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1 Introduction

In this paper we consider the Vehicle Routing Problem with Hard Time Windows and

Stochastic Service Times (VRPHTWSST). We can describe the problem as follows. Con-

sider a directed graph G = (V,A) where V = {0, 1, . . . , n} is the node set, and A =

{(i, j) | i, j ∈ N} is the arc set. Node 0 represents a depot where a fleet of homogeneous

vehicles is initially located and Vc = {1, . . . , n} is the customer set. A time window [ai, bi]

and a stochastic service time are associated with each customer i ∈ Vc. Service time prob-

ability distributions are supposed to be known and mutually independent. A non-negative

travel cost cij and travel time tij are associated with each arc (i, j) in A. Furthermore, a

global “reliability” threshold 0 < α < 1 is given.

The VRPHTWSST consists of finding a set of vehicle routes such that: (i) Routes start

and end in node 0; (ii) All customers are served; (iii) Service at customers starts within

the given time window. Vehicles are however allowed to arrive before the beginning of a

time window. In this case vehicles must postpone the beginning of the service until the

customer’s time window opens. In no case vehicles are allowed to arrive after the end of

the time window. (iv) The global probability that the route plan is feasible with respect to

customers’ time windows once the customers’ service time becomes known, is higher than

the reliability threshold; (v) The travel distance is minimized. For convenience, we use
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the expression “success probability” of a route to indicate the probability that the route

is feasible with respect to customers’ time windows once customers’ service times become

known. This allows to rephrase (iv) as: The global success probability of the route plan is

higher than the reliability threshold.

The VRPHTWSST belongs to the broad family of stochastic Vehicle Routing Problems.

Several sources of uncertainty and different solution approaches have been investigated in

literature. Stochastic service and/or travel times have been considered for example in

Kenyon and Morton (2003); Laporte et al. (1992); Lei et al. (2012); Tas et al. (2012)

where either customer time windows are absent, or soft, or a maximal route duration is

considered. Hard customer deadlines are considered in Campbell and Thomas (2008) where

however the source of uncertainty is the customer presence. The VRPHTWSST addresses

uncertainty by means of a probabilistic constraint. With respect to previous works, it

considers a combination of (service) time uncertainty and customers hard time windows.

To the best of our knowledge, such a problem has never been studied before.

We solve the VRPHTWSST by Branch & Price (B&P). In particular we provide a new

set-covering formulation which includes a probabilistic constraint. The subproblem (SP)

is solved via Dynamic Programming (DP). In order to reduce the number of considered

states, we deploy new heuristic and exact dominance rules taking into account both route

reduced cost and success probability. This is done by developing a recursive method

to exactly compute the arrival time probability distribution at customers. Furthermore,

adapting the method in Desaulniers et al. (2008), we speed up the algorithm by alternating

DP and Tabu Search in SP. Preliminary result show that on modified Solomon’s R100 and

RC100 benchmark instances, our algorithm optimally solves all but two of the 50-customer

instances.

2 Set-covering formulation with a probabilistic constraint

Let us consider a route r defined as a sequence of nodes r = (v0, v1, . . . , vq, vq+1) where

v1, . . . , vq ∈ Vc and v0 and vq+1 represent the depot 0 and let R be the set of all possible

routes. Let air be a parameter with value 1 if route r visits customer i and 0 otherwise.

The cost associated with a route r is cr =
∑q

i=0
cvi,vi+1

. Considering binary variables xr

with value 1 if route r ∈ R is chosen and 0 otherwise, the VRPHTWSST can be formulated

as follows:

min
∑

r∈R

crxr (1)

s.t.
∑

r∈R

airxr ≥ 1 ∀i ∈ Vc (2)

Pr{ All chosen routes are successful} ≥ α (3)



xr ∈ {0, 1} ∀r ∈ R, (4)

where the objective function (1) minimizes the total travel costs. Inequalities (2) assure

that all customers are visited at least once. Observe that the assumption of non-negative

costs implies that customers are visited exactly once. Inequality (3) represents the proba-

bilistic constraint and assure that the success probability of the overall plan is higher than

the reliability threshold. Relations (4) constrain the solution vector to be binary. The

assumption that service times are mutually independent implies the property stated in the

following proposition.

Proposition 2.1 Let R′ denote a set of routes inducing a proper partition of the customers

set Vc. Given any two routes r1, r2 ∈ R′, the success probability of r1 is independent from

the success probability of r2.

Setting βr := − ln(Pr{ Route r is successful }) and β := −ln(α), Proposition 2.1 allows to

rewrite constraint (3) as:
∑

r∈R

βrxr ≤ β. (5)

3 Methodology

We solve the VRPHTWSST by B&P, i.e., by embedding Column Generation (CG) in a

Branch & Bound scheme. In CG a Restricted Master Problem (RMP) considers only a

subset of the problem columns and is iteratively solved. At each iteration a subproblem

(SP) searches for improving columns, i.e., columns with negative reduced costs. When

such columns are found, they are added to RMP. Otherwise, the optimal solution of the

continuous relaxation of the RMP of the current node has been found and branching can

be performed.

Given a current RMP solution and dual multipliers γi ≥ 0 and π ≥ 0 associated with

constraints (2) and (5) respectively, SP has to find a route minimizing the reduced cost

c̄r = cr −
∑

i∈Vc
airγi + βrπ. This is equivalent to finding a resource constrained shortest

path where limited resources include the success probability. We solve such a problem

by DP. In order to reduce the number of considered states, dominance rules allowing for

implicit pruning of partial routes are a key element.

To briefly illustrate such dominance rules, consider two partial routes r1 and r2 visiting

the same customer vi and let us call Ml(z) the probability that route l arrives at customer

vi at time t ≤ z provided that no failure occurred at previous customers, for l = 1, 2. The

following proposition, whose proof is omitted due to space limitations, holds.

Proposition 3.1 If c̄r1 ≤ c̄r2 and M1(z) ≥ M2(z) for all avi ≤ z ≤ bvi , route r1 dominates

r2 in the sense that any given extension of route r1 will always imply lower cost and higher

success probability than if the same extension was applied to r2.



A central issue for the VRPHTWSST is to efficiently compute the arrival time probabil-

ity distributions at customers Ml(z). In our algorithm, assuming discrete and independent

service time distributions, we compute exactly the distributions Ml(z) using a recursive

method based on convolution of truncated probability distributions at previous customers,

where truncations are induced by customer time windows. Hence no loss of information is

incurred.

4 Results and Conclusions

In our preliminary experiments we considered suitably modified instances of the well known

Solomon’s data sets. In particular our instances preserve customers’ location and time

windows, while demand and vehicle capacity are ignored. We considered discrete service

time distribution having symmetric support w.r.t the original value. In our preliminary

experimentation we considered several discrete triangular distributions differing in the

amplitude of the support as well as in their skewness. Preliminary results on instances

derived from Solomon’s R100 and RC100 classes show that our method optimally solves

all the 25-customer instances and 18 of the 20 50-customer instances within 5 hours of

computing time. In the presentation we will give details of our method and discuss the

results of an extensive computational campaign.
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