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1 Problem Description

We study routing problems through networks with deadlines imposed at a subset of nodes,

and uncertain arc travel times characterized by a distributional information set incorpo-

rating ambiguity. Our model is static in the sense that routing decisions are made prior

to the realization of uncertain travel times.

To incorporate ambiguity, instead of defining an exact probability distribution P for

an arc travel time, we assume its true distribution lies in a family of distributions denoted

by F, which is characterized by some descriptive statistics, e.g., mean and bound sup-

port. The goal is to find optimal routing policies such that arrival times at nodes respect

deadlines “as much as possible”, in a mathematically precise way under an appropriately

defined performance measure which takes into account such distributional uncertainty

assumptions.

Our model can be applied to transportation networks, for example, for delivery service

providers to route their vehicles, where multiple vehicles and uncertain service time could

be incorporated, or for an individual to make his/her travel plan.



2 Models and Solutions

We consider a directed strongly connected network G = (N ,A), where N = {1, . . . , n}
is the set of nodes, nodes 1 and n representing an origin and a destination, respectively,

and A is the set of arcs. The set I ⊆ N represents the nodes with deadline requirement.

Without loss of generality, we assume that node n ∈ I. We use τi to represent the

deadline or target time prespecified at node i ∈ I (an input), and t̃i to be a random

variable, denoting the real arrival time at node i ∈ N , from a specific routing policy.

2.1 Stochastic shortest path problem with deadline

Here we consider a special case where we have only one node with a deadline, node n,

i.e. I = {n}. We first define the worst-case certainty equivalent (WCE) arrival time as

a deterministic amount of travel time that an ambiguity-averse individual would view as

equally acceptable as the uncertain arrival time t̃n under an exponential disutility with a

given risk tolerance parameter α > 0, i.e.,
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Our main proposed performance measure, called lateness index, represents the minimum

risk tolerance parameter α such that the WCE arrival time is no larger than its deadline:

ρτn
(
t̃n
)

= inf
{
α ≥ 0

∣∣Cα,F (t̃n) ≤ τn} .
The problem is to find a path from 1 to n that minimize the lateness index at n.

2.2 Stochastic routing problem with deadlines

In order to consider the whole network performance and account for the inherent relation-

ships between arrival times at nodes, we extend the lateness index to the overall network.

Let τ = (τi)i∈I , t̃ =
(
t̃i
)
i∈I , and α = (αi)i∈I . The composite lateness index for the

overall network is defined as ρτ
(
t̃
)

: V |I| → [0,+∞):

ρτ
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= inf
{
ϕ(α) | Cαi,F

(
t̃i
)
≤ τi, αi ≥ 0, ∀ i ∈ I

}
,

in which the function ϕ (α) is non-decreasing and convex in α ≥ 0, with boundary condi-

tions ϕ (0) = 0, and lim
αj→+∞

ϕ((α1, · · · , αj , · · · , α|I|)
′) = +∞ for all j ∈ I.

The problem is to find a route from 1 to n going through each node with deadlines in

such a way as to minimize the composite lateness index.

2.3 Solution procedures

We can formulate our stochastic routing problem with deadlines as a mixed integer nonlin-

ear optimization problem. For the special case of the stochastic shortest path problem and



under the assumption that arc travel times are independent, we prove that the problem is

polynomially solvable. We formulate the general problem using a multi-commodity flow

formulation and solve it using Benders’ decomposition, in which the Lagrangian relax-

ation technique is used to calculate the sub-gradient for the master problem, and classical

convex algorithm is employed to solve the subproblem.

2.4 Computational results

We first conduct a comparative study on the stochastic shortest path problem. We con-

struct a randomly generated network with 300 nodes, around 1500 arcs for each instance,

and find the optimal paths under several selection criteria: minimizing average arrival

time, maximizing arrival probability, maximizing punctual ratio, and maximizing price of

robustness (Bertsimas and Sim, 2003). With the out-of-sample simulation, we conclude

that among 50 instances we generate, our lateness index model performs relatively well in

terms of lateness probability, expected lateness, value at risk, and computation time.

We also provide a computational study on the general routing optimization problem,

which in total has |A||I| + |A| + |I| binary variables, and O(|I||A|) constraints. The

program is coded in python and run on a Intel Core i7 PC with a 3.40 GHz CPU by

calling CPLEX 12 as ILP solver. We summarize the computation time by varying three

key factors: |N |, |A|, and |I|. Table 1 provides the statistics of computation time for each

setting with randomly generated 50 instances.

G = {N ,A} |I| = |N | |I| = 2

Average Max Min STDEV Average Max Min STDEV

|N | = 10, |A| = 30 0.38 1.18 0.18 0.20 0.13 0.30 0.06 0.05

|N | = 10, |A| = 50 5.53 40.21 0.48 7.25 0.19 0.77 0.07 0.11

|N | = 20, |A| = 60 3.74 15.25 1.14 2.72 0.30 0.60 0.22 0.07

|N | = 30, |A| = 90 28.89 197.23 3.01 37.96 0.64 1.06 0.47 0.11

|N | = 40, |A| = 120 481.14 4250.57 9.62 827.38 0.42 3.23 0.15 0.46

Table 1: Computation time (sec) on routing optimization problem with different settings.

When the number of deadline nodes, i.e., |I| is relatively small, our algorithm per-

forms quite efficiently. In addition, by setting the computation time limit as 2 hours, our

algorithm could solve a network with 60 nodes, 180 arcs when I = N , and a network with

400 nodes, 2000 arcs when |I| = 2.

3 Related Work

The stochastic variant of routing problem has attracted increased attention due to the

intrinsic uncertainties arising in real-world problems. However, only few studies consider

the routing problem with deadlines in the presence of uncertain travel time.



Laporte et al. (1992) consider a multiple vehicle routing problem with uncertain travel

time and service time. Each vehicle has a targeted time to complete the route. On the

premise of additive probability distributions of both travel and service times, they propose

a chance constrained model by ensuring the probability of a deadline violation is less than

a threshold, and a stochastic programming model by penalizing that lateness.

Kenyon and Morton (2003) mainly focus on the length of the longest route traveled

by multiple vehicles and develop two versions of the model by minimizing the expected

completion time or maximizing the probability of completion within a given deadline, and

finally solve the model by branch-and-cut scheme.

Chang et al. (2009), with the normal distribution assumption, investigate the stochas-

tic routing problem with time windows by guaranteeing the probability of violating the

demanded latest time is no larger than a threshold. Russel and Urban (2008) study the

problem with time windows by assuming the travel time follows a shifted gamma distri-

bution. They minimize some functions of penalty incurred from the deviation of the time

window, and develop tabu-search metaheuristic to solve the problem.

To achieve robust performances, Montemanni et al. (2007) formulate the travel times

as a range of possible values, and solve the problem by minimizing the robust deviation.

Finally, we refer the readers to Brown and Sim (2009) for the conceptual framework

of satisficing measure in the context of target-based decision making.
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