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1 Introduction

The stochastic vehicle routing problem (SVRP), we are dealing with, is defined on a set

of customers (𝑉 = 𝑈 ∪𝑁𝑈) and a set 𝐾 of 𝑚 vehicles. Each customer 𝑖 ∈ 𝑈 is a so-called

urgent customer and must be visited during a hard time window [𝑒𝑖, 𝑙𝑖]. Each customer in

𝑁𝑈 is non-urgent and may be visited during the planning period. A profit 𝑝𝑖 is associated

with 𝑖 ∈ 𝑁𝑈 . Each vehicle 𝑘 ∈ 𝐾 is based at the driver’s home and is available during a

limited period of time corresponding to working hours for the driver. The SVRP consists

of determining a set of 𝑚 vehicle routes of maximum profit, such that : i) each urgent

customer is visited within the associated time window; ii) Each route starts from and ends

at the driver’s home within the planning period. Moreover, we assume that the service

times and the travel times between customers are stochastic. A generic application of

the SVRP is the design of routes for technicians. Urgent customers are requiring repair

operations and are known a priori. Non-urgent customers are requiring a service (control,

meter reading, maintenance, ...). At any time, a non-urgent customer can be postponed.

To the best of our knowledge, no previous work has been reported on the problem we

just defined. Therefore, we focus here on variants of the vehicle routing problem with time

windows (VRPTW) with common characteristics. Even if the VRPTW has been adressed

in many articles, few are those taking simultaneously into account stochastic travel and

service times. Wang et Regan (2001) formulate this problem as an assignment problem

whereas Li et al. (2010) present a tabu search algorithm. In 2007, Zeimpekis et al. (2007)

associate priorities with customers (depending on profit, on time window and on travel

cost to access a customer) but consider the single vehicle case. In this framework, they
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propose a variant of the S-algorithm (Tsiligirides, 1984).

Regardless of the stochasticity, (Tricoire, 2006; Bostel et al., 2008, 2011) have been

interested in the technician routing problem with time window, multiple depots and pri-

ority within customers : distinguishing urgent and non-urgent customers. They propose

a column generation based method as well as a memetic algorithm. In 2006, Dugardin

(2006) deals with the same problem but considers stochastic travel times. However, he

does not take into account the stochasticity when building the route plan. Given a route

plan, he defines simple rules to react to the different events which may occur. Recently,

Borenstein et al. (2009) and Delage (2010) consider stochastic service times. Borenstein

et al. (2009) proceed in many steps : they first partition customers into different clusters,

then assign technicians to them. Finally, they make the borders of the technician zones

fuzzy and they improve the current solution by allocating tasks of these fuzzy areas to

adjacent areas. Delage proposes a two-step method : he first establishes a workload plan-

ning and then he deals with stochastic service times thanks to a dynamic programming

approach. Last, Cortés et al. (2010) and Souyris et al. (2012) address the VRPTW with

stochastic service times and priority within customers (corresponding to a target response

time).

2 A 3-phase method

In the variant of the SVRP considered, all customers are known a priori. Travel and

service times are stochastic but we assume that lower and upper bounds are known. As

Delage (2010), we propose a three phase method : i) determine a skeleton defined on urgent

customers ; ii) insert non-urgent customers in this skeleton ; iii) use dynamic programming

to deal with the stochasticity on travel and service times.

2.1 Phase I : Skeleton design

As we do not allow any delay for serving urgent customers, we consider that travel and

service times are maximal in this phase. Let 𝜎𝑖 be the maximal service time for customer 𝑖

and 𝜏 𝑖𝑗 be the maximal travel time between 𝑖 and 𝑗. We define the following variables. A

binary variable 𝑥𝑘𝑖 indicates if urgent customer 𝑖 is served by vehicle 𝑘. A binary variable

𝑦𝑘𝑖𝑗 indicates if customer 𝑖 is served just before 𝑗 by vehicle 𝑘, and last 𝑡𝑖 corresponds to

the time at which service starts at customer 𝑖. Then the skeleton design problem is as

follows :

min
𝑥,𝑦,𝑡

∑

𝑖∈𝑈

∑

𝑗∈𝑈

𝜏 𝑖𝑗
∑

𝑘∈𝐾

𝑦𝑘𝑖𝑗 (1)

s.t.
∑

𝑘∈𝐾

𝑥𝑘
𝑖 = 1 ∀𝑖 ∈ 𝑈 (2)



∑

𝑗∈𝑈

𝑦𝑘𝑖𝑗 = 𝑥𝑘
𝑖 ∀𝑖 ∈ 𝑈, 𝑘 ∈ 𝐾 (3)

∑

𝑖∈𝑈

𝑦𝑘𝑖𝑗 = 𝑥𝑘
𝑗 ∀𝑗 ∈ 𝑈, 𝑘 ∈ 𝐾 (4)

𝑒𝑖 ⩽ 𝑡𝑖 ⩽ 𝑙𝑖 ∀𝑖 ∈ 𝑈 (5)

𝑡𝑗 ⩾ 𝑡𝑖 + 𝜎𝑖 + 𝜏 𝑖𝑗 + 𝑀
∑

𝑘∈𝐾

(𝑦𝑘𝑖𝑗 − 1) ∀𝑖 ∈ 𝑈, 𝑗 ∈ 𝑈 (6)

𝑥𝑘
𝑖 , 𝑦

𝑘
𝑖𝑗 ∈ {0; 1} ∀𝑖 ∈ 𝑈, 𝑗 ∈ 𝑈, 𝑘 ∈ 𝐾

Constraints (2) state that every urgent customer must be served exactly once. Constraints

(3) and (4) are in-degree and out-degree constraints. Constraints (5) ensure the respect

of time windows. Finally, constraints (6) are precedence constraints.

2.2 Phase II : Insertion of non-urgent customers

Given the skeleton, we tighten time window [𝑒′𝑖, 𝑙
′
𝑖] associated with urgent customer 𝑖.

Then, we define the concept of phalanx : a phalanx is a route segment between two

successive urgent customers. The origin depot and destination depot of each vehicle are

considered as urgent customers. A phalanx has three main characteristics : an origin 𝑜𝑝,

a destination 𝑑𝑝 and a length Δ𝑝 = 𝑙′𝑑𝑝 − 𝑒′𝑜𝑝 − 𝜎𝑜𝑝 where 𝜎𝑜𝑝 is the minimum service

time for customer 𝑜𝑝. Since we aim to insert as many non-urgent customers as possible

in this second phase, we consider that travel and service times are minimal. Under this

assumption, inserting non-urgent customers in the skeleton consists in building a path

associated with each phalanx of the skeleton while ensuring for each phalanx 𝑝 that the

length of the path does not exceed Δ𝑝. The objective function in this step is double :

first, maximize the profit associated with the visits of non-urgent customers, and then

minimize the total traveled time. We decided to aggregate both objectives into a single

one corresponding to a weighted sum of these two criteria. Then, we define 𝛼 as the

weight for the travel time and 𝑃 as the set of phalanxes. Using the same notations as in

phase I, and denoting the minimal travel times as 𝜏 𝑖𝑗 and service times as 𝜎𝑖, we have

the following model where variables 𝑥𝑝𝑖 and 𝑦𝑝𝑖𝑗 are related to phalanxes and not to vehicles:

max
𝑥,𝑦

∑

𝑝∈𝑃

∑

𝑖∈𝑁𝑈

𝑝𝑖𝑥
𝑝
𝑖 − 𝛼

∑

𝑝∈𝑃

∑

𝑖∈𝑁𝑈

∑

𝑗∈𝑁𝑈

𝜏 𝑖𝑗𝑦
𝑝
𝑖𝑗 (7)

s.t.
∑

𝑝∈𝑃

𝑥𝑝
𝑖 ⩽ 1 ∀𝑖 ∈ 𝑁𝑈 (8)

∑

𝑗∈𝑁𝑈∪{𝑑𝑝}
𝑦𝑝𝑖𝑗 = 𝑥𝑝

𝑖 ∀𝑖 ∈ 𝑁𝑈, 𝑝 ∈ 𝑃 (9)

∑

𝑖∈𝑁𝑈∪{𝑜𝑝}
𝑦𝑝𝑖𝑗 = 𝑥𝑝

𝑗 ∀𝑗 ∈ 𝑁𝑈, 𝑝 ∈ 𝑃 (10)

∑

𝑖∈𝑁𝑈∪{𝑜𝑝}

∑

𝑗∈𝑁𝑈∪{𝑑𝑝}
𝜏 𝑖𝑗𝑦

𝑝
𝑖𝑗 +

∑

𝑖∈𝑁𝑈

𝜎𝑖𝑥
𝑝
𝑖 ⩽ Δ𝑝 ∀𝑝 ∈ 𝑃 (11)



∑

𝑖∈𝑆

∑

𝑗∈𝑆

𝑦𝑝𝑖𝑗 ⩽
∑

𝑖∈𝑆∖{𝑙}
𝑥𝑝
𝑖 ∀𝑆 ⊂ 𝑁𝑈, ∣𝑆∣ ⩾ 2, ∀𝑙 ∈ 𝑆 (12)

𝑥𝑝
𝑖 , 𝑦

𝑝
𝑖𝑗 ∈ {0; 1} ∀𝑖 ∈ 𝑁𝑈, 𝑗 ∈ 𝑁𝑈, 𝑝 ∈ 𝑃

Constraints (8) state that each non-urgent customer is served at most once. Constraints

(9) and (10) are in-degree and out-degree constraints. Constraints (11) enforce the length

of the route on a phalanx to be smaller than the length of this phalanx. Constraints (12)

are subtour elimination constraints.

2.3 Phase III : Dynamic programming

In this last step, we take into account the stochasticity on travel and service times and

we modify the route planning in real-time. We consider the vehicles one by one and we

assume that phalanxes are sorted the following way : phalanx 𝑝 + 1 has for origin urgent

customer 𝑜𝑝+1 = 𝑑𝑝. Each dynamic programming step corresponds to the end of service

at a customer’s location. At each step, we have a list of non-urgent customers who may

be served before the next urgent customer and two options have to be considred : either

the driver goes directly to the next urgent customer or he visits the non-urgent customer

in this list who maximizes the profit.

At step 𝑘, let 𝑣𝑘 be the customer served, 𝑡𝑘 the end of service time for this customer,

𝑉 𝑝 be the list of non-urgent customers associated with the phalanx and 𝑉 𝑝
𝑘 customers

among 𝑉 𝑝 that have not been served at step 𝑘.

We propose two different dynamic programming types. In the first one, we consider only

one phalanx and the revenue function can be stated as follow :

𝑓(𝑣𝑘, 𝑡𝑘, 𝑉
𝑝
𝑘 ) = max(𝐸[𝑓(𝑑𝑝, 𝑡𝑘 + 𝜏𝑣𝑘𝑑𝑝 , ∅)], 1 + max𝑣∈𝑉 𝑝

𝑘
𝐸[𝑓(𝑣, 𝑡𝑘 + 𝜏𝑣𝑘𝑣 + 𝜎𝑣, 𝑉

𝑝
𝑘 ∖{𝑣})])

with 𝑓(𝑑𝑝, 𝑡, ∅) = −𝛼𝑑𝑝 max(𝑡− 𝑙𝑑𝑝 , 0)

In the second one, we consider the remaining route. The revenue function is slightly

different, namely :

𝑓(𝑣𝑘, 𝑡𝑘, 𝑉
𝑝
𝑘 ) = max(𝐸[𝑓(𝑑𝑝, 𝑡𝑘 + 𝜏𝑣𝑘𝑑𝑝)], 1 + max𝑣∈𝑉 𝑝

𝑘
𝐸[𝑓(𝑣, 𝑡𝑘 + 𝜏𝑣𝑘𝑣, 𝑉

𝑝
𝑘 ∖{𝑣})])

with 𝑓(𝑑𝑝, 𝑡) = −𝛼𝑑𝑝 max(𝑡− 𝑙𝑑𝑝 , 0) + 𝑓(𝑑𝑝, 𝑡 + 𝜎𝑑𝑝 , 𝑉 𝑝+1)

2.4 Improvements

When few urgent customers have to be visited, this method may lead to obtain solutions

where vehicles are unused while many non-urgent customers remain unserved. To avoid

this pitfall, we balance workload over vehicles during the insertion of non-urgent cus-

tomers. We decompose phase II into two stages : first, insert non-urgent customers with

pessimistic estimations of travel and service times and then insert non-urgent customers

with optimistic estimations of travel and service times while keeping the assignment of

non-urgent customers to vehicles obtained in the first stage.



For the insertion of non-urgent customers, we develop a branch-and-cut algorithm

which includes four main features to speed up the solution process, namely : a heuristic

to build an initial solution, some preprocessing on variables, replacement of subtour elim-

ination constraints by ”Reachability Cuts” (Lysgaard, 2006) and addition of valid subset

elimination inequalities : let 𝑆 be a subset of customers and 𝐿𝑝(𝑆) be the length of the

shortest path from 𝑜𝑝 to 𝑑𝑝 associated with phalanx 𝑝 and serving all customers in 𝑆. If

𝐿𝑝(𝑆) > Δ𝑝, then the subset elimination inequality 𝑥𝑝(𝑆) ⩽ ∣𝑆∣ − 1 is a valid constraint.

3 Computational results

To evaluate our method, we extracted daily instances from real-life instances proposed

by Tricoire (2006). The two first phases are solved exactly using Cplex 12.4 in a branch-

and-cut framework. The last phase is combined to a simulator to generate random travel

and service times. The machine, we used for our experiments, has four 3.2Ghz CPUs

and 1Go of RAM. In the following table, the computation times in seconds are reported

for the 3-phase method where the insertion of non-urgent customers consists in a single

step (the one with pessimistic estimations). Different variants of the branch-and-cut al-

gorithm are considered. The columns headings are the followings: B&C : Branch and

Cut (with branching priorities on 𝑥 variables); P : Preprocessing on variables; H : Heuris-

tic to generate an intial solution; RC : Reachability Cuts; SEI : Valid subset elimnation

inequalities.

4 Conclusions

We proposed a 3-phase method for solving a SVRP with stochastic travel and service times.

It consists in designing a skeleton on urgent customers, inserting non-urgent customers

in this skeleton and last using a dynamic programming approach to face stochasticity

on travel and service times. Since the simplest algorithm requires large CPU times for

solving small instances, we proposed four major improvements (preprocessing on variables,

a heuristic to generate an initial solution, ”Reachability Cuts” and valid subset elimination

inequalities). Thanks to these improvements, all instances with up to 36 customers are

solved within less than 7 minutes. When larger instances are considered, most of them

remain unsolved within 2 hours. Thus, some improvements are still required. However, in

our method, we assume that there is a sufficient number of urgent customers (otherwise,

the skeleton design would be useless). Therefore, a more promising research avenue should

be to merge the first two phases of our method into a single one.



Instances Nb of cust. B&C B&C, P B&C, P, H B&C, P, H, RC B&C, P, H, RC, SEI

C4 10 4U, 14NU 1 1 2 1 1

C4 11 6U, 19NU 3 3 2 1 2

C4 12 6U, 20NU 3 3 3 3 2

C4 13 7U, 21NU 1746 53 61 36 22

C4 14 6U, 19NU 3 2 2 2 2

C4 20 7U, 21NU 233 28 26 22 16

C4 21 7U, 21NU 336 29 26 22 16

C4 22 8U, 24NU > 7200 378 379 265 131

C4 23 8U, 24NU > 7200 378 379 265 131

C4 24 7U, 21NU 56 12 9 17 11

C4 30 6U, 20NU 7522 22 22 15 11

C4 31 7U, 23NU 4129 543 148 52 27

C4 32 8U, 26NU >7200 >7200 >7200 1067 421

C4 33 9U, 27NU >7200 1750 2275 337 161

C4 34 7U, 22NU >7200 2399 752 118 32

C4 40 6U, 18NU 89 10 10 10 8

C4 41 7U, 23NU >7200 193 279 57 46

C4 42 9U, 27NU >7200 656 653 272 92

C4 43 8U, 25NU >7200 600 675 205 86

C4 44 7U, 21NU 1441 38 32 17 14

C4 50 6U, 20NU 87 7 7 8 6

C4 51 8U, 24NU >7200 143 178 92 47

C4 52 7U, 23NU 173 14 13 31 22

C4 53 8U, 24NU >7200 672 649 296 94

C4 54 6U, 20NU 36 13 7 10 10
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application à la distribution et au traitement des eaux. PhD thesis, Ecole des Mines de

Nantes, 2006.

T. Tsiligirides. Heuristic methods applied to orienteering Journal of Operational Research

Society, 35/9:797–809, 1984.

X. Wang and A.C. Regan. Assignment models for local truckload trucking problems with

stochastic service times and time window constraints. Transportation Network Modeling,

1771:61–68, 2001.

V. Zeimpekis, I. Minis, K. Mamassis, and G.M. Giaglis. Dynamic management of a

delayed delivery vehicle in a city logistics environment. In V. Zeimpekis, C.D. Tarantilis,

G.M. Giaglis and I. Minis, editors, Dynamic Fleet Management, chapter 9, pages 197–

217. Springer, 2007.


