course of the week. Further, the company may wish to send the same driver

to a customer repeatedly in order to take advantage of the familiarity the driver establishes with

the customer or with the geographic region, see [13]. This familiarity is taken into consideration by

[11] when constructing daily routes for the courier delivery problem with uncertainty; a driver is

able to visit more customers on a route given route familiarity. Considering workforce management

when routing vehicles has an effect on the solution to the PVRP, creating a problem in which the

optimal solution is not necessarily found through the minimization of travel cost.

In this paper, we summarize the results found in [10]. This work incorporates workforce man-

agement into the modeling of the PVRP by adding several metrics to the objective function:

• Driver consistency (DC): the objective term includes a function that increases cost for every

additional driver that visits a customer;

• Customer familiarity (CF): the objective term includes a cost function that reduces the cost

per customer visit for a driver as the frequency of visits to that customer increases for that

driver;

• Region familiarity (RF): the objective term includes a cost function that reduces the cost per

visit to a geographic region for a driver as the frequency of visits to that region increases for

that driver.

Several multi-objective models are developed and a general comparison of the various models

is conducted, identifying the operational characteristics of each model. For example, the DC and

CF models are similar in their goals; however, CF places a higher value on an increased frequency

of visits, rather than simply reducing the number of drivers visiting a customer. We also analyze

the differences between models focused on customer familiarity and the model focused on region

familiarity. As with most VRP literature, much of the PVRP related literature has focused on

heuristic solution methods (e.g., [1], [3], and [4]). We present a Tabu Search heuristic approach to

solving this problem, adapted from [7], which is modified to account for operational complexity.

Several parameters associated with workforce management objectives are evaluated, including the

frequency of customer requests and the balance between travel costs and workforce management

2
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metrics. Further, we evaluate multiple models of driver learning behavior.

We find that solving the traditional PVRP to minimize travel cost can lead to solutions that

are less desirable from the perspective of workforce management. This is true even when a post-

processing phase is introduced to improve the workforce metrics of the cost-minimizing solutions.

However, by adding workforce management metrics to the objective function when initially design-

ing routes, an appropriate balance can be obtained between travel cost and workforce management

goals. It is shown that with the proper parameters in place, workforce management principles may

be successfully applied without sacrificing other operational objectives.
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1   Introduction 
 
River transportation systems often contain series of choke points that require traffic regulation to help 

relieve congestion.   The choke points may be caused by narrow navigation channels, sections of a 

river with swift currents, or locks that connect successive river pools with different elevations. In 

extreme cases, only a single powered vessel can navigate a channel or fit in a lock in the upstream or 

downstream direction.  Vessels travelling upstream move with slower velocity at a given power 

setting, but may be easier to maneuver under power against the current.  The time for a vessel to pass a 

choke point and clear it for the next vessel in the opposite (or same) direction varies according to the 

characteristics of the vessel itself, the direction of travel, the river conditions at the time of transit, and 

the specific sequence of operations. The mix and intensity of river traffic usually varies by season of 

the year, day of the week and time of day. River navigation systems with choke points can be 

represented as a series of unique interdependent bi-directional servers with time-varying traffic 

levels and operational characteristics, stochastically determined itineraries, and multiple queues 

with restricted queueing disciplines to impose maneuvering constraints.  We have employed such 

a structure to address seasonal bottlenecks in a congested section of the Upper Mississippi River 

(UMR) navigation system.  In the UMR, the expected locking time for a commercial vessel can vary 

from 15 to 110 minutes, depending on the number of barges being pushed by the vessel,  their physical 

configuration in the locking process, and the direction of travel (upstream or downstream).   The delay 

before a lockage operation can begin depends on the vessel’s direction of travel and also on whether 

successive  lockages involve vessels travelling in the same direction (with a recycling or “turnback” of 

the lock) or in opposite directions (with an exchange of vessels in the chamber as currently configured 

after the departing vessel clears the area). 

In this paper, we discuss the development and application of a scheduling heuristic that 

minimizes total waiting times of vessels at a lock while respecting a restrictive tandem queueing 

discipline and employing a priority shifting mechanism that prevents serious inequities (relative to a 

FIFO solution) in the pursuit of operational efficiency.   To test the heuristic, we compare its solutions 

for sets of randomly generated test problems against solutions from a nonlinear integer programming 

model for the same problems. After demonstrating the efficacy of the heuristic in a deterministic 
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context, we embedded it (as a C++ routine) into an Arena simulation model of the UMR waterway to 

show the potential benefits of employing an optimizing procedure for regulating the lockage operations 

of commercial barge traffic.  Similar heuristics may be employed to minimize waiting times in other 

situations (such as repair shops or freight yards) where tandem queueing structures are required to 

position the next entities for processing, and where processing delays (setup times) depend on whether 

sequential entities are chosen from the same queue or different queues.  

   

2.   Optimal scheduling of lockage operations for commercial vessels 
 
Optimization of operations at locks in river transportation systems can occur with consideration of 

several competing objectives. The Panama Canal, authority, for example, recognizes that schedules 

might consider fresh water usage in lockage operations, pilot availability, priority bookings,  liability 

for refund of transit tolls if priority passage is not accomplished according to schedule,  total 

throughput of vessels, and total revenue from tolls.   Nauss [1] created an IP model to demonstrate the 

possibility of considering a variety of factors (urgency of cargo shipments, crew’s experience, vessel 

equipment, etc.) when scheduling operations at locks in the UMR. Government and barge-industry 

representatives, however, reacted coolly to scheduling criteria beyond the waiting times of individual 

vessels.  They saw first-come-first served (FCFS or FIFO) as the most equitable schedule but 

recognized the need to use other scheduling mechanisms to promote efficient use of the resources, 

especially when there were backlogs of vessels waiting at a lock.  Accordingly, our further research on 

alternative scheduling regimes focused on the tradeoffs between equity and efficiency as reflected by 

the average waiting times for vessels. Smith et al. [2] developed an Arena discrete-event simulation 

model of the UMR and used it to study system performance under a variety of scheduling rules and 

infrastructure changes. 

The scheduling of lockage operations must occur with consideration of the limited 

maneuvering space in the immediate vicinity of the lock (upstream and downstream).  We deal with 

this problem by employing a tandem queueing structure for traffic in both directions.  As illustrated in 

Figure 1, the first position at the head of the queue is designated as the “mooring buoy” from which the 

next vessel to lock from that direction must be chosen.  When a vessel at the mooring buoy is cleared 

to enter the lock, any vessel queued behind may be chosen to occupy the mooring buoy and thus be 

designated as the next vessel to lock from that direction.   Generally, the waiting times are minimized 

if vessels are locked in order of their processing times.  The maneuvering limitations (tandem queueing 

structure) and equity considerations interfere with this solution.  The vessel that could be locked most 

quickly in a given direction may, for example,  may have arrived after a vessel with very long 

processing time had been positioned at the mooring buoy.  

Lock Chamber

Mooring Buoy
Mooring Buoy Mooring Buoy QueueMooring Buoy Queue

DownstreamDepartureUpstream departure

 

Figure 1. Schematic model of a lock and its queues for commercial vessels. 
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Taking this into consideration, a new IP model (Smith and Nauss, [3]) was created that would 

minimize total (or average) waiting times for all vessels, while (1) limiting the delay experienced by an 

individual vessel to a specified maximum delay beyond the delay it would experience in a FIFO 

solution and (2) respecting the restricted queueing discipline.  With the new IP model, we were able to 

demonstrate how greater efficiencies could be achieved when there is more diversity in the traffic mix 

and when longer delays relative to the FIFO solution are allowed for individual vessels.  To assess the 

potential effects of using the optimizing procedure in practice, however, we needed to simulate its 

usage over many years while re-solving the lock clearing problem at each lock after each departure.  

The solutions times for the IP procedure were not excessive (approx. 20 seconds for 20 queued 

vessels) for operational purposes, but a more efficient solution procedure was needed for deployment 

in the simulation model.  A more efficient procedure would also be required in other applications 

where the processing time for queued entities is much shorter.    

 The scheduling heuristic addresses the problem in two phases.  In the first phase, it strives to 

create a processing sequence that is close to the “fastest processing time sequence” considering both 

setup and processing times, while forcing the first vessel to be locked in a given direction to be the 

vessel currently at the respective mooring buoy.  In this phase, it tests the consequence of shifting the 

vessel at the mooring buoy and blocks of faster locking vessels behind to an earlier position in the 

locking sequence.  It makes the shift only if the total waiting time for all vessels would be reduced.  In 

the second phase, it explores whether interleafing vessels from different queues (changing lockages 

from turnbacks to exchanges or vice versa)  has a net beneficial effect.  It continues until no such 

change generates an improvement.  To impose equity, vessels are shifted into higher priority classes 

with the passage of a stated time interval and the first vessel to lock must be chosen from the highest 

priority class or from a mooring buoy that is blocking a vessel in the highest priority class.   

 We compare solutions from the IP model with solutions from the heuristic for a battery of test 

problems (using expected values of processing times and setup times) and find that the solutions are 

identical in the majority of cases.  Where the solutions differ, the heuristic is found to generate 

improvements over FIFO that are very close to the improvements generated by the IP.    Accepting the 

heuristic as a good surrogate for the optimizing IP, we then use it in the Arena model of the system and 

compare the results against FIFO and other scheduling rules to illustrate how stochastic phenomena 

affect the benefits achievable from “optimizing” schedules with different constraints to impose equity. 
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The Orienteering Problem (OP) is a combinatorial routing problem of which the goal is to

find a tour that maximises the total score earned by visiting vertices. A set of vertices is given,

determined by their coordinates and a score. The pairwise travel times between the vertices are

known. The total travel time should not exceed a predetermined time budget. Each vertex can be

visited at most once.

The OP serves as the starting point for modelling tourist trip design problems [2, 4]: a tourist

who wants to visit a city or region is limited in time, and cannot visit every tourist attraction.

Therefore, the tourist has to make a selection of the most interesting places to visit, within the

limited time frame. The score represents the estimated personal interest of the tourist in the

location. The time budget obviously represents the maximal amount of time the tourist has

available. Solving the OP results in a personal trip for the tourist. However, while executing the

planned trip, unexpected events often make the solution infeasible. Therefore, a fast algorithm

is needed in order to dynamically recalculate the plan. Well known OP extensions are the Team

OP (TOP), and the OP with Time Windows (TW). The former allows modelling trip planning

problems for multiple days, the latter allows defining a period for each vertex in which the visit

has to take place.

The scope of this paper is the Multi–Constraint TOP with Multiple TWs (MCTOPMTW), in
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which each location is extended with Z attributes for each day. Z additional knapsack constraints

are defined, which limit the selection of locations, together with the time constraints. In the

envisioned tourist application (http://www.citytripplanner.com), the additional constraints will

involve budget limitations for entrance fees and “max-n type” for each day and for the whole trip

(e.g. a maximum number of museums to visit on the first day). In addition, the proposed model

addresses the main drawbacks of the TOPTW model of Vansteenwegen et al. [4]. The new model

allows defining different TWs on different days and more than one TW per day. The (T)OP with

multiple (and different) TWs was recently discussed and tackeled by Tricoire et al. [3], without

extra constraints.

This abstract defines the MCTOPMTW mathematically, proposes a fast local search based

metaheuristic algorithm and presents promising experimental results.

1 Mathematical Model

The MCTOPMTW can be formulated as an integer program: given are M tours and N locations

with a non-negative score Si, Z attributes and W TWs; location 1 is the starting location, location

N is the end location; the shortest path between location i and location j requires time tij , the

Euclidean distance between them; xijm = 1 if, in tour m, a visit to location i is followed by a visit

to location j, 0 otherwise; yiwm = 1 if location i is visited during TW w in tour m, 0 otherwise;

sim is the start of the visit at location i in tour m; Oiwm and Ciwm are the opening and closing

times of TW w of vertex i in tour m; eimz is the cost associated with knapsack constraint z for

location i in tour m; Ez is the cost budget of knapsack constraint z; L is a large constant. The

total score of the selected visits has to be maximised.

Max

M∑
m=1

W∑
w=1

N−1∑
i=2

Siyiwm (1)

Subject To:

M∑
m=1

N∑
j=2

x1jm =
M∑

m=1

N−1∑
i=1

xinm = M (2)

N−1∑
i=1

xikm =
N∑

j=2

xkjm =
W∑

w=1

ykwm;∀k = 2, ..., N − 1;∀m = 1, ...,M (3)

sim + tij − sjm ≤ L(1− xijm);∀i, j = 1, ..., N ;∀m = 1, ...,M (4)

M∑
m=1

W∑
w=1

yiwm ≤ 1;∀i = 1, ..., N (5)
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M∑
m=1

W∑
w=1

N∑
i=1

eimzyiwm ≤ Ez;∀z = 1, ..., Z (6)

∃w ∈ 1, ...,W : Oiwm ≤ sim ≤ Ciwm;∀i = 1, ..., N ;∀m = 1, ...,M (7)

xijm, yiwm ∈ {0, 1};∀i, j = 1, ..., N ;∀w = 1, ...,W ;∀m = 1, ...,M (8)

The objective function (1) maximises the total collected score. Constraint (2) guarantees that

all tours start in vertex 1 and end in vertex N . Constraints (3) and (4) determine the connectivity

and time line of each tour. Constraints (5) guarantee that every vertex is visited at most once.

Knapsack constraints (6) limit the selection by constraining attributes of the vertices, used to

define budget and max-n type constraints. Constraints (7) restrict the start of the visit to one

of the time windows. Note that the model also enables max-n type and budget constraints to be

defined per day, e.g. visit maximum one church on the first day, or spend at most 100$ on the

second day. In this case, an extra knapsack constraint is added for that particular day. Moreover,

constraints (5) can also be expressed by a special case of general knapsack constraints (6).

2 Algorithm

The algorithm for tackling the MCTOPMTW is based on the Iterated Local Search (ILS) for the

TOPTW of Vansteenwegen et al. [4]. In order to add diversification, the ILS approach is hybridised

with GRASP (Algorithm Listing 1), as GRASP has proven to work well for the TOP [2].

for greed=0.89; greed>0.59; greed-=0.01 do

while NumberOfIterationsNoImprovement < 100 do
Solution = GRASP(greed);

if Solution > BestFound then
BestFound=Solution;

NumberOfIterationsNoImprovement=0;

else
NumberOfTimesNoImprovement++;

Shake();

Return BestFound;
Algorithm 1: Hybrid ILS–GRASP for the MCTOPMTW

The GRASP procedure iteratively adds visits to the current solution, allowing only feasible

solutions. This procedure is governed by a greediness parameter, which varies from 0.89 (close to

best–improving local search) to 0.60 (more randomness). In order to escape from local optima,

the shake procedure removes R visits from the current solution, starting from vertex S. R and S
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are dynamically updated to steer diversification. More details about this updating process can be

found in [4].

As the ILS–GRASP algorithm iteratively adds visits to and removes visits from the current

solution, an efficient mechanism is designed to evaluate the knapsack constraints. Efficient value

propagation dynamically maintains a neighbourhood structure of possible visits for each tour.

Also, the knapsack constraints’ slack values serve as a basis for calculating the heuristic value of

an insertion of a vertex in a tour, which is used by the GRASP procedure.

3 Experimental Results

Garcia et al. [1] designed MCTOPTW test instances based on available test sets for the TOPTW

[4]. We extended the MCTOPTW instances with one money budget constraint, ten max-n type

constraints and with m ranging from 1 to 4 instead of 2. The instances are designed in such a way

that high quality TOPTW solutions are also feasible high quality solutions of the new MCTOPTW

instances. Different time windows in different tours are not included in these instances, but that

would have no influence on the performance of this algorithm. Multiple time windows are also not

included, but these can be modelled by copying the location, giving each copy one time window

and adding an extra knapsack constraint.

The algorithm is allowed to run 10 times on a 2.5GHz Intel Xeon processor with 4 GB of RAM.

The results are very good: one average run has a score gap (with the known high quality solutions)

of only 3.26%, using 1 second of computation time. When the best solution of 10 runs is used, the

initial high quality solution was found in 27% of the test instances and this solution was improved

in 9% of the instances. More extensive experimental results indicate that hybridising ILS with

GRASP significantly increases the performance of the algorithm.
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1 Introduction 

 

The airline crew scheduling problem is one of the most important planning problems faced by 

the airlines because the total crew cost is considered, next to the fuel cost, the largest single expense of 

an airline. Given a schedule of flights to be operated by the same aircraft fleet, it consists of 

determining, for the available crew members, least-cost schedules that cover all flights and respect 

various safety and collective agreement rules. For large fleets, this problem is usually addressed using 

a two-stage sequential solution approach. In the first stage, least-cost crew pairings are built to cover 

each flight by a crew. A pairing is a sequence of one or more duties separated by rest periods and a 

duty is a sequence of flights separated by connections forming a work day. A pairing must start and 

end at the same crew base and must respect various feasibility rules. It can contain deadhead flights 

that are used for repositioning purposes. This first stage problem is called the crew pairing problem. 

Given the computed pairings, the second stage problem, called the crew assignment problem, consists 

of constructing monthly schedules for the available crew members at each base. A schedule is a 

sequence of pairings interspersed by rest periods that may contain days off. Additional crew members 

expected to be in reserve can also be scheduled at a high penalty cost. In this paper, we consider the 

construction of anonymous pilot schedules (called bidlines) that are later assigned to the pilots 

according to their preferences and seniority. We propose a model and a method for solving the 

integrated crew scheduling (ICS) problem.  

The crew pairing and the crew assignment problems have been widely studied separately as 

mentioned in the recent surveys [1] and [2]. For the last two decades, column generation has been the 

leading solution methodology for the crew pairing problem. The literature on the crew assignment 

problem is more heterogeneous as the problem definition often differs from one paper to another. 

Metaheuristics and mathematical-programming based solution methods, including column generation, 

have been developed for this problem. To our knowledge, the ICS problem was addressed only in [3]. 

The authors proposed two duty-based integer linear programming models which rely on the 

assumptions that all duties can be generated a priori and that deadheads can be introduced as needed in 

the schedule without any additional costs. Using a heuristic branch-and-bound algorithm, the authors 

succeeded to solve small-sized instances (up to 210 flights or 40 crew members).  
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2 Model and solution method 
  

When building pilot schedules, the ICS problem can be formulated as a set partitioning 

problem using the following notation. F: set of flights to cover; B: set of crew bases; qb: number of 

pilots available at base b (excluding those expected to be in reserve); β: penalty cost for each extra 

pilot; Sb : set of feasible schedules for pilots at base b; cs : cost of schedule s; afs : equal to 1if schedule 

s covers flight f and 0 otherwise; xs : binary variable indicating whether or not schedule s is chosen; yb : 

surplus variable indicating the number of extra pilots required at base b. The proposed model is: 

 

The objective function (1) minimizes the sum of the schedule costs and the penalty costs for the 

additional pilots. Flight coverage is imposed by the set partitioning constraints (2), whereas soft pilot 

availability per base is ensured by (3). 

For very small-sized instances, model (1)-(4) can be tackled using column generation 

embedded into a variable fixing procedure. In such a solution approach, column generation is used for 

solving the linear relaxation of (1)-(4), which is then called the master problem. At each iteration, this 

method solves the master problem restricted to a subset of its variables, called the restricted master 

problem (RMP), and several subproblems (one per crew base) that identify negative reduced cost 

columns (variables) to add to the current RMP. The column generation process stops when all 

subproblems fail to generate a negative reduced cost column. For the ICS problem, the subproblems 

correspond to resource constrained shortest path problems that are defined on time-space networks. 

Such a network allows the construction of all feasible schedules for a base, including the construction 

of their pairings and duties. It involves 11 arc types, namely, flight, deadhead, rest, day off and waiting 

arcs among others. Any feasible schedule for the corresponding base corresponds to a path from a 

source node to a sink node in this network. However, not all paths represent a feasible schedule. 

Resource constraints are, thus, used to restrict path feasibility. For the ICS problem considered, nine 

resources are required to take into account all feasibility rules for the duties, the pairings, and the 

schedules themselves. To derive an integer solution, column generation is embedded into a variable 

fixing procedure that sets to 1 any xs variable with a fractional value larger than a given threshold or, as 

a second option, pairs of flights to be covered consecutively by the same pilot. 
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For practical size instances, column generation becomes inefficient for solving the ICS 

problem because the number of set partitioning constraints (2) is large and the number of flights per 

schedule can easily exceed 30, yielding a highly degenerate master problem. To overcome this 

difficulty, we propose to combine the column generation method with a bi-dynamic constraint 

aggregation (BDCA) method (see [4] and [5]). A BDCA method uses an aggregated restricted master 

problem (ARMP) that is obtained by aggregating clusters of the RMP set partitioning constraints (2) 

and keeping one representative constraint for each cluster. This constraint aggregation can vary 

throughout the solution process. Since each constraint (2) is associated with a flight, a cluster 

corresponds to a non-empty subset of flights and an aggregation is performed according to a partition 

Q of the flights into clusters.  For the ICS problem, we start the solution process using an initial cluster 

for each pairing of a heuristic solution computed for the crew pairing problem. A variable xs is said to 

be compatible with partition Q if the set of flights covered by the corresponding schedule is the union 

of some clusters in Q.  Otherwise, it is declared incompatible. The ARMP only contains compatible xs 

variables and all yb variables. Once solved, it provides a primal and an aggregated dual solution. To 

allow pricing all (compatible and incompatible) xs variables, this dual solution is disaggregated using a 

repetitive shortest path procedure. A newly generated variable xs compatible with the current partition 

Q can be added to the ARMP without modifying this partition. At the opposite, an incompatible 

variable cannot be added to the ARMP without modifying it. By working with a reduced sized master 

problem, DCA reduces the impact of degeneracy and speeds up the computational time per column 

generation iteration. 

To maintain a higher level of aggregation during the solution process, a partial pricing 

strategy favoring the generation of compatible or slightly incompatible columns is used. This strategy 

associates with each variable xs a number of incompatibilities with respect to the current partition and 

uses a sequence of phases that gradually allows the pricing of variables with a higher number of 

incompatibilities. To further speed up the solution process, the size of the subproblem networks is 

reduced according to partition Q. The reduction procedure selects a subset of clusters according to their 

corresponding aggregated dual values and removes all the arcs in the networks that would yield a 

disaggregation of these clusters if they were used. When no columns can be generated using the 

reduced networks, the subproblems are solved again using the complete networks. In this paper, we 

propose to enhance this reduction procedure by using a neighborhood (defined by a time slice) that 

restricts cluster selection and increases the chances of generating columns that are complementary. 

Such a neighborhood is kept for several column generation iterations before switching to another one. 

Finally, the overall BDCA/column generation method is made heuristic by stopping prematurely the 

column generation process when the decrease in the objective value realized in a predetermined 

number of iterations is deemed insufficient.  
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3 Computational results 

  
Computational experiments were performed to evaluate the savings that can be obtained by 

solving the ICS problem instead of solving sequentially the crew pairing and the crew assignment 

problems. For these experiments, we considered seven instances involving between 1011 and 7527 

flights over one month, and three crew bases each. All tests were conducted on a Linux PC machine 

clocked at 2.8 GHz.  

Table 1 reports the test results. We observe that, compared to the sequential approach, the 

integrated approach yields significant savings: on average, 4.02% on the total cost and 5.51% on the 

number of schedules. However, the computational times are on average 3.02 times longer with the 

integrated approach. Thus, we conclude that integrating crew pairing and crew assignment can be 

highly profitable, but this requires much longer computational times.  

 

  Sequential approach  Integrated approach 

 
Instance 

 
Flights 

CPU 
(min) 

Total 
cost 

No. 
scheds

CPU 
(min) 

CPU 
INT/SEQ

Total 
cost 

Svgs 
(%) 

No. 
scheds 

Svgs 
(%) 

I-1 1011 4.0 767754 33 6.4 1.73 723684 5.74 31 6.06 

I-2 1463 5.8 957989 34 14.7 2.53 923426 3.60 31 8.82 

I-3 1793 11.4 1313391 47 34.7 3.04 1272972 3.07 43 8.51 

I-4 5466 522.6 3502527 145 966.3 1.84 3382494 3.42 137 5.51 

I-5 5639 231.9 4835090 247 1401.7 6.04 4637323 4.09 241 2.42 

I-6 5755 260.0 5144122 223 783.0 3.01 4796863 6.75 209 6.27 

I-7 7527 507.6 6536094 305 1518.2 2.99 6437594 1.50 302 0.98 

Average      3.02  4.02  5.51 

Table 1: Results obtained by the sequential and the integrated approaches 
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Extended abstract

The class of Inventory–Routing Problems (IRPs) includes a variety of different optimization prob-

lems that, though often very different from each other, all consider a routing and an inventory

component of an optimization problem. Time may be discrete or continuous, demand may be

deterministic or stochastic, inventory holding costs may be accounted for in the objective function

or not. When the inventory cost is not included in the objective function, an inventory capacity

at the customers is defined. IRPs have received little attention, if compared to vehicle routing

problems. However, the interest in this class of problems has been increasing from the beginning

of the eighties. Some pioneering papers appeared in the eighties, while several papers appeared in

the last two decades and some surveys (see, e.g., [4, 5, 7, 8]) summarize the state of the art.

In this talk the class of inventory routing problems will be presented. After a review of the

literature, with motivations to study this class of problems, the talk will focus on a class of discrete

time IRPs that include in the objective function transportation and inventory costs. Contributions

in this area will be reviewed, starting from the simplest models to the most complex ones.

The simple case of one origin and one destination will be presented first. Even in this simple

case the problem to minimize the sum of transportation and inventory costs is NP-hard. This

proves that the complexity of IRPs may come from the routing side of the problems but may also

come from other sides. While simple shipping policies, such as shipping full loads, may perform

poorly, simple yet effective frequency based policies will be presented.

Then, the case of a general distribution problem will be considered. A product is distributed

from a common supplier to a set of retailers over a time horizon. At each discrete time a quantity

is produced or made available at the supplier and a quantity is consumed at each retailer. A

starting inventory level at the supplier is given. Each retailer has an inventory capacity and a

starting inventory level. If the deterministic order-up-to level management policy is applied, when

a retailer is visited, then the quantity shipped to the retailer is such that the inventory level reaches
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its maximum level, that is the inventory capacity. If instead the maximum level policy is applied,

when a retailer is visited, then the quantity shipped to the retailer is less constrained, the only

constraint being that the capacity must not be exceeded. The inventory cost is charged both at

the supplier and at the retailers. Shipments from the supplier to the retailers are performed by

vehicles of given capacity. Each vehicle route visits retailers that are served at the same time.

The transportation cost to travel directly from a retailer to another retailer is known. The goal

is to determine for each time the quantity to ship to each retailer, and the routes visiting all the

retailers served at that time at minimum cost.

This problem, as most IRPs, is very complex to solve because it combines the complexity of

time-dependent decisions with the complexity of the traditional vehicle routing problems. However,

compared with most of the studied IRPs, it has a relatively simple structure. To investigate the

problem characteristics in depth and to understand which are the most appropriate exact and

heuristic techniques, the case of one vehicle will be addressed. A branch-and-cut algorithm for this

case was proposed in [2].

Firstly, a hybrid solution approach will be presented (see [1]). A tabu search heuristic for the

above described problem is shown to perform well. However, while the tabu search is not sufficient

to guarantee really high quality solutions, the quality of the solutions can be improved by means

of ad hoc designed MILP models, embedded in the tabu search framework, that explore in depth

some promising parts of the solution space. Computational results on a set of benchmark instances

show the excellent performance of this hybrid heuristic.

Then, the exact solution of the problem by means of a branch-and-price-and-cut method will be

addressed (see [3]). A mixed integer linear programming formulation for this problem was proposed

in [2]. A new different mixed integer linear programming formulation will be presented and it will be

shown that the new one has a stronger relaxation. For any retailer, the sequence of replenishments

that occur at the retailer has the structure of the well-known (single-item single-level) dynamic

lot-sizing problem [9]. For this problem, it is known that a formulation with separate variables

for setups, that is decisions on the periods of replenishment, and production/order quantities is

weak and that a path formulation over the time periods is stronger. In the stronger formulation

binary variables indicate that a retailer has successive replenishments at two given times t and

t′ and that no replenishment takes place between t and t′. Some families of valid inequalities

will also be presented to strengthen further the formulation. Branch-and-price methods have

been successfully applied for other IRPs, the first being due to Christiansen and Nygren [6]). A

branch-and-price-and-cut algorithm for the solution of this problem will be presented, based on

the stronger formulation, and compared with the branch-and-cut algorithm proposed in [2].
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1 Introduction

The capacitated vehicle routing problem (CVRP) is a classical problem in operations research.

Consider a depot where goods are stored and a set of locations which have nonnegative demand

for the goods. A set of vehicles of finite capacity is available to transport the goods from the depot

to the customers. The vehicles start and end their routes at the depot. Costs are incurred for

traveling from one location to another. The CVRP is to find a routing schedule that describes the

sequence of locations that is visited by every vehicle, in such a way that the total traveling costs

are minimized. The CVRP is known to be an NP-hard problem.

In situations of frequent periodic deliveries, it is beneficial for operational processes to determine

the moment of delivery before the orders are placed. It is for instance very costly, if at all possible,

to roster delivery handling personnel one day before they are needed. It is therefore very common

to determine a long term schedule, henceforward master schedule, that serves as a schedule for

every periodic delivery over a certain period of time in which multiple deliveries are made. In the

classical CVRP, demand is deterministic and known. A situation that often occurs in practice

is that demand varies per periodic delivery and only becomes apparent at a late moment. For
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example, in the retail industry it is very common that the orders of the individual stores are

placed only a few days, sometimes even just one day, before delivery. Designing a robust master

schedule is the main goal of our research project.

Such a master schedule is made before demand realizations become apparent. As a result the

master schedule will not always be feasible as for instance high demand might cause the capacity

of a vehicle to be insufficient to make deliveries to all locations on its route planned in the master

schedule. In such cases the master schedule needs to be deviated from. Moreover, low demand

may lead to inefficient use of vehicle capacity, such that lower traveling costs might be obtained by

deviating from the master schedule. The construction of a new schedule when demand realizations

become known, will be referred to as rescheduling. The main focus of our paper [4] is to model

and solve the vehicle rescheduling problem (VRSP).

2 Problem Description of the VRSP

Consider a directed complete graph G = (V,E). The set of nodes V = {0, 1, ..., n} correspond to a

single depot 0 and the customers V ′ = {1, ..., n}. For every edge (i, j) ∈ E traveling costs cij ≥ 0

are given that satisfy the triangle inequality. We suppose that an unlimited number of vehicles of

capacity Q ≥ 0 is at our disposal. Furthermore, for every location i ∈ V ′ the demand qi is given

such that Q ≥ qi > 0. The vehicles will be used to supply demand.

A route r ⊂ E is defined as a cycle in G including the depot and is called feasible if the total

demand of the locations visited on that route does not exceed the capacity Q. A routing schedule

S is a collection of edge-disjoint routes such that all customers are included in exactly one route.

A schedule is called feasible when all routes it includes are feasible. The set of all feasible schedules

is S.

Assume that a master schedule SM is available. Note that this master schedule need not

be feasible as capacity restrictions might be violated by demand realizations. Next adeviation

is defined per location. We say that the new schedule does not deviate for location l when all

locations visited prior to l on the route in both the master and the new schedule are the same

and that it deviates otherwise. To be more precise, suppose location l is visited on route rM in

the master schedule SM , Let rM be represented by the set of locations: {iM1 , ..., iMv , l, ..., iMk }. In

the new schedule SR, l is visited on route rR, which is represented by {iR1 , ..., iRw, l, ..., iRm}. When

v = w and iM1 = iR1 , ..., iMv = iRw, the new schedule does not deviate for location l; otherwise it does

deviate. Therefore, if location l deviates, it immediately follows that all subsequent locations on the

same route also deviate. As an example, suppose r′M = {1, 2, 3, 4, 5, 6} and r′R = {1, 2, 4, 5, 7, 6}.

The new schedule does not deviate for locations 1 and 2, but it does deviate for all locations 3
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through 7 (we know that location 3 is moved to another route and 7 is moved from another route).

Whenever a new schedule deviates for location i ∈ V ′, costs ui ≥ 0 are incurred. Let us

therefore define the following function describing the incurred deviation costs for location i given

an master and a new schedule, SM and SR respectively:

U(SM , SR, i) =

 ui, if SR deviates from SM for location i;

0, otherwise.
(1)

It is now possible to fully define the VRSP as finding a feasible schedule SR such that it

minimizes the total traveling and deviation costs for a given master schedule SM :

(VRSP) min
SR∈S

[
∑

(i,j)∈SR

cij +
∑
i∈V ′

U(SM , SR, i)] (2)

Note that the CVRP is a particular instance of the VRSP when ui = 0 ∀i ∈ V ′. As CVRP is

NP-hard, so is VRSP.

3 Solution Methods

The VRSP can be modeled as an mixed integer linear programming problem. As the VRSP is

closely related to the CVRP, many MIP formulations of the CVRP can be extended to a VRSP

formulation. As stated in [3], the most successfully implemented formulation of the CVRP is the

two commodity flow formulation, introduced in [1]. It lends itself to be solved using advanced

branch-and-cut methods as is done in [1]. We have extended this formulation to a two commodity

flow formulation of the VRSP. Randomly generated instances of the VRSP of up to 30 customer

locations have been solved to optimality by direct implementation of this model into ILOG CPLEX

10.1.

To solve larger instances of the VRSP, the two-phase heuristic is introduced. The main idea

behind the two-phase heuristic is to start with the possibly infeasible master schedule SM and

modify it to make it feasible. In the first phase of the heuristic, customers are removed from

infeasible routes starting with the last location on a particular route. This is continued until the

remaining locations do not exceed the capacity of the vehicle. Next, what remains of the master

schedule will be completed again in the second phase by adding the removed locations to existing

routes or constructing new routes, such that all locations are visited and the resulting schedule is

feasible. The problem of adding the removed locations to the schedule can be modeled as a CVRP

and solved accordingly.

The two-phased heuristic has some nice properties. We have proven that this heuristic always

generates a schedule with the minimal number of deviation locations. Moreover, this enables us

to prove that when the deviation costs are above a certain value that is solely dependent on the
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traveling costs, the two-phase heuristic always generates the optimal schedule. A tight example

shows that this bound cannot be improved. Finally an analytical bound can be given on the

relative difference between the costs of using the schedule produced by the two-phase heuristic and

the costs of using the optimal schedule. Again it is shown that this bound cannot be improved by

means of a tight example.

A second heuristic is also introduced, the modified savings heuristic. This heuristic is based

on the savings heuristic introduced in [2]. The modified savings heuristic can easily be extended

to incorporate features that are relevant in practical situations, like for instance time-window

constraints.

Over 1000 test cases have been generated with varying parameters. The two-phase heuristic

generates schedules that are closer to the optimal schedule than the schedules produced by the

modified savings algorithm in most test cases. However, as the number of customers present in

a test instance increase, the computation time of the two-phase heuristic increases exponentially

while the computation time of the modified savings heuristic increases linearly.
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1 Introduction

Discrete combinatorial optimization problems of high computational complexity appear in a mul-

titude of real-world applications, such as vehicle routing, assignment, scheduling, network design

and many other fields of utmost economic, industrial and scientific importance. Taking into ac-

count that these problems in practice are usually large-scale, the significance and the challenge

of developing efficient and effective solution approaches is obvious [1, 2, 3]. The main focus in

this paper is given on the multi-period vehicle routing problem with consistent service constraints

(ConVRP). The ConVRP is introduced recently in [4] and can be used to model a variety of real-life

applications, such as parcel deliveries and collection services.

The ConVRP is a NP -hard combinatorial optimization problem and deals with planning and
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managing a fleet of homogeneous capacitated vehicles to meet customer needs or demand for

services. It involves the design of a set of minimum cost vehicle routes to service a set of customers

with known demands over multiple days. Customers may receive service either once or with a

predefined frequency; however frequent customers must receive consistent service throughout the

planning period, such that the maximum service difference between the earliest and latest service

times over multiple days does not exceed a maximum time limit. The goal is to minimize the total

distance traveled by the vehicles such that all customers are served by exactly one vehicle without

violating capacity, route duration and consistent service constraints.

2 Solution Frameworks

This paper presents two new template-based Tabu Search (TS)[6] metaheuristic algorithms for

solving the ConVRP. Both solution approaches utilize the rationale of template schedules-routes

introduced in [4]. Based on the consistent service constraint template routes are constructed

considering only the frequent customers. The main effort is to ensure that their visiting sequence

remains relatively the same throughout the planning period. This precedence principle is believed

to adhere to the consistency constraints. Following this principle the ConVRP can be decomposed

into two sub-problems. The master sub-problem seeks to design a template route-schedule in

order to determine the sequence of frequent customers, while the slave sub-problem seeks to find

the actual daily service schedules for both frequent and non-frequent customers on the basis of

the master template schedule. In a manner similar the proposed template-based Tabu Search

algorithms operate on a dual mode basis. The master mode refers to the application of the TS

algorithm on the template, while the slave mode refers to the application of the TS algorithm on

the actual daily schedules. Regarding the latter, apart from vehicle capacities and route duration

restrictions, the visit requirements and the customers’ precedence constraints, as dictated by the

corresponding template schedule, are also considered.

The main difference between the proposed solution frameworks lies in the way the template

schedule is constructed and manipulated. The first solution framework initially consider that a

complete template schedule is constructed using the well-known savings construction heuristic of

Clarke and Wright [5]. Subsequently, a TS algorithm is repeatedly applied to improve either the

current template schedule (master mode) or the appropriately re-constructed daily schedules after

each change of the template schedule (slave mode). On the other hand, the second framework

builds the template schedule in a sequential fashion. In particular, a partial template schedule is

gradually constructed for each day of the planning period and TS is applied sequentially at the

end of each construction phase (master mode). After each successful cycle the template schedule is

updated, and the oscillations between construction and improvement phases are repeated until the
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template schedule is complete. To this end, the daily schedules are determined using an insertion-

based construction heuristic and TS is applied to improve each daily schedule (slave mode).

In both cases, the proposed TS algorithm operates on the basis of simple edge-exchange neigh-

borhood structures (i.e. 2-Opt, 1-1 Exchange and CROSS-Exchange) using a direct gain oriented

neighborhood evaluation scheme. In an effort to provide a balance between diversification and in-

tensification, an auxiliary augmented objective function is used to guide the search process. More

specifically, a long term memory structure is introduced that keeps track the appearance frequency

of particular solution attributes, combined with a simple penalization scheme. The main goal is to

penalize edges (pairs of customers) that frequently change state (added and/or deleted) whenever

the search is confined during the exploration of the solution space. Finally, a reactive mechanism

is introduced that dynamically updates and controls the size of tabu lists.

3 Computational Results

The benchmark data sets with up to 199 customers introduced in [4] are used as the baseline for the

evaluation of the proposed template-based Tabu Search algorithms, abbreviated hereafter as SF1

and SF2. Table 1 summarizes the computational results obtained (TD and NV stands for traveling

distance and number of vehicles respectively). For all problem instances, SF1 and SF2 yield high

quality solutions and proved to be highly competitive with very reasonable computational time

requirements (maximum running time 600 seconds). Compared to the state-of-the-art Record-to-

Record travel metaheuristic algorithm (ConRTR) of Groër et al [4], SF1 and SF2 improved the

average distance traveled by 4.18% and 2.14%, while further reductions in terms of number of

vehicles utilized are also obtained.

Table 1: Comperative analysis
Instance ConRTR SF1 SF2

TD NV TD NV Gap% TD NV Gap %

Problem 1 2282.14 5 2210.56 4 -3.14 2245.08 5 -1.62

Problem 2 3872.86 11 3605.68 9 -6.90 3720.33 9 -3.94

Problem 3 3628.22 7 3476.88 6 -4.17 3589.41 6 -1.07

Problem 4 4952.91 12 4600.73 10 -7.11 4804.28 10 -3.00

Problem 5 6416.77 16 5756.23 14 -10.29 5917.75 13 -7.78

Problem 6 4084.24 5 4096.87 5 0.31 4096.86 5 0.31

Problem 7 7126.07 12 6905.56 11 -3.09 6817.08 10 -4.34

Problem 8 7456.19 9 7331.11 8 -1.68 7301.12 8 -2.08

Problem 9 11033.54 14 10556.4 13 -4.32 10453.36 12 -5.26

Problem 10 13916.8 18 13304.50 17 -4.40 13425.77 16 -3.53

Problem 11 4753.89 7 4810.95 6 .1.20 5127.15 6 7.85

Problem 12 3861.35 10 3607.88 8 -6.56 3690.25 8 -4.43

Average 6115.415 10.5 5855.28 9.25 -4.18 5932.37 9 -2.41
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4 Conclusions

This paper presents template-based Tabu Search algorithms for solving the multi-period vehicle

routing problem with consistent service constraints. The architecture of both solution frameworks

utilize the concept of template schedules, introduced by Groër et al [4], on a dual mode basis

for producing high quality solutions. Computational experiments on benchmark data sets of the

literature validate the effectiveness and the efficiency of the proposed solution approaches.
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1. Two-echelon freight distribution system 

 
In the last years great interest has been addressed to the freight distribution systems in the 

context of City Logistics problems. 

The more relevant aspect of the City Logistics operations can be identified in the plants for 

the consolidation of the flows entering and leaving the urban areas, the so called platforms or City 

Distribution Centers (CDC), in a single-echelon system. Their function is the rationalization of the 

movements in the urban areas, consolidating in a single point the freights to and from the city. They 

are basically devoted to reduce the fragmentation of all the movements that do not pass through other 

platforms or warehousing point. Their main targets are the increasing of the loading factor of the 

vehicles and the improvement of the coordination among the different subjects. CDCs are in general 

stand-alone facilities situated close to the access or ring highways, or they may be part of air, rail or 

navigation terminals.  

The CDCs certainly have improved the freight distribution in urban areas in the last years, but 

the initial success of the related single echelon system has showed some deficiencies for what concerns 
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its application in big cities, where the freight flows have increased significantly and the trend is not 

going to change. The reasons at the base of this situation are: 

• CDCs located rather far from the center. If the aim is to minimize the number of trucks in the 

urban areas, then heavy trucks should be used in order to consolidate on the same vehicle as 

many orders as possible. This implies that there will be large trucks moving within the urban 

areas, performing long routes to serve all the final customers, with difficulty in respecting 

the delivery time-windows. 

• The particular structure of city center of big cities. Big cities are very constrained areas not 

only for what concerns the density of population and land use, but especially for the road 

network, characterized by a wide variety of streets of different width, one way streets, few 

and limited zones for parking, interdicted zones to the trucks etc..  

. 

For these reasons in the last years new structures for freight distribution systems have been 

proposed, based on more intermediate facilities. Two-echelon systems have been recently proposed in 

Crainic et al. [1], Crainic et al. [2], Gragnani et al. [3].  

The two-echelon City Logistics concept builds on and expands the CDC idea. City 

Distribution Centers form the first level of the system and are located on the outskirts of the urban 

zone. The second echelon is constituted of satellite platforms (satellites) where the freight coming from 

the CDCs may be consolidated into vehicles suitable for dense city zones. Satellites perform limited 

activities. In this way at satellites no special infrastructures and functions have to be built, but existing 

facilities can be used, like for example underground parking slots or municipal bus depots, or spaces 

like city squares and therefore no high additional costs have to be sustained (Crainic et al. [1]) for 

satellite activities. 

Two types of vehicles are involved in a two-echelon City Logistics system, urban-trucks and 

city-freighters, and both are supposed to be environmentally friendly. Urban-trucks move freight to 

one or more satellites, whereas city-freighters are vehicles of small capacity that can travel along any 

street in the city-center to perform the final distribution.  

  

2. Exact models and tabu search heuristic for two-echelon 

location-routing problem 

The design of a two-echelon freight distribution system is a strategical and tactical decisional 

problem. The aim is to define the location and the number of the two different kinds of facilities, the 

assignment of customers to each open secondary facility and of satellites to platforms, the size of two 

different vehicle fleets (urban trucks and city freighters) and the related routes on each echelon. The 

problem has been modeled as a two-echelon (multilevel) location-routing problem (2E-LRP). This 

problem is NP-hard since it arises from the combination of two NP-hard problems, facility location 
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(FLP) and vehicle routing (VRP). To the best of our knowledge, multi-level location-routing problems 

have not yet been addressed either with exact or heuristic methods.   

Several models for the two-echelon location-routing problem are presented. Three of them 

derive directly from the classical formulations proposed in Toth and Vigo [4]  for the VRP. Another 

one is based on a multi-depot vehicle-routing formulation (MDVRP) proposed by Dondo and Cerdà 

[5], which uses assignment and sequencing variables. 

The hardness of 2E-LRP allows to solve previous models just on small instances (2 platforms, 

10 satellites and 25 customers) with the usage of commercial solver Xpress 7.0. For this reason a tabu 

search (TS) heuristic approach is proposed to solve 2E-LRP on large instances.  

This heuristic is based on the decomposition of the problem in its two main components, i.e. 

two location-routing problems. Each component, in turn, is decomposed in its two composing sub-

problems, i.e. the capacitated facility location problem and the multi-depot vehicle routing problem.  

The heuristic builds on the two-phase iterative approach, proposed by Tuzun and Burke [6], 

and on the nested approach of Nagy and Salhy [7], hence it can be defined as an “iterative-nested 

approach”. 

 The TS starts with an initial feasible solution, obtained solving the arising multi-level 

capacitated facility location problem and tries to improve it in two phases: 

1. Location phase: a tabu search is performed on the location variables in order to 

determine a good configuration of facilities to be used in the distribution system. The 

passage from a configuration to another is obtained through the usage of add and swap 

moves. The two moves are performed sequentially, first swap moves and then add 

moves. The swap moves keep the number of facilities unchanged but locations change. 

Swap moves are performed until a maximum number of iterations without 

improvement is reached. Then an add move is performed, until a stopping criterion is 

satisfied.  

2. Routing phase: for each location solution determined during the location-phase, a tabu 

search is performed on the routing variables. The initial routes are built with Clarke 

and Wright algorithm and then improved by local search. Finally a tabu search based 

on insert and swap moves is performed.  

 

The key element of the proposed heuristic resides in the combination and integration of the 

location and routing solutions on each echelon and of the location-routing solutions of the two 

echelons, in order to obtain a solution that is globally good.  

Concerning the combination of single echelon solutions, in the location phase of the 

algorithm, a TS is performed on the location variables, starting from the configuration with the 

minimum number of open facilities. For each of the location configurations, another TS is run on the 

routing variables in order to obtain a good routing for the given configuration. Therefore each time a 
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move is performed on the location phase, the routing phase is started in order to update the routing 

according to the new configuration.  

Concerning instead the combination of location and routing solutions of the two echelons, 

each time a change of the demand assigned to a set of open satellites occurs and a pre-defined 

condition on facility and vehicle capacity is satisfied, then the location-routing problem of the first 

echelon should be re-solved in order to find the best location and routing solution to serve the new 

demand of the satellites. 

Tabu Search heuristic has been tested on several sets of small, medium and large instances 

(up to 5 platforms, 20 satellites and 200 customers). The sets differ for the spatial distribution of 

facilities and customers. Each instance has been solved with different settings of the tabu search 

parameters. Tabu Search results have been compared with bounds obtained solving small instances of 

the 2E-LRP by commercial solver Xpress 7.0 and medium and large instances by a simple 

decomposition approach. The obtained results show that the proposed Tabu Search is able to find good 

solutions with limited computation time. 
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1 Introduction

In a global economy, transportation of goods between the continents is continuously increasing. For

most goods the only real option is to transport it by sea. There are huge investments involved in

purchasing and maintaining a fleet of ships. A new bulk ship (Panamax-size) costs approximately

35 million USD to purchase, and has daily operating expenses of several thousand USD. Thus it

is important for the shipping companies to have as high utilization as possible of their ships, in

order to make a reasonable profit.

The shipping segment of trade can roughly be divided into three modes of transportation -

industrial, tramp and liner, see [7]. Industrial shipping is characterized by the cargo owner also

handling the shipping. Thus the objective is to transport a set of cargoes as cheaply as possible,

using the owner’s own fleet. In tramp shipping the ships act like taxis, being paid for transporting

a specific cargo between an origin and a destination. At any given point in the planning horizon a

tramp shipping company typically have one set of cargoes it has already committed itself to carry,

as well as one set of optional cargoes it might choose to carry if the fleet has sufficient capacity and

it is profitable to do so. In liner shipping the ships act like buses, sailing a pre-determined route

and follow a published itinerary, giving the visited ports and the corresponding time of the visit.

Customers may then book cargo space on the ship between two given ports on the ship’s route.

Previously the tramp shipping market was dominated by many smaller companies, each owning

a few ships and only operating within a small geographical region, or in long-hauling between
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certain geographical regions. However, in the last couple of decades there have been many mergers

and acquisitions in the tramp shipping segment, and we now have a new situation where the market

is dominated by fewer, but larger, shipping companies, see [2] for more information. Whereas 20

years ago a scheduler in a tramp shipping company had about 5 ships to schedule, he now has 20,

30, or maybe 50 ships. At the same time the development in communication technology over the

past 20 years has made the market for cargoes more transparent. Consequently the schedulers now

have greater choice in which cargoes to bid on, but at the same time greater competition which

squeezes the profit margins. All these changes in the tramp shipping industry have made routing

and scheduling decisions much harder, and thus there is an increased need for decision support

systems to help the shipping companies make better decisions.

In this work a typical problem faced by a tramp shipping company is studied. The aim is to

select a portfolio of cargoes that maximizes the tramp shipping company’s profit. This problem is a

maritime version of the well-studied pick-up and delivery problem with time windows (PDPTW),

that originates from land-based transportation. For a thorough description of the PDPTW we

refer to [3].

In recent years some work on the maritime-PDPTW has surfaced in the literature, both on

exact solution approaches and heuristics. [4] and [5] solve variations of tramp shipping problems

using path based formulations. The paths are pre-generated and used as input in a set parti-

tioning formulation. [1] and [6] describe heuristics for the maritime-PDPTW. Both papers use a

neighborhood structure to search the solution space in order to find good solutions to the problem.

The purpose of this paper is to present a tailor-made branch-and-price-and-cut algorithm for

tramp ship routing and scheduling. Solution methods are based on PDPTW literature from road-

based problems, but adapted to fit in with the maritime environment and its special features. We

also look at extensions of the PDPTW that are unique for tramp shipping problems, and discuss

how the solution approach can be modified to accommodate them.

2 Problem description

The problem considered corresponds to a multiple vehicle pick-up and delivery problem with time

windows and capacity constraints. The fleet of ships is heterogeneous, and may vary in cargo

capacity, speed and cost structure. The ships have different initial positions, and may be positioned

anywhere at the end of the planning horizon. During the planning horizon the shipping company

has a number of mandatory and optional cargoes to transport. Each cargo has a given size, and

is to be picked up in one port within a given time window, and delivered to another port within

another time window. For this work the company receives a lump sum, and the aim is to select a

portfolio of cargoes that maximizes the total profit of the shipping company.
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There are many possible extensions to the maritime-PDPTW described above, reflecting com-

mon practices in tramp shipping. In shipping the cargoes are relatively large compared to the size

of the ships, and splitting a cargo between two ships may be possible in order to increase the uti-

lization of the ships. Another common practice in shipping is to charter in additional ships in busy

periods in order to handle more cargoes. In previous papers, this has been modelled on a per-cargo

basis (e.g in [1] and [6]). However, it is more realistic for a shipping company to charter in one

ship and use it to transport several cargoes, thus incurring the fixed part of the chartering cost

only once. In a sub-segment of tramp shipping, called project shipping, it is also usual for cargoes

to be coupled. This means that the ship have to either transport all the coupled cargoes, or none

of them. Mostly these linked cargoes share destination (origin), but have different origins (desti-

nations). Sometimes the cargo owner also demands that the different cargoes are delivered (picked

up) together, by the same ship. These extensions, and their impact on the maritime-PDPTW

model will be presented.

3 Solution method

To solve this problem we have implemented a branch-and-price-and-cut algorithm, based on the

work presented in [8]. The problem is decomposed into a master problem, and one subproblem

for each ship. The subproblems are solved as shortest path problems with resource constraints,

using dynamic programming. We use non-elementary paths to solve the subproblems, because in

maritime transportation the travel times are long compared to the width of the time windows, and

consequently the possibilities of cycles occurring in the paths are limited. Thus 2-cycle-elimination

constraints in the sub-problem are sufficient to remove most of the cycles. Domination criteria are

used to remove sub-optimal paths from the subproblem at the earliest opportunity.

The master problem is solved as a set packing problem using the simplex algorithm. Cuts are

added to the master problem in order to strengthen the formulation. Several branching schemes

are incorporated into the algorithm, and the branching is done by altering the structure of the

subproblems, or modifying the master problem.

For the extensions of the maritime-PDPTW presented above, we have further modified the

solution approach. For split loads additional constraints have to be added to the master problem

to insure that the entire cargo is transported, and quantity variables are introduced to decide how

much of each cargo goes on a given ship. In the subproblem cargo quantity can no longer be a

constraint used to limit the number of cargoes on-board, as we no longer know the quantity.

In the extension with project shipping, constraints have to be added to the sub-problem making

sure that if one coupled cargo is picked up by the ship, then the cargoes to which it is coupled

must also be picked up by the same ship. No modifications are necessary in the master problem.
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Chartering in additional ships is solved by adding one new subproblem for each possible ship

type to charter in. In the master problem these ships are treated as the operator’s own fleet, but

the subproblem for these chartered ships are more complex. To capture the daily charter cost, the

subproblem needs to be modified to have start day and end day as decision variables and to have

this time specific cost added to both arcs, nodes and waiting time. The fixed part of the chartering

cost is added to all arcs leaving the origin node to pick up a cargo.

4 Computational Results

Computational results based on test cases from the tramp shipping industry will be presented.

The effect of different branching-rules, node selection policies, and cuts will also be tested and

compared.
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1 Path relinking for the vehicle routing problem

Path relinking is a relatively new metaheuristic technique for combinatorial optimization, proposed

by Glover (see e.g. [3]). Path relinking attempts to find new good solutions by examining the

solutions that are on a path from an initial (incumbent) to a final (guiding) solution. By definition,

each move on the path makes the solution more different from the initiating solution and more

similar to the guiding solution. Moving on the path is done by a neighbourhood operator, just

like in any local search algorithm. The technical difference with ordinary local search is that the

neighbourhood search strategy that decides which move to execute is not based on the quality of

the resulting solution, but on the distance in the solution space between the resulting solution

and the guiding solution. A move that takes the solution closer to the guiding solution will be

preferred over one that takes it further away, regardless of the quality of the resulting solution.

Constructing a path relinking procedure therefore requires us to select a move operator to use and

a distance measure in the solution space between two solutions. The distance measure than can

be used to determine whether a move brings a solution closer to the guiding solution and whether

the resulting solution can be considered to be “on a path from incumbent to guiding solution”.

Usually, path relinking is not used as a standalone solution method, but combined with other

metaheuristics, such as tabu search or GRASP, see e.g. [1, 7, 9, 10].

Although the capacitated vehicle routing problem (CVRP) is one of the best-known combina-

torial optimization problems, path relinking approaches for this problem are few and far between.

This is partially due to the fact that a VRP solution is most naturally represented as a set of

permutations of customers, each member of the set representing a tour. Contrary to problems that

have a natural binary or vector representation, it is not immediately obvious what is meant by
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“moving along a path from incumbent to guiding solution”. To the best of our knowledge, the

only application of path relinking to the CVRP is due to Ho and Gendreau [6]. Application of

path relinking to other routing problems can be found in [5] (for the vehicle routing problem with

time windows), [8] (for the capacitated arc routing problem with time windows), [13] (for the team

orienteering problem), and [2] (for the multi-compartment vehicle routing problem).

2 Distance-based path relinking

Glover and Laguna [4] state that path relinking algorithms should move from an initial (incumbent)

to a guiding solution by progressively introducing attributes contributed by the guiding solution.

In a sense, path relinking transforms the incumbent solution in the guiding solution, one step at

a time. This can be illustrated by considering the specific case of scatter search, essentially a

restricted version of path relinking for continuous problems. In scatter search, new solutions are

found by taking linear combinations of existing solutions. Any linear combination of two solutions

lies on the “shortest path” (i.e. the straight line) connecting these two solutions. The key property

is that any convex linear combination x of solutions a and b satisfies the equality that the sum of

its distance to the initial and guiding solutions is equal to the distance between these two solutions.

d(a, x) + d(x, b) = d(a, b). (1)

For permutation problems such as the CVP, the “shortest path” between two solutions is not

a universally agreed-upon notion. Existing path relinking approaches for vehicle routing problems

have therefore been based on ad-hoc procedures that do not have any relationship with the neigh-

bourhood search operators used in the other parts of the algorithm. However, given any local

search operator, a distance between any two solutions can be calculated, corresponding to the

minimal number of moves required to transform the first solution into the second one. A distance

measure therefore gives rise to a list of moves that, when executed in a specific order, result in a

set of intermediate solutions on the “shortest path” between guiding and incumbent solution. For

each of the intermediate solutions, equation (1) holds.

For the CVRP, many different move types have been defined in the literature (swap, remove–

insert, 2-opt, and many more). Each of these move types gives rise to an associated distance

measure. Some of these distance measures are easy to calculate, whereas others are NP-hard

(see [11] for an overview). The aim of this (ongoing) research is to investigate different move types

and their associated distance measures to see how we can construct an efficient path relinking

procedure. Other research questions that need to be answered include:

1. How do we choose the initiating and the guiding solution?
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2. Given the list of solutions that transforms the incumbent into the guiding solution, in which

order do we execute this list of moves?

3. Which solution from the path do we return upon termination?

4. Can a path-relinking approach be used as a stand-alone optimizer or do we need to integrate

it in a (local search) procedure?

3 Previous work and experiments

A proof-of-concept procedure was developed and published in [12]. In this contribution, we devel-

oped a path relinking procedure based on the “add-remove” edit distance, which corresponds to

the minimal number of “add-remove” moves that have to be made to transform a solution into

another one. One of the goals of this research is to generalize this procedure and perform the same

analysis for more move types and their corresponding distance measures, resulting in procedure

like the one depicted in Algorithm 1.

Algorithm 1: Path relinking for the VRP pseudo code

Input: Two solutions s and t

Output: A solution u on a path from s to t

Calculate n = d(s, t) and determine the list M = {m1, . . . ,mn−1} of moves that transforms

s into t;

Set u0 = s;

for i = 1 to n − 1 do

Perform move mi ∈ M (ui−1 → ui);

Choose solution u to return from the set of generated solutions {u0, . . . , un−1};

Although some promising results have already been obtained, this research is ongoing. Detailed

results will be presented at the conference.
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1 Introduction 
 

Dynamic Traffic Assignment (DTA) is a set of criteria through which the demand for mobility is 

distributed over time and space on a transport network. The role of DTA is, in essence, to provide with 

a functional relationship between the demand for mobility and the network supply. As such, it is 

crucial for any DTA model to dispose of a realistic model for the supply behavior: the dynamic 

network loading (DNL) component. Because usually the DNL simulation needs to be evaluated 

multiple times – for instance in iterations towards system or user optimal equilibrium or in day-to-day 

models – not only the degree of realism, but also the computational speed of a DNL is of paramount 

importance, especially for large (e.g. regional) networks. 

The function of a dynamic network loading model is to propagate traffic from origin to 

destination over the links and nodes of a traffic network, assuming that the route flows are known. It 

then calculates as a function of time the generalized costs for traveling each route. In a DTA 

framework, these costs can lead to adaptation of departure time choice, route choice and/or mode 

choice or the choice to travel at all (elastic demand).  

Many different DNL models have been proposed in literature. In this paper, the Link 

Transmission Model (LTM) is presented. It is one of few models combining the following properties in 

a computationally efficient way: 

• link model consistent with traffic flow theory 

• link model accounts for delays at intersections, also in undersaturated conditions 

• node model consistent with all constraints imposed by the link model 

• node model imposing node capacity constraints. 

 
Moreover, the LTM is a multi-commodity network flow model. This implies that split rates at each 

node are consistent with the route flows passing through the node. It reflects the fact that traffic flow 
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consists of drivers that are not invariant to their direction after the current link. This is in contrast to 

single-commodity flow like for instance water where the molecules at a valve do not care whether they 

turn left or right. The multi-commodity property of LTM can be obtained in two distinct ways: (i) 

either in one network loading iteration by disaggregating flow over links and nodes with respect to the 

route travelled, or (ii) by iteration towards convergence of a number of single-commodity runs with 

route flow dependent split rates at each node. The former option is the faster one when the number of 

routes in the network is limited, so that memory usage and lookup operations remain within bounds. 

The latter option is more appropriate in larger networks with numerous origin-destination pairs and 

routes. 

 

2 Link model 
 

The link model describes the flow over a link, given the boundary constraints at the up- and 

downstream ends of the link. The evolution of flow in space and time is described by traffic flow 

theoretical models. These models describe for instance the emergence of congestion and the 

occurrence and propagation of shock waves and expansion fans at the up- respectively downstream 

interfaces of a traffic jam with the free flow phase. For most network analyses, a first order 

approximation of these phenomena is sufficient as described in kinematic wave theory (Lighthill & 

Whitham, 1955). Such models capture the emergence of congestion and the delay imposed on vehicles 

passing the jams. The original formulation is in terms of average flow, speed and density, the dynamics 

of which are governed by a continuity equation and an empirical relation (fundamental diagram) 

( )q f k=  between flow q and density k. 

An efficient numerical implementation of this theory is based on the cumulative formulation (line 

integration) of the continuity law and a simplified piecewise linear fundamental diagram after Newell 

(1993). In essence, this formulation states that the cumulative in- and outflow of a link are maximized 

under certain constraints. This maximization can be understood as the tendency of drivers to move 

forward whenever possible, i.e. as long as there is a sufficient stock of vehicles available, there is 

sufficient space, and it can be done in a safe way (i.e. in safe combinations of flow and density as 

allowed by the fundamental diagram). For the cumulative inflow, the constraints are: 

• maximum inflow allowed by the capacity of the link (capacity ( )max
c

q f k=  is a property 

of the fundamental diagram); 

• maximum inflow allowed by the upstream node; 

• constraint equal to the cumulative outflow backward time earlier, increased by the maximum 

number of vehicles that can be stored inside the link (backward time and max number of 

vehicles are both properties of the fundamental diagram and of the link length). 

For the cumulative outflow, similar constraints hold: 

• maximum outflow allowed by the capacity of the link; 
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• maximum outflow allowed by the upstream node; 

• constraint equal to the cumulative inflow forward time earlier (forward is a property of the 

fundamental diagram and of the link length). 

 

For fast numerical evaluation, the link model has the advantage that it can be discretized with time 

steps equal to the minimum of the forward and backward times. These are in the order of ten(s of) 

seconds, which is substantially larger than the more commonly applied numerical scheme of Daganzo 

(1995). Moreover, Yperman et al. (2006) show that the numerical error is also smaller. 

A potential drawback of using larger calculation time steps is that traffic signal control cycles 

cannot be explicitly modeled, since this would require reducing the time step again. In such cases, 

Yperman et al. (2007) show how a flow dependent delay can be introduced into the cumulative link 

model formulation by Newell (1993). The idea is to add a point queue at the downstream end of each 

link that vehicles have to cross before entering the node. The size of the point queue is adapted 

dynamically in order to generate the required undersaturated delay. The same procedure can be applied 

to model delay at undersaturated priority junctions or to model non-linear free flow branches of the 

fundamental diagram (i.e. delay incurred by busy, undersaturated traffic on motorways, prior to the 

activation of bottlenecks). 

However, if larger calculation time steps are not really required and the details of traffic 

signals are relevant for the application, the Link Transmission Model can also be evaluated with 

smaller time steps in order to explicitly model traffic signal control cycles. 

 

3 Node model 
 

Node models for macroscopic simulation have attracted relatively little attention in literature. 

Nevertheless, in DNL models for congested road networks, node models are as important as the 

extensively studied link models. Node models have two functions in DNL models. The first is to seek 

consistency between the in- and outflows of the incoming and outgoing links respectively; the second 

to impose supplementary constraints on the outflow of each incoming link (limited supply of the node 

itself or node supply constraints). 

Just like the link model, the node model allows maximum flow over the node under a series of 

constraints (note that the index i is used for incoming links and j for outgoing links): 

max
ij

i j

q
 
 
 
∑∑   
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The first three constraints are relatively straightforward: flows must be positive, the total flow qi 

coming from an incoming link i cannot exceed the stock of vehicles available at the downstream end of 

link i (denoted as sending flow Si); neither can the total flow qj going to an outgoing link j exceed the 

space available at the upstream end of link j (denoted as receiving flow Ri). The fourth constraint stems 

from the multi-commodity character of traffic flow. It states that the turning fractions pij as found in 

traffic ready to enter the node from the incoming link i, must also be preserved in the actual flows qij 

over the node. 

 So far, the proposed node model does not differ from those available in literature. However, 

none of the existing node models simultaneously maximize flow, while at the same time respecting the 

fifth, sixth and seventh constraint: the invariance principle after Lebacque and Khoshyaran (2005), a 

series of internal node supply constraints and the prevailing supply constraint interaction rule 

(Tampère et al., forthcoming). All three specific aspects are explained in the paper.  

 The internal node supply constraints relate to some internal limited capacity inside the node. 

For instance, the node may contain conflict points that cannot be simultaneously occupied by two (or 

more) conflicting flows. Alternatively, a stop line can be an internal supply, the capacity of which is 

intentionally limited by some traffic signal that only allows traffic to pass during a fraction of total 

time (i.e. during the green phase). 

 Finally, the supply constraint interaction rule defines for the case where some receiving flow 

or internal node supply is the active constraint for at least two incoming links, how this limited supply 

is distributed over all links competing for the available space, and how this distribution interacts with 

the first four constraints.  

Whereas the explicitly written constraints in (1) are generic for all node models, the internal 

node supply constraints and the interaction rule are specific for different types of intersections or 

various driving cultures. Indeed, these are the parts of the model that reflect aggregate driver behavior 

(taking/giving away priority, gap acceptance, reversed priority, competition for space in congested 

outgoing links, entering blocked intersections,...).  
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For relatively simple instances of the generic node model formulation (1), a proof of 

exactness and a fast, exact solution algorithm is proposed in Tampère et al. (forthcoming). More 

refined models for common intersection types like priority junctions and roundabouts are currently 

under development. 

 

4 Conclusion 
 

The Link Transmission Model is a powerful dynamic network loading model suitable to support 

dynamic traffic assignment models or other network analyses. It offers physically accurate link and 

node models based on the paradigm of flow maximization under various applicable constraints. To the 

authors’ knowledge, it is the only truly macroscopic model that obeys all traffic flow theoretical 

requirements and constraints, while still being capable of simulating multi-commodity traffic flows in 

realistically sized mixed urban and motorway networks. 
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1 Introduction 
 

Traffic assignment models consists of two main components: routeset generation and route choice 

behavior [1]. Traditionally, a routeset is generated in advance. Alternative routes are often chosen by 

Monte Carlo simulations, in which link resistances are changed randomly [2]. However, routeset 

generation actually depends on route choice behavior. When travelers choose alternative routes, these 

routes should be included in the route set.  

The problem is that route choice is not sufficiently modeled in traditional assignments. The 

models are often theoretical, and sometimes calibrated by stated preference surveys, but they are 

seldom validated by oberved route choices. Studies that link observed route choice behavior to 

underlying attributes, e.g. [3], [4] and [5], are rare. These studies, however, are useful, because they 

show to what extend real choices depend on ‘objective’ attributes, like travel time, and to what extend 

these choices are based on individual preferences of travelers.  

When travelers make choices based on individual preferences rather than economics, this will 

have consequences for traffic loads on the network. In this study, we use license plate data from the 

Dutch city of Enschede to analyze empirical route choice behavior  We generate a route set of many 

alternative routes and show how the observed distribution of routes depends on the travel times along 

these routes. From this we can also estimate the effects of individual preferences on route choice and 

how this influences the traffic loads on the network. 
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2 Method 
 

This study is based on the registration of license plates at observation posts along all main roads of the 

city of Enschede during the off peak (14.00 – 16.00h), and evening rush hour (16.00 – 18.00h) on a 

Tuesday, and during a Saturday afternoon (13.00 – 15.00h). In total, about 26000 observed cases, 

evenly distributed over these three periods, were used in this analysis.  

We defined a link as an imaginary line between two successive (chronological) observations, 

and a route as a chain of links. When a license plate, for example, is first registered at observation post 

A, and last registered at B, then the origin-destination (OD) pair for that case is AB. If the car is also 

registered at C, the route would consist of the links AC and CB.  

Journey times were also registered. By aggregating all measurements from a link, average 

travel times for that link were estimated. These average travel times are quite accurate, because of the 

large number of cases used in their estimates. The average travel time of a route was obtained by 

simply adding all the average link travel times of that route.  

Our route set contains all observed routes, but also routes that were not observed. In this case, 

we avoid a bias, because we also include routes that could have been chosen, but which are not in the 

observed sample by accident. The route set generation was done as follows. The links themselves form 

the first set of routes and OD pairs. A new route is generated when a new link connects to the previous 

(sequence of) link(s). By chaining links, the number of routes and OD pairs is extended. This process 

is stopped until no new routes are formed, or when a route becomes circular (i.e. when one observation 

post occurs twice in the sequence), or when a (part of a) route is more than 20 minutes longer than the 

fastest route between the same posts. In total, we generated about 80 routes on average per OD pair.  

In theory, we can obtain the frequency distribution of routes per OD pair. However, because 

frequencies are small for individual OD pairs, we aggregated OD pairs in groups. We distinguish 

different travel time classes (4 – 7 min, 7 – 12 min, 12 – 17 min, and 17 – 25 minutes) and grouped OD 

pairs based on the travel time along the fastest route. We discard the class with very short travel times, 

because this class only contains few OD pairs for which the route choice may very well depend on 

other attributes. These OD pairs are therefore not representative. 

We then estimated the travel time difference between the fastest route and every other route 

per OD pair. Based on the travel time difference, we grouped the routes in travel time difference 

classes ( 0 – 1 min, 1 – 2  min, 2 – 4  min, 4 – 7  min, 7 – 12 min and 12 – 20 minutes difference). Per 

class, n1 is the sum of freqeuncies along the fastest routes (the frequencies for all comparisons are 

added, i.e. if a fastest route is compared with two other routes, its freqeuncy is added twice), and n2  is 

the sum of frequencies along the other routes. Similarly, T1 is the average travel time along the fastest 

routes, and T2 is the average travel time along the other routes in the same class. The aggregated 

frequencies (n1 and n2), and average travel times (T1 and T2) are the principal parameters, considered in 

this study.   
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3 Results 
 

Route choice may depend on many attributes. Their influence is often hardly known, and if known 

from for example stated preference surveys, most of these attributes, like for example travel time 

reliability, cannot be estimated in a straightforward way. In applied assignment models, it is therefore 

often assumed that travelers choose the fastest route, which will lead to an user equilibrium [6]. 

However, without impicitly modeling individual preferences, their aggregated effect can be taken into 

account by estimating the relation between the distribution of observed frequencies and real travel 

times. We did this, and find the following tight relation for the Enschede data.  
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This relation is more or less valid for all travel time classes. We therefore conclude that the 

route choice probablity depends on absolute rather than relative travel time difference. Equations (1a) 

and (1b) are also valid for the different periods (off peak, rush hour and Saturday afternoon),  although 

the average travel times are different, e.g. the average travel time is on average 10% larger during rush 

hour than during the off peak.  

 The calculation of the choice probabilities is now straightforward. If for example an OD pair 

has two alternatives that are 1 and 3 minutes longer than the fastest route, then according to equation  

(1a), n2/n1 = 0.60 and n3/n1 = 0.13. Thus, in that case, the assigned fractions over routes 1, 2 and 3 are 

58%, 35% and 7% respectively.  

The probability that a longer route is chosen, declines rapidly with travel time difference. 

However, because there are many alternatives, a significant fraction of 25% (of the observed cases) 

does not follow the fastest route. Regarding the network performance, the detour time over the 

alternative routes is an even more important parameter. This ‘occupancy measure’ indicates how much 

of extra load the network has to process due to detours. We find that the average detour time (a 

combination of number of alternative routes, route choice probability and travel time difference) is 

maximal for alternatives with a travel time difference of about 5 minutes with respect to the fastest 

route.  

 The average detour time (aggregated over all routes) is 0.57 minutes. This is about 8% of the 

travel time (the average travel time along the fastest route was 7.5 min), which implies that the 

network has to process 8% of extra load compared to a traditional equilibrium assignment.  
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This study is based on observed route choice behavior in Enschede. It would be useful to 

compare these results with observations from other cities, and with observed route choices on 

highways. Because the number of alternatives is lower for a highway network, we expect that detour 

factors should also be lower, and thus that traditional assignments will probably show more reliable 

results  for highways. However, this can only be validated by route choice and travel time observations 

from highways 

As mentioned before, most other attributes cannot be estimated in a straightforward way. The 

hierarchy of roads may be one of the few measurable attributes that has an effect on route choice.  

Small roads with speed bumps are less comfortable than highways (without congestion). Thus, given 

similar travel times, it is quite likely that travelers prefer larger roads. Another factor that can be taken 

into account, is the  rate of overlap between routes, e.g. two almost identical routes may be seen as one 

route by the traveler. The hierarchy of roads and the overlap of routes are to be analyzed in a follow-up 

study.  

Including other attributes, such as those mentioned above, may significantly improve route 

choice predictions for individual cases. However, it is not likely that this will have an effect on 

equation (1).  In fact, we do not expect that we have introduced a systematic bias by not including 

other attributes, because they are implicitly in the observed choices, and also not correlated with travel 

times of different alternative routes. We therefore think that our simple route choice model can already 

be used to improve traffic assignments in a structural way.   
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1 Introduction

The Multi-Trip Vehicle Routing Problem (MTVRP) is an extension of the Capacitated Vehicle

Routing Problem (CVRP) where each vehicle is allowed to perform more routes (trips) during its

working period.

The MTVRP is defined on an undirected graph G = (V ′, E), where V ′ = V ∪ {0}. V =

{1, 2, . . . , n} represents a set of n customers, and 0 represents the depot. With each edge {i, j} ∈ E

are associated a travel cost cij and a travel time tij . Each customer i ∈ V requires qi units of

goods from the depot. A fleet M of m identical vehicles is used to fulfill the requests. Each vehicle

k ∈M has a capacity Q and a maximum working time T .

A route is a simple circuit visiting the depot and some customers and such that the total request

of the customers served does not exceed Q. The cost (working time) of a route is defined as the

sum of the travel costs (travel times) of the edges traversed. A schedule for a vehicle is a subset

of routes (i) having total working time not exceeding T , and (ii) visiting each customer at most

once. The cost of a schedule is the sum of the costs of its routes.

The objective of the MTVRP is to design a set of m schedules, one for each vehicle, of minimum

total cost and such that all the customers are visited exactly once. The MTVRP appeared first in

Fleischmann [4].

In spite of the practical relevance of the problem, to our knowledge, no exact algorithm has been

presented in the literature for the MTVRP so far. Several heuristic methods have been proposed
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by different authors.

In this work, we present two exact methods for the MTVRP using two different formulations.

Both exact methods are based on the solution framework presented in Baldacci et al. [1]. The

computational results show that instances with up to 100 customers can be consistently solved to

optimality within acceptable comuting times.

2 Mathematical Formulations

Our exact methods use two set-partitioning based formulations of the MTVRP.

Let R be the index set of all the feasible routes, and let Ri ⊆ R be the subset of routes serving

customer i ∈ V . Let c` and τ` be, respectively, the cost and the working time of route ` ∈ R. Let

ξk
` be a (0-1) binary variable equal to 1 if and only if route ` ∈ R is performed by vehicle k ∈M .

The first formulation we propose is the following:

(F1) z(F1) = min
∑
`∈R

c`
∑
k∈M

ξk
` (1)

s.t.
∑
`∈Ri

∑
k∈M

ξk
` = 1, ∀i ∈ V, (2)

∑
`∈R

τ`ξ
k
` 6 T, ∀k ∈M, (3)

ξk
` ∈ {0, 1}, ∀` ∈ R, ∀k ∈M. (4)

Constraints (2) impose that each customer is visited exacly once. Constraints (3) specify that

the total working time of the routes performed by each vehicle cannot exceed T .

Let S be the index set of all the feasible schedules, and let Si ⊆ S be the subset of schedules

serving customer i ∈ V . Let d` be the cost of schedule ` ∈ S . Let y` be a (0-1) binary variable

equal to 1 if and only if schedule ` ∈ S is in the solution (0 otherwise). The second formulation

we propose is the following:

(F2) z(F2) = min
∑
`∈S

d`y` (5)

s.t.
∑
`∈Si

y` = 1, ∀i ∈ V, (6)

∑
`∈S

y` = m, (7)

y` ∈ {0, 1}, ∀` ∈ S . (8)

Constraints (6) specify that each customer i ∈ V must be visited exactly once. Constraint (7)

imposes that m schedules are selected.
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3 The Exact Methods

Formulations F1 and F2 are used to derive two exact methods for solving the MTVRP. Both

methods are based on the same exact solution framework, whose key components are dual ascent

heuristics and exact cut-and-column generation procedures that compute a near-optimal dual so-

lution of the LP-relaxations of F1 and F2 enforced by valid inequalities. The final dual solution

achieved is used to generate two reduced problems F̂1 and F̂2 containing only the variables (routes

in F̂1 and schedules in F̂2) having reduced cost smaller than the gap between a known upper bound

and the lower bound achieved. The resulting reduced integer problems F̂1 and F̂2 are then solved

by a general purpose integer programming solver.

The key components of this solution methods are (i) the dual ascent heuristics that do not

require the a-priori generation of all variables, (ii) the original state space relaxation method of

the route set R and schedule set S , (iii) the bounding functions and the multiple dual feasible

solutions that reduce the state space graph when solving the pricing problem in the cut-and-column

generation procedures, and (iv) the new valid inequalities that enforce the LP-relaxation of F1.

The computational results show that the proposed exact methods can solve to optimality several

instances with up to 100 customers in reasonable amount of computing time.
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1 Extended Abstract 
 

Accurate short-term predictions of traffic variables such as volume and occupancy is of outmost 

importance in transportation research because of the increased demand for reliable Advanced Traffic 

Management and Traveler Information Systems in urban areas. Literature indicates that real-time 

short-term prediction models of traffic variables have to be accurate and effective for a given 

forecasting horizon [1]. Empirical evidence has shown that prediction accuracy is best accomplished 

by data-driven approaches that construct the underlying rules of complex traffic datasets rather than 

working based on pre-determined mathematical rules [2]; these models can be parametric (such as 

ARIMA models) or non-parametric (such as non-parametric regression and neural networks). The 

essential difference is that, in parametric models, a specific - usually predefined - functional form 

connects inputs with outputs. In non-parametric models, a functional form is not defined or required, 

while the algorithms seek for data-specific structures in connecting inputs with outputs (a review of the 

literature, methodologies and approaches used can be found in Vlahogianni [3]). 

Among non-parametric approaches, non parametric regression, Kalman filtering and neural 

networks have been proven to be most effective in forecasting traffic flow variables because of their 

propensity to account for a large range of traffic conditions and provide more accurate predictions than 

classical statistical forecasting algorithms [4], [5]. However, previous research has indicated some 

shortcomings regarding their efficiency in terms of prediction accuracy; difficulties in modeling the 

variability observed in freeway traffic flow, particularly in cases of extreme traffic conditions 

(congestion), has been emphasized both for freeways and urban arterials [6], [7], [8], [9]. 

                                                 
1 Corresponding author 
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When considering short-term prediction systems that operate in real-time and in an 

“intelligent” technology-based environment, the effectiveness depends, mostly, on predicting traffic 

information in a timely manner [4]. Real-time system effectiveness depends both on the results and on 

the time in which these are produced [10]. The computational time to produce a prediction mainly 

depends on the functional form of the prediction system; empirical results show that data-driven 

prediction systems that include recursive data-search algorithms exhibit ‘best’ prediction accuracy, but 

need extensive computational time for convergence at acceptable results [4]. Moreover, the real-time 

system’s software implementation is crucial; software must be structured into adaptive and 

configurable modules, enabling application-dependent tradeoffs for timeliness, precision, and accuracy 

to be negotiated in response to changes in operational parameters [11]. 

The present paper proposes a flexible and adaptive real-time system for short-term traffic flow 

prediction. The system is based on the principles of computational intelligence and wavelet packet 

analysis and is able to develop the proper model for prediction based on prevailing traffic flow 

conditions. The term wavelet is used to describe families of basis functions having special features. 

Due to their structure, wavelets have various fundamental properties rendering them highly useful in 

signal analysis [9]. In order to perform the wavelet decomposition in this system, we use the fast 

wavelet transform. In electrical engineering this algorithm is referred as subband filtering, and the 

filters are known as quadrature mirror filters [19]. The principle behind the noise reduction using 

wavelets is that noise contributes into many coefficients, while the trend contributes to only a few 

coefficients. Hence, by setting the smaller coefficients to zero, we can nearly optimally eliminate noise 

while preserving the underlying trend. Wavelet packet -or wavepacket- analysis is an advance 

regarding removal of the noise content in a signal since they provide a richer signal analysis. Training 

with time-series data after effectively removing the noise often carries better regression and forecasting 

results, as the noise content is a stochastic parameter of the signal which by definition is impossible to 

predict [15].  

Genetic programming (GP) [17] belongs to the computational intelligence family of the 

evolutionary methods, and it has been applied nowadays in a wide range of real-world problems. An 

extension to the standard GP is to apply a multi-population model. Multi-population models have been 

used in other forms of evolutionary population, where they have been shown superior performance as 

compared to single-population models [18]. A multi-population model is a paradigm of a distributed 

population model in which the subpopulations are kept isolated during the application of genetic 

operations. The subpopulations focus on the evolutionary process and a migration phase is usually 

applied at predetermined times in which the subpopulations sent and receive individuals (immigrants) 

to and from other subpopulations. 

The data under examination is taken by a major urban signalized arterial in Athens, Greece, in 

order to model and forecast the traffic flow. It consists of measurements of the traffic flow every 3 

minutes between January and May of 2000. The total length of the area under study is 1.5 km, and 

there are four traffic measurements (namely L101, L103, L106 and L108). The task is consisted of the 
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calculation of the value L101 at time t, when the values of L101, L103, L106 and L108 are known at 

times t-1, t-2, t-3 and t-4. To estimate the noise content, the entropy analysis method S.U.R.E. (Stein's 

Unbiased Estimate of Risk) [12] was used. For the decomposition and the reconstruction we applied 

biorthogonal wavelets with 2 vanishing points. To remove the noise content we used soft-thresholding 

[16] for all signals (L101, L103, L106 and L108). As fitness measure for the genetic programming 

algorithm the mean magnitude relative error (MMRE) was selected. The system output carried the 

following results:  MMRE  in test set: 9.93215,  Pred(25): 92.1053 % and  Pred(30): 94.0443 %. 

The proposed methodology proved to be competitive to previous research. Also, the system 

automatically selected these input variables that contribute the most to the output, potentially offering 

knowledge discovery. In addition, the solution form is a practical expression, containing only the 

elementary mathematical operations, a property that contributes to its portability. Finally, it is worth to 

note that the system output is in accordance to previous research results, while it promoted specific 

time-delayed values of the L103, L106 and L108 signals that already are considered as important in the 

literature. Further research may include training with other genetic programming systems (e.g. GP for 

the production of neural networks), training of the de-noised signal with other computational 

intelligence  systems,  noise removal attempts using other wavelet/wavepacket setups and the 

application of the methodology to more transportation data. 
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Maritime transport is the major transport mode of international trade. In 2007, seaborne trade 

reached 8.02 billion tons, which accounted for over 80% of world merchandise trade by volume ([1]). 

Two inherent characteristics of the maritime industry are strong cyclicality and high volatility, the 

latter introducing significant uncertainty in maritime strategic decision making. Cash flows in maritime 

organisations accrue from trading in four distinct markets: the newbuilding market, where new ships 

are ordered at shipyards; the freight market, which includes ship chartering and forward freight 

agreements (FFAs); the sale and purchase (S&P) market for second-hand ships; and the demolition 

market, where ships are sold for scrap ([2]).  

Fleet Sizing and Allocation (FS&A) constitutes a central and complex decision problem met 

in the strategic and tactical planning of industrial shipping organisations, which mainly transport the 

cargo of the parent company. Industrial shipping organisations  use their own vessels and complement 

their fleet with spot and time charters. In the case of excess fleet capacity, industrial shipping 

companies can charter out their vessels to others. Therefore, the status of fleet structure and allocation 

changes over time via several decisions, including the type and number of vessels to build, purchase, 

sell, charter in, charter out, lay up, or scrap. Moreover, re-allocation of vessels between geographic 

markets is possible during each planning period. The goal of the fleet manager is to determine the fleet 

sizing and allocation that maximises the net present value (NPV) of the shipping unit, while 

accommodating the demand for transport of the parent company.  This task is complicated by the 

significant uncertainty in vessel prices, freight rates, and transport demand that can be observed in the 

shipping industry over the strategic planning period.  

The majority of relevant publications ([3]-[14]) on the maritime FS&A problem do not 

include cash flows from all four shipping markets, omit uncertainty from their analysis (with the 

exception of [8]), use single-period models (with the exception of [10] and [14]), and focus on tactical 

and operational considerations, rather than strategic planning.  

In this paper, we propose a robust optimisation approach to the fleet sizing and allocation 

problem. We factor in the inherent uncertainty and multi-period nature of the problem as well as cash 

flows from the four shipping markets. Our model accounts for the particularities of industrial carriers’ 

operations, such as supplementing the capacity of the owned fleet by chartering in third-party vessels 

and chartering out owned vessels during periods of excess capacity.   
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We derive a mixed integer programming (MIP) formulation of the FS&A problem, as well as 

its robust counterpart. The objective of the nominal MIP is to maximize the NPV of cash flows accrued 

from operation on all four shipping markets. We formulate our model over a finite planning horizon, 

which is in turn subdivided into discrete time periods such as  quarters or months.  In order to represent 

the continuation of economic activities beyond the planning horizon, we also include a final sunset 

period. The shipping organisation accrues a credit for each vessel that remains in the fleet in the sunset 

period, corresponding to the residual value of the vessel and its utilisation over its remaining lifetime. 

Our model represents the different contract types that are generally used in the maritime sector, 

including voyage charters, contracts of affreightment, and time charters. In order to limit the 

combinatorial complexity of the proposed MIP, we group vessels with similar characteristics into a 

small group of vessel families. We also predetermine a subset of vessel families that are most 

appropriate to a particular market, based for instance on draft restrictions as well as the ability of the 

vessels to carry specific types of merchandise. 

The core of the proposed model can be viewed as a network flow model, where vessels 

originate at the shipyard, the second-hand market, the spot market, or the time-charter market. The 

vessels then flow to different intermediate states, such as deployment to a market, or lay-up.  Finally, 

the vessels leave the network when they are sold, demolished, or returned to their owner. An additional 

state is included to reduce the dimensionality of our model: the company vessel pool. When a vessel 

undergoes a transition between two states (for instance, re-deployment from one geographical market 

to another), it has to pass through the intermediate state. Most of the constraints in the nominal MIP 

simply ensure the balance of vessels at each node in the network. An important issue regarding the 

balance of vessels is that the ownership of each vessel must be correctly represented, even as chartered 

vessels enter and leave the focal fleet.   

Additional constraints ensure that demand from the parent company is satisfied and that 

financial constraints on the fleet owner are properly represented. In particular, we have limited the total 

investments that can be made by the fleet manager to represent real-world constraints on the credit 

lines of a fleet owner. 

Market conditions that are beyond the control of the fleet manager, such as vessel prices and 

operational expenses, are exogenous to the model. We assume that the planner has a base-line 

expectation of how uncertain market prices and charter rates will evolve for each time period in the 

planning horizon. Based on historical data, the planner has also established the degree to which each 

uncertain parameter may deviate from the base-line expectation. More precisely, we assume that the 

uncertain  exogenous parameters are independent random variables with density functions that are 

symmetric and bounded.    

We derive the robust counterpart to the nominal MIP model following Bertsimas and Sim 

[15]. In the robust model, each constraint that contains uncertain parameters is modified by the 

introduction of slack variables. The amount of slack added to each constraint is dependent on the 
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potential number of uncertain parameters and the extent to which they might vary from the base-line 

expectation.  

We note that a wide range of attitudes towards risk can be observed in the maritime transport 

sector. This motivates our usage of the formulation by Bertsimas and Sim [15], which allows us to 

represent the degree of conservatism of the planner. In this sense, a conservative planner is willing to 

settle for a lower expected net profit in exchange for a stronger guarantee that a given fleet 

configuration will remain feasible (i.e. comply with all transport demand and financial constraints).  

We represent the degree of conservatism of the planner as the number of parameter deviations against 

which the planner requires guaranteed protection.  

We present results from a realistic case study of an industrial ocean shipping company 

transporting liquid bulk cargo. The contracts examined include time contracts of different durations 

and spot (voyage) contracts. The initial conditions in the case study resemble the actual market 

conditions observed within 2009. In the case study we represent the decisions of different fleet 

managers, each with a different attitude towards financial and operational risk. Having obtained an 

optimal solution to the robust optimisation problem corresponding to each level of risk, we conduct a 

post-optimisation analysis using Monte Carlo simulation. Each optimal solution is repeatedly tested 

against random realisations of the exogenous parameters. Following Bertsimas and Sim [16], we then 

estimate the price of robustness for the focal company. That is, we compare the expected NPV realized 

by each planner against the number of constraint violations that each experiences. We demonstrate the 

nature of the insights that a fleet manager might derive by using the proposed model.         
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1 Introduction

The multi-vehicle one-to-one pickup and delivery problem determines a set of least cost vehicle

routes in order to satisfy a set of pickup and delivery requests between location pairs, subject

to some side constraints. In the conventional vehicle routing and pickup and delivery problems,

delivery request from a pickup location to its corresponding delivery location is satisfied with a

single service by a single vehicle. In the Pick-up and Delivery Problem with Split Loads (PDPSL),

which was first introduced by Nowak et al. [1], splitting loads is permitted, i.e. a delivery request

may be satisfied with more than a single service and possibly by more than a single vehicle.

PDPSL is defined on a directed graph G = (V,A) where V is the vertex set and A is the arc

set. The vertex set is partitioned as V = {P,D, {0, 2n + 1}}. For a given set of n pickup-delivery

pairs, P = {1, 2, . . . , n} is the set of pickup vertices and D = {n + 1, n + 2, . . . , 2n} is the set

of delivery vertices where i and n + i represent a pickup-delivery pair. {0, 2n + 1} includes the

two copies of the depot location representing respectively the starting and ending locations of the

vehicle routes. The arc set is defined as A = {(i, j) : i = 0, j ∈ P} ∪ {(i, j) : i, j ∈ P ∪D, i 6= j, i 6=

n + j} ∪ {(i, j) : i ∈ D, j = 2n + 1}. K = {1, 2, . . . ,m} denote the set of available vehicles. For

each vertex i ∈ V , qi denotes the pickup or delivery quantity where qi > 0 for i ∈ P ,qi = −qi−n
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for i ∈ D, and q0 = q2n+1 = 0. Each vehicle k ∈ K has a capacity of Qk. dij is the travel

distance associated with arc (i, j) ∈ A, and D is the maximum travel distance of a vehicle route.

We assume that any pickup-delivery load can be provided with a single service by a single vehicle,

i.e. qi ≤ maxk∈K{Qk}.

Nowak et al. [1] study the single vehicle variant of the PDPSL, where all loads are serviced

on a single route. They develop a tabu search heuristic that uses ideas from the classical savings

algorithm Clark and Wright [2] with common local search methods to solve the problem. The

heuristic is tested using a new set of random problem instances of varying characteristics. Their

results indicate that the savings achieved by load splitting is highest when the load sizes are just

over half of the vehicle capacity. In Nowak et al. [3], they empirically investigate the effect of

problem characteristics on the magnitude of benefit obtained by splitting loads among multiple

trips. The problem characteristics considered in the study include mean load size and variance,

number of origins relative to the number of destinations, the percentage of origin-destination

pairs with a load requiring service, and the clustering of origin and destination locations. To

the best of our knowledge, there have not been any other studies in the literature that address

the PDPSL. However, there is a large body of literature on the classical PDP. One may refer to

the extensive surveys conducted recently on the problem by Cordeau et al. [4] and Parragh et

al. [5] for classification of pick-up and delivery problems and a review of the exact and heuristic

solution approaches in each problem category. Due to the complexity of the problem, heuristic

and metaheuristic approaches dominate the PDP literature. Although the issue of split loads has

not received much attention in the PDP literature, a significant amount of literature exists on the

vehicle routing problem with split loads (SDVRP). For an overview of the theoretical results on

the SDVRP and review both exact and heuristic approaches to the problem, we refer the reader

to a recent survey by Archetti and Speranza [6].

2 Tabu Search Algorithm for the PDPSL

As stated in Nowak et al. [1], PDPSL is an NP-Hard problem; therefore, solving large instances

optimally is often intractable. We propose a tabu search heuristic to solve the PDPSL. In [1], they

propose a tabu search algorithm for the single vehicle version of PDPSL and also test the algorithm

on multiple vehicle problems. Our algorithm is designed for the multiple vehicle case and uses a

different strategy that creates moves with and without split simultaneously. The algorithm also

makes use of an optimality condition of PDPSL to improve the resulting routes. Below, we first

describe the savings heuristic that is used to initialize the algorithm and then introduce the details

of the tabu search procedure.

We adapt the well-known savings algorithm due to Clark and Wright [2] to obtain an initial
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solution to the PDPSL. In parallel with the original algorithm, each pickup-delivery pair is initially

served by a separate vehicle route, i.e. each route is of the form (0, i, i + n, 0). A savings value

is then calculated for every pair of pickup point i and delivery point j such that j 6= i + n. The

saving value is the difference in total distance travelled when the routes that serve the two points

are combined into a single route. The pairs are then sorted in non-increasing order of their savings.

Starting from the first pair on the list, the algorithm merges the routes associated with the pairs

with positive savings while ensuring the feasibility of the resulting routes. Finally, an improvement

step is carried out where the pickup point i and delivery point j are moved forward and backward

respectively in the merged route if such a move results in further savings.

Starting with the initial solution from the savings algorithm which contains no split loads,

the tabu search algorithm searches for better solutions using moves that create split pickups and

deliveries. The algorithm searches for an improvement in route length by considering split and

insert moves for a (possibly partial) pickup-delivery pair. At each step of the tabu search algorithm,

all pickup-delivery pairs are considered for insertion at all possible positions of the existing routes.

The cost and the capacity of each option is calculated. Insertion cost is the difference in the total

route length due to the insertion. The insertion capacity is the maximum amount of load that

can be inserted, which is dependent on the residual capacity between the new pickup and delivery

positions. Based on the amount of insertion capacity, we can perform two moves:

• Insert : If the insertion capacity is sufficient to handle the entire load, then an insert move is

feasible for the pickup-delivery pair.

• Split : If the insertion capacity is not sufficient, the algorithm searches for feasible two-way

splits, where the load is divided between two pickup-delivery positions.

Among all feasible insert and split moves, the move that results in the largest reduction in route

length is applied and future moves that yield the same route length, number of stops, and number

of routes combination are declared tabu for a number of iterations. In performing a split move,

we may use different splitting strategies to allocate the load among the two the pickup-delivery

locations. For instance, the smaller capacity location is filled up to capacity and the remaining

load is assigned to the other pickup-delivery location pair. Implementing either an insert or a split

move, the algorithm checks whether any of the following optimality conditions are violated:

Condition 1. In a PDPSL where the distance matrix dij satisfies the triangular inequality,

an optimal route does not contain multiple deliveries of a load without a pickup of the same

load in between.

Condition 2. In a PDPSL where the distance matrix dij satisfies the triangular inequality,

an optimal route does not contain multiple pickups of a load without a delivery of the same

load in between.
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In case of Condition 1, the route can be improved by making all deliveries at the first delivery

point. If Condition 2 holds, then the route can be improved by making all pickups at the last

pickup point. These merge operations are carried out before we proceed to the next iteration. The

algorithm continues until a predetermined number of iterations have been performed without an

improvement in the objective function value.

3 Results

The tabu search algorithm is tested on the data sets given in Nowak et al. [1] and Ropke and

Pisinger [7]. Based on the preliminary results, the algorithm is effective in providing good solutions

in reasonable computational time. In our experimental study, we explore the impact of different

splitting strategies (of the split move) on the algorithm performance. We also perform further

experimentation with the tabu search parameters.
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1 Introduction 
 

We address the distribution planning problem of bulk lubricants at BP Turkey. With its specific 

characteristics and elements of the distribution system the problem differs from many of the 

transportation problems addressed in the literature. Although the oil industry has been a major source 

of applications, white papers and reports on those applications and the academic research in the field 

are rather scant [1]. [2] addresses the transportation problem of gasoline from a single bulk terminal to 

customers. They design and implement a centralized dispatching system where the objective is to 

minimize the transportation costs while maintaining equitable man and equipment workload, safety 

standards, and customer service. [3] extends this work by considering multiple sources. [4] develops a 

rule-based decision support system for a regional oil company. The algorithm finds the schedule of the 

drivers and the dispatching of the tank trucks for a single day and is implemented as a semi-automated 

system. [5] considers the distribution problem of bulk and packaged lube oil in Mobil Oil Corporation 

using a heterogeneous fleet. [6] proposes a variable neighborhood search heuristic to dispatch the tank 

trucks with multiple compartments in the delivery of fuel. Vehicles with multiple compartments are 

also used in the transportation of food and grocery items ([7], [8], and [9]). 

Our study considers the distribution of bulk lubes from a lube production plant to industrial 

customers. In our problem, the fleet is heterogeneous and consists of multi-compartment vehicles, i.e., 

tank trucks, where each compartment can only be assigned to a single product.  The objective is to find 

a minimum cost transportation plan. The problem basically consists of loading the customer orders to 

tank trucks and determining the routes of the assigned tank trucks. 
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2 Problem Description 
 

The problem is a multi-product, multi-period, heterogeneous fleet management problem that involves 

the assignment of customer orders to tank trucks and routing of tank trucks. The elements of the 

distribution system can be classified into four categories: (i) the fleet, which consists of multi-

compartment tank trucks; (ii) the distribution network, which includes the plant where the trucks are 

loaded and the cities where the customers are located; (iii) the products with their specific properties; 

and (iv) the scheduling system, which has different constraints and flexibilities. In what follows, we 

provide further details on these elements of the problem and then formulate the mathematical model. 

The tank trucks have 4 or 5 compartments (tanks) with different capacities. The company 

does not have its own fleet and uses a third party logistics (3PL) contractor for the distribution of the 

lubes. It estimates the fleet type and size and makes an annual contract with the 3PL contractor based 

on a pre-determined fleet dedicated to its delivery services. In the case the capacity is insufficient in 

any day the company hires trucks from the spot market at an additional cost. Hence, the truck capacity 

can be considered as a loose constraint in that sense. The trucks have different load restrictions and 

tank capacities, which makes the problem a heterogeneous fleet type distribution problem. In addition, 

the trucks in the fleet are classified as big- and small-sized trucks. Small trucks are used to serve the 

customers whose unloading area is not large enough to accommodate the big-size trucks.  

The distribution network consists of one plant in Bursa (northwest region) and 180 customers 

dispersed in 28 cities located in different regions of Turkey. Trucks are loaded at the plant according to 

the planned deliveries and visit the customers using a route such that the total distance until the last 

customer on the route is the minimum. The routing is only made for the city-to-city network and the 

distances between the customers located in the same city are not accounted for because the company is 

charged for long distance trips on a kilometer basis and pays a fixed cost for each additional customer 

served in the same city. At the end of its trip, the truck returns to the plant. The company does not pay 

for the return trip of the truck to the depot, which makes the problem an open vehicle routing problem.  

The company produces and distributes 130 different products in total. There are 8 basic 

product families and each product family consists of product groups. Since the products are in liquid 

form two different products cannot be loaded within the same tank. In addition, the tank may require a 

cleaning operation depending on the type of lube oil last loaded in the tank. The cleaning is not 

product-dependent and its time (cost) is same for all product groups. 

The orders are received on a daily basis and assigned with an estimated delivery date. 

However, the planned delivery date is finalized after an advanced payment from the customer has been 

confirmed. The company has flexibility in determining the delivery date for consolidation purposes. 

For instance, an order can be delivered 2 days before or after its planned delivery date. In this study, 

we refer to the latest day that the demand must be delivered as the due date of the order. That is, a 

demand with due date 5 can be satisfied in any of the days 1, 2, 3, 4 or 5. Therefore, the distribution 

problem is a multi-period problem which is solved on a rolling horizon basis. 
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3 Solution Approach and Results 
 

The problem is formulated as a 0-1 mixed integer linear programming model. Since the model is 

intractable for real-life industrial environment we propose two heuristic approaches to solve it 

efficiently. The first approach is a linear programming (LP) relaxation-based heuristic (LPH) while the 

second is a threshold accepting heuristic (TAH). We propose two variants of the latter heuristic: the 

first (TAH1) uses the distance priority whereas the second (TAH2) has a due date priority. Since the 

distribution plan is made daily and the plan of the following day is implemented the proposed 

algorithms are also designed to finalize the delivery schedule of the next day by iteratively solving 

them every day.  

LP relaxation basically relaxes the binary variables by allowing them to take values between 0 

and 1. The proposed LPH utilizes the LP relaxation with some rounding techniques and tries to find a 

good feasible solution for the original problem. The aim is to satisfy the demands of the first day and 

then to assign the remaining orders to the available tanks of the partially loaded trucks to efficiently 

utilize their capacities. Once the demands are assigned to tank trucks, the route can be easily 

determined since the problem reduces to finding a Hamiltonian path originating from the plant. We 

have observed that the nearest neighbor algorithm (NN) is usually able to find the optimal routes 

because the cities to be visited are lined up in one direction and it is rarely the case that a tank truck 

visits 3 cities or more. Hence, we implemented NN in the routing phase of the algorithm. 

TAH1 aims at assigning the demands of small customers first. It starts with the customer 

farthest to the plant and having a due date 1 and continues with the remaining small customers with 

other due dates. A threshold parameter is used for controlling the insertion of a new customer demand 

into an existing tour. When all small customers have been served the algorithm assigns the demands of 

the large customers in the same way. Similar to TAH1, TAH2 assigns the demands of the small 

customers first and satisfies the demands of large customers next; however, the priority is given to 

customers having a due date 1. Once the loads are determined, the routes are obtained using NN. 

Table 1. Weekly cost figures in preliminary experiments 

Week TAH1 TAH2 LPH CPLEX  

1 31044 27222 36212 37177 

2 22360 25798 26364 34951 

3 25310 21174 20887 38807 

 

The proposed algorithms were tested on two different real data sets. The numerical results of 

the preliminary experiments on a monthly data have shown that threshold-accepting heuristics are very 

efficient in terms of both the computational time and the solution quality whereas the LPH is time 

inefficient with inferior solution quality. The weekly costs are summarized in Table 1. CPLEX upper 

bounds are obtained by setting the global time limit to 2000 seconds. In the cases when CPLEX fails to 

find a feasible solution within this time limit it is extended to 3000 seconds. Note that these figures are 

in “Monetary Units (MU)” that are kept fictitious for confidentiality reasons.  
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Table 2. Monthly cost figures in the extended experiments 

Month TAH1 TAH2 Current System 

1 51570 53335 57618 

2 62022 66003 62899 

3 51270 56700 61047 

 

To further investigate the performances of TAH1 and TAH2 and compare them with the 

current system in practice, we perform an extended computational study on quarterly data. To better 

evaluate both algorithms fairly, we freeze the time horizon at the end of 13th week, i.e. the demands 

due thereafter are not considered. The monthly costs are summarized in Table 2. We observe that 

TAH1 and TAH2 outperform the current system by 10.1% and 3.1%, respectively. Furthermore, the 

performance of TAH1 is 6.8% better than that of TAH2. These results are promising in the sense that 

both of the proposed TAHs are capable of improving the current distribution costs of the company. 
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1 Introduction

Container terminal operations have received increasing interest in the scientific literature over the

last years and operations research techniques are nowadays used to improve terminal’s efficiency

and productivity. A promising research trend is represented by the simultaneous optimization

of decision problems that are usually solved hierarchically by terminal’s planners. In particular,

the integration of the berth allocation problem and the quay crane assignment problem has been

recently tackled from several angles, as reported in [1].

The Tactical Berth Allocation Problem (TBAP), introduced by [2], aims to schedule incoming

ships over a time horizon, assigning them a berthing position and a certain quay crane profile (i.e.,

number of quay cranes per working shift). These decisions are strictly correlated, since the number

of quay cranes assigned to a ship affects its expected handling time, and thus has impact on the

scheduling in the berth allocation plan. Furthermore, housekeeping costs generated by the berth

assignement are taken into account by a quadratic term in the objective function.

In this work, we tackle the computational complexity of TBAP by exploiting its structure,

developing ad-hoc optimization techniques. In particular, we present a reformulation based on

Dantzig-Wolfe decomposition and an exact solution approach based on column generation. A new

framework, called two-stage column generation, is illustrated and discussed.

2 Column generation for TBAP

Compact formulation In the following we refer to the mixed integer formulation for TBAP

introduced by [2]. Let N be the set of vessels and M the set of berths. Given n = |N | ships with

time windows on the arrival time at the terminal, m = |M | berths with time windows on availability,
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a planning time horizon discretized in |H| time steps, a set Pi of feasible QC assignment profiles

defined for every ship i ∈ N with associated value, and the maximum number of quay cranes

available in the terminal Q, the objective of TBAP is to find a feasible assignment of ships to

berths, a feasible scheduling of ships in every berth and to assign a quay crane profile to every

ship, in order to maximize the total value of selected profiles as well as minimize the housekeeping

costs generated by the berth assignment. In particular, the objective function was defined as:

max
∑
i∈N

∑
p∈Pi

vp
i xp

i −
1
2

∑
i∈N

∑
j∈N

∑
k∈M

∑
w∈M

yk
i yw

j fijdkw (1)

where vp
i is the monetary value assigned to profile p, fij is the number of containers exchanged

between ships i and j, dkw is the housekeeping cost to transfer one container from the yard slot

corresponding to berth k to the yard slot corresponding to berth w. The involved decision variables

are xp
i , binary, equal to 1 if profile p is assigned to ship i, 0 otherwise and yk

i , binary, equal to 1 if

ship i is assigned to berth k, 0 otherwise. The authors further linearize the quadratic term in the

objective function by introducing decision variables zkw
ij , binary, equal to 1 if ship i is assigned to

berth k and ship j is assigned to berth w, 0 otherwise.

Extensive formulation Our reformulation is based on the concept of berth sequence, a sequen-

tially ordered subset of ships in a berth with an assigned quay crane profile. Let Ωk be the set of

all feasible sequences of berth k ∈ M . For every r ∈ Ωk, the binary decision variable λr is equal

to 1 if sequence r is chosen, 0 otherwise. We reformulate TBAP via Dantzig-Wolfe, obtaining the

so called extensive formulation:

max
∑
k∈M

∑
r∈Ωk

vrλr −
1
2

∑
i∈N

∑
j∈N

∑
k∈M

∑
w∈M

zkw
ij fijdkw (2)

s.t.
∑
k∈M

∑
r∈Ωk

αi
rλr = 1 ∀i ∈ N, (3)

∑
k∈M

∑
r∈Ωk

qh
r λr ≤ Qh ∀h ∈ H, (4)

∑
r∈Ωk

λr ≤ 1 ∀k ∈ M, (5)

∑
k∈M

∑
w∈M

zkw
ij = gij ∀i ∈ N, j ∈ N, (6)

zkw
ij ≤

∑
r∈Ωk

ai
rλr ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (7)

zkw
ij ≤

∑
r∈Ωk

aj
rλr ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (8)

zkw
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (9)

λr ∈ {0, 1} ∀r ∈ Ωk, k ∈ M, (10)
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where αi
r is a binary parameter equal to 1 if ship i in assigned to sequence r and 0 otherwise,

qh
r is the number of quay cranes used by sequence r at time step h, Qh is the number of quay

cranes available at time step h and gij is a binary parameter equal to 1 if fij > 0 and 0 otherwise.

The total value vr of a sequence r is obtained by summing up the values of the quay crane profiles

used by the ships in the sequence, i.e., vr =
∑

i∈N

∑
p∈Pi

βip
r vp

i , where βip
r is a binary parameter

equal to 1 if ship i is in sequence r and is assigned profile p, 0 otherwise.

The objective function (2) maximizes the total value of sequences, i.e., the total value of selected

profiles, while minimizing the total housekeeping cost generated by the berth allocation plan.

Constraints (3) state that every ship is assigned to exactly one sequence, and thus to one berth,

while constraints (4) ensures that the quay crane capacity is not violated. Constraints (5) selects

at most one sequence for each berth, while constraints (6)–(9) are due to the linearization of the

objective function and link zkw
ij variables to decision variables λr, constrained to be binary by

constraints (10).

Master problem and column generation Let Ωk be the set of all feasible berth sequences

for berth k. We apply standard column generation to the restricted master problem defined by

(2)–(8) over a subset Ω′ ⊂ Ω, where Ω =
⋃

k∈M Ωk.

Let [π, µ, π0, θ, η] be an optimal dual solution to a restricted master problem, where π, µ, π0,

θ and η are the dual vector associated to constraints (3), (4), (5), (7) and (8), respectively. The

reduced cost of sequence r ∈ Ωk is given by:

ṽr = vr −
∑
i∈N

πiαi
r −

∑
h∈H

µhqh
r − πk

0 +
∑
i∈N

∑
j∈N

∑
w∈M

θkw
ij ai

r +
∑
i∈N

∑
j∈N

∑
w∈M

ηkw
ij aj

r. (11)

At each iteration of column generation, we solve m subproblems, one for every berth k ∈ M .

In particular, the pricing subproblem identifies, for every Ωk, the column r∗k with the maximum

reduced cost. If ṽr∗k
> 0 for some k, we add column r∗k to the formulation and we iterate the process,

otherwise we stop, since the current solution of the master problem is proven to be optimal.

The pricing subproblem is solved as an Elementary Shortest Path Problem with Resource

Constraints (ESPPPRC). The underlying network G(Ñ , A) has one node for every ship i ∈ N , for

every profile p ∈ Pi and for every time step h ∈ H, and transit time on arcs equal to the length of

profile p assigned to customer i. The size of this network grows polynomially with the number of

vessels, time steps and quay crane profiles.

We implemented dynamic programming with standard accelerating techniques, such as decre-

mental state space relaxation, to solve the pricing problem as well as dual space stabilization.

Two-stage column generation In order to tackle the complexity of TBAP and exploit its

structure, we propose a new framework, called two-stage column generation. The basic idea is to

apply column generation recursively, in two stages. We start considering only a subset P ′
i ⊂ Pi
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of quay crane profiles for every ship i ∈ N . We reformulate the problem via Dantzig-Wolfe and

we apply standard column generation. At the end of the process, we try to identify profitable

profiles p ∈ Pi \ P ′
i to be added to the compact formulation, by estimating their potential con-

tribution to the master problem, in the same spirit of standard column generation. In this sense

the column generation process has two stages: firstly, berth sequences are generated considering a

restricted subset of quay crane profiles (inner column generation); subsequently, promising profiles

are identified and added to the compact formulation, if any (outer column generation).

From a computational point of view, by considering only a subset of profiles, we are able to

significantly reduce the size of the ESPPRC underlying network, so that the pricing subproblem can

be solved more efficiently. However, the estimation of the potential impact of compact formulation

variables on the master problem represented the main challenge in our approach. We addressed

this issue adapting the method proposed by [3] to our framework: an upper bound to the profiles’

reduced cost is obtained using sequences’ reduced costs. Analytically, the reduced cost ṽp
i of profile

p ∈ Pi, i ∈ N , is computed as:

ṽp
i = max

r∈Ωp
i

ṽr (12)

where Ωp
i represents the set of all sequences r ∈ Ω where ship i is visited and assigned profile p.

Computational tests, performed on the same set of instances of [2], compare our two-stage

column generation approach to standard column generation, in the context of a branch-and-price

algorithm. Results will be presented and discussed, in order to outline current issues and future

research tracks.
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1 Introduction 

Online traffic simulation models have widely been applied in advanced traffic information systems 

(ATIS) or dynamic traffic management (DTM) in recent years [1, 2, 3]. Online models use real-time 

traffic data to make an accurate estimate of the current state of traffic (in terms of density, flow or 

speed). The Extended Kalman Filter (EKF)  has been applied successfully to optimally combine data 

with a traffic simulation model [3, 4]. However, one of the great difficulties in applying the EKF is that 

the parameters describing the measurement and process noise distributions (the covariance matrices) 

are seldomly known or even observable, and that assumptions on these noise parameters are usually 

made on the basis of trial and error, rather than theory or empirical evidence. The main contribution of 

this paper is a consistent methodology to continuously adapt the EKF parameters in an online traffic 

state estimation system. In a case study it is shown that these continuously adapted parameters lead to 

good state estimates, independent of their initial values. 

2 Methodology: Bayesian estimation of the noise parameters 

Define the state-space equation that describes the traffic state vector xk of size N x 1 as a function of 

the previous state xk-1 and a noise vector wk: 

 ( )1k k kf −= +x x w  (1) 

In this paper f equals the first order traffic model [5, 6], solved by the Godunov scheme as the 

numerical solution [7], all implemented in the JDSMART software package [8]. The state vector xk in 
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this case consists of the densities in all cells at time k. A measurement equation describing the 

measurement vector zk of size M x 1 as a function of xk with measurement noise vk is given by 

 ( )k k kh= +z x v  (2) 

where zk consists of all measurements, which are related to densities through the fundamental diagram 

described by the function h. The process noise wk and measurement noise vk are assumed zero mean 

white Gaussian noise with covariance matrix Qk and Rk respectively and are assumed to be 

independent. Each element of the state vector is assumed to be drawn from a single distribution with 

variance 1/αk such that Qk = 1/αk·IN, in which I N is the identity matrix of size NxN, and each 

measurement is assumed to be drawn from a distribution with variance 1/βk  such that Rk = 1/βk·IM in 

which IM the identity matrix of size MxM. 

From a Bayesian perspective, the EKF provides a recursive methodology for finding the 

Maximum A Posteriori (MAP) value of xk, i.e. the EKF maximizes P(xk |Zk)  [9, 10], where 

Zk=(z1,z2,...,zk) is the set of all data vectors observed so far. In this paper it is shown that values for the 

Kalman filter parameters αk and βk can be also chosen using the same Bayesian inference approach. 

First consider the fact that only the relative magnitude of αk and βk matter in the EKF as the Kalman 

filter uses the two noise terms to balance the model predictions with data. Therefore, in this study it is 

chosen only to adapt βk during simulation; αk is held constant. To obtain the MAP estimate for βk , 

Bayes rule is applied: 

 1 1
1

1

( | , ) ( | )
( | , )

( | )
k k k k k

k k k
k k

P P
P

P

β ββ − −
−

−

=
z Z Z

z Z
z Z

 (3) 

The prior P(βk|Zk-1) is chosen non-informative, to represent the fact that there is normally very little 

knowledge of suitable values for the EKF parameters. Furthermore, it can be seen that the denominator 

of (3) is independent of βk. Thus, when maximizing the posterior P(βk|zk, Zk-1), only the likelihood term 

P(zk|Zk-1,βk) needs to be maximized. It can be shown that, after some involved algebra, the MAP 

estimate for βk, given the chosen constant value of αk, equals: 

 
( ) ( ) ( )1

ˆ
ˆ ˆ( ) ( )

k T T
k k k k

M

h h Tr
β

−
=

− − +z x z x B H H
 (4) 

where ̂ kx is the state estimate that the EKF produces, M is the number of measurements, zk and h were 

given in (2), Tr is the trace operator, and B is the Hessian ( ) 1ˆ T
k k k kβ

−−= +B P H H . Hk is the Jacobian 

ˆ
|

k
h −∇x x

 with ˆ k
−x  the state estimate prior to performing the EKF. Finally, 1 1 1

ˆ ˆ T
k k k k k
−

− − −= +P A P A Q  with 

1
ˆ

k −P  the estimate of the covariance matrix of the state at time k-1 and Ak the Jacobian 
ˆ
|

k
f∇x x

. Here it 

is chosen to use the MAP estimate in the next time step, so 1
ˆ

k kβ β+ =  to prevent iterative simulations. 

Equation (4) provides a solution for the problem of finding appropriate values for βk and thus 

for Qk and Rk during simulation. It can be given a very intuitive interpretation as follows. The term (zk 

–h( ˆ kx )) represents the difference between measurement and model after the state has been corrected. 

As the estimate ̂kx  is an optimal estimate in the case of a Kalman Filter, and the best estimate we can 

find in the case of an Extended Kalman Filter, this difference can be seen as an indicator of the noise in 
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the data. A larger value for (zk –h( ˆ kx ))  indicates that the data is more noisy, and that lower trust 

should be placed on the data; in those cases βk and thus the state corrections will become smaller. 

3 Experiment 

To illustrate the impact of the Bayesian choice for the EKF parameters, a small-scale case study is 

performed. The traffic network as shown in Figure 1 is simulated with JDSMART with a time step of 

two seconds with link capacities as shown in Figure 1a. A total of 600 time steps are simulated, with 

four different demand levels at the two origins O1 and O2 and four different turn fractions at the node 

A. Each time step the speeds in all cells are stored as the ground truth. Then, the network is simulated 

again with the same demands and turn fraction, but with random changes applied to the capacities of 

the links as shown in Figure 1b; this represents the presence of process noise. The speeds at four 

different cells, indicated by the arrows in Figure 1a, are then used as measurements to correct the state 

in the altered network. Zero mean Gaussian noise is added to these measurements, representing 

measurement noise. The states in the ‘noisy’ network are then corrected using the EKF every five time 

steps. The resulting speeds in all cells are compared to the cell speeds in the original network. 

 
   (a)     (b) 

Figure 1 The ground truth network (a) and the network with ‘process noise’ (b). Numbers 
indicate the link capacities in veh/hr and arrows indicate measurement locations. 

For all simulations 1/αk was set to 4 veh2/km2 ∀ k, while the initial value  1/β0 was varied 

from 0.01 to 20 km2/u2, both with the Bayesian adaptation scheme as well as without. Figure 2 shows 

the resulting Mean Absolute Percentage Error (MAPE) that was calculated for all cell speeds for all 

time steps. It can be seen from Figure 2 that for constant 1/βk, the error shows a clear minimum. Left of 

the minimum the noise of the measurements is hardly filtered, while right of it the measurements are 

hardly used at all. In the case of the Bayesian choice for 1/βk very little variation can be seen for 

different initial values 1/β0. Moreover, in this case the error for the Bayesian parameters it is nearly 

equal to the minimal possible error for constant parameters.  
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Figure 2 The errors for both constant βk and continyyuously adapted Bayesian βk. 

4 Discussion and conclusions 

This paper has proposed a method for setting values for the EKF parameters (measurement and process 

covariances) for online traffic state estimation, using a two-stage Bayesian inference framework. From 

a Bayesian perspective, the EKF is equal to Maximum A Posteriori (MAP) approach. The Bayesian 

MAP approach can also be applied to the Kalman filtering parameters, leading to a recursive method 

for choosing values for the measurement covariance matrix Rk. As only the relative value of the two 

covariances matters in determining the Kalman gain, Qk is held constant, leading to optimal choices for 

Rk for a given fixed value of Qk.  

In the case study that is shown, the Bayesian choice for Rk leads to an error that is almost as 

low as the best possible constant settings, for any initial value R0. It can therefore be concluded that the 

Bayesian choice for the EKF parameters is very robust with respect to a high or low initial choice of 

the measurement noise covariance, whereas with constant EKF parameters the results are very 

sensitive to changes in the initial values. Future work will need to show if this holds for all cases, for 

example with different settings for the constant value of Qk, for larger networks and for real-world 

examples.  
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1 Introduction

Passenger railway operations often face unforeseen events like infrastructure malfunctions, acci-

dents or rolling stock breakdowns. As a consequence, parts of the railway infrastructure may

become temporarily unavailable. Therefore, it may not be possible to operate the timetable as

planned. Within minutes or, even better, seconds, new schedules must be constructed which is

called real-time planning. In [1] the disruption management process is described as the accom-

plishment of three interconnected steps: (i) Timetable adjustment, (ii) rolling stock rescheduling

and (iii) crew rescheduling. Due to the complexity of the process and the limited time available for

decision making, these steps are carried out sequentially in practice. First, an adjusted timetable is

constructed by canceling, delaying or rerouting trains. Thereafter modified resource (rolling stock
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and crew) schedules are constructed. If no matching resource schedule can be found, the timetable

is adjusted again.

The iterations may lead to cancelations of trains in addition to the inevitable cancelations

caused by the disruption, for example if no crew can be found to drive a certain train. Sometimes

such additional cancelations could be avoided by delaying the departures of some trains by just a

couple of minutes. It is quite clear that up to 1,000 passengers waiting for a train on a busy station

during peak hours would prefer a delayed train over a canceled one. In this paper, we propose a

crew rescheduling approach which may change the timetable as well.

Recently, Operations Research based models have been developed for real-time resource reschedul-

ing in railways. For example, [2] deals with rolling stock rescheduling while [3] and [4] present

models and solution approaches for railway crew rescheduling. However, these models do not allow

to change the timetable. Constructing the timetable and resource schedules at the same time leads

in general to better or equal solutions than the iterative procedure.

In this paper, we consider an extension of the crew rescheduling problem where timetabling

decisions are integrated into crew rescheduling: The departure of trains may be delayed, which is

called retiming. This gives additional flexibility to Step (iii) of the disruption management process

and may avoid undesired iterating of that process. Moreover, this new approach may be able to

provide high quality solutions from a service level point of view. The approach is tested on real-life

train driver data instances of Netherlands Railways (NS). Therefore, the mathematical model and

the solution approach are specified to train drivers.

In [5] a model is presented that does timetabling and crew rescheduling at the same time for

relatively small problems. However, because of the limited computation time that is available

and the high detail of the timetabling decisions, integration seems reaching too far for large scale

problems at this point in time.

In airline crew rescheduling, [6], [7], [8] and [9] are papers that integrated timetable and crew

rescheduling. Moreover, [9] also integrated aircraft rescheduling. Some of these approaches could

be applicable in railways after significant modifications. However, we decided to work further on

the approach of [4] since we do not know about the performance of those airline approaches on

railway instances and [4] already has shown to perform well for railway crew rescheduling without

retiming.

2 Mathematical model

We assume that the timetable and rolling stock schedule have been rescheduled already. In this

new timetable some trains have been canceled and some new trains have been added to deal with

the disruption. The original crew schedule has become infeasible for the new timetable. Drivers
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who had to run a now canceled train have to perform other trains. Moreover, crew must be found

for the new trains. The operator often has some stand-by crew available to deal with those canceled

and new trains.

The operational crew rescheduling problem with retiming has as objective to find a driver for

as many trains as possible: If no driver can be found, the train will be canceled. The problem

is formulated as a set covering problem with side constraints for the retiming. We use multiple

copies of trains to represent the retiming possibilities. The copies differ from each other in their

departure and arrival times. Using copies of trains limits the retiming possibilities since the

departure time cannot be chosen continuously and the retiming possibilities of a train must be

determined beforehand. One set of the side constraints requires that for every train only one

departure time is used in the crew schedule. The remaining side constraints assure that delays

caused by retiming will be absorbed or propagated, depending on the dwell times of the trains.

3 Solution approach

Our aim is to provide solutions of good quality within a couple of minutes of computation time.

Therefore, we use a heuristic approach in which not all drivers and trains of the original crew

schedule are considered. We extract core problems containing only a subset of them.

We start with computing a solution for a core problem without retiming possibilities. If all

trains are supplied with a crew member, we stop. Otherwise we iterate over the trains without

a driver. For each such train a new small core problem is defined. The new core problems are

constructed with a neighborhood definition and contain some retiming possibilities. After each

iteration, the list of uncovered trains is updated. The core problems are solved by a Lagrangian

heuristic embedded in a column generation scheme very similar to the one proposed by [4]. The

approach of [4] has been extended such that it allows timetable changes.

4 Computational results and conclusions

We tested our approach with retiming on six real-life disruption scenarios of NS. In order to evaluate

the benefits of retiming, we compare our method with the approach of [4].

The approach of [4] came up with solutions with up to 2 canceled trains. Our approach

generated equal or better solutions. In 2 out of the 6 cases, our approach could not improve the

solutions. However, by using our approach, in 3 cases one train less had to be canceled and once

two trains less had to be canceled. Moreover, the observed delays that were introduced into the

timetable are very small. This makes it likely that those solutions can indeed be implemented in

practice. The computation times of our approach are less than 5 minutes, which should make it

applicable within a decision support system for disruption management.

787



So far, we have limited ourselves to considering train drivers only. However, in a disrupted

situation conductors need to be rescheduled as well. Our goal is to extend the approach with

conductors.

Moreover, in our future work conflicts between trains due to retiming decisions will be taken into

account as well. We believe that the presented model and solution approaches could be extended

into that direction without sacrificing computation time too much.
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1. Problem definition and literature review 

 

The Truck and Trailer Routing Problem (TTRP) is an extension of the well known vehicle routing 

problem. In the TTRP an heterogeneous fleet composed of tm trucks and rm  trailers ( tr mm < ) is 

used to serve a set of customers { }nN ,,1K=  from a central depot, denoted with0 . Each customer 

Ni∈ has a demand iq ; the capacities of the trucks and the trailers are tQ and rQ , respectively; and 

the distance ijc between any two points { }0, ∪∈Nji  is known. The existence of accessibility 

constraints at some customers creates a partition of N into two subsets: the subset of truck customers 

tN  accessible only by truck; and the subset of vehicle customers vN  accessible either by truck or by a 

complete vehicle (i.e., a truck pulling a trailer). Due to the heterogeneity of the fleet and the 

accessibility constraints, a solution of the TTRP may have three types of routes: pure truck routes 

performed by a truck visiting customers in vN and tN ; pure vehicle routes performed by a complete 

vehicle serving only customers in vN ; and finally vehicle routes with subtours performed by a 

complete vehicle. The latter type of route includes the case in which a trailer is detached at a vehicle 

customer in vN  to perform a subtour just with the truck visiting one or more customers in tN  (or even 

in vN ). The objective of the TTRP is to find a set of routes of minimum total distance such that: each 

customer is visited by a compatible vehicle exactly once; the total demand of the customers visited in a 

route or subtour does not exceed its capacity; and the number of required trucks and trailers is not 

greater than tm and rm , respectively. 

The TTRP was introduced by Chao [4] and has been tackled using tabu search [4][9], 

simulated annealing [6], and a mathematical programming based heuristic [3]. Most of the methods 

([3],[4],[9]) use a natural cluster-first, route-second approach. In this work, we show that a route-first, 

cluster-second procedure embedded within a hybrid metaheuristic based on Greedy Randomized 

789



Adaptive Search Procedure (GRASP), Variable Neighbourhood Descent (VND) and Path Relinking 

(PR) is an effective approach to solve the TTRP. A description of the components of the hybrid 

metaheuristic follows. 

2. Solution approach 
 
GRASP is a two-phase iterative method: first, a feasible solution is built by a greedy randomized 

heuristic; second, the solution is improved by local search. As highlighted in [8], the performance of 

GRASP can be enhanced using multiple neighbourhoods and path relinking. Accordingly, we replaced 

the local search by an iterated VND, and used PR in various strategies.  
Greedy Randomized Construction: originally proposed by Beasley [1] route-first, cluster-

second methods provide a flexible and effective framework for the solution of arc and node routing 

problems [7]. Then, the greedy randomized construction of the proposed solution approach is 

performed by such a method. A giant tour ),,,,0( 1 nk tttT KK=  that visits all the customers in N is 

found using a randomized nearest neighbour heuristic with a restricted candidate list of size r . Then, a 

solution S of the TTRP is derived from T by means of a tour splitting procedure. The tour splitting 

procedure constructs one auxiliary acyclic graph ),,( WUXH = , where the set of nodesX contains a 

dummy node 0  and n  nodes numbered 1 throughn , and node k represents the customer in the 

thk − position of T (i.e., kt ). The arc set U contains one arc ),1( lk − if and only if the subsequence 

( lk tt K, ) can be served by a feasible route. Finally, the weight of the arc ),1( lk −  in W is the total 

distance of the corresponding route. To derive S it is necessary to find the shortest path between 0  

and n  in H . The cost of the shortest path corresponds to the total distance of S  and the arcs in the 

shortest path represent the routes ofS .  

To adapt the tour splitting procedure for the solution of the TTRP it is necessary to take into 

account the heterogeneous fixed fleet. Thus, to obtain S , a resource-constrained shortest path problem 

is solved, where the resources are the available trucks and trailers. Moreover, if the arc ),1( lk −  

represents a vehicle route with subtours its cost is found with a dynamic programming method that 

solves a restricted version of the Single Truck and Trailer Routing Problem with Satellite Depots [10]. 

Some preliminary experiments have shown that it may be difficult to find feasible solutions with the 

tour splitting procedure in problems with a tight ratio between the total demand and the total capacity. 

Therefore, if the solution of the resource-constrained shortest path problem fails to find a feasible 

solution, an unfeasible “solution” is obtained solving an unrestricted shortest path problem.  

Iterated Variable Neighbourhood Descent: The improvement phase of the proposed method 

is performed with an iterated VND [5]. One main loop of the iterated VND takes S as initial solution 

and performs three steps:  (1) randomly exchange p pairs of customers from its giant tour T  to obtain 

a new giant tour T ′ ; (2) derive a new solution S′  by applying the tour splitting procedure to T ′ ; and 

(3)  apply VND to S′ . The latter VND step uses five neighbourhoods in the following order: Or-opt 
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(in single routes and subtours), node exchange, 2-opt, node relocation (in single routes/subtours and 

between pairs of routes/subtours), and finally, for each subtour it applies the root refining procedure of  

[4]. The exploration of each neighbourhood uses a best-improvement strategy, the iterated VND 

procedure repeats during ni iterations, and the value of p is controlled dynamically between 1 and 

maxp . Since unfeasible solutions are accepted as initial solutions and also during the search of VND, 

the incumbent solution of VND is replaced by S′  if )()( SfSf <′ and its unfeasibility 









−
′

+








−
′

=′ 1
)(

,0max1
)(

,0max)(
rt m

Snr

m

Snt
Sµ does not exceed a given limitτ , where )(⋅f  

denotes the objective function, and )(Snt ′  and )(Snr ′  the number of trucks and trailers used inS′ . 

Every time a feasible solution is found, the best solution of the iterated VND is checked for an update. 

At each call of the iterated VND τ is initialized at maxτ , and updated at each iteration with 

ni
maxτττ −=

.
 

Path Relinking: GRASP with PR maintains a pool of elite solutions ( ES ). To be included in 

ES a solution S must be better than the worst solution of the pool; but to preserve its diversity, the 

distance between S and the pool ( ),( SESd ) must be greater than a given thresholdδ , where 

),(min),( SSdSESd
ESS

′=
∈′

, unless it is simply better than the best solution of ES . In this work the 

distance between any two solutions ( )SSd ′,  is the distance for R-permutations [1] between their 

corresponding giant tours T and T ′ . The solutions in the pool are ordered according to a lexicographic 

comparator that gives priority to feasible solutions, among feasible solutions to those with smaller 

distances, and among unfeasible solutions to those with smaller unfeasibility. To transform the starting 

solution 0S into the target solution fS , the PR operator works in their giant tours, repairing from left to 

right the broken pairs of 0T  to create a path of giant tours with non-increasing distance to fT . All the 

giant tours in the path are split and the resulting solutions are improved with VND, finally all the 

resulting solutions are tested for insertion in the pool. The PR operator uses the back and forward 

scheme [8], exploring the path from 0S  to fS , and also the path from fS to 0S . Due to the fact that 

GRASP and PR can be hybridized in different ways (see [8]), we tested PR: (i) as a post-optimization 

procedure; (ii) as an intensification mechanism; and (iii) in Evolutionary Path Relinking (EvPR). 

3.  Computational Results 
 

The proposed method has been implemented in Java. All the variants were run for 60GRASP 

iterations with 2=r , 200=ni , 6max =p , and 75.0max =τ , for PR  5=ES  and 

),10max( rt mm +=δ , and  EvPR is run every 20GRASP iterations.  Table 1 shows the average 
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results over the 21 instances described in [4]. In summary, all GRASP/VND with PR variants 

outperform the previous competing methods.  

Table 1. Results for the 21 test instances of the TTRP. (BKS: Best known solution) 

Method Avg. Dev. BKS Avg. Time (min) Computer 

GRASP/VND with EvPR 0.72%             46.39    Pentium D 3.4 GHz 
GRASP/VND with PR (Post-optimization) 0.95%             28.77    Pentium D 3.4 GHz 
GRASP/VND with PR (Intensification) 0.98%             37.33    Pentium D 3.4 GHz 
Simulated annealing [6] 1.47%             39.56    Pentium IV 1.5 GHz 
Math. Programming Heuristic [3]  1.70%  Not Available  Pentium IV 2.8 GHz 
Tabu search  [9] 1.71%             47.32    Pentium IV 1.5 GHz 
Tabu search [4]  7.51%             14.51    Pentium II 350 MHz 
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1 Introduction

Since the introduction of the maritime container in the mid 1950’s, liner shipping groups have

migrated from inefficient traditional cargo handling techniques to large cellular vessels seen at any

of the world’s major ports today. Container use improved intermodal productivity and allows for

shorter point to point transit times. In addition, cargo damage is reduced. Besides an enormous

benefit, shippers and carriers are faced with increased operational complexity as well as a multitude

of variable and fixed costs. Managing these costs is important in particular in a situation with

intense competition. Total seaborne trade has nearly quadrupled over the past four decades.

During 2005, the world container population grew by 9.0% to reach 21.6 million TEU1[2]. In 2007,

global container trade was estimated at 143 million TEU, a 10.8% increase over 2006. In tonnage

terms, container trade is estimated at 1.24 billion tons, accounting for about one quarter of total

dry cargo loaded [8]. Carrier focus groups estimated in 2001 that approximately $ 17 billion is spent

each year to deal with inefficiencies caused by repositioning of ECs2 amongst others. Constant

increase of the container population as well as increasing trade imbalance resulted in accumulation

of ECs in some major port areas – and therefore in container shortage in other regions.

More sophisticated logistics may result in a reduction of EC movements. However, since 2000

the percentage of EC movements is stable around a level of 21%. The main reason for the ratio

are the pronounced trade imbalances between Asia and Europe as well as North America. This
1TEU: twenty-foot equivalent unit; a standard size of a container, typically used for denoting the output or

capacity of container terminals as well as for defining the container carrying capacity or loading of vessels.
2EC: empty container.

793



imbalance has persisted, and a declining trend to a level lower than 20% or even 19% that was

evident prior to 1998 is unlikely to re-emerge.3 There is no sign of a reversal of the imbalance

in the Asian transatlantic and transpacific trades. On the contrary, the proportion of ECs is

expected to be nearly 23% in 2015. The problem is influenced not only by trade imbalances, but

by uncertainty (demands, handling, transportation), dynamic environment, and blind spots in the

transport chain. Hence, repositioning ECs is a major problem and huge burden for ocean carriers

now and in the future due to the difficulty of redeeming the incurred costs. Carriers are still aiming

at achieving a lower level of the empty share of container movements and to improve the logistics

with respect to ECs. The high level of the empty share cannot be significantly reduced by further

improvements in managing equipment or by employing additional handling equipment.

This paper addresses the problem of EC management. We briefly describe the global chain of

maritime container transport and related costs for different actors. Most importantly, we provide

a review of literature regarding EC management and discuss some approaches including promising

decision support systems for reducing EC transportation. Moreover, we discuss solution concepts

to overcome parts of this situation which are not popular in practice (like, e.g., the use of foldable

containers). Economical and technical conditions for promising usage are considered together

with ideas for improving them. Ecological issues related to reverse logistics (e.g., scrap, waste

paper/recycle) are taken into account and we propose the idea of pooling (i.e., interchange of

containers on different scales, between shipping companies, owners etc.). Finally, we discuss entry

and exit of containers with respect to the transport chain.

2 Literature Review

Scientific literature regarding the management of empty equipment is abundant but it is primarily

focused on the optimisation of equipment transportation and on particular areas of the distri-

bution cycle. The dynamic allocation, distribution and reuse of empty equipment for balancing

demand and supply among terminals is extensively discussed, even in the context of network design

problems. Furthermore, research on the effect of the planning horizon length is done as well as on

finding an optimal amount of storage space in a yard. The EC management problem is also treated

as an equilibrium inventory problem. Some studies analyze stakeholder operational activities. Al-

most all studies assume that the destination ports of ECs have to be determined before they are

loaded onto vessels. One research gap until now seems to be a comprehensive investigation of a

strategy using flexible destination ports.

According to the systems considered, the literature can be classified into studies focusing on
3The imbalance between the eastward and westward traffics seems to have levelled off in 2007, e.g., with the

Asia-United States cargo flows exceeding those in the reverse direction by 10.5 million TEU, compared to 10.3

million in 2006 and 8 million TEU in 2005 [8].
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deterministic systems and systems under uncertainty such as inland EC allocation or port-to-port

container repositioning. With respect to adopted techniques, studies using mathematical program-

ming can be distinguished from those applying parameterised control policies. The former focus on,

e. g., the selection of an appropriate planning horizon, the latter investigate, e. g., characteristics

of different empty repositioning policies.

Along these lines, before entering specific ideas for improvement and research issues, we con-

ducted a very comprehensive literature survey which is classified as follows: (a) Allocation and

distribution of empty equipment, (b) planning horizon, (c) dynamic equipment allocation and

reuse problem, (d) EC balancing strategies within the context of a network design problem, and

(e) problem of optimal amount of storage space in container terminals

3 Research Issues

The literature review shows that EC accumulation is well recognised in science and industry. Even

if most papers either focus on isolated components of the problem and try to solve them separately

or treat this problem as a side issue, focusing on separate aspects of the entire problem helps to

gain insight and therefore supports the development of an approach considering all components

and solution strategies for this integrated problem. In the sequel we list two out of quite a few

research issues that we have put together and tried to develop further in this research.

Firstly, some papers discuss options for commercial application of foldable containers. It is

shown that foldable containers can result in substantial net benefits in the total container transport

chain due to their potential for cost savings. One of the crucial assumptions in the available studies

refers to the additional costs caused by foldable containers. Obviously the costs of folding and

unfolding are considered. Additional costs for transport to places where folding and unfolding can

take place are mentioned, too. However, no extra location for (un)folding operations is necessary

if foldable containers are designed in a way that they can be folded (or maybe even dismantled)

on the spot. A basic idea is that the spreader of the crane folds the container automatically (’on

the fly’) when locating it in the vessel’s body (or similar). This might be an interesting challenge

for developers/engineers and a related cost calculation is provided assuming that this is possible.

Secondly, we consider the application of data mining techniques for gaining insight into processes

and problems of container handling with a special focus on EC management. Container terminals

perform similar functions, but the processes, technology, and labor requirements differ at each

terminal. Therefore, terminals are faced with different bottlenecks. Due to the complexity of

terminal operations it is difficult to identify bottlenecks within a process. The large amount

of transaction data and the large number of potential, interdependent factors make an analysis

challenging. However, having a large database is a prerequisite for using promising and well
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established data mining methods, such as decision trees, neural networks, support vector machines,

or association rule analysis in order to derive knowledge from data. Data mining methods and

algorithms are useful for analysing current data reflecting current processes, identifying problems,

interpreting solutions as well as for forecasting. For example, forecasting the movements of full

and ECs on a terminal-wise, regional or even more aggregated level can be helpful for equipment

planning purposes. Classifying time series of equipment demand or container flows by means of an

ABC/XYZ analysis as well as taking calendar effects on a detailed regional level into account can

provide useful knowledge for forecasting equipment demand. Decision tree based approaches can

help to interpret data and identify causes for inefficiently performed processes (e.g., abnormal high

truck dwell times within a terminal; see, e.g., [3]). Although there is a lot of scientific literature

on either container logistics or data mining, there are only very few publications which combine

both research fields (e.g., [1, 4, 5, 6, 7]), but they are not focused on EC management.
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1 Background

There are many real-life problems that can be described as network flow problems and for most

(if not all) of them there is an underlying design problem. The purpose of this paper is twofold.

Firstly, we study the relationship between the stochastic and the deterministic single commodity

network design problems, studying both random demand and random arc capacities. Secondly,

we characterize the stochastic designs directly, without a specific reference to the deterministic

case. Although connected, these two problems provide different perspectives on stochastic network

design.

The traditional approach to network design is to formulate deterministic models. The demand

is usually set to its expected value or sometimes some other, somewhat higher, value, to cater for

“normal variation”. In almost all cases, it is understood that the demand is actually stochastic, but

the handling of stochasticity is deferred to the operational planning level. The reasons for doing so

can be many: Computational complexity even of the deterministic network design model; a view

that modelling wise, we know too little about demand while still being at the network design level

of the planning; or simply that it is appropriate to postpone such details of the plan. After all, the

goal is to set up the network, not decide how to route the flow.

The question we ask here is: how much do we lose by not taking stochasticity in demand into

797



account already at the design level? Could it be that the design coming from a model which

is explicitly told that the future demand and arc capacities are uncertain is substantially better

than a design not based on this knowledge? Given the distributional information used in the

stochastic formulation, the design coming from the stochastic model will by definition be better

(measured by the objective function) than the design from any deterministic model. Of course, if

the distributional information is substantially incorrect, a deterministic design might (by chance)

behave better in the real world. That, however, is not the focus of this work. Rather, what we

are interested in is, given distributional information, how much better is the stochastic design,

and even more importantly: In what ways do the stochastic designs differ from their deterministic

counterparts, that is, what is it that makes one design better than the other? We know it is related

to investment in flexibility, see [4] for a discussion in the framework of option theory, but we would

like to know rather precisely what this investment in flexibility consists of. And conversely, we are

also interested to see if some structures from the deterministic design actually carry over to the

stochastic counterpart, so that, in fact, the deterministic solution contains useful information.

We thus study the structural difference between the deterministic and stochastic formulation, as

well as try to charaterize the stochastic design directly, so as to better understand the phenomenon

of investing in flexibility. We also hope to use the results to develop algorithms to solve the problem

approximately (for large cases) or potentially to optimality (for moderate cases).

Our work is related to that of [2]. They study the multi-commodity problem. They identify

two major structural differences: In the stochastic solution it is valuable to have several paths

for each commodity and each of these paths should be shared with other commodities. Sharing

is particularly useful in the case of negative correlations between demands. Without enforcing

consolidation, their networks end up as consolidation networks, often hub-and-spoke. Contrary

to conventional deterministic design, consolidation is in this case a hedging device, not a volume

related undertaking. Hence, they identify structures that can be seen as investments in flexibility,

that is, options, along the lines of [4]. Deterministic models would not produce such results.

2 Questions and Tests

In order to check the quality of the deterministic designs, as well as comparing them to the stochas-

tic ones, we have set up three tests, named comparisons. Whenever a comparison is performed,

we take the deterministic and stochastic designs – or parts thereof – (i.e. the first-stage solutions)

and evaluate them using reference trees – in our case trees with 1000 scenarios, to make sure we

have good approximations of the true distributions. The costs from the design and evaluation

phase are added up, making the reported costs comparable across all tests. This out-of-sample

evaluation means that there is no principal guarantee that a stochastic solution (being based on
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for example 100 scenarios) should be better than a deterministic one. Indeed, we see cases where

the deterministic solution is slightly (less than 1%) better.

The three comparisons are:

A The classical test where the whole first-stage solution is evaluated out-of-sample. This

amounts to solving a 1000-scenario stochastic program with all first-stage variables (designs

and capacities) fixed, so in fact this equals the solution of 1000 independent second-stage

problems. Since the second stage does not involve any integer variables, this is very fast.

B Only edge information is imported from the first stage. So, in a 1000-scenario stochastic

program, all discrete variables describing opened and closed edges—we call it a skeleton—

are fixed and the stochastic program is run. So the model is allowed to install any capacity

on the opened edges (also lower than in the deterministic case), but not to open new ones.

C The whole design (both the skeleton and its capacities) is taken as input to the 1000-scenario

stochastic program. The stochastic program can then add new capacities on already opened

edges (paying only variable setup costs) and new edges (paying both fixed and variable

setup costs). Hence, all capacities opened in the deterministic case add cost to the objective

function, even if these are not needed in the final design.

The purpose of Comparisons B and C is to check if the design from the deterministic solution

really is good for the stochastic case, and if it bad, in what way it is bad. By making edges

from the deterministic case “free” in two different ways, the stochastic programs (as defined in the

comparisons) are guided towards the deterministic solution. This way we compare if stochastic

programs solved with input from the deterministic solutions behave much worse than stochastic

programs which have no deterministic input.

So, Comparison A is the classical test of the quality of the deterministic solution. Comparison

B, on the other hands, checks if we can use a deterministic method to determine the skeleton

and then a stochastic linear program to set the capacities. If Comparison B comes out with good

results, it points to an alternative solution procedure that avoids solving a stochastic mixed integer

program: First use a deterministic method to find the skeleton, then a stochastic linear program

to set capacities. This represents a severe saving in computation (if it works well, of course).

Comparison C can be seen as testing what happens if we first solve the deterministic design

problem and implement the solution, but then discover that it is not very good, and wish to update

it. If Comparison C comes out well, a deterministic design can be corrected and become almost

optimal for the stochastic case, provided setup costs must not be paid again on opened edges. If

Comparison C comes out badly, the costs of updating a deterministic design in light of uncertainty

in demand will be high. Note that Comparison C is itself a stochastic mixed integer program, so

in most cases it does not represent an alternative solution approach.
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3 Discussion

In the talk we shall show how the deterministic and stochastic designs relate to each other. We shall

see that in some cases Comparison B yields good results, implying that the deterministic design

actually has a good structure, though might be off in terms of capacities installed. In other cases,

the comparison is in line with what is expected: The structure itself is too limited. Comparison C is

generally rather good for these problems, indicating that the deterministic solution can be updated

to become good if setup costs need not be paid again for those edges opened in the deterministic

solution.
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1 Introduction

In this work, we consider a Vehicle Routing problem with driver assignment arising at the largest

fresh meat producer in Denmark, Danish Crown. Danish Crown delivers the fresh meat from its

distribution terminals to the supermarkets all over Denmark. The supermarkets place their orders

with specified demand for different days of the week before the week starts. The distributor then

makes a weekly delivery plan for the drivers and vehicles so that the orders are fulfilled, the drivers’

working regulations are respected and the total travel cost is minimized.

2 Problem description

The problem is to determine delivery routes for a fleet of heterogeneous vehicles and a number of

drivers with predefined working regulations over a one-week planning horizon.

A number of practical constraints need to be considered regarding the delivery. First of all,

each customer orders a different amount of meat every day and each vehicle has a limited capacity.

Secondly, each customer has a certain time window for receiving its order. These time windows

are based on numerous factors such as working hours of the employees in the supermarket, city

traffic etc. Lastly, certain special customers have requirements on the vehicle size. This is usually

because of small roads or limited parking lot sizes. If an inappropriate vehicle type is used to

serve such a customer, the driver usually needs to park some distance from the supermarket. This

results in additional service time, which is proportional to the number of pallets ordered.

801



There are two kinds of drivers hired to carry out the delivery: internal and external drivers.

The internal drivers work on the predefined workdays and for no more than a maximum weekly

working duration (37 hours) over a week. Both the internal and external drivers start from given

starting times and finish before given latest ending times. The drivers cannot drive for more than

4.5 hours without a 45-minute break according to the EU driving legislation.

Several different types of costs are considered in this problem. We assume that the internal

drivers have regular salaries according to their contracts. Hence only the fuel cost of the routes

taken by the internal drivers are considered, which depends on the distance travelled and the cost

per kilometer. The external drivers are paid at a fixed price every hour, which covers both the

salary for the driver and the vehicle cost. Therefore, the cost of the external routes is calculated

by multiplying the route duration and the cost factor.

The objective of this problem can therefore be translated to minimize the fuel cost of the internal

routes and the cost of the external routes over the planning horizon in such a way that each order

must be served by one vehicle within its time window, vehicle capacities are not exceeded, each

driver starts working at a predefined time and finishes before a given time on every workday, the

internal drivers work for no more than a maximum weekly duration over the planning horizon, and

the break rule regarding the driving legislation is respected.

3 Solution method

We propose to solve this problem using a heuristic. Firstly, the problem is NP-hard and secondly we

foresee that the size of the problems that needs to be solved makes an exact approach prohibitive.

The proposed method is named Multi-Level Variable Neighborhood Search heuristic (MLVNS) and

illustrated in Figure 1.

The MLVNS consists of three levels. The first level (Level I) reduces the problem size through

a node aggregation procedure which combines several nodes (customers) into a single supernode

([3]). The aggregation is based on the fact that several supermarkets may be located very closed

to each other, for example in a big shopping center, and therefore it is very likely that these

supermarkets should be visited by the same vehicle if it is feasible. Hence, the nodes are selected

to be aggregated by analyzing their time windows, demands, and the travel times between them.

The second level (Level II) constructs the solution to the aggregated problem. Note that the

orders on different days are fixed. The only constraint connecting the routes on different days is the

maximum 37 weekly hours for the internal drivers, which implies that a certain driving schedule

for an internal driver on one day will affect the maximum duration of the driver on the remaining

days. Without this constraint, this weekly planning problem can be viewed as several independent

daily planning problems, each of which considers the vehicle routing and driver assignment on a
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 Level III

Level II

 Level I

Node aggregation

select the busiest unplanned day t

Any unplanned day?

Update the maximum working durations for internal drivers on day t

Vehicle routing and driver scheduling for day t
(variable neighborhood search)

Node segregation

End

Figure 1: The flowchart of the MLVNS.

single day. To reduce the computational overhead, we decompose the weekly planning problem

into six daily planning problems, which are then solved sequentially in a given order. Before a

specific daily problem is solved, the maximum daily duration of each internal driver is updated

based on the 37 week-hour constraints and the workload that has been assigned to the driver on

the previously planned days. Given the updated information on the internal drivers, the daily

distribution plan is determined by means of a variable neighborhood search ([2]). The proposed

VNS consists of three components: initialization, a shaking phase, and a local search. An initial

solution is constructed and improved iteratively. At each iteration, several neighborhoods are used

in the shaking phase, and the Unified Tabu Search ([1]) is then applied in order to find good local

optima. At the last level (Level III), the solution of the aggregated problem is expanded to a

solution for the original problem. The visiting time at each customer is determined according to

the sequence of the customers in each route.

4 Computational experiments

The proposed method is tested on real-life data provided by Danish Crown. The planning horizon

consists of six days in a week, from Monday to Saturday. The data involves over 800 supermarkets

and more than 2000 orders over a week. The total amount of meat delivered varies from day to

day, ranging from 80 tons to 170 tons. The time windows of the supermarkets range from 1 hour

to 24 hours. Approximately 10% of the supermarkets have requirements on the vehicle size. Three

types of vehicles with different sizes and capacities are available for the delivery. Approximately
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11 internal drivers and at most 14 external drivers are available every day.

A number of computational experiments are carried out to analyze the sensitivity of the pa-

rameters used in the algorithm. In the first experiment, we investigate the effectiveness of the

node aggregation. Three different degrees of aggregations, which reduce the data size by 25%,

35% and 50%, are tested. The results show that solution converges faster with a more aggressive

aggregation. A good trade-off between the running time and solution quality is obtained when the

problem size is reduced by 25%. In the second experiment, we create two different scenarios. In one

scenario, there is no supermarket that has requirement on the vehicle size. In the other, there are

20% supermarkets that have special requirements on the vehicle size. It is shown that increasing

the portion of these supermarkets has a major effect on the total travel cost and duration, but

only a minor effect on the number of vehicles required. This is because the special requirements

on the vehicles do not change the overall capacity needed and are treated as soft constraints. The

violations of these soft constraints are compensated by additional duration and cost.

We also compared our solution with the route plan used by Danish Crown. Since the only

accessible information about the real-life plan is the list of customers served in every route on

every day, whereas the exact order in which and the time at which each customer is visited are

not available. We therefore calculated a TSP lower bound on the travel distance for each route.

Compared to the real-life plan, our method yields an improvement between 13% and 26% in terms

of the travel distance. Moreover, the number of vehicles required is also reduced by 20% on average.

5 Conclusion

We have addressed a route planning problem, in which a weekly routing plan has to be made

for a fleet of heterogeneous vehicles and for a number of drivers to deliver the fresh meat to the

supermarkets according to their demands and preferences. A multi-level variable neighborhood

search based heuristic is proposed and tested on real-life data.
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1 Introduction

Efficient and reliable movement of freight and passengers is a key component for economical growth

in today’s society. For this reason, significant resources have been invested in building transporta-

tion infrastructure. Railroad infrastructure is very costly to develop. At the same time, it enables

the movement of large quantities of goods and passengers. Even small improvements in its utiliza-

tion have a significant impact on the return on investment. Consequently, removing bottlenecks

and shifting traffic from peak periods to non-peak periods has a strong positive effect on the re-

turn on investment and on the environment as it stimulates the migration of passengers and freight

transport from roads to rail. This will reduce emission of green house gases, noise, or accidents,

and limit the need to invest in additional road infrastructure.

We discuss the development of methods encouraging efficient utilization of railroad infras-

tructure, thereby making rail transportation more competitive in comparison to other modes of

transportation. We propose a methodology to enable pricing of the railroad infrastructure such

that it is used in an economically optimal way, benefiting the society as a whole. Obviously, the

underlying mathematical framework will be complex and difficult to tackle even for small, isolated

cases. We meet this by combining socio-economic modeling concepts with Operations Research

methods, in particular approaches from bilevel programming and stochastic service network design.

In this talk, we will set the stage for developing such a framework. We focus on describing the

problem background and set-up, highlighting challenges related to this approach. Such challenges
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may arise from different goals and decision processes of the involved actors but may also be of

a more general and practical nature. Sketching the structure of a modeling framework which

addresses these complexities, we point out the further direction of our research. An additional goal

of our talk is to, hopefully, stimulate some discussion around this complex topic.

2 Problem background

Several EU Commission White Papers lay out the Commission’s view on a European trans-

port policy. Special attention is paid to further introduction of free market structures and de-

monopolization in the railroad sector. During the past decades, this reorganization process lead

to a vertical separation of the sector into traffic operations and railroad infrastructure divisions.

In such a structure, various independent Railroad Operators (ROs) can provide train services, ei-

ther in direct competition or in different market segments. It is important to notice that different

ROs can have different objectives and requirements when creating schedules. Track infrastructure

including stations, installations etc. is controlled by an Infrastructure Manager (IM) such as Jern-

baneverket. One of this entitys tasks is to assign rights to access the infrastructure to the single

ROs in a best possible way.

Often, the process of allocating network access rights (as, e.g., outlined in Jernbaneverket’s

Network Statements [4]) is based on strategic and political considerations. Conflicts are resolved

through an administrative committee and only a limited number of alternatives are evaluated at a

time. The allocation does, therefore, not reflect the utility or relative importance of the allocated

infrastructure to the IM or the RO, and it is controlled by the users requests rather than the

IMs requirements. Moreover, the reliance on administrative and political mechanisms does not

guarantee efficiency of the assignment process or of the resulting schedules.

Currently, ROs pay for using railroad infrastructure by way of charges which, in theory, shall

be based on short-term socio-economic costs [3, 4]. Generally, the charges do not differentiate with

respect to track segment or time of the day [4]. Only a few special charges apply for specific track

segments or train types. However, price differentiation becomes more and more important as key

for the sector’s competitiveness.

Hence, it seems comparatively easy to extend already existing charging principles to a more

detailed process, rather than introducing a completely new layer through additional mechanisms.

Of course, a process allocating usage rights should not rely solely on charging to resolve potential

conflicts between ROs’ preferences or to achieve the IM’s goals. Instead, the charges may be used

to guide the ROs’ behavior, in conjunction with other political or strategic tools.
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3 Modeling framework

The allocation of infrastructure access rights is closely connected with the process of constructing

efficient time tables for the single operators. Moreover, when studying complex traffic scheduling

problems attention must also be paid on network effects such as ”ripple effects” which may be

difficult to identify immediately. This emphasizes the need for models studying the infrastructure

network in a larger perspective rather than separate small instances. However, mathematical mod-

els become quite complex already for small networks and most modeling and solution approaches

tend to focus on only a few aspects at a time.

So far, mathematical models for the allocation of access rights often relied on auctioning ap-

proaches. For example, Nilsson [5] uses auctioning to extract knowledge about the ROs’ prefer-

ences, but the method required that only few isolated conflicts occur and the track network is not

overly complex. Other approaches [1] combine the time tabling process and the allocation of access

rights, strongly focusing on the first issue. Utilizing combinatorial auctions, robust schedules on a

network of consecutive track segments can be constructed. The utilization of auctioning processes

for allocating access rights to network capacity has been debated, but few alternative approaches

are known.

Our goal is to construct plans that take into account the entire network, the time-space di-

mension as well as the charges for using the infrastructure. Hence, we aim at exploiting model

properties like network structures, time slots and the interrelations of ROs and the IM. In this re-

gard, especially two fields of mathematical programming become important, bilevel programming

and stochastic service network design.

Bilevel programming problems (Stackelberg games) describe the interplay between two or more

independent decision makers in a hierarchical relation. Each decision maker solves its own opti-

mization problem; the IM does not take into account the ROs objectives and vice versa. They

interact only through submitting selected solutions which are then used as parameters (in the lower

hierarchy level) or responses on the parameters (in the higher levels). Consequently, each RO can

come up with an optimal response for a given infrastructure charge while utilizing its assets in

an optimal way, whatever its objectives are. The IM, on the other hand, can use the charges to

influence the ROs’ decision process.

The framework of bilevel programming comprises auctions and other game-theoretic mecha-

nisms but draws upon a more general field of theory. Due to their generic nature, the models are

well suited to take into account several aspects affecting the ROs’ decisions such as the opportu-

nity to switch to road transport. The derived charges can directly reflect the costs of operating

the infrastructure. Auctioning mechanisms tend to mask these actual costs and rather show the

ROs’ valuation of infrastructure usage. Therefore, bilevel programming concepts also contribute

toward usage-efficient allocation and the realization of political and/ or administrative goals as
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these aspects are within the realm of the IM rather than the ROs.

While the upper level of a bilevel problem addresses what the optimal price for using the

underlying infrastructure is, the sub-problems address how the actors should plan their operations

in the best possible way for given prices in the upper level problem. To solve the lower-level problem

we formulate this as a time-dependent stochastic service network design problem. Service network

design is an extension of network design and deals with consolidating transportation systems to

provide decision support on issues such as the selection and scheduling of offered services, routing

of freight and passengers or terminal utilization and how to deal with potential congestion. Service

network design typically focuses on maximizing profit or minimizing the total operational system

cost for the carrier while maintaining a usually pre-specified customer service level, and the models

can be used for different modes and multimodal transportation [2].

4 Conclusions

We discuss methods encouraging efficient utilization of railroad infrastructure, thereby making rail

transportation more competitive in comparison to other modes of transportation. The situation as

it currently exists in practice is illustrated through an example involving several ROs on the Nor-

wegian railway network and the IM, Jernbaneverket. The underlying mathematical framework will

be complex and difficult to tackle even for small, isolated cases. We highlight therefore some major

research challenges for the mathematical modeling of the situation and for solution approaches.
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1 Introduction 
 

Optimization of a road transport system is often viewed as a problem to find the best way to expand or 

improve an existing network. This type of problem is generally referred to as the Network Design 

Problem (NDP). One specific example of this is to optimize a network through the implementation of 

dynamic traffic management (DTM) measures which can influence the supply of infrastructure 

dynamically (e.g. traffic signals, ramp metering and rush hour lanes).  Traditionally, this type of 

optimization is focused on improving accessibility, subject to some conditions regarding externalities 

as traffic safety or livability (set by law). However, due to the increasing attention for these type of 

externalities, it may no longer suffice to view a transport system as feasible when it meets these 

conditions. Therefor we will view de NDP as an optimization problem with multiple objectives, where 

externalities are incorporated in the objective functions [1]. 

The NDP is usually formulated as a bi-level problem in which the lower level describes the 

behavior of road users that optimize their own objectives. Usually this is operationalized as a user 

equilibrium. The upper level consists of the objectives that have to be optimized for solving the NDP. 

Because of the non convexity of the problem (e.g. [2]), several global solution approaches are used, 

including genetic algorithms and simulated annealing. There are several studies that formulated multi-
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objective (MO) NDP in which for example the budget constraint is formulated as a second 

minimization problem and optimization studies in which externalities, mainly air quality, are used as 

objective (e.g. [3], [4], [5], [6]). In the bi-level optimization studies the solution approach using genetic 

algorithms has been proven successful, but still requires many function evaluations. These studies, 

however, have been limited to considering only a few externalities and often focused on local 

optimization. Further, in the lower level mainly a static user equilibrium was used. Although this 

choice is understandable, because of the many function evaluations needed, Dynamic Traffic 

Assignment (DTA) models are more suitable to assess the effects of DTM measures. Different 

researches have shown that there is a proven relation between the traffic dynamics and external effects 

like emissions of pollutants and traffic safety. High speeds and speed variation (accelerating, braking) 

have for example a negative effect on traffic safety and emissions of pollutants [7]. 

 

2 Model framework and methodology 
 

Within this study, the optimization of externalities using DTM measures is formulated as a bi-level 

optimization problem. In our case we focus on strategic DTM measures optimizing the objectives on 

the long term. In the lower level road users optimize their own objective (travel time). This is 

operationalized by solving the Dynamic User Equilibrium problem using the INDY traffic model, 

which is a DTA model with dynamic queueing and spillback. Output of this model are speeds and 

flows on all links of the network as a function of time. From this, the level of service of all network 

elements can be determined as a function of time. 

The upper level consists of the optimization of the objectives of the road management 

authorities concerning accessibility, air quality, climate, traffic safety and noise by applying available 

DTM measures. Based on an extensive literature review [8] for each objective an objective function is 

defined, where the input stems from a DTA model [9]. Accessibility is defined as the total travel time 

in the network, which is a direct result of the DTA. Air quality is defined as the total weighted 

emission of PM10 (or NOx). The weights are related to the level of urbanization, and the emissions are 

determined based on a traffic situation based emission model, which means depend on the level of 

service of the traffic flows. Climate is defined as the total emission of CO2 and is determined based on 

an average speed based emission model. Traffic safety is defined as the total number of injuries and is 

determined based on a accident risk based model. Finally noise is defined as the average weighted 

sound power level is calculated, in which the weights of emissions as for air quality depend on the 

level of urbanization, and emissions are based on a load and speed dependent emission function.  

A DTM measure is modelled as a measure that influences the fundamental diagram on the 

links where the measure is implemented. The impact of the measure depends on the actual settings, e.g. 

the green time for a certain direction on a signalized intersection. Time and settings of the DTM 

measures are discretized, so the upper level then becomes a discrete optimization problem where for 

each time period a certain DTM measure with a certain setting is implemented or not.  
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The upper level optimization was solved using metaheuristics, in particular we applied genetic 

programming methods. We tested three solution approaches in which specific attention was paid to the 

determination of the initial set of solutions and restriction of the solution space to accelerate the search. 

For this some form of pre optimization was used where the inital set and rectristriction of the solution 

space is a result of a static optimization.  

 

3 Application and conclustions 
 

A case study on a small hypothesized road network consisting of one OD pair, three routes and four 

DTM measures (11 possible settings, 6 time periods) is conducted, to show the feasibilty of the 

solution approaches. Although the network was small, it did incorporate the major elements like urban 

and non-urban routes when using DTM measures to optimize accessibility and externalities. Moreover, 

these objectives were modeled in a realistic manner incorporating  traffic dynamics.  
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FIGURE 1  Objective functions solutions related to congestion 
 

The results show that in this testcase the objectives for congestion, traffic safety, emissions 

and noise show different optimal solutions, which means there is not a combination of measures 

resulting in an optimal situation for a combination of all objectives. However, it was found by 

investigating the Pareto optimal sets that the objectives concerning air quality and congestion are 

aligned and that these objectives are opposite to noise and traffic safety (see figure 1). This can be 

explained, because optimizing congestion aims at avoiding congestion using full capacity of the 

available routes. Optimizing traffic safety aims at maximizing the use of the relatively safe highway 

route and avoiding use of the urban route. Optimizing emissions aims at avoiding congestion and high 

speeds and searches for the best trade of between minimizing traffic using the urban roads and the 

level of congestion on the highway. Optimizing noise aims at lowering the driving speeds as much as 

possible and avoiding traffic using the urban routes. Concerning the application of the three solution 

approaches we found that all approaches were able to find improvements and there is no reason to 
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assume that reducing the solution space as we did results in sub optimal solutions. However, the results 

also show that pre optimization does not enhance the optimization process. The optimization requires 

even for this small network a substantial number of function evaluations. Because we are mainly 

interested in finding improvements and not necesseraly the exact Pareto optimal set, the approaches are 

scalable. However, since the lower level requires in these approaches, especially for larger networks, a 

substantial amount of CPU time, more research is needed to enhance the efficiency of possible solution 

approaches. These enhancements can be achieved by incorporating more knowledge of road transport 

systems to reduce the solution space more effectively or to optimize the solution approach (e.g. by 

using function approximation) in order to reduce the number of time consuming function evaluations.   
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1 Introduction 
 

Pedestrian traffic data are one of the important sources of information for pedestrian planning studies. 

Compared to vehicular count data, existing pedestrian counts are in general not accurate enough to be 

directly used for planning studies. This is beacuse the methods or technologies currently employed to 

collect pedestrian data were not as advanced as the ones used for vehicluar data collection. Moreover, 

pedestrian traffic patterns are much more complex than vehicular traffic making it even more difficult 

to collect accurate data. Although practioners have been looking for more advanced ways to efficiently 

and accurately collect pedestrian data, the majority still relied on traditional methods such as, 

videotapes, and manual counting with click boards. Factors such as human error, and labor cost have 

limited the use of these traditional methods for long-term pedestrian data collection.  

Rather than relying on these costly and error-prone data collection methods, recent advances 

in sensor technologies can be used for long-term pedestrian data collection. However, even the output 

of most advanced sensors should be carefully used because in several recent studies most of the 

automatic counters were found to be less than 100 percent accurate [1], [2]. These studies clearly 

showed that every autmatic pedestrian sensor more or less suffered from specific error factors that 

need to be incorporated into the data processing procedure.  

 

2 Problem 
 

Among the commerically available technologies, infrared counters are one of the most widely used 

sensors for monitoring pedestrian traffic. It is easy to find examples of their use in indoor settings such 

as shopping malls and visitor centers. Apllications of infrared counters in outdoor settings such as 

sidewalks or trails, however, are less common due to accuracy concern. Since infrared counters require 

single pedestrian passing to achieve maximum accuracy, they will systematically undercount when 
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people walk side by side or in groups [3]. Figure 1 shows an example when an undercount will occur. 

In this example,  the counter will count only one pedestrian in all three cases shown in Figure 1. 

(a)Pattern 1: Truth=1 (b)Pattern 2: Truth=2 (c) Pattern 3: Truth=3 
Figure 1. Example of possible passing patterns given counter output is one 

Regarding the counter errors, researchers have been developing calibration methods to adjust 

original counter outputs [4], [5], [6]. They developed regression models using counter outputs as the 

predictor variable to estimate actual counts. Essentially, all of these regression models attempted to 

estimate adjustment factors to correct raw sensor counts. However, there was no universal adjustment 

factor. The transferability of these regression models was problematic because the correction factor 

may vary from site to site, and time to time. It is difficult to propose a single calibration factor as it 

depends on various conditions, for instance, how pedestrians use the facility (single line or walking 

side by side), how busy the facility is, geometric characteristics of the facility, and so on. Moreover, it 

is laborious to collect large enough sample of counter outputs and the corresponding ground-truth 

counts to build reliable and robust regression models. 

Instead of using regerssion models, the primary objective of this study was to develop a new 

method for adjusting the infrared counter outputs. By comparing the counter outputs and the associated 

errors, a novel statistical modeling procedure was proposed to estimate the actual counts using the raw 

counter ouputs.    

 

3 Proposed Methodology 
 

A bivariate bootstrap sampling procedure was proposed to estimate the hourly pedestrian counts using 

the raw counter outputs of 15-minute interval. In this proposed method, we still needed the ground-

truth data. However, use of the boothrap sampling procedure made it possible to build a large synthetic 

dataset from the limited field observations. This allowed us to achieve better calibration results with a 

relatively small original dataset. The procedure was summarized as follows: 

Step 1: Let ሺ ܺ, ܻሻ be a pair of counter output and corresponding actual (ground truth) 

pedestrian volume at the ith 15-minute interval, i=1, 2, …, n. 

Step 2: Randomly sample 4 pairs ofሺ ଵܺ
′ , ଵܻ

′ሻ, ሺܺଶ′ , ଶܻ
′ሻ, ሺܺଷ′ , ଷܻ

′ሻ, and ሺܺସ′ , ସܻ
′ሻ from ሺ ܺ, ܻሻ with 

replacement. Define ሺܥ,ܯሻ as the jth pair of hourly counter output and actual volume, and caculate 

the hourly counting error rate as follows:  
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ܥ ൌ ∑ ܺ
′ସ

ୀଵ                                                                                                                              (1) 

ܯ ൌ ∑ ܻ
′ସ

ୀଵ                                                                                                                             (2) 

ߝ ൌ
ೕିெೕ

ெೕ
ൈ 100%                                                                                                                  (3) 

Step 3: Repeat steps 2 and 3 B times (B is a large number), and list ሺܥ,ܯ,  ሻ in a lookupߝ

table, where j=1, 2, …, B. 

Step 4: Given a new hourly counter observation ܳ, define an interval ܣ ൌ ሾܳ െ ,ߜ ܳ   ,ሿߜ

where ߜ is a small value. Construct ሺܥ,ܯ,  and denote them ,ܣ߳ܥ ሻ vectors in lookup table whereߝ

as ሺܥ′ ܯ,
′ , ′ߝ ሻ, where k=1 to the total number of subsets (assumed to be K). The aim is to find 

reference counter outputs which are close to or equal to ܳ. 

Step 5: The correction factor for ܳ is determined as ܧሺߝ′ ሻ, where ܧሺߝ′ ሻ is the expectation 

of ߝ′  in the subset. The calibrated counter output is then calculated as: 

ܳ ൌ ொ
ଵାாሺఌೖ

′ ሻ
                                                                                                                               (4) 

 Step 6: If necessary, construct percentile confidence interval for  ܳ: order ߝ′  from smallest to 

largest. Identify ߝ ൌ ሾሺఈ
ଶ
ൈ 100%ሻ ൈ ߝ ሿ௧ andܭ ൌ ሾሺ1 െ ఈ

ଶ
ሻ ൈ 100% ൈ  ሿ௧ values of the orderedܭ

values. These values represent the lower and upper limits for the ሺ1 െ ሻߙ ൈ 100% confidence interval 

of correction factor. Then use them to calculate the lower and upper limits for ܳ :  

ܳ ൌ
ொ

ଵାఌೆ
                                                                                                                                 (5) 

ܳ ൌ
ொ

ଵାఌಽ
                                                                                                                                 (6) 

 

4 Emperical Tests 
 

To validate the proposed calibration method, a dual-sensor pyroelectric infrared counter developed by 

EcoCounter was tested and calibrated as a case study. Training dataset consisted of field data including 

counter ouputs and actual counts collected at a trail on Rutgers University Busch campus on October 

19 and 26, 2009. Lookup table was created according to the proposed procedure using the data of these 

two days. Test datasets include dataset collected on April 10 at another trail on the same campus and 

another dataset collected on October 12 at a sidewalk in downtown of New Brunswick, NJ. They were 

used to validate the performance of the proposed calibration method.  

The calibration results for the two test datasets are shown in Figure 2. From the figure we can 

see that the infrared counter obviously undercounted pedestrians at these sites. For the dataset collected 

on April 10, the original overall error rate of the infrared counter was -20.7 percent. By using the 

calibration method, the overall estimated counts were only 1.2 percent more than the actual counts. 

Similarily, the overall counter error rate was -14.3 percent at the sidewalk on October 12 and the 

overall error of the calibrated counts was successfully reduced to -4.4 percent.  
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Figure 2. Calibration results at two sites 

 

5 Conclusions 
 

Automatic pedestrian counting method is a potential alternative for long-term pedestrian data 

collection. The large differences between the actual counts and counter outputs observed in this and 

other studies raises the need to adjust the raw counter outputs. Using a single correction factor is an 

impractical approach since it may vary by time and locations, etc. This study proposed a nonparametric 

statistical method to adjust the raw counts. The validation tests showed that the proposed method 

performed well and can be easily transfered to other sites even though the trained lookup table was not 

built using data from these sites. 
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1 Introduction 
This paper presents a probit-based bi-criterion dynamic stochastic user equilibrium (BDSUE) model to 

address stochastic choice behavior of heterogeneous users with different value of time (VOT) 

preferences and different perceptions of travel costs. The model is motivated by the need to evaluate 

the impact of time-varying pricing schemes on network performance, which entails capturing 

heterogeneous travelers’ choice behavior in response to such pricing policies [1]. In previous work, bi-

criterion user equilibrium traffic assignment models, in which the value of time (VOT) is distributed 

across the user population, have been developed for both the static case (BUE) [2], [3], [4], and more 

recently for the case where flows and prices vary with time [5].  In particular, Lu et al. [5] introduced a 

continuous random VOT in the dynamic traffic assignment (DTA) context and proposed a parametric 

analysis method to solve the resulting bi-criterion dynamic user equilibrium (BDUE) problem.  

Both aforementioned BUE and BDUE models were developed in the (deterministic) user 

equilibrium (UE) path choice framework, in which travel costs are known precisely to travelers. This 

assumption may not always be realistic, since users may also have different perceptions of travel costs. 

Accordingly, the probit-based BDSUE model introduced in this study can capture path choice behavior 

of heterogeneous users with both distinct VOT preferences and different perceptions of travel costs. In 

particular, across the population of travelers, the VOT is represented by a continuously distributed 

random variable, and the perception errors of travel costs in a choice set are multivariate normally 

distributed. The BDSUE problem is formulated as a fixed point problem in the infinite dimensional 

space, and solved by a column generation solution framework which embeds (i) a parametric analysis 
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method (PAM, [6]) to transform the continuous problem to the finite dimensional space by finding 

breakpoints that partition the entire range of VOT into subintervals and define a multi-class dynamic 

stochastic user equilibrium problem (MDSUE); (ii) path (column) generation algorithm to augment a 

feasible path set for each user class; (iii) a probit-based stochastic path flow updating scheme solving a 

Restricted MDSUE problem defined by the set of feasible paths; and (vi) dynamic network loading 

using a particle-based traffic simulator [7] to capture traffic dynamics and determine experienced travel 

times for a given path flow pattern. 

2 Problem statement and assumptions 
Consider a time-varying network G = (N, A), where N is a finite set of nodes and A is a finite set of 

directed links; the time period of interest (planning horizon) is discretized into a set of small time 

intervals,   

€ 

H = {t0,t0 + Δt, t0 + 2Δt,…,t0+ |T |Δt}, where  is the earliest possible departure 

time from any origin node,  is a small time interval during which no perceptible changes in traffic 

conditions and/or travel cost occur, and | | is the cardinality of the set T of time intervals, such that 

the intervals from  to 

€ 

t0+ |T |Δt  cover the planning horizon . The time-varying OD demands, 

 (W is a set of OD pairs) for the entire planning horizon are assumed to be known a 

priori. Travelers have different VOT, α, and are subject to perception errors in selecting the best path 

from a path choice set . No en-route path-switching is allowed after departure from origins. 

Without loss of generality, associated with each link a and time interval τ are two time-varying 

attributes: travel time   and travel monetary cost , which are required to traverse link a when 

departing at time interval  from upstream node of link a. By assuming path travel disutilities are 

additive in terms of their respective link travel disutilities, we define the path travel time and path 

travel money cost of a path k as and respectively. The experienced 

generalized cost or disutility for travelers of OD pair w with VOT α departing at time t along path k is 

defined as . To reflect the heterogeneity of the population, the VOT in this 

study is treated as a continuous random variable distributed across the population of travelers, with a 

density function , and , where the feasible range of VOT is 

determined by a given closed interval .  In the probit-based choice model framework, the 

systematic path disutility is given by the negative of the generalized cost as 

, and the perceived path disutility  is defined as , 

where the random error vector follows a multivariate normal distribution, .  Assuming 

that each traveler chooses a path that maximizes his/her perceived utility, the choice probability of 

each path  for travelers with VOT α can be determined as 
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€ 

pk = pk (x) = Pr[Uk x,α( ) = max
k '∈Kwt α( )

{Uk' x,α( )}] . Hence a stochastic path choice approach is 

employed to represent both travel time perception errors and heterogeneity of VOT. 

Under the above assumptions, the bi-criterion dynamic stochastic user equilibrium (BDSUE) 

conditions extend in a natural way the usual static stochastic user equilibrium (SUE) conditions [8]. 

The BDSUE implies that each traveler is assigned to a path with least perceived travel disutility with 

respect to his/her own VOT and perception error. This paper presents a mathematical formulation for 

the above-defined BDSUE network assignment problem, and develops and applies a solution 

procedure to find the time-dependent path and link flow patterns under a given time-dependent road 

pricing scheme in a general network. 

3 Bi-criterion dynamic stochastic user equilibrium model 
Typically, the static SUE conditions are defined based on the weak law of large and formulated as a 

fixed point problem [8]. Zhang et al. [9] extended the static SUE conditions to the dynamic context and 

proposed a fixed point formulation. Accordingly, considering VOT α as a continuous random variable, 

the BDSUE conditions can be stated mathematically as in Eq. (1): 

    (1) 

Define a map , where , , and 

. The BDSUE problem of interest can be formulated as the following infinite 

dimensional fixed point (FP) problem in Eq. (2): 

, satisfying ,      (2) 

Solving the above infinite dimensional FP problem will give the path flow 

vector , , which is also the solution of the 

BDSUE problem, i.e.  would satisfy the BDSUE conditions given in Eq. (1).  

4 Simulation-based column generation solution framework 
The simulation-based column generation solution framework for solving the BDSUE problem includes 

three main steps: (i) input and initialization, (ii) parametric analysis of VOT α and path (column) 

generation, and (iii) solving the RMDSUE (restricted multi-class dynamic stochastic user equilibrium) 

problem.  These steps are summarized below.  

Step I: Input and initialization. 

Step I.1: Input. Input a time-dependent OD demand matrix for the entire feasible range of VOT over 

the planning horizon, , a time-dependent link toll scheme, network topology, and VOT distribution. 

Step I.2: VOT generation. Generate the VOT for each vehicle based on the given VOT distribution to 

obtain heterogeneous time-dependent OD demands (vehicles), .  

Step I.3: Initial simulation-assignment. Set outer loop counter m = 0, and perform a dynamic network 

loading to obtain initial time-varying feasible path set , experienced link and path travel time 

 and monetary cost , and path flow pattern, , from the traffic simulator. 
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Step II: Parametric analysis of VOT α and path (column) generation. 

Step II.1: Bi-criterion dynamic shortest path calculation. Apply the PAM based bi-criterion time-

dependent least generalized cost path (BTDLGCP) algorithm [6] to find a complete set of time-

dependent extreme efficient paths and the corresponding set of breakpoints, 

 that partitions the entire closed 

interval of VOT, , and defines the multiple classes of travelers, 

, each class  of which covers a subinterval of VOT, 

. Starting from the lowest bound of VOT, , the BTDLGCP algorithm 

continuously solves for a time-dependent least generalized cost path tree (TDLGC) for a given VOT 

subinterval and determines a upper bound of that VOT subinterval, , for which the TDLGC path 

tree remains optimal, until reaching the highest bound of VOT, . The algorithm divides a 

continuous distributed VOT closed interval into a set of VOT subintervals (i.e., user classes) by 

parametrically analyzing the VOT, α, and simultaneously generating optimal paths (columns) and 

augments the restricted feasible path set, , for each VOT subinterval (user class). 

Step II.2: Convergence checking for the outer loop. If no new path is found or m = mMax, then stop; 

otherwise go to Step III to solve the RMDSUE problem defined by the given restricted feasible path 

set, . 

Step III: Solving the RMDSUE problem. 

Step III.1 Initialization. Set inner loop counter n = 1, and prepare the restricted feasible path choice set, 

, from Step II. 

Step III.2 Multi-class probit-based stochastic path assignment. Determine multi-class probit-based path 

assignment, , by the multi-class probit-based path flow updating/equilibrating scheme for the 

given reduced feasible path choice set.  

Step III.3 Multi-class dynamic network loading. Perform a multi-class dynamic network loading to 

evaluate the multi-class path assignment, , and obtain time-varying travel costs (i.e.,  

and ) and link flow pattern from the traffic simulator. 

Step III.4 Convergence checking for the inner loop. If <=є (є is a predefined convergent 

threshold) or n = nMax (maximum number of inner iterations), then go to Step II, and set m = m + 1; 

otherwise set n = n + 1, and return to Step III.2.  is a gap measure defined as in Eq.(3), 

which is the sum of square of difference between assigned path flow (i.e., number of travelers assigned 

to a path)  and expected path flow  for each user class, OD pair, 

and departure time interval. 

    (3) 
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5 Numerical results 
The proposed BDSUE algorithm is implemented and tested on the Irvine (California, USA) network, 

consisting of 326 nodes (70 of them signalized), 626 links, and 61 zones. A two hour (7:00AM-

9:00AM) morning peak time-dependent OD demand table is loaded to the network, with 35,304 

vehicles in the observation period (7:10AM-8:50AM). A hypothetical toll station is created on a 

portion (about 1 mile) of the I-405 westbound freeway, where three of the five lanes are converted to 

toll lanes. The OD demand assignment interval (or departure interval) is set to 1 minute. The resolution 

(aggregation interval) of the time-dependent shortest path tree calculation is set to 6 seconds, the 

simulation interval of the traffic simulator. Table 1 lists the three dynamic pricing scenarios tested in 

the experiments, and Figure 1 shows corresponding time-varying toll road usage for each scenario. 

Table 1 Dynamic road pricing scenarios 

Pricing Scenario Period 1   (7:00-
7:30AM) 

Period 2   (7:30-
8:00AM) 

Period 3   (8:00-
8:30AM) 

Period 4   (8:30-
9:00AM) 

Low $0.10 $0.20 $0.30 $0.15 

Middle $0.15 $0.25 $0.35 $0.20 

High $0.20 $0.30 $0.40 $0.25 

 

 
Figure 1 Time-varying toll road volume for different pricing levels in Irvine network 
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1 Introduction 
 

The logistics of handling returned products accounts for nearly 1% of the total U.S. gross domestic product 

([1]). During the holiday season of 2006, an estimated $13.2 billion in holiday gifts were returned to 

retailers – more than a third of the $36 billion reverse logistics market in the U.S.  

Regardless of product return type, the reverse logistics for product returns often presents unique 

challenges. Products are returned to initial collection points (e.g., retail stores and designated take-back 

sites including local convenience stores) in small quantities and thus product returns increase per unit 

shipping cost due to lack of freight discount opportunities. To create volume, returned products need to be 

aggregated into larger shipments. However, such aggregation increases product holding time at the initial 

collection point or a centralized return center which in turn increases inventory carrying costs.  
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Given this logistics dilemma, our research objectives are to: determine the optimal location of 

initial collection points (ICPs) and direct customers to designated ICPs in such a way that customer 

inconvenience is minimized; determine the optimal number of days of holding time for consolidation at 

each ICP in such a way that total inventory carrying costs are minimized; and determine the optimal 

location of a centralized return center (CRC) in such a way that total shipping costs (including 

transshipment cost) are minimized. We will place our work in the context of the ever growing literature on 

reverse logistics and discuss its contribution. 

 

2 Model Design 
 

In [2], the authors present a nonlinear integer program for solving the multi-echelon reverse logistics 

problem for product returns. We describe the model below. 

Indices: 

i = index for customers; Ii ∈  

j = index for initial collection points; Jj ∈  

k = index for centralized return centers; Kk ∈  

Decision Variables: 

jkX  = volume of products returned from initial collection point j to centralized return center k 

 
if customer i is allocated to initial collection point j  

otherwise 

 
if an initial collection point is established at site j  

otherwise 

 
T  = length of a collection period (in days) at each initial collection point  

 
if a centralized return center is established at site k, )( Kk ∈  

otherwise 

 

Parameters: 

aj = annual cost of renting initial collection point j 

b = daily inventory carrying cost per unit 

w = annual working days 

ri = volume of products returned by customer i per day 

hj = handling cost of unit product at initial collection point j  

ck = annual cost of establishing and maintaining centralized return center k 





=
,0

,1
ijY





=
,0

,1
jZ





=
,0

,1
kG
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mk = maximum processing capacity of centralized return center k in new returns per day 

dij =  distance from customer i to initial collection point j 

djk = distance from collection point j to centralized return center k 

l = maximum allowable distance from a given customer to an initial collection point 

T  = maximum length of a collection period (in days) at an ICP. This upper bound is necessary to 

assure that the return lead time is not too long for the customers 

Ci = { }ldj ij ≤|  set of initial collection points that are within distance l from customer i 

Dj = { }ldi ij ≤|  set of customers that are within distance l from initial collection point j 

( ) jkjkjkjk EdXf βα=,  unit transportation cost between collection point j and return center k 

where E is the standard freight rate ($/unit), jkα  is the freight discount rate according to 

the volume of shipment between initial collection point j and centralized return center k, 

and jkβ  is the penalty rate applied for the distance between initial collection point j and 

centralized return center k 

 










>

≤<

≤

=

22

211

11

PXfor

PXPfor

PXfor

jk

jk

jk

jk

α

αα   










>

≤<

≤

=

22

211

11

Qdfor

QdQfor

Qdfor

jk

jk

jk

jk

β

ββ  

 
Mathematical Formulation: 

Minimize 
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{ },1,0∈jZ   Jj ∈∀               (8) 

{ },1,0∈kG   Kk ∈∀               (9) 

The objective function (1) minimizes the total reverse logistics costs, which are comprised of five 

annual cost components: the cost of renting the ICPs, the cost of establishing and maintaining the CRCs, 

the handling costs at the ICPs, the inventory carrying cost, and the transportation cost. Constraint (2) 

assures that a customer is assigned to a single initial collection point. Constraint (3) prevents any return 

flows from customers to be collected at a closed ICP (M is an arbitrarily set big number). Constraint (4) 

makes the incoming flow equal to the outgoing flow at each initial collection point. Constraint (5) ensures 

that the total volume of products shipped from initial collection points to a centralized return center does 

not exceed the maximum capacity of the centralized return center. Constraint (6) preserves the non-

negativity of decision variables jkX . Constraints (7) – (9) declare decision variables ijY , jZ  and kG as 

binary.   

Given the inherent computational complexity of the non-linear program, the authors utilized a 

genetic algorithm to solve small-sized problems. To overcome these shortcomings and those of other prior 

studies, we will show how to linearize the objective function and solve much larger problems optimally. 

We will also report on the extensive computational results we performed and sensitivity analyses we 

conducted by varying return rates and assessing their impacts on optimal collection periods and the total 

reverse logistics costs. For certain special structures we determine the optimal tradeoff between inventory 

and shipping costs and develop closed form solutions. 
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Çatay, Bülent, 772

Acuna-Agost, Rodrigo, 1
Agatz, Niels, 5
Agra, Agostinho, 9, 13
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Labbé, Martine, 119, 123, 481
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