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1 Introduction

In transportation optimization problems, deriving an accurate analytical form of the objective

function is often difficult. This is due to the nonlinearity of driver choices, as well as interactions

between vehicles on the road. As a result, this problem is often circumvented using traffic simula-

tors. These simulators make use of various driver behavior models to replicate the real-life driving

behavior of drivers on the road, while also keeping track of many quantities of interest of every

vehicle in the network to intricate detail [1], such as travel time, fuel consumption, number of stops,

etc. The level of detail provided by the traffic simulators have thus made them popular tools for

obtaining stochastic estimates of the performance of predetermined transportation strategies.

However, the high level of detail in traffic simulators comes with a challenge – they tend

to be computationally expensive to evaluate. This is particularly so when dealing with a large

network involving many vehicles. Furthermore, in a simulation-based optimization (SO) problem,

large networks can also mean more variables to optimize, which leads to an exponential increase

in computational demand [2]. Hence, given the computational cost of running a simulation, an

optimization framework that obtains a good solution with fewer simulation evaluations is desirable.

The SO problems we consider here have simulation-based, continuous and general (e.g. non-

convex) objective functions, with unknown analytical form. The constraints are assumed analytical

and differentiable. In such cases, it is crucial for the optimization algorithm to balance exploration

and exploitation in order to find a good solution. Exploration involves sampling points to improve

knowledge of the feasible region, while exploitation involves using that knowledge to identify better



solutions [3]. Bayesian optimization is a global optimization framework which tries to balance the

exploration-exploitation tradeoff [4], and has become a popular approach recently for a wide range

of problems, including those in the field of transportation [5]. It has been shown that Bayesian

optimization techniques remain efficient in terms of the number of simulation evaluations needed.

Our past work in SO has focused on the formulation of metamodels, which combine information

from analytical models and the simulator, to approximate the objective function [6, 7]. However,

these past approaches do not explicitly try to balance exploration and exploitation. For instance,

a general-purpose sampling strategy (e.g., uniform random sampling) is often used for exploration.

There is potential to improve the performance of SO algorithms by exploiting the structural infor-

mation of analytical network models to design suitable exploration-exploitation techniques.

To address these issues, we formulate a methodology that combines ideas from multi-output

Gaussian process (GP), Bayesian optimization and analytical network modeling [6, 7]. Bayesian

optimization provides a way to balance exploration and exploitation when selecting the next point

to evaluate. At the same time, the multi-output GP accounts for the inaccuracies in the analytical

model, which are reflected in the prediction uncertainty of the simulator estimate. Also, since the

multi-output GP exploits structural information of the analytical model through its correlation

with the simulator, this means that even if the model does not directly estimate the objective

function, but instead provides an estimate of another correlated measure, the model can still assist

the optimization. This opens up the possibility of using a wide range of analytical models for

optimizing a given objective function. For example, two models that are accurate only in different

regions of the search space could theoretically supplement one another in predicting the simulator

output. Such a framework for optimization can be applied to a variety of transportation problems.

The exploitation of structural information of the analytical model can be explained by Figure 1

[8]. In Figure 1a, function 3 is to be minimized. It is anti-correlated (resp. correlated) to function

1 (resp. function 2). If observations from functions 1 and 2 are not used in the GP predictions for

function 3, the prediction uncertainty in regions without observations would be large. This is shown

Figure 1: 1-dimensional illustration of how multi-output works. (a) Given three correlated functions, where

function 3 is to be minimized, (b) independent GP predictions lead to greater uncertainty for function 3

in regions without observations, whereas (c) multi-output GP predictions rely on observations from the

other two functions to reduce prediction uncertainty for function 3. Figure adapted from [8].



in Figure 1b. Observations are denoted by dots, and the GP prediction mean and uncertainty for

function 3 are represented by the dashed line and shaded area respectively. The line at the bottom

of the plot denotes the acquisition function (more details in Section 2.3), where it is shown that

the maximum does not correspond to the minimum of the actual function. On the other hand,

using a multi-output GP, observations from functions 1 and 2 can help with the predictions in the

region without observation for function 3. This is illustrated in Figure 1c, where the prediction

uncertainty (shaded area) is smaller, and the prediction mean (dashed line) better represents the

actual function. The maximum of the acquisition function is also close to the actual minimum.

In the following section, we formulate the problem and proposed method in more detail. In

Section 3, we discuss the empirical set up used to validate the proposed approach.

2 Methodology

2.1 Problem Formulation

Transportation SO problems can generally be formulated as:

min
x∈χ

f(x, z; p) ≡ E[F (x, z; p)] (1)

where f is the objective function, F represents the stochastic output of a simulation run, x is

the vector of decision variables, χ is the feasible region, z denotes the endogenous variables and p

represents the deterministic exogenous parameters.

The proposed methodology is relevant for a variety of continuous SO problems. Here we

illustrate its use with a large-scale network-wide traffic signal control. The objective function f

can be taken to be the expected trip travel time, and the decision vector x = (x1, . . . , xd) consists

of the green splits (i.e. normalized green times) for each signal phase. Then, z would account for

route choice decisions, departure times, etc.; p would account for external traffic demand, traffic

network topology, cycle times, offset, etc.

2.2 Multi-Output Gaussian Processes

Single-output GPs are a class of models that attempt to approximate a function with a scalar

output (f : χ → R). GPs are completely specified by a mean function m(x) and a covariance

function k(x,x′). Given a set of N previously evaluated points X = [x1, . . . ,xN]T and their

function estimates y = (y1, . . . , yN ), the GP estimate at a test point x∗ is normally distributed

with a predictive mean µ(x∗) and variance σ(x∗) given by:

µ(x∗) = kT [K + σ2
nI]−1(y −m(x∗)) (2)

σ2(x∗) = k(x∗,x∗)− kTK−1k (3)

k = [k(x∗,x1), . . . , k(x∗,xN)] (4)



and K is the covariance matrix for all pairs of training points in the set X. Here, we assumed

that the function outputs y contain an additive i.i.d. Gaussian noise with variance σ2
n for the nth

training point. We refer the reader to [9] for more details on single-output GP regression.

Multi-output GPs extends the above framework to functions with vector-valued outputs (f :

χ → RT ). It can also model correlated functions, by using the correlation to reduce uncertainty

on the estimates. This is done by defining the multi-output covariance function k((x, t), (x′, t′)) to

denote the similarity between outputs ft(x) and ft′(x
′). Given k((x, t), (x′, t′)), the standard GP

framework can be applied to obtain the predicted means and variances for the various outputs.

2.3 Acquisition Function

In the Bayesian optimization framework, given the updated GP model, the acquisition function

serves as a means to guide the search for the optimum. The acquisition function is usually defined

in a way that tries to balance exploration and exploitation. It has a high value in regions where

the predicted mean is small (in a minimization problem), and also in regions where the prediction

uncertainty is large and there is significant probability that the optimum could lie in those regions.

The point to evaluate by simulation is then chosen by maximizing the acquisition function.

The expected improvement (EI) criterion [4] is a popular choice of acquisition function, and it

has been shown to be effective in many studies. Hence, we will use it in this study. It is defined as

EI(x) = (ybest − µ(x))Φ(Z) + σ(x)φ(Z) (5)

Z =
ybest − µ(x)

σ(x)
(6)

where ybest is the simulator output of the current best point; φ(·) and Φ(·) denote the pdf and cdf

of the standard normal distribution respectively.

3 Empirical Analysis

We first evaluate the performance of the Bayesian optimization framework using multi-output GPs

on a simple toy network, consisting of just 4 controlled intersections and 8 signal phases. It is used

to show that multi-output GP is able to leverage the analytical model to find a good solution with

fewer simulation evaluations, compared to using an independent GP.

Furthermore, we consider a case-study using a simulation model of Midtown Manhattan. The

Midtown Manhattan model is a large-scale network, and constitutes a high-dimensional optimiza-

tion problem in the area of simulation optimization. It consists of 97 controlled intersections with

a total of 259 signal phases. Using this simulation model, we compare the performance of Bayesian

optimization with other SO methods, in terms of the quality of proposed solutions, as well as the

number of simulation evaluations required to obtain those solutions.
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1 Introduction

Urban mobility has witnessed significant changes in recent years via the rise of smart mobility

services such as dynamic ridesharing [1]. This unprecedented growth in the mobility offering raise

concerns as it brings more vehicles on the roads, hence more congestion and more environmental

pollution. City authorities are well aware of this problem and start to introduce legislation to

control this growth, such as capping the number of licences awarded to ride-hailing vehicles [2].

Such measures seem intuitively of good will but it remains to be seen how they affect the level of

performance, such as the service rate for the customers. In this work, we first present our solution

to solve city-scale ridesharing and then present an analysis on how the fleet vehicles, if allocated

in a static way, may lead to decreasing the quality of service.

We provide a solution for solving the centralized real-time city-scale ridesharing problem, with

similarities but differences with the recent work of [3], by mapping incoming batch of requests with

available vehicles, in a four-step procedure: (i) selecting candidate vehicles to serve requests, (ii)

computing serving costs meeting ridesharing constraints by solving a DARP problem, given those

computed costs (iii) performing optimal assignments of requests to vehicles, and (iv) performing

rebalancing of vehicles, if needed. In particular one contribution of our work is that we highlight

that linear assignments can perform equally as good as more elaborated assignments, when run at

a high enough sampling rate. This is particularly interesting as it enables the possibility of solving

linear assignment problems involving multiple companies in a privacy-aware fashion, see e.g. [4].

Then, we extend the analysis to a multi-company scenario where each company has a given number

of operating vehicles.



2 City-scale ridesharing solution

Given a set M of m customer trip requests at time t and a ridesharing fleet C � t1, . . . , nu of

vehicles, each with capacity Ci, we are interested in determining ridesharing solutions in real-

time. Our ridesharing service aim at providing an assignment of requests (customers) to available

vehicles and their correspondent routes, according to some optimization criteria. Available vehicles

are those that can pick up customers, while complying with the time constraints associated with

the requests, and without exceeding their seat capacity.

We express the ridesharing service as an optimization engine, which is run at specific time periods

tk (k � 0, 1, 2, . . . ). At each such time instant tk, the service processes the requests submitted

by customers in the time window ptk�1, tks, and find optimal vehicle-costumer assignment and

correspondent routes. The trip requests include the origin and destination points, the desired time

of departure, the maximum waiting time, detour time and journey time. Our algorithm leverages

the following feature: at each optimization run, at most one new request (customer) is assigned

to a vehicle. This design choice enables us to reduce the ridesharing optimization problem into a

sequence of linear assignment problems, which can be solved very efficiently.

Hence, the ridesharing logic is run at every sampling period tk and works as follows:

1. It obtains the customer requests submitted during the time interval rtk�1, tkq.

2. It passes requests to the context mapping module that returns at most 2maxn vehicles per

request (maxn being a scalar).

3. It asks insertions costs to the vehicles returned by the context mapping module (DARP).

4. It runs the linear assignment problem with the updated costs.

5. It sends to customers and vehicles the assignments and their corresponding routes.

6. If some customers cannot be serviced, it calls an internal rebalancing module, which runs the

logic again from (2. to 5.) with loosen time constraints and for idle vehicles only.

We test our approach on two datasets: the New York City dataset [5] and the Metropolitan

Melbourne dataset [6] (instance M1). Some results are highlighted on Table 1 and 2. CpΣq denotes

the cost function used in [3], h denotes the sampling rate (time interval), SR the percentage of

requests satisfied, y and n the waiting and detour time in the presence and absence of a rebalancing

component. Table 1 reports comparable results with the literature while much lower computational

times. Table 2 shows interesting results in the context of a much wider area and for scheduled (not

instantaneous) requests.



Table 1: NYC results for the entire demand and comparison with [3] (indicated by �).

vehicles c maxn cost h SR waiting waiting detour detour comp. time

[s] [%] y [min] n [min] y [min] n [min] [s]

2000 4 25 TD 10 92.10 3.95 3.88 3.41 3.40 10.10

3000 4 25 TD 10 99.87 3.31 3.23 2.60 2.59 7.87

�, 2000 4 - CpΣq 30 93.70 - 3.28 - 3.29 57.55

�, 3000 4 - CpΣq 30 97.91 - 2.70 - 2.28 51.55

Table 2: Results for the Melbourne Metropolitan Area dataset.

vehicles customers c maxn cost h SR detour detour comp. time

[%] [min] [%] y [min] n [min] [min]

600 100.0 4 10 TD 2 75.68 5.90 5.91 1.99

800 100.0 4 10 TD 2 96.06 5.58 5.58 2.61

1000 100.0 4 10 TD 2 100.00 4.87 4.87 2.96

3 On regulating numbers of operating vehicles

In the New York City setting, we consider the case of e.g. 2 companies, sharing the whole customer

set in Manhattan. In such a context of competition, we are facing this problem: the more cars the

companies have on the roads, the better service they can offer to the users, and the more market

share they will get, as they guarantee better quality of service, and gain reputation. Hence there

is a need to limit the number of operating vehicles. A first step in this direction, albeit primitive,

is to cap the number of ridesharing licenses, in the light of the recent article [2].

Therefore, we investigate the situation in which the central agent enforces a total number of licenses

per company, and as a result allocates the customers to the companies based not only on a global

welfare cost (our cost function TD) but also on a defined market share, for instance proportional

to the number of issued licenses for the companies.

In this scenario, the two companies have defined market share (say 25% and 75%) and the city

authority enforces it via carefully engineering the cost function, so that the two companies expect

to receive 25% and 75% of the city customers, respectively. As an example, we consider the scenario

at a given time instant tk of company 1 having 100 operating vehicles with 75% of market share,

while company 2 having 50 operating vehicles and with 25% of market share.



Table 3: Comparison between optimal and market share solutions; market shares: 75% and 25%.

vehicles c maxn method h SR waiting waiting detour detour

[s] [%] y [min] n [min] y [min] n [min]

150 4 8 TD 10 95.75 3.54 3.43 2.53 2.53

100+50 4 16 TD’ 10 89.49 4.83 4.72 4.76 4.76

Table 3 reports the performance of the scenario with respect to a centralised setting -one company

only. As we see, performance deteriorates on all the metrics (even if we augment maxn to 16). In

order to obtain a similar level of performance to the monopolistic case, company 1 will have to

increase its fleet size, because company 2 will most likely not reduce its fleet, unless enforced to.

As a result, the total fleet size will increase, as well as the number of vehicles on the roads and

traffic congestion. Consequently, the engineering of the cost function in a static way to ensure a

fair distribution of the users across the companies is not a good one. Instead, the city authorities

must look into adapting the operating fleet size of the companies to the time-varying demand, i.e.

number of requests per time interval rtk�1, tkq. This underlines the needs for strong policies by

city authorities to regulate the number of cars utilized by ridesharing companies, in a real-time

fashion.
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1 Introduction

Fuel and fuel-related expenses constitute a major part of the railroad companies operating costs.

They are the second largest operational cost source of the railroad companies in the US [1] and the

third largest in Australia [2]. Therefore, even small improvements in fuel management of railroad

companies may contribute to annual savings of millions of dollars [3].

Locomotive fuel management usually consists of three interrelated problems [4]. The first

problem arises due to the fact that fuel prices vary at different locations. Therefore, fuel plans

might be optimized in a manner that the locomotives be refueled as much as possible at the

“cheap” stations, possibly more than the amount that it is required to reach next station, to reduce

the need for refueling at the “expensive” stations. This strategy is called tankering. Moreover,

each refueling operation incurs a fixed cost. Therefore, the first two problems are scheduling the

refueling operations of each locomotive and determining the amount of each refueling operation.

By considering only these two problems, the fuel management of a fleet of locomotives can be

decomposed to each locomotive and be solved separately as a variant of the Lot Sizing Problem.

Railroad companies have to pay a contract fee to use a fuel station during the time horizon.

Hence, location decisions should be also taken into account. Considering each of these problems

separately generally results in sub-optimal solutions. The integerated problem of these three sub-

problems first introduced and solved by a Lagrangian framework by Nourbakhsh and Ouyang [3].



The majority of the literature on this problem is motivated by an INFORMS Problem Solving

Competition [4, 5, 6].

In networks that have long distances between stations relative to the locomotives’ tank capacity,

the tankering strategy is limited since the tanks capacity may not allow many successive trips.

Railroad companies employ inline refueling, operated by inline tanks, to overcome this problem.

An inline tank is a large fuel reservoir which connects to the locomotives and can refuel them

during the trip while they are moving. Since the inline tanks are a substantial investment, the

number of available inline tanks is limited and thus they should be managed efficiently. Although

inline tanks are already in use in the railroad industry, to the best of our knowledge, there is no

mathematical approach to plan the inline refueling. In this paper, we introduce the problem of

locomotive fuel management with inline refueling (LFMIR) and discuss the employed mathematical

modeling approach and the problem complexities.

2 Problem Statement

Given a schedule of the trains and the locomotives over a specified time horizon and different fuel

prices at different stations, LFMIR consists in determining the fuel stations to use, the schedules

and amounts of refueling operations of the locomotives and inline tanks, and fuel plans of the

locomotives and the inline tanks as well as the assignment of the inline tanks to the locomotives

and the amount of inline refueling operations. Locomotives must not run out of fuel during their

journeys between two stations. We also consider a variant of LFMIR, called “iLFMIR”, in which

determining the location of using fuel stations and scheduling the refueling operations are ignored

to keep only binary variables that are related to inline tanks.

3 Methodology

The locomotive fuel management without inline tanks has been proved to be NP-hard [5]. LFMIR

is also NP-hard since it is a generalization of the problem without inline refueling. Moreover,

iLFMIR is also NP-hard. This is interesting, as the iLFMIR is simply a Min-Cost Network Flow

problem to which inline tanks have been added.

Corollary 3.1 LFMIR is NP-hard.

Theorem 3.1 iLFMIR, obtained by ignoring the decisions on the location of using fuel stations

and the scheduling refueling operations from LFMIR, is NP-hard.

We propose a Mixed-Integer Program based on the representation of the problem on a time-

space network to solve the LFMIR. In the proposed time-space network, each arc and each node



represent a different activity, such as refueling, making a trip, and inline refueling. Although

the network components correspond to different activities, from the modeling point of view, the

arcs transfer the fuel flow, and the nodes conserve and distribute the fuel flow. The decisions on

the location of stations, scheduling refueling operations, and the assignment of the inline tanks

correspond to the decision of using an arc. Therefore, the proposed MIP consists of three parts,

namely, a Network Design problem, a Network Flow problem, and the linkage of these problems.

4 Results

The proposed model is applied on a real-world case in Australia and the INFORMS Problem

Solving Competition case [4]. The MIP is implemented in Python using CPLEX 12.8.0. The

results are discussed in two directions; the economic impacts of using the proposed models and the

computational demonstrations of the complexity of the problem.

4.1 Economic Impacts

The results on the Australian and the INFORMS cases suggest significant cost-savings in com-

parison with the current practice of business and also the literature optimization models. For the

Australian case, using the MIP for iLFMIR results in about $110,000 weekly savings in comparison

with the current practice, which is remarkable with respect to the required investment on the inline

tanks. Moreover, the proposed models improve the company’s operation in terms of dealing with

robustness. The INFORMS instances are too complex to be solved by our approach for more than

three inline tanks. Therefore, we divide this case into smaller tractable instances. The results on

the instances show about $32,000 fortnightly savings on average in comparison with the literature

optimization models which do not consider inline refueling.

4.2 Complexity Numerical Analyses

In addition to proving the NP-hardness of the problem, we show that the resulting MIP model

is significantly harder to solve by CPLEX when there are inline tanks available. Table 1 shows

the results by CPLEX in 12 hours of computing time. For LFMIR, as the number of inline tanks

increases from 3, the cost of the best integer solution increases due to the significant optimality

gaps. Moreover, even with 1 inline tank, the optimality gap is more than one percent which is

considerable from the cost point of view. As Table 1, the same phenomenon occurs even if we

solve iLFMIR as the inline tank fleet size increases from 5, which shows the growth of complexity

due to the inclusion of inline refueling. The same results are also observed for the Australian case.

Experiments with different LP solution methods demonstrate that it is very time consuming just

to solve the root relaxation of the problem.



Table 1: Computational results for 12 hour runs on an instance of the INFORMS data

Fleet Size iLFMIR LFMIR

Total Costs ($) Optimality gap (%) Total Costs ($) Optimality gap (%)

0 10,863,126 0.00 11,399,804 0.04

1 10,794,739 0.01 11,307,349 1.18

2 10,744,647 0.03 11,248,985 1.50

3 10,703,411 0.05 11,251,773 2.06

4 10,672,793 0.07 11,415,804 4.00

5 10,659,298 0.19 11,494,898 4.99

10 11,318,609 6.66 12,161,406 100.00

15 11,318,609 7.01 11,777,626 100.00

20 11,318,609 7.18 11,782,376 100.00

5 Conclusions

In this paper, we introduced a new class of the fuel management problems of a locomotive fleet.

We also prove that LFMIR and its relaxed version are NP-hard. We employed a time-space

network structure to develop a Mixed-Integer Program to tackle this problem. Based on the

case studies, we presented results in two directions. First, the economic impacts of the proposed

models are investigated to demonstrate the potential benefits. Second, our experiments show

the problem is too complicated for current off-the-shelf solvers. For future research, we intend

to propose specialized solution algorithms for the problem. Inline refueling follows some specific

rules. Therefore, the other research avenue is to incorporate these rules to mimic the inline refueling

behavior. Finally, incorporating strategic decisions on inline tanks fleet size and establishing new

stations is another research direction. Strategic decisions are for the longer time horizons in which

the problem parameters cannot be assumed deterministic. Therefore, incorporating uncertainty is

required to consider the strategic decisions.
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1 Introduction 
 

Simulation optimization (SO) refers to, without loss of generality, the minimization of an objective func-

tion subject to a set of constraints, both of which are evaluated through computer simulations. It is an 

active area of research particularly in transportation engineering where simulation-based dynamic traffic 

assignment (SDTA) models have been widely developed and used for solving various network design 

problems (NDPs). See [1] for a recently developed SDTA model of Melbourne, Australia as well as a 

state-of-the-art survey. 

SO per se is not a new concept, see [2] for a recent decent overview. Using SO to solve trans-

portation NDPs is not new either, see [3, 4]. The major concern, however, is the computational efficiency 

associated with an SO method since the formulation of a typical NDP in a large-scale SDTA environment 

is often characterized by a computationally expensive objective function, a high-dimensional decision 

vector comprising multiple decision variables, and simulation noise [5]. Also, given the complex formu-

lation, there are likely multiple local minima from which an SO method needs to escape in order to locate 

the global optimum, or, more generally, one of the global optima if more than one exist. 

Therefore, this study aims to consider and compare different computationally efficient global 

SO methods for solving expensive transportation NDPs. Specifically, we apply different SO methods to 

a developed benchmark toll level problem (TLP) and investigate their comparative performance. 

 

2 SO methods 
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In this study, we are interested in continuous NDPs and hence discrete SO methods are not considered. 

To the best of our knowledge, different continuous SO methods to date can be classified into seven broad 

categories: (i) random search or metaheuristics, (ii) response surface method (RSM), (iii) stochastic ap-

proximation (SA), (iv) direct search, (v) estimation of distribution algorithms (EDAs), (vi) Lipschitzian 

optimization, and (vii) feedback control. Given an expensive TLP to be solved in this study, random 

search and EDAs are left out because of their demanding requirement of a large number of function 

evaluations. Direct search as a local optimizer is not considered either as we are interested in global 

optimizers. 

We consider and compare the most representative and perhaps the best performing SO method 

for each of the four identified categories: (i) regressing kriging (RK) for RSM [5], (ii) simultaneous 

perturbation SA (SPSA) for SA [6], (iii) DIRECT (DIviding RECTangles) for Lipschitzian optimization, 

and (iv) proportional-integral (PI) controller for feedback control [7]. To reduce simulation noise of a 

stochastic traffic simulator commonly rendered by different random seed numbers, we can couple stand-

ard fixed- or “smarter” variable-number sample path optimization [8] with the above methods. However, 

computer simulations often display what one might call numerical noise as well, i.e., the objective func-

tion evaluations tend to scatter about a smooth trend rather than lying on it [9]. Due to the space con-

straint, we only present a summary of the four SO methods without full mathematical details. 

 

Table 1 Summary of the four SO methods 

Method Mechanism 

Capabilities 

Overheads 
Objec-

tive 

Con-

straint 

RK 
Approximating the simulation input-output mapping 
by a limited number of sample points and a mathemat-

ical construct 

Any  Any  
Parameter estimation and 

infill point sampling 

SPSA 
Using finite-difference approximation to enable gradi-
ent descent 

Any  Any  Parameter tuning 

DIRECT 
Diving the parameter space into (hyper)rectangles 

based on sample point evaluations 
Any  Any  

Potentially optimal (hy-

per)rectangle identifica-
tion 

PI 
A trial-and-error method to gradually reduce the error 
from the set point 

Set 
point 

 Bound  Parameter tuning 

 

3 Benchmark TLP  

 

Consider the following benchmark TLP: 

 

 
min
𝛕∈Ω

E [∑|𝐾ℎ − 𝐾cr|

𝑚

ℎ=1

] (1) 

s.t. 

 𝐾ℎ = 𝐷𝑇𝐴(𝛕), ℎ = 1,2, … ,𝑚 (2) 

 Ω = {𝛕|𝛕min ≤ 𝛕 ≤ 𝛕max} (3) 

 

where 𝛕 = [τ1, τ2, … , τ𝑚]
T is the toll rate decision vector for the 𝑚 tolling intervals,  𝐾ℎ is the average 

network density within the ℎ-th tolling interval, 𝐾cr is the critical network density identified from the 
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network fundamental diagram (NFD), E[⋅] is the expectation operator, 𝐷𝑇𝐴(⋅) is the black-box function 

of the simulation model, and Ω is the feasible set of toll rates with 𝛕min being the lower bound and 𝛕max 

being the upper bound. The objective function aims to minimize the expected summation of the absolute 

difference between 𝐾ℎ and 𝐾cr for the 𝑚 tolling intervals. As such, the network is pricing-controlled 

near the critical network density without entering the congested regime of the NFD, thereby achieving 

the maximum network productivity [10]. 

 

4 Preliminary results 

 

Figure 1(a) illustrates the SDTA model used in this study while Figure 1(b) shows the simulated NFD 

of the pricing zone (PZ) over the 6-10 AM peak period. 𝐾cr is hence set at 15 vpkmpl and the tolling 

period is set between 8 and 9 AM with two 30-min tolling intervals, i.e. 𝑚 = 2. The pricing regime 

investigated is a linear distance toll, i.e., the toll price is linearly proportional to the distance traveled 

within the PZ. To accelerate and simplify the comparison, we only use a same random seed number. 

 

  
(a) (b) 

Figure 1 (a) The extracted sub-network from the greater Melbourne area model where the inner rectangle 

represents the PZ, and (b) simulated NFD of the PZ without pricing 

 

Figure 2(a) shows the simulated NFD of the PZ after applying the optimal toll rates obtained 

from the PI method. Convergence is achieved with only around 10 function evaluations as shown in 

Figure 2(b). There is, as expected, a large hysteresis loop in the NFD, which is fully discussed in [7]. 

Figure 2(c) illustrates, on one hand, the search path of the PI method, and, more importantly, the numer-

ical noise - there is a wide range of function values in the relatively small global optimal region. Figure 

2(d) shows the contour plot for the DIRECT method with over 500 function evaluations while Figure 

2(e) shows the constructed response surface by the RK method with far fewer 50 function evaluations. 

Although both methods successfully pinpoint the global optimum, the DIRECT method is much more 

computationally expensive probably due to the presence of high numerical noise - see the highly irregular 

and non-smooth contours. Figure 2(f) displays the search path of the SPSA method which successfully 

steps into the global optimal region within 50 function evaluations but somehow jumps out of it and 

moves away. We are currently performing further numerical tests to finalize our findings. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2 (a) Simulated NFD of the PZ after applying the optimal toll rates obtained from the PI method, 

(b) convergence of the PI method, (c) numerical noise along the search path of the PI method, (d) contour 

plot for the DIRECT method, (e) constructed response surface by the RK method, and (f) search path of 

the SPSA method 

 

5 Conclusion 

 

Four computationally efficient SO methods are investigated and compared in this study on a developed 

benchmark TLP. Results so far suggest that the PI method is most suited for solving simple problems 

with a set point objective and bound constraints, while the RK method is the best performing solution to 

more complex problems. 
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1 Introduction

Shared connected and autonomous vehicles (SCAVs) are an emerging mobility mode which com-

bines the lower price of public transit with flexibility and availability of on-demand vehicles. SCAVs

are capable of deploying dynamic ride-sharing strategy to service multiple traveler trips simultane-

ously resulting in reduction in the fleet size, vehicle miles traveled, and operating costs [1]. Most

of the research efforts related to SCAVs have considered a centralized dispatching system in their

proposed frameworks [1, 2]. High computational complexity as a result of the large amount of

information that need to be processed in real-time is one of the main issues related to centralized

dispatching [3]. To overcome the above-mentioned shortcoming, a large-scale decentralized SCAV

dispatching system is proposed through a simulation model. To evaluate the designed system, it

is implemented on an in-house agent based simulation platform already developed by Djavadian

and Farooq [3]. In this platform, an end to end distributed dynamic vehicle routing for CAVs

(E2ECAV) using a network of intelligent intersections (I2) was proposed. In their proposed plat-

form I2s track the dynamic state of the network and guide CAVs in the network. We extend this

platform for a SCAV system by developing a decentralized dispatcher utilizing I2s.

2 Methodology and Results

This study is divided into two distinctive parts. In the first part, to evaluate the effectiveness of

the proposed decentralized SCAVs dispatching system, a centralized SCAV dispatching system as

a benchmark is developed. Both systems have the capability of ride-sharing and are evaluated

on the network of downtown Toronto. The second part, on the other hand, focuses on enhancing

ride-matching problem mentioned in the first part using a mathematical optimization model.



2.1 Network Structure

The structure of simulation environment consists of two network layers and three types of agents.

The two network layers are: communication network and the physical road network. Physical road

network is represented by a network G(I, L), which consists of I intersections (nodes/vertices)

and L links (edges). Agents in this system are vehicle agents (v ∈ V ), passenger agents (p ∈P),

and infrastructure agents. There are two types of vehicle agents, including normal traffic (M) and

SCAV fleet (f ∈F); Two types of infrastructure agents are available namely: link agents (l ∈L) and

intelligent intersection agents (I2n ∈ I2). There are two types of communications in this system,

(V 2I) and (I2I). ∆ is dispatch update cycle which is set to 1 min in this study.

2.2 Decentralized and Centralized SCAV System

In the decentralized SCAV system, intersections aside from routing CAVs and SCAVs, play the

role of distributed dispatchers with which each having a depot. Passengers request to the nearest

intersection via smartphone. If there is any available SCAV at intersection depot, it is assigned to

the passenger. If not, passenger waits for any passing SCAV with enough capacity. The general

policy for dropping off is FIFO. Each SCAV after dropping off the last traveller goes back to its

own depot. In the centralized version, there is a centralized controller which is responsible for

receiving requests from passengers, matching them to SCAVs and ensuring that all travellers are

served. In this system, there are just two depots, based on the feasible locations in the network.

2.2.1 Case Study and Results

The proposed algorithm was tested on a highly congested downtown Toronto network. The de-

mand used here is based on the adjusted 2011 travel survey of Toronto to accommodate the 2018

growth factor. Two types of scenarios under different SCAV demand levels and fleet size for both

centralized and decentralized were conducted. As can be seen in Figure 1 and Figure 2, average

waiting time for decentralized SCAV system under various demand level and fleet size yields much

better results than centralized one. The boxplot in Figure 3 shows the average waiting time for

decentralized system. With the increase in fleet size, standard deviation gets smaller and closer to

the average which means that almost all passengers experience a reasonable waiting time.

2.3 Ride-Matching with Decomposition Algorithm

The second part of this study focuses on improving the ride-matching process of the designed

decentralized SCAV system. To do so, a binary optimization problem is formulated to minimize

the total system-wide passengers’ travel time in the network. In order to avoid computational

complexity of the system-wide optimization problems, a decomposition algorithm is utilized to



Figure 1: Wait Time vs Demand. Figure 2: Wait Time vs Fleet Size. Figure 3: Wait Time variation

solve the original ride-matching problem by solving multiple sub-problems. These sub-problems

are defined for intelligent intersections that are the smallest part of the network and play the role

of dispatchers in the decentralized SCAV system. In the sub-problems, each intersection covers its

neighborhood. For any new trip request the optimization problem is solved and the best SCAV

from the intersection neighborhood is assigned to the trip request such that it minimizes passenger’s

travel time. By solving each sub-problem and summing over the whole intersections at each update

dispatch time interval, the original ride-matching problem would be optimized.

Let I2 be the set of intelligent intersections, in which each intersection is denoted by I2n, P

be the set of passengers making request to the closest intersection I2n, and F be the set of SCAV

fleet in the neighborhood of intersection. Any new passenger is denoted by i ∈ P , a SCAV in

the neighborhood of intersection is represented by j ∈ F . Kj is the set of current passengers in

SCAV j and current passenger travelling with SCAV j is denoted by kj ∈ Kj . The main decision

variable is xij which is equal to 1 if passenger i is matched with SCAV j, and 0 otherwise. T
kj
o

is the original (without ride-sharing) in-vehicle time of current passenger k in SCAV j, T
kj
s is

shared (with ride-sharing) in-vehicle time of current passenger k in SCAV j, Dkj is detour time

of current passenger k in SCAV j, R
kj
o is original remaining time of current passenger k in SCAV

j, R
kj
s is shared remaining time of current passenger k in SCAV j, T ij

o is original in-vehicle time

of new passenger i if matched with SCAV j, T ij
s is shared in-vehicle time of new passenger i if

matched with SCAV j, ti is passenger’s allowed travel time, Dij is detour time of new passenger

i if matched with SCAV j, Wij is the wait time of new passenger i if matched with SCAV j, cj is

current capacity of SCAV j. Passengers have time window such that ei is the earliest departure

time of new passenger i and li is his latest arrival time. Total number of intersections is represented

by N and α, β, γ are parameters. Eq (1) is the system-wide objective function which minimizes

passengers’ total travel time over all network intersections. Eq (2) is defined for each intersection

which aims at minimizing the total travel time of all passengers making request to the intersection.

minZ =

N∑
n=1

I2n (1)

min I2n =
∑
i

∑
j

(Wij + T ij
s )xij ∀I2n ∈ I2 (2)



Eq (3) minimizes each new passenger’s total travel time making request to the closest intersec-

tion which consists of wait time and in-vehicle time.

minG = (Wij + T ij
s )xij (3)

subject to Dkj = T kj
s − T kj

o ∀k ∈ Kj , j ∈ F (4)

Dij = T ij
s − T ij

o ∀j ∈ F (5)

ti = li − ei (6)

Dkj ≤ αT kj
o ∀k ∈ K, j ∈ F (7)

Rkj
s −Rkj

o ≤ βRkj
o ∀k ∈ K, j ∈ F (8)

Dij ≤ γT ij
o ∀j ∈ F (9)

Wij + T ij
s ≤ ti ∀j ∈ F (10)

Wij ≤ 5 min ∀j ∈ F (11)∑
j

Xij ≤ 1 (12)

cj ≥ 1 ∀j ∈ F (13)

xij = {0, 1} ∀j ∈ F (14)

Eq. (4-6) define constrains representing current on-board passengers’ detour time, new pas-

senger’s detour time, and new passenger’s allowed travel time, respectively. Constraint (7-9) are

adapted and modified based on Fagnant & Kockelman [1]. Constraint (7-8) ensure that detour

time and remaining time increase of current on-board passenger are no more than a percent of their

original in-vehicle and remaining time. Constraint (9) confirms that new passenger’s detour time

is no more than a percentage of their original in-vehicle time. Constraint (10) ensures that new

passenger’s total travel time is no more than his allowed travel time. Constraint (11) puts a thresh-

old for passenger’s waiting time. Constraint (12) ensures that every passenger is matched with no

more than one car. Constraint (13) confirms that SCAV has enough capacity and (14) states the

binary decision variables. We consider both event based and discrete time based optimization to

evaluate which one and under what conditions works better.
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1 Introduction

The Netherlands Railways (NS), the largest Dutch passenger railway operator, uses only a subset

of the available trains during off-peak hours to operate the timetable. The surplus of rolling stock

is parked at shunting yards, where the trains can be cleaned and maintained. To ensure that

the shunting yards are operating efficiently, a feasible shunting plan needs to be created, which

describes which activities, such as coupling and decoupling train units, service tasks and train

movements, need to be performed and at which time this should be done such that the service

tasks of each train unit in a departing train are completed before the departure time, and none of

the resource capacity constraints are exceeded in the shunting plan. A more in-depth description

of the scheduling problem can be found in [1, 2].

To handle common disruptions during the operational phase, such as a train that arrives late,

or a service activity that takes longer than expected, the shunting plan is used as an initial baseline

schedule, and a rescheduling policy is applied for on-line adjustments to the plan. The baseline

schedule is represented as a partial ordering schedule (POS) of the activities, specifying precedence

relations that ensure the resource feasibility of any plan execution. The rescheduling policy is an

earliest start time (EST) policy, which assigns each activity to its earliest possible starting time in

the baseline schedule, and, in case of disruptions during operation, delays activities that have not



yet started as much as necessary while maintaining the ordering in the baseline schedule.

The Dutch Railways prefers robust shunting plans that require little rescheduling during the

operational phase to avoid cascading effects. The robustness of a shunting plan can be measured as

the probability that disturbances result in delayed train departures. Determining the probability

of delays in schedules with precedence constraints is a computationally hard problem. To obtain

a quick estimate of the robustness, a common approach is to use efficiently computable schedule

characteristics, known as robustness measures, that show a strong correlation with the performance

metric of interest. In [3], we have identified several robustness measures that accurately estimate

the robustness of randomly generated shunting plans.

In this research, we study the impact of including robustness measures in the objective function

of a local search algorithm on the robustness of the generated solutions. A large number of

shunting plans are generated with different objective functions for real-world instances of a shunting

yard operated by the NS, and the robustness of these plans is approximated using Monte Carlo

simulation to identify which robustness measures guide the local search to highly robust solutions.

2 Robustness Measures

Many robustness measures proposed in literature, such as the measures found in [7], [4], [5], and

[6], are based on the concept of slack, which quantifies the maximal allowed delay of an activity in

the schedule. The total slack is the amount of time an activity in the partial order schedule can

be delayed without exceeding any deadline in the schedule, whereas the free slack is the amount

of delay that an activity can have before it starts delaying any of its successors in the schedule.

In [3], we present an alternative to the slack-based measures. Elaborating on the approach

from [9], we approximate the distribution of the completion time of each event in topological

order. We assume that the completion time of each event i follows a normal distribution, for which

we estimate the expected value and variance. The start time of event i is equal to the maximum

completion time of the events immediately preceding i; given the expected values and variances

of the completion times of these predecessors, we estimate the expected value and variance of the

start time of i by iteratively using the formulas derived by [8]. Finally, we add the processing time

of i to find the completion time. We call this method the normal estimation.

3 Local Search

In [1, 2] we have developed a local search algorithm based on Simulated Annealing that can find

feasible shunting plans for real-life problem instances with deterministic data. Starting with an

infeasible initial solution, the local search algorithm iteratively modifies the current solution to

resolve conflicts in the shunting plan. These modifications consist of small, local changes to the



schedule, such as permuting the order of train movements or service activities, changing the parking

location of trains, moving a train to another parking location, and assigning service activities to

other facilities. We use this algorithm as our basis.

The objective function described in [2] focuses primarily on the conflicts in the shunting plan;

the goal is to minimize the penalties incurred due to violations of the hard constraints. A secondary

objective is the minimization of the number of train movements in the solution. Although the

insertion of an additional train movement is occasionally necessary to resolve a conflict in the

shunting plan, adding many movements generally hinders the search for feasible solutions.

Since the focus of this objective is limited to the feasibility of the shunting plan, it will likely

lead to solutions that handle disruptions poorly. One approach to steer the local search towards

more robust solutions is to include a robustness measure in the objective function. In [3] we

have identified three promising candidate measures that correlate strongly with the robustness

of shunting plans, namely the minimum total slack, the minimum free slack, and the normal

estimation. The weight of the robustness measure in the objective must be small enough to ensure

that the local search will always prefer a feasible shunting plan over an infeasible, yet robust plan.

4 Preliminary Results

We have tested the performance of the local search with the different robustness objectives on a

real-world instance of the shunting problem. The instance consists of 19 trains arriving at the

“Kleine Binckhorst”, a shunting yard operated by NS, where the trains have to be cleaned, washed

and maintained. A full description of the problem instance is provided in [3]. The main sources of

uncertainty during shunting are the arrival time of trains and the duration of service and movement

activities. In our experiments, we assume that trains arrive uniformly within a ten minute interval

centered around their expected arrival time, and that duration of movement and service tasks

follows a log-normal distribution with the nominal duration as the mean, and a standard deviation

of 10% of the mean.

To study the effect of the robustness measures, we generated solutions using our local search by

minimizing either only the conflict and movement penalties, or the base objective extended with

one of the three robustness measures, resulting in 100 feasible shunting plans for each of the four

configurations. The robustness of each of the plans — the probability of a delayed train departure

— was estimated by sampling 20000 plan realizations in a Monte Carlo simulation.

Table 1 summarizes the results of the simulation. The columns average, Min and Max show

statistics on the probability of delay in the solutions generated per objective function. The number

of cases in which the local search failed to find a feasible solution within five minutes is listed in

the Failures column, and the last two columns show the expected number of five minute runs of



Objective Average Min Max Failures p = 0.05 p = 0.01

Basic 0.19 0 0.77 13 2.22 2.46

Total Slack 0.06 0 0.60 11 1.42 1.68

Free Slack 0.08 0 0.72 15 1.51 1.64

Normal Estimation 0.02 0 0.23 34 1.54 1.78

Table 1: The results of the Monte Carlo simulation of the solutions per objective function.

the local search needed until a feasible solution with a delay probability less than p is found.

The probability that the local search finds a feasible and robust solution for this shunting

problem instance with the non-robust objective is surprisingly high, suggesting that a multi-start

local search approach that restarts the search whenever no feasible, robust solution is found within

five minutes, might be sufficient to generate robust shunting plans in reasonable time.

However, the results indicate that the probability of finding a robust solution can be improved

significantly by adding any of the three robustness measures to the objective. Although the nor-

mal estimation method shows the lowest average and maximum delay probabilities, it requires

considerably more time to evaluate a shunting plan in an iteration. The local search failed to find

a feasible solution within five minutes, which is the maximum computation time that we allowed

per solution, far more often with the normal estimation objective than with the other three con-

figurations. Therefore, the minimum total slack is a viable alternative if the computation time is

limited, as it performs only slightly worse than the normal estimation approach.

5 Conclusion

The aim of this research is to develop an efficient algorithm for finding robust solutions for the

train shunting problem that arises at shunting yards, where the robustness is defined as the proba-

bility of delays in the scheduled train departures. We have compared several search objectives that

incorporate robustness measures with a basic, non-robust objective in a Monte Carlo simulation

of solutions generated with an existing local search for a real-world shunting problem of the NS.

We have shown that the addition of a robustness measure based on estimating the completion

times significantly improves the robustness of the solutions generated by the local search, outper-

forming minimum slack robustness measures. This improvement comes at the cost of an increase

in computation time, and for the instance under consideration, it turns out that we can better

spend this additional time on running the local search more often. A topic for further research is

to investigate whether these results generalize to other problem instances, for which it is harder to

find a feasible solution, or to a broader class of planning problems.
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1 Introduction

Oligopolistic competition occurs often in transportation, due to reasons such as external regula-

tions, limited capacity of the infrastructure and difficulty in entering a well-established market. In

transport oligopolies, operators take the supply-side decisions that optimize their own objective

function. Such decisions are influenced both by the preferences of the customers, who want to

purchase one of the services on the market, and by the decisions of the competitors.

In this work, the preferences of the customers are modelled at a disaggregate level according to

random utility theory and are embedded in each operator’s optimization problem. Using a disag-

gregate approach that accounts for heterogeneous demand allows to better model supply-demand

interactions. Competition among market players is modelled explicitly as a non-cooperative game

in which all operators take into account the decisions of their competitors. This results in a multi-

leader-follower game, for which a MIP model inspired by the fixed-point iteration algorithm is

proposed to find Nash equilibrium solutions.



2 Demand-based optimization

By incorporating customer behavior inside their optimization problem, suppliers can improve many

of their strategic decisions. Generally, demand-based optimization problems can be modelled as

Stackelberg games [1]. Equivalent Stackelberg problems are frequent in transportation when a

supplier or regulator knows the utility functions of its potential customers, who collectively play

the follower role. From a modelling perspective, the result is an optimization problem having

optimization problems in the constraints, also known as bilevel program [2, 3].

Applications of demand-based optimization models include revenue management [4, 5] and road

tolling [6], among others. The majority of the papers propose nonlinear formulations and estimate

choice probabilities with the multinomial logit model (MNL). To overcome MNL limitations on

random taste variation or correlation between alternatives, more complex discrete choice models

such as the nested logit and the mixed multinomial logit have also been used.

A framework that can integrate any discrete choice model in a MILP is presented in [7]. More

specifically, choice probabilities can be linearized by using simulation to draw from the utility func-

tion’s known error term distribution. For all customers and alternatives, a number of draws are

extracted, corresponding to different behavioral scenarios. In each scenario customers determinis-

tically choose the utility-maximizing alternative. Over multiple scenarios, the choice probability of

an alternative is equal to the number of times the alternative is chosen over the number of draws.

Nonlinear and linear demand-based optimization models

Consider a set N of customers, a set I of alternatives and a set Ik ⊆ I of alternatives managed

by the supplier. Let Vin and Pin be the utility associated by customer n ∈ N to alternative i ∈ I

and the corresponding choice probability. For the sake of simplicity, we assume that prices pin are

the only upper-level decision variables, that the supplier has no operational costs and that choice

probabilities are estimated by using a MNL. The optimization problem is then

max
∑
i∈Ik

∑
n∈N

pinPin (1)

s.t. Pin =
exp(Vin)∑
j∈I exp(Vjn)

∀i ∈ I, ∀n ∈ N (2)

Vin = βinpin + qin ∀i ∈ I, ∀n ∈ N. (3)

The objective function (1) maximizes the supplier’s revenue. Constraints (2) derive the choice

probabilities. Constraints (3) define the deterministic utility functions, composed of an exogenous

term qin and an endogenous term that depends on the price, which is the variable linking the

upper-level problem with the lower-level problem.

For the linearized version of the model, let R be the set of behavioral scenarios. For each r ∈ R,

an error term parameter ξinr is drawn from the known distribution. The variables Unr = maxi Uinr



capture the value of the highest utility for customer n in scenario r, while the binary decision

variables winr identify the alternative i chosen by each customer n in each scenario r. Constraints

(2-3) can be now written as

s.t. Pin =

∑
r∈R winr

R
∀i ∈ I, ∀n ∈ N (4)

Uinr = βinpin + qin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (5)

Uinr ≤ Unr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (6)

Unr ≤ Uinr +MUnr
(1− winr) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (7)∑

i∈I

winr = 1 ∀n ∈ N, ∀r ∈ R. (8)

The utility functions (5) now includes a drawn error term. Constraints (6-7) ensure that in each

behavioral scenario customers deterministically choose the alternative yielding the highest utility.

3 A MIP for the fixed-point problem

In oligopolistic markets there are multiple players that simultaneously solve a demand-based opti-

mization problem. The result is a multi-leader-follower game in which the payoffs are a function of

both the decisions of the customers and the strategies of the competitors. Given the complexity of

the demand-based optimization framework, well-known results on the existence or uniqueness of

pure or mixed strategy Nash equilibria cannot be exploited and alternative approaches are needed.

Several works dealing with Nash equilibria in transportation adopt an algorithmic approach

based on the fixed-point iteration method (see for example [8] and [9]). Starting from an initial

feasible solution to the problem, operators take turns to play their best response pure strategy to

the last strategy played by the competitors. Such sequential game terminates when a solution is

repeated, as it induces the same sequence of best responses as before. Such solution is either a

Nash equilibrium for the game or a set of n strategies for each player, with n > 1, which would

continue to be played cyclically.

Solving the multi-leader-follower game as a sequential game is attractive from a computational

perspective. The sequential game is also easily interpretable, since it reproduces the behavior of two

or more players that do not know the competitors’ objective function. However, the convergence

proof of such algorithm depends on conditions such as having a convex payoff function [10], which

are not verified in the multi-leader-follower games we want to solve. Consequently, by solving the

problem as a sequential game there is no guarantee of existence or uniqueness of a pure strategy

Nash equilibrium. Finally, different initial solutions could lead to different equilibria.

We propose a new mathematical model to find equilibria in multi-leader-follower games. It

models the sequential game as a one-step approach by considering only two iterations of the fixed-

point problem. We define as distance between two solutions a non-negative value measuring the



difference in operators’ decisions, in customers’ decisions, or a combination. If we start from an

equilibrium point, the distance between the initial solution and the next iteration solution is equal

to 0. Else, the distance is greater than 0, since at least one of the players changes its strategy.

The notation is now introduced for the linear model. Let K be the set of the operators and let

Sk be the given finite set of strategies that can be played by operator k ∈ K. The parameters pins

indicate the price at which alternative i is offered to customer n by operator k if playing strategy

s ∈ Sk. The superscripts
′

and
′′

refer to the variables of the initial configuration and of the best

response configuration, respectively. The variables Vs store the value of the payoff for operator k

if responding with strategy s ∈ Sk, while the variables V max
k store the highest of these values for

each operator. The binary variables xs are equal to 1 if strategy s ∈ Sk is the best response of

operator k to the initial configuration. Then, the mathematical model can be written as

min
∑
i∈I

∑
n∈N

|p
′′
in − p

′
in| (9)

s.t. :

Initial configuration:∑
i∈I

w
′
inr = 1 ∀n ∈ N, ∀r ∈ R (10)

U
′
inr = βinp

′
in + qin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (11)

U
′
inr ≤ U

′
nr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (12)

U
′
nr ≤ z

′
inr +M(1− w

′
inr) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R (13)

Final configuration:∑
i∈I

w
′′
inrs = 1 ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (14)

U
′′
inrs = βinpins + qin + ξinr ∀i ∈ Ik, ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (15)

U
′′
inrs = U

′
inr ∀i ∈ I \ Ik, ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (16)

U
′′
inrs ≤ U

′′
nrs ∀i ∈ I, ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (17)

U
′′
nrs ≤ z

′′
inrs +M(1− w

′′
inrs) ∀i ∈ I, ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (18)

Best response constraints:

p
′′
in =

∑
s∈Sk

pinsxs ∀i ∈ Ik,∀n ∈ N,∀k ∈ K (19)

Vs =
1

R

∑
i∈Ik

∑
n∈N

∑
r∈R

pinsw
′′
inrs ∀s ∈ Sk, ∀k ∈ K (20)

Vs ≤ Vmax
k ∀s ∈ Sk, ∀k ∈ K (21)

Vmax
k ≤ Vs +M(1− xs) ∀s ∈ Sk, ∀k ∈ K (22)∑

s∈Sk

xs = 1 ∀k ∈ K (23)

w
′
inrs, w

′′
inrs ∈ {0, 1} ∀i ∈ I, ∀n ∈ N,∀r ∈ R, ∀s ∈ Sk, ∀k ∈ K (24)

xs ∈ {0, 1} ∀s ∈ Sk,∀k ∈ K. (25)

The objective function (9) minimizes the distance between the two solutions in terms of operators’



strategies. The absolute value can be linearized by expressing the argument as the difference of

two non-negative variables and by minimizing the sum of these variables in the objective function.

Constraints (10-13) define the utilities and force customers to always choose the alternative with

the highest utility in the initial configuration. Notice that the price variables p
′

in are modeled as

free continuous variables. Constraints (14-18) impose the utility maximization principle in the best

response configurations. In each strategic scenario, the decisions of the optimizing operator only

affect the utility of its alternatives (15), while the utility of the competitors’ alternatives remain

unchanged (16). Finally, constraints (19-23) state that operators always select the best response

strategy to the initial configuration.

Compared to the sequential game, this model enables discrimination between different equilib-

rium solutions by modifying the objective function, and it can also find near-equilibrium solutions,

if no Nash equilibrium exists. It can be also applied to a nonlinear model having probabilistic

customer choices. The description of the nonlinear case is omitted here.

4 Numerical experiments

The case study used for the tests is derived from [11], where the choice of customers among three

different parking alternatives is modelled with a mixed logit model. The nonlinear and the linear

optimization models for both the Stackelberg game and the multi-leader-follower game were tested

on two discrete choice specifications, namely the multinomial logit model and the mixed logit

model. Extended results of the experiments are available online [12].

The experiments show that for the Stackelberg game the nonlinear model converges to op-

timality much faster than the MILP model in all cases. For the multi-leader-follower game the

nonlinear model converges faster to optimality only for the logit formulation, as there is no need for

simulation. On the other hand, when using a mixed logit formulation, the linear model generally

outperforms the nonlinear model, which fails to converge on larger instances. The worsening of

the computational performance of the nonlinear model in the competitive case can be imputed to

the discretized price parameters and to the binary decision variables of the upper-level problems,

while the improved performance of the MILP model can be explained by the reduction of the

solution space due to the limited set of response strategies. In particular, the linear model, which

is structured around a simulation framework, has similar computational performances on the logit

and the mixed logit model. The latter finding is particularly encouraging, because it indicates that

the MILP formulation for the demand-based optimization model could potentially embed even the

most complex and accurate discrete choice models.



5 Future research

The numerical experiments performed so far indicate that different formulations could be more or

less effective depending on the type of decision variables and on the chosen discrete choice model.

The nonlinear formulation is non-convex and becomes intractable when many discrete variables

are introduced, while the linear formulation is convex but combinatorial due to the nature of the

simulation framework.

In the next phases of this research, we plan to (i) write the Stackelberg game as a mathe-

matical program with equilibrium constraints (MPEC) and the multi-leader-follower game as an

equilibrium program with equilibrium constraints (EPEC), to investigate whether continuous for-

mulations can be helpful to find solutions to our initial problem or to improve the bounds of the

fixed-point MIP model, and (ii) propose an algorithmic framework in which candidate equilib-

rium solutions are found by means of different heuristic blocks and used as input strategies in the

fixed-point MIP model.
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1 Introduction

Constant increase in traffic congestion for urban areas and the cost of expanding infrastructure as

well as lack of space (e.g., in Europe) in the last couple of decades, have increased congestion and

pollution in cities. Having a better public transit is not a sufficient solution for suburban areas

where the ridership is low, and profitability decreases due to under-utilization of the transportation

capacity. As a result, transport planners seek to find solutions to use the current infrastructure

more efficiently.

This paper presents an algorithmic framework to solve passenger-centric (using discrete choice

models) dial-a-ride assortment optimization problem. This problem belongs to the class of demand

responsive systems in which a customized travel service is offered to each passenger [1]. When a

passenger arrives at the system, he/she requests a ride service. Each request contains information

about the pickup/delivery locations and preferred pickup time. The system then provides a set of

ride options (i.e. travel menu) to the passenger. Ride options are created based on the proposed

pickup time, type of service (e.g. taxi/shared-taxi), charging the fare and maximum duration of



the trip (in case of shared-taxi). We measure the attractiveness of each ride option with a utility

function and use multinomial logit to model passengers behavior. The optimization problem is

then defined by constructing a travel menu that maximizes the expected profit. As the cost of

ride options are not known a priori, the expected maximum profit is achieved by simultaneously

solving the assortment optimization (to determine the sub-set of ride options) with the dial-a-ride

problem (to calculate the underlying routing cost).

This problem is defined as a unique combination of two well-known problems: (1) dial-a-ride

problem and (2) assortment optimization. All studies in dial-a-ride problem focus on finding a

minimum-cost route that satisfies all customers demand (see [2]; [3]). In this problem, we relax

this constraint. Here, the selection of ride options is determined according to the assortment

optimization. Unlike, all studies in choice-based assortment optimization (see [4]) the cost of each

option is not known a priori and has to be calculated by solving the inherited dial-a-ride problem.

2 Problem description

A company is responsible for transferring a set of n customer requests (r ∈ R, |R| = n) with a set of

identical vehicles. Requests 1, . . . , n−1 are existing ones and n is a request of the new customer. For

existing customers, the pickup and delivery location, pickup time-window and maximum ride time

are known. For the new customer, information about the pickup/delivery locations and preferred

pickup time has entered the system. Based on the new request, a set of ride options are generated.

These options are generated based on the variation of pickup time, types of the service (e.g. taxi,

shared-taxi) and fare level. We present the routing problem as a complete directed graph. For

each request, two nodes are defined to present its pickup and delivery locations. Similarly, with

each arc, two non-negative values are associated: a travel cost and a seat opportunity cost. The

later is used to quantify the economic value of a seat for the traveling period.

We formulate the joint routing-assortment optimization problem as a mixed-integer linear

model. The objective of the model is to maximize the expected revenue with two blocks of the

constraints. The first block of the is related to the assortment problem. These constraints are

linked to those in the second block where explicit routing decision has to be made. Here, we use

the three-index binary variable to model vehicle route.

3 Solution approach

To solve the mathematical model, we have developed a branch& cut algorithm. We first investigate

the structural properties of the assortment problem. Based on that, a series of valid inequalities

are generated and added to the model. Other valid inequalities used to solve dial-a-ride problem



are also included (see [5]). A pre-processing approach (based on the structural properties of the

problem) is developed to reduce the number of variables and constraints.

For a dynamic problem, we solve the mathematical model every time a new user arrives. The

mathematical model determines the optimal assortment offered to the customer. Thereafter, we

simulate the customer choice and update the transportation plan. This process continues till the

end of the planning horizon.

4 Results

The algorithm was implemented in C++ and we use CPLEX 12.6 as our mathematical solver.

We evaluate the performance of the algorithm on a set of instances with 25 and 50 requests. The

computational results are performed in two parts.

In the first part, we choose instances with 25 requests and focus on demonstrating the perfor-

mance of the branch & cut algorithm. We consider the off-line problem (all requests are known

in advance). For each instance, we evaluate the impact of each B&C components (e.g. valid in-

equality, pre-processing, etc) on the performance (computation time, number of branched nodes

and integrality gap) of the algorithm. Moreover, we compare our B&C method with the one that

only use CPLEX as a general solver. The results denote significant reduction in computational

time (around 38% on average).

In the second part, we focus on dynamic problems to evaluate its revenue performance. We

choose instances with 50 requests that dynamically arrive at the system. All instances have the

same pickup and delivery coordinates and are varied based on the following attributes: (1) arrival

frequency (frequent, infrequent), (2) advanced booking (up to 20 minutes in advance, between 20

to 60 minutes in advance) and (3) opportunity cost (high and low). The results are summarized

in Table 1 (two parts). For each part, the number of served users (out of 50), the average profit

per user, and the average number of users on-board are reported.

Table 1 (part 1), presents the computational results of the instances with loose booking (be-

tween 20 to 60 minutes in advance). As can be seen, the on-demand system serves fewer users

in total for the case of frequent arrival. However, the average profit is slightly more regardless of

the opportunity cost. For the case of frequent arrivals, we further denote the trade-off between

frequency and opportunity cost. As can be seen in Part 2, the number of served users, as well as

profit per user, increased as the system has more flexibility to operate. That means the advance

booking enables the system to have a better fleet management which leads to lower operating cost

and improved profit. By introducing the opportunity cost for empty seats, we penalize empty

cars circulations in the network which results in reducing the negative environmental impacts and

congested routes.



Table 1: Experimental Results

Part 1: Frequent vs infrequent arrival - high vs low opportunity cost (loose booking)

Infreq arr. Freq arr. Infreq arr. Freq arr.

High opp. cost High opp. cost Low opp. cost Low opp. cost

Served users 49.20 42.50 47.4 34.8

Profit per user 9.95 11.36 10.32 10.74

Avg users on-board 1.20 1.60 1.00 1.00

Part 2: Loose vs tight booking - high vs low opportunity cost (frequent arrival)

Loose booking Tight booking Loose booking Tight booking

High opp. cost High opp. cost Low opp. cost Low opp. cost

Served users 42.50 39.00 34.80 32.80

Profit per user 11.36 10.70 10.74 10.71

Avg users on-board 1.60 1.39 1.00 1.00
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1 Motivation

The railway sector is one of the foundations of a country’s mobility. Only in Europe, rail represents

45% of public transport, accounts for 26.9 billion passenger trips each year and is used to carry

18.3% of the freight goods inland [2]. One of the most prominent costs drivers in this sector is the

maintenance of the rolling stock. Maintenance costs are estimated to average between 2.5 and 3.5

euros per rolling-stock unit, per kilometer travelled [3]; accounting for more than 30% of the total

costs of operating a train.

In this presentation, we discuss an ongoing research project in collaboration with Mantena,

the main provider of rolling stock maintenance in Norway. This company has more than 1100

employees and hosts operations in around 13 locations. In order to keep a competitive position,

Mantena requires a very detailed planning of its operations. This involves, among other things,

scheduling each maintenance task (that needs to be carried out on each rolling-stock unit) and de-

termining the number of employees required to perform them. Such a planning/scheduling problem

not only should minimize the overall cost, but take into account multiple operational constraints

(i.e., capacity and equipment availability), ensure that trains comply with safety regulations, and

guarantee that employment contracts adhere to labor directives and collective agreements. Pre-

vious attempts to solve rolling stock maintenance problems are often focused on the rolling stock

rostering and routing to receive maintenance, see [1] for a recent approach and overview. In this

work we focus on when to maintain a specific train and which maintenance tasks to perform.

2 Problem description

Each rolling stock has a maintenance program associated to it: a collection of (maintenance)

activities that need to be carried out for the rolling stock to remain operative. Each activity,

in turn, defines so-called execution cycles: sets of similar tasks to be executed periodically on a

specific location of the rolling stock. Performing (the tasks within) a cycle requires an estimated



number of man hours, along with materials and other spare parts. For instance, passenger trains

usually involve an activity to verify the proper functioning of the boogies that support each wagon.

This activity involves, at least, three different cycles: 1) a light examination, that requires just a

few man-hours, to be carried out every 250 000 km, 2) a more ellaborate check-up to be carried

out every 1 250 000 km and 3) an thorough inspection, that demands several man-days of work,

to be carried out every 3 750 000 km. Logically, the execution of cycle 3 is assumed to cover the

tasks within cycles 2 and 3. Therefore, when a wagon is close to reach the mark of 3 750 000 km,

only cycle 3 should be scheduled to be carried out.

In general, the optimization problem faced by Mantena involves scheduling the execution of each

cycle (of each maintenance activity) in such a way that the overall operating cost is minimized. In a

simplified version of the problem (outlined for illustrative purposes), this is achieved by scheduling

each cycle as close to its deadline as possible. The objective is therefore to minimize the overall

“earliness” of the schedule. A time-index formulation of this problem, based on that proposed

by [4], is sketched below. The set of scheduling constraints are defined by Equations (2)-(7),

connecting constraints are defined by Equations (8)-(11), capacity constraints by Equation (12)

and integrality constraints by Equations (13)-(14).

Constant values
L Set of types of labor available
A Set of maintenance activities
Ca Set of cycles of maintenance activity a

Ĉac Set of cycles (of activity a) the executions of which cover cycle c
macl Number of man hours of type of labor l, required to execute cycle c of activity a
P Set of time periods
fac Frequency of execution of cycle c of activity a (maximum number of time periods between

two consecutive executions)
eac The initial execution period of cycle c of activity a
apl Number of man hours of type of labor l available at time period p

Decision variables
xp
ac 1 if cycle c of activity a is executed in time period p, 0 otherwise

ypac 1 if the due period of cycle c of activity a is covered in time period p, 0 otherwise
zpqac 1 if p and p + q are consecutive execution (or covered) periods of cycle c of activity a, 0

otherwise.

Objective function

min
∑
a∈A

∑
c∈Ca

|P |−fac∑
p=eac

fac∑
q=1

(fac − q)zpqac (1)

In constraint (2) we ensure that a cycle of a maintenance task cannot be scheduled to be

executed before its initial execution period. The first execution of a cycle (of an activity) must

be scheduled in its initial execution period, this is guaranteed by constraint (3). Constraint (4),

at most, one cycle of an activity can be scheduled to be executed in a time period. In constraint



Constraints

xp
ac = 0, ∀a ∈ A, c ∈ Ca, p ∈ {1, . . . , eac − 1} (2)

xeac
ac = 1, ∀a ∈ A, c ∈ Ca (3)∑

c∈Ca

xp
ac ≤ 1, ∀a ∈ A, p ∈ P (4)

fac∑
q=1

zeac,q
ac ≥ 1, ∀a ∈ A, c ∈ Ca (5)

xp
ac + ypac −

fac∑
q=1

(xp+q
ac + yp+q

ac ) ≤ 0, ∀a ∈ A, c ∈ Ca, p ∈ {eac, . . . , |P | − fac} (6)

|P |∑
p=|P |−fac

xp
ac ≤ 1, ∀a ∈ A, c ∈ Ca (7)

∑
â∈Ĉac

xp
âc − ypac = 0, ∀a ∈ A, c ∈ Ca, p ∈ {eac, . . . , |P |} (8)

xp
ac + ypac ≤ 1, ∀a ∈ A, c ∈ Ca, p ∈ {eac, . . . , |P |} (9)

xp
ac + ypac −

fac∑
q=1

zpqac = 0, ∀a ∈ A, c ∈ Ca, p ∈ {eac, . . . , |P | − fac} (10)

xp
ac + ypac + xp+q

ac + yp+q
ac ≤

q−1∑
r=1

(xp+r
ac + yp+r

ac ) + zpqac + 1,

∀a ∈ A, c ∈ Ca,p ∈ {eac, . . . , |P | − fac}, q ∈ {1, . . . , fac}

(11)

∑
a∈A

∑
c∈Ca

xp
acmacl − apl ≤ 0, ∀p ∈ P, l ∈ L (12)

xp
ac, y

p
ac ∈ {0, 1}, ∀a ∈ A,c ∈ Ca, p ∈ P (13)

zpqac ∈ {0, 1}, ∀a ∈ A,c ∈ Ca, p ∈ {eac, . . . , |P | − fac}, q ∈ {1, . . . , fac} (14)

(5), the first scheduled execution, or due period reset, of a cycle (of an activity) must take place

after its initial execution period and before its due period. The number of periods between two

consecutive executions or resets of each cycle, of each activity, must never exceed its due period.

This is addressed by (6). Constraint (7), there can be, at most, one scheduled execution of a cycle

(of an activity) in the last part of the time horizon where the objective function can be calculated.

Constraint (8), the due period of a cycle, of an activity, is reset if and only if any of its dominating

cycles (those that reset its due period) is executed. A cycle, of an activity, cannot be executed

and reset at the same period, this is enforced by constraint (9). Constraint (10) guarantees that if

the cycle of an activity is scheduled to be executed or its due period reset, there must be only one

consecutive execution or reset period before its due date. Two periods are consecutive execution

or reset periods of a cycle (of an activity), if an only if the cycle has been scheduled to be executed

or reset on those periods, and there is no scheduled execution or reset period in between. This

is enforced by constraint (11) In constraint (12), the number of man hours (of a certain labor



type) required for a time period does not exceed the number of man hours available at the depot.

Integrality is enforced by constraints (13) and (14).

3 Preliminary experiments

We will present an extension of the previous model that takes into account a more realistic objective

function and a wider range of operating constraints. This extension considers, in addition, the

trade-off between pre-poning the execution of cycles and hiring additional employees. We will also

describe preliminary computational experiments that have been carried out to support Mantena’s

long-term planning. The results obtained have provided valuable input for the company to reduce

the number of employees required to carry out its operations, and smoothen the workload on its

maintenace depots.
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1 Introduction 
 

The modeling and prediction of discrete outcomes is a common problem in many areas, including 

economics, engineering, and medicine. Some examples of discrete outcome problems include (i) 

analysis of transportation modes (i.e., car, transit, or walking) based on observed socioeconomic 

characteristics; (ii) estimation of the presence of a pathology based on attributes of a patient; and (iii) 

estimation of how many cars will be owned based on observed characteristics of a household. 

Mixed logit models have been proposed [1] as one of the most prominent techniques for 

modeling discrete outcome problems. Mixed logit models address the limitations of previous 

techniques by allowing modeling of variables with random coefficients. Such variables can follow any 

statistical distribution specified by the researcher as well as a general random term that follows an 

extreme value distribution. The predictive power and quality of a mixed logit depends greatly on an 

appropriate definition of the distribution of the random coefficients [2]. Given a mixed logit estimation 

problem, several assumptions are required to determine the best model specification. In general, the 

distribution of the random coefficients and potential explanatory variables need to be assumed before a 

model is estimated. This model specification process relies greatly on human judgment to include 

context-specific knowledge in the model and to accommodate interpretation needs. This process is 

time consuming and subject to expert knowledge and ad hoc trial-and-error approaches. Therefore, 

approaches that support the search for model specifications can help the analyst and decrease the time 

and effort required for this process 

Harmony search is a metaheuristic that imitates the music improvisation process. This 

technique has been successfully applied to optimization problems in recent years [3]. When musicians 

compose a harmony, they usually combine various possible music notes stored in their memory. This 

search for a perfect harmony is comparable to an optimization process. One of the main advantages of 

this technique is that the hyper parameter selection is relatively easy and even if some of them are not 

perfectly set, the algorithm is still able to find good quality solutions [4]. This technique has also been 

applied to variable selection approaches [5]. 



This study proposes an approach to assist researchers with the specification of mixed logit 

models by optimizing the goodness of fit. The specification includes the variables considered as well 

as the distribution and associated parameters for the corresponding coefficients. A solution algorithm 

was implemented and tested with one dataset. 

 

2 Methodology 
 

The following notation is used to describe and formulate the proposed problem: 
 
X vector of potential explanatory variables 

N number of observations 

K number of potential explanatory variables 

S number of included variables 

J number of alternatives or discrete outcomes 

i subscript to denote a decision maker; i = 1, 2, …, N 

j superscript to denote an alternative; j = 1, 2, …, J 

k subscript for a variable, k = 1, 2, ..., K 

𝑦𝑦𝑖𝑖𝑖𝑖 indicator variable equal to 1 if decision maker i chooses alternative j; 0 otherwise. 

𝑠𝑠𝑘𝑘 indicator variable to denote if xk is included, 𝑠𝑠𝑘𝑘 ∈ 𝒔𝒔. 𝑠𝑠𝑘𝑘 is 1 if variable xk is included; 0 
otherwise. 

𝛽𝛽𝑘𝑘
𝑖𝑖 coefficient for variable 𝑥𝑥𝑘𝑘 and alternative j; 𝛽𝛽𝑘𝑘

𝑖𝑖 ∈ 𝜷𝜷. 
s vector of included variables. 

𝜷𝜷 vector of coefficients for potential explanatory variables. 

𝒇𝒇 vector of density functions for coefficients 𝜷𝜷. 

𝑓𝑓𝑘𝑘 density function for coefficient 𝛽𝛽𝑘𝑘. Possible density functions 𝑓𝑓𝑘𝑘 are: normal (n), uniform (u), 
triangular (t) 

 
The observed utility 𝑉𝑉𝑖𝑖𝑖𝑖 that a decision maker i obtains from alternative j can be represented 

as a linear dependency on the attributes of the decision maker and the alternatives as: 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛽𝛽0
𝑖𝑖 + 𝛽𝛽1

𝑖𝑖𝑥𝑥𝑖𝑖1𝑠𝑠1 + ⋯  + 𝛽𝛽𝐾𝐾
𝑖𝑖𝑥𝑥𝑖𝑖𝐾𝐾𝑠𝑠𝐾𝐾  (1) 

 

 

For this research, the observed portion of utility 𝑉𝑉𝑖𝑖𝑖𝑖  was extended to add the indicator 𝑠𝑠𝑘𝑘  of 

included variables. In mixed logit, log likelihood for the choices in a dataset is modeled as: 

𝐿𝐿𝐿𝐿 = ��𝑦𝑦𝑖𝑖𝑖𝑖ln (∫
𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖

� 𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖𝐽𝐽
𝑖𝑖=1

𝒇𝒇(𝜷𝜷)𝑑𝑑𝜷𝜷

𝐽𝐽

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

) (2) 

The coefficients 𝜷𝜷 can be estimated by maximum log- likelihood estimation (MLE). The 

objective is to find the model specification M = {s, f} with included variables s and the density 

functions f that minimize the Bayesian Information Criteria (BIC); this was expressed as:  

Min BIC = ln(𝑁𝑁) 𝑆𝑆 − 2 ln(𝐿𝐿𝐿𝐿) (3) 



A Harmony Search algorithm was used to solve the above minimization problem. Figure 1 

illustrates the implemented steps. In the first step, the parameters of the algorithm and the harmony 

memory (HM) are initialized. The HM is sorted to keep track of the exact position of the best and 

worst solutions. In the second step, a new harmony H is improvised. For each variable, its value is 

assigned by taking it from the harmony memory or randomly depending on the Harmony Memory 

Consideration Rate (HMCR). Then, the pitch adjustment is performed for the variable i with Pitch 

Adjustment Rate (PAR) probability. For this study, the pitch adjustment performed by just taking a 

random value from the domain of the variable. In the third step, the new solution is added to the 

harmony memory if its BIC is smaller than the worst solution in the harmony memory. In the fourth 

step, the optimization process is stopped if there have been more than 150 iterations, otherwise, the 

step two starts again to generate another new harmony. 

 
Figure 1. Implemented Harmony Search algorithm 

 
3 Experiments and Results 
 

A dataset with 4308 choices of electricity plans was used in this study. This dataset was initially used 

by Revelt & Train,1999 [6]. The mixed logit model specified by these authors is compared with the 

results of this study. Figure 2 illustrates the minimization in the BIC performed by the proposed 

approach. The BIC was lowered from 7971 to 7928. 

Table 1 shows the model specification found by the proposed approach and the specification 

of Revelt & Train. It is noticeable that the coefficients between the two specifications are very similar 

in sign and magnitude, and the proposed technique was able to find a model with even lower BIC.  

 



 
Figure 2. BIC vs Iterations for the implemented algorithm 

 

Table 1. Model specification found by the proposed approach and specification by Revelt & Train 

  
Model by  

Revelt & Train 
Model found by proposed 

approach   

  Coefficient Std. 
Error 𝒇𝒇 Coefficient Std. 

Error 𝒇𝒇 Ratio 
Coeff. 

Price -0.9080 0.0335   -0.9532 0.0345   0.95 
Length of contract -0.2503 0.0147   -0.2432 0.0143   1.03 
Local supplier 2.2155 0.0839   2.1449 0.0816   1.03 
Well known supplier 1.5687 0.0675   1.3239 0.0661   1.18 
Time of day rates -8.7502 0.2879   -9.0969 0.2914   0.96 
Seasonal rates -8.9501 0.2905   -8.9301 0.2896   1.00 
                
Random Effects               
Price       0.2096 0.0107 n   
Length of contract 0.4156 0.0199 n 0.3806 0.0182 n 1.09 
Local supplier 1.6423 0.0957 n 1.7384 0.0898 n 0.94 
Well known supplier 1.0136 0.0750 n 1.7089 0.1160 t 0.59 
Time of day rates 2.5623 0.1140 n 2.4488 0.1094 n 1.05 
Seasonal rates 2.0030 0.1058 n 2.3803 0.1995 t 0.84 
                
Log likelihood   -3941.9     -3914     
BIC   7975.93     7928.393     

 
 

4 Conclusions 
 

The results suggest that the proposed algorithm can find an adequate specification for a mixed logit 

model in terms of goodness of fit, thereby assisting the analyst in the selection process. However, it is 

necessary to consider the judgement of the analyst to avoid suppression of variables or random effects 

that might be important for the interpretation of the model. This could be handled by adding 

constraints to guarantee the inclusion of elements defined by the analyst. The specifications found by 

the proposed approach are not necessarily final, rather they can be used to confirm or discard ideas or 

assumptions about the data generation process behind the problem. Such specifications can reveal 

hidden information or patterns that were not visible based on the problem context and available data. 

At the end of the optimization process, the harmony memory includes a set of specifications with low 

BIC values that can also be used by the analyst. That is, the analyst is not limited by one specification, 

but he/she has a range of specifications that can be combined with their expertise to produce a final 

useful model. In addition, the proposed approach can help reduce potential bias from the analyst 
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because the search strategy is based on finding the model that best fits the data and the objective 

function. This is very helpful in minimizing cases where models are forced to produce results that 

support a hypothesis. 
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1 Introduction

In [1] a new exact method for the Pickup and Delivery Problem with Time Windows (PDPTW)

was presented. This method is based on the idea of fragments - a series of pickup and delivery

requests starting and ending with an empty vehicle. In this work we propose a novel exact method

for the Dial a Ride Problem (DARP) by utilising similar techniques based on fragments. The

DARP is a PDPTW in which the requests are people. Additional constraints are often imposed,

most commonly maximum ride time. A comprehensive overview of DARP variations and solution

techniques is given in [6]

In [1] the authors state that the “method is easy to implement and can be extended in a

straightforward way to solve many variants of the PDPTW for problems where it is possible to

generate all fragments.” However, when their method is applied directly to the DARP it is not

possible to generate all fragments. A key novelty of this work is to introduce the concept of

“restricted fragments”. A restricted fragment is a fragment which consists of a series of pickup

requests followed by a series of delivery requests.

Using nodes and arcs derived from the restricted fragments, we build a relaxed network flow

model with side constraints for coverage of all requests. We strengthen the relaxed formulation with

a number of root node cuts and use lazy constraints to cut off any illegal solutions to the original

problem found while solving the relaxed network flow model as an integer program. Computational

results confirm that our method significantly outperforms state-of-the-art algorithms for solving

the DARP.



2 Methodlogy

2.1 Restricted Fragments

Generating all admissible routes for even a modestly sized DARP instance is prohibitive. Branch-

and-price approaches such as in [5] overcome this problem by implicitly considering all routes.

Alyasiry et al. [1] instead propose using fragments. They define a fragment to be “part of legal

vehicle route such that the vehicle starts empty at a pickup node and ends empty at a delivery

node, but it is never empty at any intermediate node”. Clearly any route can be represented as

one or more fragment. For example, using upper case letters to represent pickup requests and

lower case letters for the corresponding delivery requests, we may have a route corresponding to

the series of requests: (ABaCcbDEFedGfg). This can be considered as two fragments connected

end to end: (ABaCcb)+(DEFedGfg).

However for many problem instances even the number of fragments may grow too quickly. To

address this problem, we define a restricted fragment as having all the characteristics of a fragment,

but additionally restricted so that it only consists of a series of pickup requests followed by a series

of delivery requests. If we consider the route above, relevant restricted fragments are (ABab),

(BCcb), (DEFedf) and (FGfg). It will become clear later why these fragments model the example

route.

2.2 Relaxed Network

After generating all restricted fragments we next proceed to build a relaxed network. We have

two requirements for the relaxed network and the resultant network flow with side constraints

formulation: any vehicle tour that is legal for the DARP must be a legal path in the relaxed

network and it must be simple to add a constraint to cut off a path in the relaxed network that is

not a legal DARP vehicle tour.

For a standard DARP with n requests we can designate the nodes as N = {0, 1, ..., n, n +

1, ..., 2n} where 0 is the depot, i corresponds to the pickup node for request i and i+n corresponds

to the delivery node for request i.

In order to formulate our relaxed network, we define an “extended node” as the combination

of a node and a partial load on a vehicle. An extended node can be written as (i, S) where

S ⊂ {1, ..., n} and i /∈ S.

Our relaxed network is made up of: starting arcs that leave the depot and travel to all empty

extended pickup nodes (i, ∅), 1 ≤ i ≤ n; ending arcs that return to the depot from all empty

extended delivery nodes (i, ∅), n+1 ≤ i ≤ 2n; restricted fragment arcs that move from an extended

pickup node to an extended delivery node; and repositioning arcs that move from an extended

delivery node to an extended pickup node.



A restricted fragment arc is defined by the restricted fragment, starting extended node and

ending extended node [F, (p, P ), (d,D)], where if F = (i1, i2, ..., i|F |) then 0 ≤ |P | ≤ |F |/2 − 1,

0 ≤ |D| ≤ |F |/2−1, p = i|P |+1, P = {ik, 1 ≤ k ≤ |P |}, d = i|F |−|P | and D = {ik−n, |F |−|P |+1 ≤

k ≤ |F |}. An repositioning arc is defined by the starting extended node and ending extended node

[(d,D), (p, P )] where D = P and d 6= p.

Our example route above can be considered as comprised of the following collection of arcs,

where every second arc is a fragment arc: [0, (A, ∅)] - [(ABab), (A, ∅), (a, {B})] - [(a, {B}), (C, {B})]

- [(BCcb), (C, {B}), (b, ∅)] - [(b, ∅), (D, ∅)] - [(DEFedf), (D, ∅), (d, {F})] - [(d, {F}), (G, {F})] -

[FGfg, (G, {F}), (g, ∅)] - [(g, ∅), 0]. What was initially one route, was first represented by five

arcs (two depot movements, two fragments and one repositioning arc) and then by nine arcs (two

depot movements, four restricted fragment arcs and three repositioning arcs).

2.3 Overall Algorithm

Our overall algorithm can be summarised as follows:

• Apply standard time window tightening and arc elimination rules as in [4].

• Generate all restricted fragments using a simple recursive procedure. We check maximum

ride times using the procedure described in [5].

• Build the relaxed network. This is done carefully to exclude nodes and arcs which cannot

possible be part of a feasible vehicle route.

• Build the integer programming model. This is a network flow model with side constraints to

ensure each pickup node is covered and the number of vehicles is not exceeded. We also add

constraints to eliminate cycles consisting solely of one fragment arc and one repositioning

arc.

• Repeatedly solve the LP relaxation of the model and add cuts until no more cuts are added.

• Solve the IP, checking all integer solutions found and adding lazy constraints as required to

cut off infeasible solutions. A solution polishing heuristic is also applied.

The cuts added to the LP relaxation are all of the form xa ≤
∑

a′∈Φ(a) xa′ , where xa are

variables corresponding to arcs and Φ(a) represents a set of arcs, one of which must be in use for

arc a to be used. These constraints are effective because some combinations of in arcs and out

arcs for a node are incompatible. For example, a fragment arc may not be compatible with every

repositioning movement that leaves from its destination node.

3 Computational Results

The algorithm was run on all instances used in [5], including the extended examples where time

windows and capacities were increased. These instances were originally presented in [2] and [3].



Our code was written in Python 3.6 using the callable library of Gurobi 8.0 to solve LP and

MIP problems with four threads.

The table below shows the run times in seconds reported by [5] (the first column in each pair

of columns, times limited to one hour) and our run times for some of the hardest instances, on

broadly comparable hardware.

Instance Orig 4/3 5/3 6/3

b6-72 31.4 2.9 1691.4 9.9 3600.0 30.5 696.8 33.4

b7-56 50.3 2.2 26.8 6.8 38.5 23.7 347.4 67.0

b7-70 13.0 3.4 50.0 8.4 47.8 16.8 3600.0 189.5

b7-84 71.7 4.6 518.6 9.6 3600.0 77.9 3600.0 382.7

b8-64 23.1 1.9 9.3 8.9 73.5 18.5 3600.0 616.1

b8-80 10.3 1.0 15.4 6.7 3600.0 34.9 3600.0 670.2

b8-96 898.8 7.3 2135.6 19.7 3600.0 95.6 3600.0 4830.4

Table 1: Results on harder instances

The conference presentation will also report results on more difficult instances from other data

sets as well as discussing possible extensions to the algorithm.
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Railroads are cost-effective and environmentally-sustainable. They move large quantities of a

broad variety of commodities over long distances, and are thus a key element of the world-wide

intermodal transportation network, displaying a steady traffic growth. Efficient and profitable

railroad activities require adequate planning of operations and resources. These planning processes

are complex due in large part to the interactions among the main components and goals of the

system, e.g., yards, lines, trains, blocks of cars, economic profitability, resource utilization and

customer satisfaction.

We focus on the tactical planning Blocking & Car Fleet Management problem (BCFM ) for

intermodal rail for which, according to our best knowledge, no adequate methodology exists. We

propose a new Scheduled Service Network Design with Resource Management (SSND-RM ) model

for the BCFM that accounts for the characteristics of intermodality, namely, the demand expressed

in terms of containers of various types and their assignment to multi-platform double-stack cars of

different types. This container-to-car assignment requirement adds a new dimension to the train

blocking problem addressed in the literature, and a new design layer to the classical car-to-block

and block-to-train design decisions of the rail SND formulations. We briefly describe the problem

(Section 1) and the model (Section 2), and sum up the presentation plan in Section 3.



1 Problem Description
Rail cargo is moved by trains made up of blocks of cars. Cars are classified (sorted) in yard

terminals and assigned to blocks. A block is a group of cars, with possibly different origins and

destinations, that move as a single unit between a pair of yards, without cars being handled

individually when transferred from one train to another at intermediate yards. Blocking thus aims

to take advantage of economies of scale and reduce yard handling costs. A block is moved by

a sequence of trains, while a car can be moved by a sequence of blocks between its origin and

destination yards. The classical train blocking problem consists in selecting the blocks to build

and assigning cars to blocks. A number of studies in the literature address this case, e.g., [2, 3],

but none accounts for the intermodal challenges: the need to explicitly account for the loading of

containers on cars as well as the need to efficiently manage a limited fleet of cars.

About 90% of the containers used worldwide are 20 or 40 feet, while longer units, e.g., 53

feet, are also used in the North American market. The origin-to-destination (OD) demand is

then defined as a number of containers of particular type and OD pair, as well as availability

time at origin and due time at destination. This definition, in terms of cargo, is different from

the classical one in terms of loaded cars. Moreover, the railroad uses a heterogeneous fleet of

particularly-designed intermodal cars that, in most cases, is rented for the year.

These particular characteristics of the intermodal blocking problem induce two planning and

methodological challenges. Consider, first, that each car has one to five platforms, which may

be double- (two container slots) or single-stacked (one slot). The heterogeneity of the container

fleet then yields a large number of loading alternatives and quite diverse numbers of required cars,

even when considering the many existing loading rules [1]. Second, one cannot assume that the

appropriate types and numbers of cars will always be available at all yards for all possible demands.

Indeed, the car availability at a given yard and time instant is very much dependent on the earlier

decisions regarding on what cars containers were loaded and how the cars where blocked.

Given a train schedule, the goal of the BCFM is to determine simultaneously a scheduled block-

ing plan that includes a block-to-car assignment policy and a car circulation to support the selected

blocks, and that minimizes the total operation costs. Particularly challenging issues in addressing

the BCFM are 1) simultaneously considering three consolidation processes, containers to cars, cars

to blocks, and blocks to trains; 2) differentiating car and container types and representing in a

computationally efficient way the assignment of containers to cars within a tactical blocking model;

3) integrating blocking and car-fleet management.

2 Modeling
We propose a model that is based on a cyclic four-layer space-time network representation, illus-

trated in Figure 1. This is a tactical problem and the plan is defined over a given schedule length

(e.g., a week), to be repeated over the planning horizon. Since intermodal traffic shares the network



with trains moving other types of cargo, we take the train schedule as given. Different from most

studies in the literature [3], this allows us to use a continuous-time network representation.
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Figure 1: Four-Layer - Train, Block, car, Container - Time-Space Network Representation

The arrival and departure times of each intermodal train at the terminals on its route thus yield

the corresponding arrival and departure nodes, defining the time structure of the entire network.

We model train activities through handling arcs representing the time trains spend at terminals

and moving arcs between terminals. The train features, e.g., power and maximum length, provide

the capacity of the moving arcs. Each block in the potential-block set is defined by a particular

time-dependent OD pair and a path made up of movements on train-moving arcs and activities

in yards. We model building new blocks, transferring blocks from one train to another, and

dismantling blocks at their destinations through appropriate intra-layer arcs connecting to the

train and car layers.

The car layer provides the representation for 1) the container-to-car assignment and loading,

and 2) the circulation of the car fleets. The latter takes place through car ”pool” nodes and arcs

standing for the inventory of empty cars (of the given type), together with arcs adding cars to

(newly unloaded and empty delivered) and extracting cars from (to be loaded or shipped empty)

the pool. The former take place on container-to-car loading arcs implementing the container-to-

car assignment model we propose, based on the relations among the lengths of blocks, platforms

(cars), and container types. Inter-layer arcs receive the loaded and empty cars at the destination

of the block and send the loaded and empty cars to the selected block. Symmetrically, inter-layer

arcs move the containers from / to the container layer when selected to be blocked and shipped or

at destination, respectively. Finally, demand enters and exists the system through the container

layer. Upon arrival, containers wait on Container-Waiting arcs until the selected block.

We propose a mixed integer linear programming (MILP) formulation with three groups of



decision variables: (i) Block selection, binary variables equal to 1 if a block is selected, and 0

otherwise; (ii) Container flow distribution representing the numbers of containers of appropriate

demands on each block; (iii) Car distribution standing for the total number of cars of each type

on each block, inventory arc, and loading/unloading arc.

The objective function minimizes the total cost of the system over the planning horizon. It

encompasses the cost of selecting, operating and transferring blocks, the costs of handling and

moving cars and containers, the time-related costs for containers and cars idling at train stops, as

well as penalties for late arrival of demand and train-capacity overload. There are flow conserva-

tion constraints in the four layers and in between layers. Train and block capacities are enforced

through linking constraints, and yard capacities are enforced as well. The latter are defined as

bundle constraints regarding the maximum length of blocks that can be built and dismantled dur-

ing a given time interval at a given terminal. Loading constraints yield the appropriate number of

loaded cars given the assigned containers.

3 Conclusion
A large set of experiments was performed using data from a major North-American railroad using

the model above as well as a more compact path-based formulation. Realistically-sized and defined

instances were solved exactly within rather short computing times. We analyzed the impact on

the design of the block & car plan, and the computational difficulty of the resulting instance,

of several problem characteristics, e.g., number of trains and their number of intermediate stops,

demand distribution in space and time, relative value of the penalties relative to the operational

costs, possibility to split the demand flows among several blocks and the inclusion of extra trains

(at high costs). We will present the problem, the container-to-car assignment solution we propose,

the BCFM models, the experimental setting, and the numerical results and analyzes obtained.

We gratefully acknowledge the close collaboration with the Canadian National Railway Com-

pany (CN). This research is supported by the CN Chair in Optimization of Railway Operations,

U. de Montréal, and the Natural Sciences and Engineering Research Council of Canada through
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1 Introduction

Operations research methodologies have been used to identify and evaluate solutions to the recon-

figuration of public school attendance area boundaries for over fifty years. In broad terms, the

school redistricting problem seeks to find capacity-feasible assignments of students in a school dis-

trict to a local school (also referred to as “rezoning” or “optimizing attendance area boundaries”).

Much of the early work was motivated by the movement to integrate schools. The years since

have seen new directions of related work to address additional challenges related to the design

of school attendance boundaries and leverage emerging advances in optimization and geographic

information systems technology. Yet, many school districts still struggle with reconfiguring at-

tendance area boundaries to meet changing needs of their communities. This analysis of the use

of operations research for school districting is motivated by a collaboration with one such school

district. As part of a larger research study looking at mathematical models to search for creative

solutions to transportation challenges, the work to be presented is a reflection on the past fifty

years of progress and the challenges remaining for school redistricting. While space prohibits a full

literature review, including related problems such as political districting, the abstract highlights

key related papers to provide context for this study. The presentation will feature a broad review

of the literature, linking advances in the literature to current issues in education at the time and

advances in technology.

2 Fifty years of research

While researchers have worked with school districts worldwide, many common themes have emerged

over time, as researchers respond to changing factors in public education and the introduction



of new technology. In 1954, the United States Supreme Court ruled in Brown v. the Board

of Education that segregating schools by race was unconstitutional and that schools should be

integrated “with all deliberate speed”. This ruling was followed by the 1968 Green v. New

Kent ruling that called for significantly faster progress on integration. Around that time, papers

began to appear in the operations research literature exploring analytical approaches to school

integration. The titles of such papers reflect the focus on integration; e.g., “School rezoning to

achieve racial balance: a linear programming approach” [8], “An operations research approach to

racial desegregation of school systems” [5], and “A network-flow model for racially balancing schools

[2]. As shown in the titles, these papers made use of advances in linear programming approaches of

the time. Beginning with this early work and continuing today, assignment variables are typically

defined by street segments or blocks where students live (referred to as tracts in early papers) and

the schools to which students can be allocated. The above papers modeled the assignment variables

as continuous variables, allowing split allocation of students at one location among different schools.

Over time, it became more common to explicitly model the need to assign students on the same

block or street segment to the same school through integer programming approaches, beginning

with [10]. This is one example of the convergence in the growing ability to solve large-scale integer

programs and evolving societal views on how students should be assigned to schools.

Above are three of many papers in the late 1960s and 1970s that applied emerging operations

research techniques to school redistricting, identifying the unique features of the problem, partic-

ularly focusing on the trade-offs between achieving racial balance and minimizing travel distance

for students. The dual consideration of achieving racial balance and minimizing travel distance

naturally motivated new ways to communicate proposed solutions to decision makers. The 1990

work by Ferland and Guénette [7] is an early example of the move to improve visualization and

interactive capabilities. Building on those ideas, a key feature in work over the past three decades

has been the integration of optimization tools with Geographic Information Systems (GIS), recog-

nizing the need to more seamlessly integrate geo-data with mathematical models of redistricting

and the need to provide decision makers with more powerful visualization tools for interactive

decision-making with school districts; see for example, [1] and [4].

Early papers considered the immediate need to integrate schools with greater speed; over time,

school districts needed to again reconfigure attendance areas, even opening and closing schools,

to meet changing demographics. For example, given declining enrollment in the 1970s and 1980s,

many districts closed schools. Again, operations research models were developed to assist in the

decision making. In 1975, [9] introduced integer variables to model the opening and closing of

schools over time. School closings were considered a decade later in [6] which examines school

decisions in a multi-objective framework, reflecting the complex mix of factors impacting school

closing and reassignment decisions. While some models were designed for annual reconfiguration



of enrollments (e.g., [4]), many school districts anticipate a commitment of at least ten years

for new configurations. However, modeling uncertainty in enrollment changes at a level suitable

for redistricting models is challenging. Enrollment predictions for school districts are typically

performed at more aggregated levels (e.g., the school or the entire district), whereas redistricting

models consider more granular geographic units such as blocks or street segments. Armstrong et

al. [1] addresses some of the challenges of including population projections in attendance area

models.

Another challenge is the need to more explicitly consider the geography of the resulting bound-

ary areas, including the compactness and contiguity of school neighborhoods. Such features are

important in creating neighborhood cohesion and minimizing bus transportation. Compactness

and contiguity are modeled in different ways in the political districting literature, but have re-

ceived less attention (from a modeling perspective) in the school redistricting literature. Early

work, including [9] and [6] among others, included objectives to minimize the sum of the squared

distance from student location to school, which naturally results in compact regions. In [6], conti-

guity is considered through a set of constraints that ensure that a location in the district (in their

case, defined as a cell in the region) is assigned to the same school as at least one neighbor. In

[4], contiguity is modeled more directly through the use of internal paths connecting locations to

schools. Increased computational power has been a factor in more explicit modeling of compactness

and contiguity.

3 Implications for redistricting today

Fifty years after the work motivated by school integration, we continue to see new work in this

area. Recent work has focused on economic integration of schools as research continues to show

how income level impacts access to high quality education, see [3]. Trade-offs between providing

equitable access to high quality schools and minimizing travel distances to schools are, in many

ways, similar to the early conflicting objectives, but new challenges arise.

In the talk, we will present one such challenge. Beginning in 2015, Evanston / Skokie School

District 65 partnered with researchers at Northwestern University to develop mathematical models

to improve the service, efficiency and equity of transportation services. As others have done over

the past fifty years, we are developing an interactive decision support tool to identify and evaluate

potential changes to school attendance boundaries. School integration in Evanston, combined with

school closings over time, has led to significant variation in the distances students travel to school

and non-contiguous attendance area boundaries. We will present our work to incorporate the vast

literature on the topic with new innovations to identify and evaluate changes to attendance area

boundaries, ranging from incremental to longer-term, relative to key metrics that consider school



capacity levels, robustness to changing demographics, equity in access to schools, and potential

reductions in bus transportation. Preliminary testing of the decision support tool is planned for

February 2019 with the school district. At the conference, we will present observations from these

tests. We will also discuss ways in which we are incorporating recent work on the approximation

of covering path problems with network structure [11] into partitioning models to assist with the

modeling of bus transportation costs.
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1 Introduction

Free-floating Electric Vehicle (EV) sharing are expected to be adopted on a tremendous scale due

to its service flexibility and energy efficiency [1]. Despite EVs’ great promise on the emission

reduction, the extensive driving and charging of these vehicles could significantly reduce the life of

batteries, or the state of health (SoH) [2]. Such inherent battery degradation process during long-

term operations normally results in an underestimation of cost and implicitly affects the decision

making of charging scheduling, dispatching, and deployment of the fleet. There is a lack of studies

to address the critical impact of battery degradation in such EV sharing systems.

To fill this research gap, we propose an integrated model for EV sharing systems design in a

continuous 2D space. This model aims to optimize the system design considering the joint impact

of battery charging and degradation, hence provides decision support on the charge station de-

ployment, fleet balancing operations, and the battery charging and replacing policy. An analytical

solution is developed based on the Monge-Kantorovich problem, which provides fruitful managerial

insights.

2 Preliminaries

Suppose a free-floating EV sharing system is operating on a continuous 2D service region Ω.

Let (x, y) ∈ Ω × Ω be an origin-destination (OD) pair for a trip from location x to y, and the

corresponding travel demand density nearby is f(x, y) per unit time (service trip). Meanwhile,

to balance the vehicles over the service region, the system operators should drive vehicles from



those places with idle vehicles, X ⊂ Ω, to those run out of vehicles, Y ⊂ Ω, to ensure vehicle

availability (rebalance trip). Let the number of idle vehicles at x ∈ X per unit time be π+(x) =∫
Ω

[f(y, x) − f(x, y)]dy, and the vehicle shortage at y ∈ Y be π−(y) = −
∫

Ω
[f(x, y) − f(y, x)]dx.

Assume the energy consumptions for both service and rebalance trips are d(x, y). The cost of

hiring an operator to drive from x to y is S(x, y) per unit time.

Each EV is characterized by a pair of State of Energy (SoE) and SoH (e, h). Let h0 be the SoH

of a brand new EV. The EV battery charging rate, which depends on both SoE and SoH, is denoted

by κe(e, h). In particular, we consider an impact factor λ(h) such that κe(e, h) = λ(h)κe(e, h0).

The degradation rate, which only dependents on SoH, is denoted by κh(h). We also assume charge

stations are densely installed in the service region. The unit power pump installation cost at x is

I(x). For simplicity, we assume the installation cost is homogeneous over Ω, i.e., I(x) ≡ I0.

Now we describe the system decision. We denote the outbound service trip flow and rebalancing

trip flow from x to y at a particular SoH-SoE level to be φ(x, y, e, h) and ψ(x, y, e, h), respectively.

Meanwhile, the corresponding inbound flows are denoted as φ′(x, y, e, h) and ψ′(x, y, e, h). At

location x, the number of EVs entering and exiting charge station per unit time is γ(x, e, h) and

γ′(x, e, h), respectively. Suppose the operator retires a battery once its SoH reaches h̄, and use a new

battery (with SoH of h0) at a cost C0 as a replacement. Let Π = {(e, h)|0 ≤ e ≤ e0(h), h̄ ≤ h ≤ h0}

be the set of all feasible (e, h) pairs in system, where e0(h) is the maximum SoE level at at a given

h. We have following EV flow balance equation:∫
Ω

φ′(y, x, e, h)dy +

∫
Ω

ψ′(y, x, e, h)dy + γ′(x, e, h)

=

∫
Ω

φ(x, y, e, h)dy +

∫
Ω

ψ(x, y, e, h)dy + γ(x, e, h), ∀x ∈ Ω, (e, h) ∈ Π

(1a)

While charging, we model the change of battery SoE and SoH as a two-dimensional advection in Π.

Let n(x, e, h) be the density of EVs in the charge station at x with (e, h). The advection velocity

is κ = (κe,−κh), indicating the SoE increases κe and SoH decreases κh per unit time. Then we

have the following SoE-SoH advection equation in the charge station at x:

∇[κ(e, h)n(x, e, h)] = γ(x, e, h)− γ′(x, e, h) ∀(e, h) ∈ Π (1b)

n(x, e, h)|h=h0
= w0(x, e) (Boundary Condition)

For location x, the rate of battery replacement with SoE of e is the product of w0 and degradation

rate κh(h0), denoted as p(x, e). In addition, let g(x, y) be the total rebalance flow from x to y.

Given the above problem setting, the system needs to find a policy to minimize the sum of

charge station installation cost, vehicle rebalancing cost, and battery replacement cost.

Problem 2.1 (EV sharing system design problem (Continuous))

min
φ,ψ,λ,n,g≥0

∫∫∫
Ω×Π

I0n(x, e, h)dedhdx+

∫
Ω

∫ e0

0

C0p(x, e)dedx+

∫∫
Ω×Ω

S(x, y)g(x, y)dxdy (1c)

Ricardo8




s.t. Constraint (1a)(1b)∫∫
Π

φ(x, y, e, h)dedh = f(x, y),

∫∫
Π

ψ(x, y, e, h)dedh = g(x, y) ∀x, y ∈ Ω (1d)∫
Y
g(x, y)dy = π+(x) ∀x ∈ X (1e)∫

X
g(x, y)dx = π−(y) ∀y ∈ Y (1f)

φ′(x, y, e′, h) = φ(x, y, e, h), ψ′(x, y, e′, h) = ψ(x, y, e, h) ∀e′ = e− d(x, y) ≥ 0 (1g)

φ(x, y, e, h), ψ(x, y, e, h) = 0 ∀e < d(x, y) (1h)

3 Main results

Directly solving Problem 2.1 is extremely difficult. Note that, in most cases, the battery degrada-

tion rate is relatively neglectable compared to its charging rate, i.e. κh � κe. Hence the changes

of EVs’ SoH can be ignored in a single charging cycle. To this end, the two-dimension advection

can be decomposed into two one-dimension advection in Π.

∂

∂e
[κe(e, h)n(x, e, h)] =

∫
Ω

[φ′(y, x, e, h) + ψ′(y, x, e, h)− φ(x, y, e, h)− ψ(x, y, e, h)]dy (2a)

∂

∂h
[−κh(h)n(x, e, h)] = 0 (2b)

n(x, e, h)|h=h0
= w0(x, e) (Boundary Condition)

Considering that each trip for (x, y) is infinitesimal in a continuous space, we can assume

an operating policy such that an infinitesimal outbound flow on (x, y) share the same SoE level.

Following such operation, we denote the outbound SoE for service and rebalance trips to be µ(x, y)

and ν(x, y), respectively. Thus when these EVs arrive destination, their SoE become µ′(x, y) =

µ(x, y) − d(x, y) and ν′(x, y) = ν(x, y) − d(x, y). Integrating both sides of (2a) on Ω × Π and

applying simple algebra, we can get∫∫∫
λ(h)n(x, e, h)dxdedh =

∫∫
(

∫ µ(x,y)

µ′(x,y)

f(x, y)

κe(e, h0)
de+

∫ ν(x,y)

ν′(x,y)

g(x, y)

κe(e, h0)
de)dxdy (3)

We denote κ̃h(h̄) = (
∫ h0

h̄
κ−1
h dh)−1. Note κ̃h(h̄) is the effective battery degradation rate when

the retiring SoH is h̄. Denote κ̃e(e, h̄) =
∫ h0

h̄
κe/κhdh · κ̃h(h̄). Here, κ̃e(e, h̄) is the effective charging

rate. Note we can extract κe(e, h0) from κ̃e(e, h̄), which yields λ̃(h̄) =
∫ h0

h̄
λ/κhdh · κ̃h(h̄). We can

get the total number of charging pumps N and w0 by Equation (2)(3), and get Problem 3.1.

N =

∫∫
[

∫ µ(x,y)

µ′(x,y)

f(x, y)

κ̃e(e, h̄)
de+

∫ ν(x,y)

ν′(x,y)

g(x, y)

κ̃e(e, h̄)
de]dxdy =

κh(h0)

κ̃h(h̄)

∫∫
w0(x, e)dedx

Problem 3.1 (EV sharing system design problem (slow degradation))

min
g,µ,µ′,ν,ν′,h̄≥0

(I0 +
C0

κ̃h(h̄)
) ·

∫∫
Ω×Ω

f(x, y)K(µ′, µ) + g(x, y)[K(ν′, ν) + S(x, y)]dxdy (4a)



s.t. Constraint (1e)(1f)

µ(x, y), ν(x, y) ≤ e0(h̄) ∀x, y ∈ Ω (4b)

where K(µ′, µ) =
∫ µ(x,y)

µ′(x,y)
[κ̃e(e, h̄)]−1de.

Theorem 3.1 If the charging rate κe is a monotone decreasing function over e, the optimal so-

lution of µ, ν, and h̄ is given as (5)(6). Moreover, if both d(x, y) and S(x, y) are proportional

to ‖x − y‖, Problem 3.1 can be reduced to the Monge-Kantorovich (M-K) problem with a strictly

convex transport cost.

µ∗(x, y) = ν∗(x, y) = d(x, y) (5)

h̄∗ = argmin
h̄

I0 + C0/κ̃h(h̄)

λ̃(h̄)
(6)

Equation (5) tells EVs should operate at the lowest possible energy level as long as the energy

usage requirement is met. Equation (6) implies the optimal retiring SoH value minimizes an equiv-

alent infrastructure cost considering battery retiring and charging rate slow down. The numerator

is the sum of charging pump cost and battery life degradation cost, while the denominator serves

as an adjustment factor for charging efficiency due to battery degradation.

Finally, to solve the optimal rebalancing policy g(x, y), we first define a transport cost c(x, y) :=

K(ν′∗, ν∗) + S(x, y) [3]. Then the Kantorovich potential u (similar to node potential of min-cost

flow problem), which is the dual price of the flow balance constraint at certain location, can be

calculated as u(x) = miny∈Y(u(y) + c(x, y)),∀x ∈ X and u(y) = maxx∈X (u(x) − c(x, y)),∀y ∈ Y.

The unique optimal rebalancing map s(x) satisfies u(x)−u(s(x)) = c(x, s(x)). Thus g(x, y) satisfies

g(x, s(x)) = π+(x),∀x ∈ X , which implies all rebalance trips from x should target at an optimal

location s(x).

4 Conclusion

We establish a novel framework to study the optimal design problem of free-floating EV car sharing

system considering charging, rebalancing, and battery replacement operations. The problem deals

with a heterogeneous fleet with different battery SoE and SoH, nonlinear charging and degrada-

tion rate, and a service region with densely installed charge stations. We formulate a model in

continuous space and prove that the model can be reformulated as an optimal transport problem.

An analytical solution is obtained under the assumption that the degradation process is slow. Our

approach provides managerial insights for such EV sharing services providers in terms of charge

station deployment, EV dispatching, rebalancing operations, and retiring policies.
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Appendix: Proofs

4.1 Equation (3)

∂

∂e
[κe(e, h)n(x, e, h)] =

∫
Ω

[φ′(y, x, e, h) + ψ′(y, x, e, h)− φ(x, y, e, h)− ψ(x, y, e, h)]dy (7)

κe(e, h)n(x, e, h) =

∫
Ω

[Φ′(y, x, e, h) + Ψ′(y, x, e, h)− Φ(x, y, e, h)−Ψ(x, y, e, h)]dy (cumulative on e)

(8)

λ(h)n(x, e, h) =
1

κe(e, h0)

∫
Ω

[Φ′(y, x, e, h) + Ψ′(y, x, e, h)− Φ(x, y, e, h)−Ψ(x, y, e, h)]dy (9)∫∫
λ(h)n(x, e, h)dxde =

∫∫
(

∫ µ(x,y)

µ′(x,y)

fh(x, y)

κe(e, h0)
de+

∫ ν(x,y)

ν′(x,y)

gh(x, y)

κe(e, h0)
de)dxdy (10)∫∫∫

λ(h)n(x, e, h)dxdedh =

∫∫
(

∫ µ(x,y)

µ′(x,y)

f(x, y)

κe(e, h0)
de+

∫ ν(x,y)

ν′(x,y)

g(x, y)

κe(e, h0)
de)dxdy (11)

4.2 N and w0

First solve w0

∂

∂h
[−κh(h)n(x, e, h)] = 0 and n(x, e, h)|h=h0

= w0(x, e) (12)

κh(h)n(x, e, h) = κh(h0)w0(x, e) (13)∫∫
n(x, e, h)dxde =

1

κh(h)
κh(h0)

∫∫
w0(x, e)dedx (14)

N =

∫
1

κh(h)
dh · κh(h0)

∫∫
w0(x, e)dedx (Integrate on h) (15)

N =
κh(h0)

κ̃h(h̄)

∫∫
w0(x, e)dedx (16)

From above Equation (11), we have∫
λ(h)[

∫∫
n(x, e, h)dxde]dh =

∫∫
(

∫ µ(x,y)

µ′(x,y)

f(x, y)

κe(e, h0)
de+

∫ ν(x,y)

ν′(x,y)

g(x, y)

κe(e, h0)
de)dxdy := P (17)



Plug in (14) to (17) ∫
[
λ(h)

κh(h)
· κh(h0)

∫∫
w0(x, e)dedx]dh = P (18)∫

λ(h)

κh(h)
dh · κh(h0)

∫∫
w0(x, e)dedx = P (19)

κh(h0)

∫∫
w0(x, e)dedx =

1∫
λ(h)/κh(h)dh

P (20)

Compare (20) with (14)∫∫
n(x, e, h)dxde =

1/κh∫
λ(h)/κh(h)dh

P (21)

N =

∫
1/κhdh∫

λ(h)/κh(h)dh
P =

1

λ̃(h̄)
P (Integrate on h) (22)
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One of the key bottlenecks of the international container supply chain is the transportation of con-
tainers between deep-sea container ports and the surrounding hinterland area. This transportation task
is predominantly carried out by trucks, however recently various multi-modal approaches have begun to
appear—employing road transportation in conjunction with rail or other transport modalities. Under
these configurations, containers may be transported directly to the port by truck or instead to an inland
container terminal, with the remainder of the journey facilitated by a short-haul rail service. Within
the operations research literature, the optimisation of these highly-complex hinterland container trans-
portation networks to ensure all orders are transported punctually whilst minimising cost is referred to
as the hinterland or inland container transportation problem.

A number of authors have considered variations on the inland container transportation problem. At
the tactical level, Li, Negenborn, and De Schutter [1] develop a flow-based model for a transportation
network consisting of rail, road, and inland waterway (barge) transportation and use a rolling-horizon
control to optimise freight movements around the Port of Rotterdam. Zhang and Pel [5] additionally
consider a case-study for the Port of Rotterdam hinterland, also developing a flow-based model and
assessing various competing transportation paradigms. At a more operational level, Wang and Yun [4]
consider an intermodal freight transportation problem with a single rail link and associated drayage
activities—the authors develop a hybrid Tabu search heuristic and evaluate it over randomly generated
instances. A comprehensive review of problems in this space is given by SteadieSeifi, Dellaert, Nuijten,
Van Woensel, and Raoufi [3].

Within Europe (where most previous research has been done) and the USA, hinterland areas are
commonly large and diffuse. This contrasts dramatically with the Australian context, in which there
exist much more compact and well-defined metropolitan areas around ports. We consider a variant of
the inland container transportation problem arising from this context and refer to it as the metropolitan
freight transportation problem with single allocated drayage (MFTP). Our key aim is to understand the
link between rail service allocation and road transportation and as such in this paper consider the special
case with unit demand and unit truck capacity (MFTP-1AD).

Let Q be a set of orders—partitioned into a set of imports D and exports P—to be satisfied within the
planning horizon. Import orders must be transported from the port to their final import destination, and
export orders from their export origin to the port. All orders are assumed to consist of one twenty-foot
equivalent unit (TEU) and must be satisfied within the planning horizon. Both road and rail modalities
are available to transport containers. We denote S as the set of rail terminals (and equivalently rail
lines) within the network, with the port included in this set of terminals. Transportation of containers
along a rail line s is charged at αD

s per TEU for imports and αP
s per TEU for exports. Similarly, each

rail line has an outbound capacity of hDs TEUs and an inbound capacity of hPs TEUs.
Additionally, the road network is administered by a homogeneous fleet of vehicles, each with unit

capacity; restricting road routes to routes of length two (out-and-back for an import or export) or length
three (an import order paired with an export order). We assume that for an import and export order
to be paired they must both pass through the same container terminal. The cost of moving between
locations a ∈ Q ∪ S and b ∈ Q ∪ S is given by γab (not necessarily symmetric). A visualisation of an
example instance is given as Figure 1.
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Figure 1: Geographical distribution of an example metropolitan area. Here blue triangles ( ) represent
import locations, red squares ( ) represent export locations, and black circles ( ) represent terminal
locations. Dashed black lines represent rail lines between terminals and the port (central circle) and
the solid black curve the coastline. The MFTP seeks to allocated orders to container terminals, then
subsequently link import and export orders together in a single road route.

Under the MFTP-1AD, we seek to satisfy all orders in Q at minimum cost whilst respecting all
capacity constraints. Consider an integer programming formulation for the MFTP-1AD on the binary
variables:

– yqs, indicating whether customer request q is transported on rail line s.
– xijs, indicating that import request i and export request j are satisfied in a single route associated

with rail terminal s (i.e. the truck travels along path (s, i, j, s)). A direct road service—(s, i, s) or
(s, j, s)—is modelled by the dummy index b in place of i or j, respectively.

Given these decision variables, the goal is to minimise the function

F (x,y) =
∑
s∈S

∑
i∈D

(αD
s + γsi)yis +

∑
j∈P

(αP
s + γjs)yjs +

∑
i∈D

∑
j∈P

γijxijs +
∑
i∈D

γisxibs +
∑
j∈P

γsjxbjs

 ,

(1)
i.e. the total transportation cost as the sum of the rail transportation, drayage, and direct and paired
dead-heading costs, whilst respecting all constraints of the system. The integer program (2)–(8) then
defines an optimal solution to the MFTP-1AD:

min
x,y

: F (x,y) (2)

s.t.
∑
s∈S

yqs = 1, ∀q ∈ Q (3)∑
i∈D

yis ≤ hDs , ∀s ∈ S (4)∑
j∈P

yis ≤ hPs , ∀s ∈ S (5)

∑
j∈P∪{b}

xijs = yis, ∀i ∈ D, s ∈ S (6)

∑
i∈D∪{b}

xijs = yjs, ∀j ∈ P, s ∈ S (7)

yqs, xijs ∈ {0, 1}, ∀s ∈ S, i ∈ D ∪ {b}, j ∈ P ∪ {b}, i 6= j, (8)

Here, (2) minimises the cost function (1). Equation (3) ensures each order is allocated to exactly one rail
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terminal. Constraints (4) and (5) ensure that rail service capacity restrictions are enforced. Equations
(6) and (7) ensure that an order may only be serviced by road from a terminal if it is allocated to
that terminal. These constraints also ensure that each order appears as part of exactly one road route.
Finally, equation (8) provides the domain for variable sets x and y.

In practice, solving instances of the MFTP-1AD with traditional MIP techniques can prove challeng-
ing as the problem is NP-hard. We demonstrate this for the case where vehicle capacity forms part of
the input and for any fixed integer vehicle capacity.

Theorem 1 The MFTP is NP-hard if truck capacity g ∈ Z+ is part of the input.

Theorem 2 The MFTP is NP-hard for all fixed truck capacities g ∈ Z+.

To solve the problem more effectively, we develop a Benders decomposition with rail-allocation decisions
made in the master problem (MP) and road transportation decisions in the subproblem (SP). As there
always exists a feasible road transportation strategy for a given rail-assignment, only Benders optimality
cuts are required. Additionally, due to the requirement that import and export orders are only ‘paired’
if they are associated with the same terminal, the subproblems may be completely decoupled. More
formally, in each iteration the rail allocation variables yqs are fixed to some ŷqs for q ∈ Q, s ∈ S. Each
iteration we therefore obtain |S| independent integer programming subproblems defined by the vector
ŷ = (ŷqs):
(SPs(ŷ))

min
x

:
∑
i∈D

∑
j∈P

γijxijs +
∑
i∈D

γisxibs +
∑
j∈P

γsjxbjs (9)

∑
j∈P∪{b}

xijs = ŷis, ∀i ∈ D (10)

∑
i∈D∪{b}

xijs = ŷjs, ∀j ∈ P (11)

xijs ∈ {0, 1}, ∀i ∈ D ∪ {b}, j ∈ P ∪ {b}, i 6= j, (12)

In its current form, the mathematical program (9)–(12) cannot be dualised (and as such cannot be
used to generate Benders cuts) due to the integrality constraints (12). Fortunately, the subproblem may
be solved equivalently as a minimum-cost flow problem—allowing us to relax the integrality constraint
due to the total unimodularity property of network flow problems, in addition to allowing the use of
specialised network solution algorithms.

Due in part to degeneracy in dual subproblem, convergence of the Benders decomposition proved
underwhelming, and as such we developed a Magnanti-Wong acceleration for our Benders decomposition
algorithm. Under their methodology Magnanti and Wong [2] generate pareto-optimal Benders cuts by
solving a second linear programming problem related to the dual subproblem. We refer to this second
LP as the Magnanti-Wong dual subproblem. The Magnanti-Wong dual subproblem chooses from optimal
solutions to the dual subproblem by adding a constraint to the LP fixing the objective expression to the
optimal objective value. The Magnanti-Wong subproblem them optimises with respect to core-point—an
element of the relative interior of the convex hull of the master problem (here denoted m ∈ R|Q|×|S|).

Under our Benders decomposition, taking the dual of the Magnanti-Wong dual subproblem gives the
Magnanti-Wong primal problem: (MWPs(ŷ))

min
x,z

:
∑
i∈D

∑
j∈P

γijxijs +
∑
i∈D

γisxibs +
∑
j∈P

γsjxbjs − δ̂szs (13)

∑
j∈P∪{b}

xijs − ŷiszs = mis, ∀i ∈ D (14)

−
∑

i∈D∪{b}

xijs + ŷjszs = −mjs, ∀j ∈ P (15)

xijs, zs ≥ 0, ∀i ∈ D ∪ {b}, j ∈ P ∪ {b}, i 6= j, (16)

where δ̂s is the optimal objective value of subproblem SPs(ŷ) and zs the new ‘primal’ variable associated
with the Magnanti-Wong fixing constraint in the dual.
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Although providing superior convergence to the out-of-the-box Benders implementation, our Magnanti-
Wong acceleration still suffers from two problems persistent with the method: the need for two LP solves
per iteration and the destruction of any network structure in the (second) LP subproblem. By noting

that it is possible to find an optimal solution to MWPs(ŷ) without the value of δ̂s (Lemma 3) we devel-
oped the simultaneous Magnanti-Wong method (Theorem 4): requiring just one LP solve per Benders
iteration and preserving the underlying network structure.

Lemma 3 Let Qs be the subset of orders Q allocated (at least in part) to terminal s ∈ S under the
current master problem solution,

Qs := {q ∈ Q | yqs > 0},
and let ŷbs be the ‘export deficit’ for the current master problem solution,

ŷbs :=
∑
j∈P

ŷjs −
∑
i∈D

ŷis.

Now define the set Q′s as Qs ∪ {b} if ŷbs is nonzero and Qs otherwise. Lastly define the constant Ms,

Ms := max

∑
i∈D

mis,
∑
j∈P

mjs

 .

Then for non-negative m, there exists an optimal solution to MWPs(ŷ) with zs = ẑ, for all ẑ ≥ Ls,
where

Ls := max
q∈Q′

s

{
Ms

|ŷq|

}
.

Theorem 4 For non-negative m, the linear program generated by fixing variable zs to any ẑs ≥ Ls:
(sMWPs(m, ŷ))

min
x

:
∑
i∈D

∑
j∈P

γijxijs +
∑
i∈D

γisxibs +
∑
j∈P

γsjxbjs∑
j∈P∪{b}

xijs = mis + ŷisẑs, ∀i ∈ D (17)

−
∑

i∈D∪{b}

xijs = −mjs − ŷjsẑs, ∀j ∈ P (18)

xijs ≥ 0, ∀i ∈ D ∪ {b}, j ∈ P ∪ {b}, i 6= j

defines a minimum-cost flow problem. If m is a core point of MP, an optimal dual solution (û, v̂), where
u are the dual variables for constraints (17) and v the dual variables for constraints (18), defines a
pareto-optimal Benders optimality cut for the MFTP-1AD.

Computational experiments were run to evaluate the performance of the simultaneous Magnanti-Wong
method against other variations of the algorithm (the out-of-the-box Benders decomposition and basic
Magnanti-Wong acceleration) in addition to the standard MIP implementation, across simulated and
real world instances, demonstrating significant performance improvements via our method.
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1 Introduction 
 

The school bus transportation planning problem (SBPP) has been well studied. Due to its computational 

complexity, many papers decomposed it into several subproblems. The most widely used decomposition 

method was proposed by Desrosiers et al. [1], which decomposed the SBPP into four subproblems: bus 

stop selection (SS), bus trip generation (TG), school bell time adjustment (TA) and route scheduling 

(RS). The bus stop selection (SS) finds a set of bus stops such that the students can walk to these stops 

and take the school buses. The trip generation (TG) constructs a collection of school-exclusive trips 

where each trip is an ordered sequence of bus stops ending at the school (for morning trip) or starting at 

the school (for afternoon trip). The bell time adjustment (TA) find the best school bell times (or dismissal 

time) within a certain time window such that a good route scheduling plan can be obtained. The route 

scheduling (RS) groups compatible trips (from different schools) into blocks and serves each block with 

one bus. An ordered trip pair is compatible if the end time of the first trip plus the deadhead from the 

last stop of the first trip to the initial stop of the second trip is less than or equal to the start time of the 

second trip.  

Many efforts have been focusing on the bus stop selection, trip generation, and route scheduling 

while the bell time adjustment is severely neglected. Its importance is without question. Our empirical 

cooperation with several public school districts in Maryland and Colorado indicated that the school board 

is more willing to change the school bell time than the bus stop locations and the trips. The latter two 

would have a bigger impact on the students, parents, teachers, bus drivers, infrastructure and the whole 

transportation system than the bell times.  

The bell time adjustment problem is usually incorporated into the school bus scheduling 

problem [2]. Fügenschuh [2] proposed a trip-based Mixed Integer Linear Programming (MIP) model to 
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optimize the bell time adjustment and routing scheduling problem. The problem is solved using 

commercial solver with LP (linear programming) relaxation strengthen techniques like start time 

propagation, variable fixing, big-M reduction, coefficient lifting, cutting planes. The method can solve 

problem up to 102 schools and 490 trips. Then, Fügenschuh [3] developed a set partitioning 

reformulation method to solve the same problem with two cutting planes: set-cover inequality and clique 

inequality. However, both methods are lack of ability to solve large-scale real-world problems. In this 

paper, we present a novel and more efficient MIP model and a local search-based heuristic algorithm to 

solve the Joint Multi-School Bell Time Adjustment and Route Scheduling Optimization Problem 

(TARS).  

 

2 Methodology 
 

Fügenschuh [2] and Fügenschuh [3] both require that all trips arrive at school within 5 minutes of the 

school bell times. A more common practice is that all afternoon trips from one school depart at the school 

dismissal time1. It helps to avoid the safety issues of holding some students after school because of the 

different departure time of the trips. Under this assumption, we present a new School-based Bell Time 

Adjustment and Route Scheduling (S-TARS) model, which is much more efficient than the trip-based 

formulation from Fügenschuh [2]. The comparison of the two models is shown in Table 1, including the 

analytical analysis and a real-world problem from the Howard County Public School System (HCPSS) 

in Maryland with 78 schools and 994 trips.  

Table 1 Comparison of two MIP models 

Model Fügenschuh [2] S-TARS 

Objective NOB+DD NOB+DD 

Constraints 

1. Trip compatibility 

2. School Bell Time Window 

3. Trip departs within 5 mins of its 

school’s bell time 

4. The trip sequence on each bus 

1. Trip compatibility 

2. School Bell Time Window 

3. The trip sequence on each bus 

Assumption 

1. Maximum idle time 

2. Trips depart within 5 mins of its 

school’s bell time 

1. No limit on idle time 

2. Trips depart at the school 

dismissal time 

Comparison Analytical HCPSS Analytical HCPSS 

# of 

variables 

Binary |𝐸| + 2|𝑁| 974,708 |𝑃| + 2|𝑁| 78,526 

Integer |𝑀| 78 |𝑀| 78 

Continuous |𝑁| 994 - 0 

# of constraints 
4|𝐸| + 5|𝑁|
+ 2|𝑀| + |𝑃| 

3,972,544 2|𝑁| + |𝑀| + |𝑃| 78,604 

Note: Objective: NOB: number of buses; DD: deadhead duration; Sets: 𝑀: set of schools; 𝑀𝑡: a school 

that trip t belongs to; 𝑁: a set of trips, |𝑀| ≤ |𝑁|; 𝑁𝑚: set of trips for school m; 𝐸 = {𝑡1, 𝑡2} ∀𝑡1, 𝑡2 ∈
𝑁|𝑀𝑡1 ≠ 𝑀𝑡2, |𝐸| ≤ |𝑁|2; 𝑃 = {𝑡1, 𝑠2}∀𝑡1 ∈ 𝑁, 𝑠2 ∈ 𝑀|𝑡1 ∉ 𝑁𝑠2, |𝑃| ≤ |𝑀| × |𝑁| ≤ |𝑁|2.  

 

The result shows that the new school-based formulation (S-TARS) reduced 91% of the binary 

variables and 98% of constraints from Fügenschuh [2]’s formulation. Such a huge improvement mainly 

comes two simplifications:  

                                                 
1 The morning and afternoon problems are identical, since one can easily be solved by reversing the 

solution to the other one. We solved the afternoon problem.  
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1) In S-TARS, all trips depart at the school dismissal time as a contrast to a more relaxed 

assumption that trips depart within 5 minutes of school bell time in Fügenschuh [2]; 

2) The maximum idle time constraint in Fügenschuh [2] is relaxed in S-TARS.  

Due to the first simplification, the trip-to-trip variable (𝐸) can be replaced by the trip-to-school 

variable (𝑃) and the latter is much smaller than the former (|𝑃| ≪ |𝐸|). In HCPSS, |𝑃| = 76,538 and 

|𝐸| = 972,720. Second, the maximum idle time, which is the time difference between a bus arrives at a 

school and the actual departure time of an afternoon trip, is relaxed in S-TARS. Such constriant is less 

important and is easy to implement in practice: the bus goes back and waits at the bus yard if the idle 

time is too long. Thanks to these two reasonable simplifications, the problem is significantly reduced 

using the school-based formulation (S-TARS).  

The S-TARS is shown to be effective in solving the small to the medium-sized problem in a 

much shorter time than Fügenschuh [2]. However, it is still a little bit slow to solve a large-scale real-

world problem like HCPSS. Thus, a local search-based heuristic algorithm is proposed. The basic idea 

of this algorithm is that given a solution, it fixes some schools’ current dismissal times and finds its best 

neighbor solution by optimizing the dismissal time and route schedule for the free schools. The number 

of fixed and free schools along with the choice of these schools are random in each iteration. The 

algorithm will stop if no further improvement is found in certain iterations. The initial solution is 

obtained by setting each school’s dismissal time equal to its earliest dismissal time and solve the 

scheduling problem using Kim et al.’s Type-I formulation [4]. Under the assumption that trips’ start 

times are known (equal to the school dismissal time), the scheduling problem is formulated as a modified 

assignment problem, which can be solved using the Hungarian Algorithm that has an O(n3) time-

complexity [5].  

 

3 Result and conclusion 
 

The S-TARS and the algorithm are used to solve the HCPSS problem. We tested three different bell time 

proposals: ES first (elementary schools start the first), MS first (middle schools start the first); HS first 

(high schools start the first). All the results are shown in Figure 1. The HS first yields the best solution. 

Under HS first assumption, all high schools start at 7:25 a.m., all middle schools start between 8:15 a.m. 

and 8:45 a.m. and all elementary schools start between 8:00 a.m. and 9:15 a.m. The number of buses is 

reduced from 324 to 295. This 29 bus saving corresponds to 8.9% improvement of the solution, and it 

saves approximately 2 million dollars annually for Howard County. The same method was applied to 

optimize the bus transportation system for Aurora Joint School District in Colorado with 39 schools and 

416 trips. We can reduce 58 buses down to 37 buses, which is a significant 36% improvement.  
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Figure 1 Solution comparison of HCPSS 

 

This paper showed the huge benefit of optimizing the school bell time and route schedule as 

one joint problem. With realistic simplifications, the novel school-based formulation can significantly 

reduce 91% binary variable the and 98% constraint from the trip-based formulation. The local search-

based algorithm is shown to be effective on large scale problem with stunning performance. The 

methodology has been successfully implemented in two real-world problems.  
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1 Introduction 

The ever-increasing contribution of Urban Freight Distribution (UFD) to urban traffic congestion and 

pollutants emissions has drawn attention to the use of Electric Commercial Vehicles (ECVs) that promise 

zero local emissions for city logistics. ECVs adoption for UFD, however, is still significantly constrained 

by their (i) high acquisition cost, (ii) reduced driving range, (iii) long recharging time, and (iv) scarce 

and unevenly scattered Charging Stations (CSs). 

In order to address the primary concern with running on an ECV fleet which corresponds to 

"range anxiety", the existing literature on the Electric Vehicle Routing Problems (ECVRPs) has focused 

on the consideration of available CSs in the network, and thus introducing minimal vehicle detours in 

the ECV route to visit CSs if required [1-5]. While this can aid companies to plan their routes ahead and 

identify the need for recharging at potential CSs in advance, in the presence of realistic time windows 

the solutions yielded by ECVRPs might be either infeasible or too expensive in terms of the number of 

ECVs required and the total distance to travel. To address these shortcomings, in this paper, we turn our 

attention to new technological developments in the area of electric vehicles pertinent to swapping or 

recharging the ECV battery on-the-fly using a mobile Battery Swapping (recharging) Van (BSV). As 

described in [6], the development of a new fast battery-swapping device installed on a BSV opens up 

new possibilities to freight distribution with ECVs by providing an “active” battery-swapping mode. 

Therefore, in this study, we introduce and study the Synchronised Electric Vehicle Routing Problem 

with Non-Stationary Battery Swapping (SEVRP-NSBS), in which if a swap is required for an ECV to 

be able to carry out its route, a BSV is sent to visit the corresponding ECV at a designated point and 

time. It must be mentioned that in the proposed SEVRP-NSBS we retain battery recharging at CSs as 

the primary solution to routing a fleet of ECVs, and given the potential high acquisition cost of BSVs, 

we only propose to use them when it is not possible to satisfy customers time windows, or it is optimal 

to employ a BSV rather than visiting a CS. The contribution of this paper is multi-fold: (i) the SEVRP-



NSBS is introduced and formulated as a Mixed Integer Linear Programming (MILP) model, (ii) new 

analytical results, leading to a Graph Reduction Approach (GRA), are developed to identify a priori all 

eligible paths passing through one or several CSs between every pair of customers, (iii) a significantly 

strengthened alternative formulation of the problem is developed based on the proposed GRA that can 

solve some of the previously unsolved EVRPTW instances to optimality, and (iv) a two-stage memetic 

solution algorithm is developed to solve practical instances of the SEVRP-NSBS in a reasonable 

computational time.  

In the remainder of the paper, we present a formal description of the problem and the model, a 

high-level exposition of the solution algorithm, and some preliminary results. 

 

2 The SEVRP-NSBS 

The SEVRP-NSBS is defined on a complete, directed graph ᵃ� = (ᵃ�, ᵃ�), where ᵃ�  is the set of network 

nodes and ᵃ� = {(ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ᵃ�, ᵅ� ≠  ᵅ�} is the set of directed arcs. The set ᵃ� = {ᵃ�� ∪ ᵃ�� ∪ ᵃ��} is 

comprised of the depot ᵃ�� = {0, ᵅ� + ᵅ� + 1} , with {ᵅ� + ᵅ� + 1}  being a dummy copy of {0} , 

customer nodes ᵃ�� = {1,2, … , ᵅ�} , and CSs ᵃ�� = {ᵅ� + 1, … , ᵅ� + ᵅ�} . Each customer ᵅ� ∈ ᵃ��  is 

associated with a certain demand ᵅ�� to be delivered within its pre-determined hard time window, denoted 

by ᵅ�� = [ᵃ��, ᵅ��], with service time ᵅ��. The depot working hours, which is considered as the planning 

horizon, is denoted by ᵃ� = ᵅ�� = [ᵃ��, ᵅ��]. To each arc (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and a travel time ᵅ��� is 

attributed. There is a fleet of homogeneous ECVs, ᵃ�� and a fleet of homogeneous BSVs, ᵃ�� located in 

the central depot. The fleet of all vehicle types is denoted by ᵃ� = {ᵃ�� ∪ ᵃ��}. To each ECV ᵅ� ∈ ᵃ�� a 

maximum payload ᵃ��, a battery capacity ᵃ��, a daily hiring fixed cost ᵃ��, and an energy consumption 

rate per unit distance travelled ᵅ��  is attributed. Each BSV ᵅ� ∈ ᵃ�� , on the other hand, can carry a 

maximum number of batteries ᵃ��, has a daily hiring fixed cost ᵃ��, a battery capacity ᵃ��, and an energy 

consumption rate ᵅ��. The time spent for recharging an ECV at a CS is dependent on the State of the 

Charge (SOC) of the battery upon arrival at the CS and inverse recharging rate is denoted by ᵃ�. Battery 

swapping must be carried out at one of the network nodes, and realistically it cannot be done 

simultaneous with the ECV providing service at a customer. Hence, battery swapping can only start once 

ECV service is over. The arrival time of the BSV at the swapping location must be therefore 

synchronised with the ECV service finish time. However, the BSV can arrive earlier and wait till 

swapping starts. It is assumed that swapping takes � time units. 

The aim of the SEVRP-NSBS is to determine an optimal composition of ECVs and BSVs in 

the fleet to operate routes that start and finish at the depot and serve every customer exactly once within 

their pre-defined time-windows, without violating vehicle capacities, battery level availability, and 

working day limits, such that the vehicle hiring cost and the total distance of the routes are minimised.  

The MILP formulation of the problem works with three decision variables: the binary decision 

variable ᵅ���
� ∈ {0,1} is equal to 1 iff vehicle ᵅ� ∈ ᵃ� traverses arc (ᵅ�, ᵅ�) ∈ ᵃ�; the continuous variable ᵅ��

� 

denotes the service start time (customer service in case of ECVs and swapping service in case of BSVs) 

of vehicle ᵅ� ∈ ᵃ�  at node ᵅ� ∈ ᵃ� ; and finally, the continuous variable ᵅ��
�  denotes the battery level of 

vehicle ᵅ� ∈ ᵃ� upon its departure from node ᵅ� ∈ ᵃ� . Due to space limitation, we avoid a full presentation 



of the MILP, and as most of the constraints remain similar to the standard constraints for the EVRPTW, 

we discuss briefly a couple of distinctive modelling features here: 

 ᵅ��
� + (ᵃ��� + ᵅ��)ᵅ���

� + �∑ ∑ ᵅ�����∈��∈��
− (ᵅ�� + �)�1 − ᵅ���

� � ≤ ᵅ��
�, ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ�� ∪

{0}, ᵅ� ∈ ᵃ�\{0}: These constraints determine the service start time at a customer by an ECV. 

Based on these constraints, the departure time from the upstream node is determined by the 

service start time plus the service time and swapping time if it is occurring at the customer.  

 ᵅ��
� + (ᵃ��� + �)ᵅ���

� − ᵅ���1 − ᵅ���
� � ≤ ᵅ��

�,      ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ�� ∪ {0}, ᵅ� ∈ ᵃ�� ∪ {ᵅ� + ᵅ� + 1} : 

These constraints determine the battery swapping service start time at a customer by a BSV. 

 ᵅ��
�� + ᵅ�� − ᵅ��(1 − ∑ ᵅ�

��
��) ≤ ᵅ��

�� ≤ ᵅ�� ∑ ᵅ���
�� + ᵅ���

��
�∈� ,      ∀ᵅ�� ∈ ᵃ��, ᵅ�� ∈ ᵃ��, ᵅ� ∈ ᵃ���∈� : 

These constraints synchronise the battery swapping service start time of a BSV with the service 

finish time of the corresponding ECV at the customer location. 

 ᵅ��
� ≤ ᵅ��

� − ᵅ��ᵃ���ᵅ���
� + ᵃ�� ∑ ∑ ᵅ�����∈��∈��

+ ᵃ���1 − ᵅ���
� �,   ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ�\{0} 

and ∑ ᵅ��ᵃ���ᵅ���
�

�∈� ≤ ᵅ��
� ≤ ᵃ�� ∑ ᵅ���

�
�∈� , ∀ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ�� ∪ {0} : These constraints 

together tune the dependency of the battery level of an ECV on the distance travelled and any 

determined battery swapping. 

3 The solution algorithm 

A primary complication in addressing the EVRPTW with CSs is to determine which CS(s) should be 

selected, and where should the selected CS(s) be placed in the routes. In this study, we propose new 

analytical results leading to a GRA, based on which we can identify and discard all proven to be 

redundant paths passing through one or several CSs between a pair of customers, and hence only retain 

the remaining paths as eligible paths, and develop closed form formula for their attributes. As a result of 

the GRA, we are able to eliminate all CSs from the graph and work on a multi-graph of the eligible paths, 

and hence reduce the EVRPTWs with CSs to a VRPTW with alternative paths which can be more 

efficiently handled. The formulation of the SEVRP-NSBS and existing formulations for the EVRPTW 

with CSs can be significantly strengthened using the proposed GRA, and by just putting the formulation 

into the solver, it is possible to solve some of the EVRPTW instances that have been remained unsolved. 

To solve SEVRP-NSBS instances of practical sizes in a reasonable computational time, we are 

proposing a two-stage Memetic Algorithm (MA) that solves the problem on the multi-graph resulted 

from the application of the GRA. While the proposed MA uses the common steps of initialisation, parent 

selection and crossover, education, intensification, and survivor selection, it introduces a new feature of 

the ‘Routes Inventory’ and an ‘Inventory-to-Route’ feature to restart the algorithm with high quality 

solutions and avoid the algorithm to get trapped in local optima. In the first stage of the proposed 

algorithm, the problem is optimised by only using the ECVs. If a dummy path that corresponds to a swap 

is present in the solution returned by the first stage of the algorithm, the second stage of the algorithm is 

informed that swaps are required and BSVs should be dispatched. The second stage problem, however, 

is a very small VRPTW that can be solved very quickly. 

4 Preliminary results 

In order to demonstrate very briefly the benefits of using non-stationary battery swaps, in this section 

we use 6 instances of size 25 that are adopted from Desaulniers et al. [7] and modified by multiplying 



the ᵃ� value by 3 to make them suitable for SEVRP-NSBS. The result of applying the GRA-based MILP 

for solving these instances is shown in Table 1. In this table, the heading EVRPTW implies approaching 

the problem as an EVRPTW with CSs, and the SEVRP-NSBS heading shows the effect of considering 

non-stationary battery swaps. In the case of the SEVRP-NSBS formulation, the number of BSVs and 

ECVs employed and the total distance they travel in the solution are reported separately and altogether 

as total. The column ‘No. Swaps’ shows the total number of battery swapping scheduled. 

 EVRPTW  SEVRP-NSBS 

Instance 
No. 

ECVs 
Distance  

No. 

BSVs 

BSVs 

Distance 

No. 

Swaps 

No. 

ECVs 

ECVs 

Distance 

Total 

Vehicles 

Total 

Distance 

C101 8 780.15  1 53.47 3 7 625.38 8 678.85 

C102 Infeasible  1 28.95 2 6 557.23 7 586.18 

C105 8 628.02  1 65.01 2 6 530.84 7 595.85 

C106 8 778.07  1 45.71 3 6 597.63 7 643.35 

C107 7 574.59  1 26 1 6 525.94 7 551.94 

C108 6 566.47  1 53.37 2 5 510.82 6 564.2 

As it can be seen in the table, in all the  6 instances considered, scheduling battery swaps by 

BSVs instead of visiting CSs costs less in terms of both the total number of vehicles needed and the total 

distance travelled. Moreover, in the case of the second instance, i.e. C102, it is not even possible to find 

a feasible solution to the problem by only visiting CSs.  

More extensive experimentation results on the model and the algorithm will be presented in our 

presentation.  
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1 Introduction

Forecasting demand for container shipments over time for different origin-destination pairs (OD) is

a problem of high significance to many transport applications. It is challenging for several reasons,

for example, demand for different OD pairs depend on each other (i.e., spatial correlation), demand

variations are linked to global supply chains and economic factors, the number of OD pairs is

potentially large and there are several types of containers. We take the perspective of a freight

carrier having access to historical data of past shipments in its network. More precisely, we train

deep learning algorithms – multilayer perceptron (MLP) and recurrent neural network (RNN) – on

the historical data with the objective of accurately forecasting future daily demand. Our carrier

of interest is the Canadian National Railway Company (CN), one of the largest rail carriers in

North America. The forecasts will be used as inputs for block planning of intermodal traffic [1].

The latter is a tactical problem defined over a weekly planning horizon that in an operational

setting is updated daily. We therefore predict the daily quantity of containers of each type to be

carried on each OD pair over the next seven days for short-term forecasts, or several weeks for the

medium-term ones.

Demand forecasting has been the focus of many studies that take a perspective different from



ours. Namely, the aim is to forecast the freight flows in an entire transport system, hence incor-

porating many actors and stakeholders [2]. In this context the challenge lies in obtaining accurate

data on production-consumption matrices and distributing the freight flows on different transport

modes and on different routes in the network. The challenges we face are different since we take

the perspective of a single carrier. Our problem has some similarities with the prediction of de-

mand in the passenger airline industry [3], however, with the additional challenge that there are

several types of containers that in turn require different equipment (here railcars) and loading con-

straints. It is a specific application of multivariate time series analysis. Thanks to the availability

of large sources of data, forecasting methods have been shifting from classic statistical models to

machine learning approaches. In this context deep learning is particularly promising since it can

approximate any high-dimensional complex function [4].

The literature on machine learning approaches for our problem is scarce. Closest to our work is

the deep learning models developed for short-term traffic flow prediction which is also a multivariate

time series including both time and space correlation. Two architectures, the convolutional and

the recurrent long short-term memory (LSTM), have been combined to model respectively spatial

and temporal features of traffic flow on a freeway corridor [5]. However, this work estimates the

future traffic between each location point of one highway at the next 5 minutes time point. This

is still quite different from our network perspective and multi-step forecasting horizon.

In summary, we are unaware of any work taking a single carrier perspective and using deep

learning models to forecast demand for container shipments. We contribute to the literature by

devising such models to produce short-term and medium-term forecasts. Furthermore, we report

results based on a real case study from one of the largest railroads in North America. We provide

in Section 2 a description of the prediction problem and the available data. We introduce our deep

architectures and computational results in Section 3.

2 Prediction Problem and Data

Our multivariate time series prediction problem consists in forecasting the number of containers of

each type to carry daily on each OD pair of the network using historical data. It requires taking

into account spatial and temporal correlation among other challenges described below.

Demand varies over time and long-term dependencies as well as periodicity can be OD specific.

As operations are defined weekly, we need to model OD specific temporal correlation within a

week and among weeks. Temporal variations of demand often depend on variations from other OD

pairs. For instance, a peak of demand for an OD pair might lead to a higher traffic later on the

DO pair to bring back empty containers. This results in the significant presence of correlation in

rail transportation networks.

Our network planning problem is large scale. The application gathers some 30 of intermodal



terminals and multiple types of containers. Thus, daily forecasts for a week-long horizon of each

type of container on each OD pair form a large 3D matrix. Such complex data contain non-linearity

that is difficult to model with classic, often linear, time-series models.

We hold millions of data records describing the container shipments over the past four years on

our industrial partner’s network. However, observed demand does not always match real demand

and we talk about censored data. Censoring can result from both high-level competitive markets

and carrier’s operations. Containers left at origin due to a lack of resources delay demand to

a later day. In this case, observed demand for the first day underestimates real demand but

overestimates demand for the later day. Transportation networks are typically unbalanced (high

versus low demand OD pairs) which allows us to identify uncensored and censored OD pairs in our

application. We can therefore categorize the OD pairs and devise a separate forecasting model for

those that are uncensored. In this work we focus on these uncensored OD pairs.

Let C denote the set of types of containers, E the set of OD pairs and yte,c the number of

containers of type c on e ∈ E at time t. In this work, we define forecasting models which output,

at each day j, an estimate of {yj+1
e,c , .., yj+7

e,c , c ∈ C, e ∈ E}. Those models take as inputs previous

data from day j including demand on multiple OD pairs and economic indicators. We identified

the latter after discussions with our industrial partner. We propose using deep neural networks as

they are able to model non-linear and high-dimensional problems. Our objective is to get the most

accurate forecasts, we hence compare the performance of several different models that we describe

in the following section.

3 Learning architecture and computational results

We define two deep learning architectures to forecast intermodal freight demand which we adjust

to model temporal and spatial correlation: the MLP and the recurrent LSTM. To our knowledge,

each designed architecture is a new approach for the forecasting problem at hand. We describe in

this section each architecture and experimental results.

To model temporal features, inputs for the first architecture include previous observations which

number is a hyperparameter to be defined. While this model is faster to train than the recurrent

one, it does not contain a memory. One of the most successful architectures to characterize long-

term dependencies is the LSTM which learns both short-term and long-term memory.

To model spatial correlation, we compare two designs for both architectures described above.

In the first one, one neural network is trained per OD pair and inputs include historical data from

the target and other strategically selected OD pairs. In the second one, the carrier’s network is

separated into subsets of OD pairs and one neural network is trained per subset. Outputs are

forecasts for each OD pair in the subset and inputs include historical data from those OD pairs.

To compare performances of the different architectures we decompose the data set, as standard,



into training, validation and test sets. We use either the mean-squared error (MSE) or the mean

absolute error (MAE) to train neural networks. We assess the performance of the architectures

using the mean absolute percentage error (MAPE) as the total quantities of each type of container

are different and the same MAE for two types of containers could have different interpretations.

We select the set of hyperparameters which performs best on the validation set. We have extensive

numerical results for the different architectures, OD pairs, types of containers and forecasting

horizon. In brief, the results show that the architecture giving the best performances depends on

the OD pair and type of container to predict. On the validation set, the lowest MAPE achieved

so far is 15.22% for the MLP and 15.52% for the LSTM for the 7 days ahead forecasting horizon.

At the conference, we will present a comparison between the different deep learning models as

well as a comparison with classic benchmark time series models such as the autoregressive model.

4 Conclusion

We trained different deep learning algorithms addressing the problem of intermodal demand fore-

casting for a carrier and its numerous challenges. Those include in particular the interdependence

of OD pairs, the temporal variations of demand and the presence of several types of containers.

This work is part of an ongoing research effort where the end goal is to link the demand predictions

with an intermodal block planning model.

We gratefully acknowledge the close collaboration with CN and the funding through the CN

Chair on Optimization of Railway Operations.
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1 Introduction

Soccer fascinates millions of people around the globe. Its immense popularity is one of the driving

factors for the high economic relevance of national leagues, like the German Bundesliga, increasing

its annual turnover to 3.89 billion USD in 2018. In this multi billion dollar business, rising player

transfer cost make the promotion of young talents a key factor for the soccer clubs’ long term

success. The youth academy of the Bundesliga club TSG 1899 Hoffenheim (TSG) is one of the most

renown soccer training academies in Germany, with players from all over the country’s southwest

attending the training. As no sufficient public transport to the training centers exists, the TSG

provides a bus transfer service for its U12-U19 players. Manual scheduling of several buses is a

complex and time-consuming task, which currently leaves many players unserved. Many unserved

players resort to private transport like parental car pooling, while some players choose to reside

permanently at the TSG’s boarding school. Our approach improves this situation by increasing

the number of players using the bus service, reducing their parents’ time expense and allowing

their children to live with their families while pursuing their dreams. Furthermore, in the highly

contested market for youth players, facilitating easy training access yields a significant competitive

advantage for the TSG. On an operational level, our approach reduces the weekly planning effort

from several days to a few minutes, allowing the TSG’s staff to quickly adapt the routing to changes

in pickup demand.

The proposed framework handles the multi period transfer problem including driver-player

assignment consistencies throughout the season as well as the single day transfer problem. For the

single day transfer problem we extend the team orienteering problem (TOP) [1] to optimize the

bus routing on a single training day. We consider ten buses and over 100 players in 70 locations,

some of which live more than 100 km (∼ 62 miles) away from the training center. Given the limited



seating capacities of four to eight passengers per bus, and a maximum ride duration of two hours

per player, players are prioritized according to their age group: The older the player, the more

advanced his career, the higher the priority for transport. The tours are calculated maximizing

the sum of the priorities of the picked up players.

In the multi period transfer problem, we extend the single day formulation to the entire 235

training days of the season. While maximizing the sum of the priorities of the picked up players,

we aim to keep the driver-player assignment consistent across training days for several reasons:

(1) A personal driver-player relationship and mutual trust are important safety factors, especially

for children underage; (2) players should know their designated driver and vice versa in order

to communicate changes in pickup time or place on short notice, and (3) interviews with the

drivers show that transporting the same players increases their work satisfaction, which is especially

important as some of them work on a voluntary basis. For the TSG, assignment consistency

is a necessary requirement. Without it, tours and therefore driver to player assignments vary

significantly due to the differences in training schedules and pickup requests across training days.

The player transport problem combines the TOP with the consistent vehicle routing problem

(ConVRP) [2]. The team orienteering problem as a variant of vehicle routing with profits, has

been applied successfully to a wide range of applications, finding the profit maximizing tours given

a limit in capacity or travel time [3]. The ConVRP literature can be divided into integrated

approaches, where consistency is part of the objective function, and multi stage approaches, where

a tour template is derived and used as a blueprint for constructing similar tours. Our approach

has a multi stage structure, with a bus schedule derived at the beginning of the season, and daily

schedules derived throughout the season, as updated pickup demands become available.

To the best of our knowledge, the proposed player transfer approach is the first to look at the

interplay between assignment consistency and the profit maximization objective of the TOP. The

pickup choice is depending on the profit (priority) increase, given a certain resource consumption,

as well as the impact of the pickup on the overall assignment consistency. The proposed approach

provides a tool for analyzing this trade-off and its effects on a real-world optimization problem.

Section 2.1 presents the single day transfer problem and the Tabu Search procedure. In Section

2.2 we solve the multi period transfer problem by deriving a template and resolving it for each

daily routing problem of the season. Section 3 concludes by discussing the preliminary results.

2 The Player Transfer Problem

2.1 Single Day Transfer Problem

The single day transfer problem is an extension of the general TOP presented in [1]. The solution

space is represented by a fully connected, directed graph G where each node i ∈ V\{0} corresponds



to a player requesting transfer. All tours start and end at the training center i = 0. The number

of tours is limited to the number of vehicles. Each vehicle has a maximum seating capacity and

a maximum tour duration applies. The objective is to maximize the sum of the priorities of the

picked up players given the capacity restrictions.

Small instances of a mixed integer problem formulation can be solved to optimality using

CPLEX. For real-world instances, we implemented a Tabu Search (TS), favored by its frequent

use in TOP literature, and its applicability at the TSG. Starting from an initial solution, the TS

improves the daily transfer solution by changing the pickup sequences and interchanging players

between tours. To comply with the capacity restrictions, players can be removed from a tour and

put on a candidate list, or taken from the candidate list and inserted into a tour, given excess

capacities. The solution is represented by a single tour for each vehicle, indicating the players to

be picked up and the pickup order.

2.2 Multi Period Transfer Problem

With our multi period approach we yield a solution to the single day transfer problem for each

training day, while providing the desired level of tour consistency throughout the season. Since

we are interested in assigning each player i ∈ V to the same driver k ∈ K on every day t ∈ T , we

measure assignment consistency as follows:

(∑
t∈T

∑
i∈V

yt,i,k∗
i

)/(∑
t∈T

∑
i∈V

∑
k∈K

yt,i,k

)
, where yt,i,k ∈

{0, 1} indicates the pickup decision and k∗i is the driver with the most pickups of player i. In case

every player i ∈ V is picked up only by driver k∗i , the consistency measure yields 100 %. However,

given the limited resources, assignment consistency is in conflict with the priority maximization

objective. Therefore we aim for a consistency level high enough to satisfy the TSG’s requirements,

while at the same time allowing for sufficient flexibility to achieve a high priority served.

For our approach, we use the pickup request forecast provided by the TSG at the beginning of

the season and select a subset M ⊆ V of players with the number of pickup request greater than

a threshold n. We apply greedy construction in combination with the aforementioned TS to build

a template of tours containing only players i ∈ M. This template provides a structure, which we

use to construct the daily tours during the season.

For each day t ∈ T of the season, we resolve the template by first removing all the players

i ∈M which do not request a transfer on day t. The pickup decision for the remaining players in

the template is fixed (yt,i,k = 1). Second, using cheapest insertion, we insert the players i /∈ M

that request a transfer on day t. This provides us with an initial solution. Finally, we use TS as

described in section 2.1 to obtain the daily tours. Neighborhood moves switching players i ∈M to

another tour or removing them from their tour are prohibited. Therefore, players i ∈M are always

part of the same tour on each day they request a training transfer. This process is conducted for

every day of the season, whenever new information on the pickup requests becomes available.



When constructing the daily tours, players in set M act as corner stones, forcing the tours

to evolve into certain geographical regions every day of the season. This creates assignment con-

sistency, while at the same time providing pickup flexibility when assigning players not part of

M. By systematically varying the pickup request threshold n, we increase/decrease the number of

players inM. In general, a higher consistency level can be observed for a lower threshold n and a

larger subset M. Therefore, through variation of n, we derive a pareto front showing the trade of

between consistency and priority served.

3 Results

Preliminary result for the season 2018/2019 data show that for M = Ø we yield a base value of

49% assignment consistency. The stepwise increase of M up to 31% of all players, results in a

maximum consistency level of 87%. Further increasing the size of M leads to a conflict between

resource constraints and the fixed assignment of players i ∈M during daily routing.

The increase in assignment consistency comes with a decrease in priority served. However, even

at high consistency levels our approach provides sufficient flexibility to mitigate this effect. When

increasing assignment consistency from 49% to 87%, the loss in priority served is only 2%. In terms

of unversed players, this is the equivalent of one unserved medium priority player per day.

For the training transfer case we show, that high assignment consistency can be achieved at low

priority losses. At the TSG, our approach replaced the manual solution and increased the priority

served by up to 26%.
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1 Introduction

When autonomous vehicles (AVs) are introduced to the consumer markets, fractional ownership is

expected to be a form of owning a car. Currently, co-owning a conventional vehicle with friends is

not easy, although it can certainly reduce the cost of owning a car. For example, if I want to use a

car for commuting and my friend wants to use it while I am at work, my friend must come to my

workplace to pick the car up, which requires another form of mobility. With AVs, the co-owned car

can travel autonomously from my work to my friend’s location. Therefore, we envision that AVs

will be co-owned widely and new markets will be created accordingly.

The main question we address in this paper is: How can we design a marketplace that connects

customers and enables fractional ownership? In particular, we design a Combinatorial Auction

(CA) for fractional AV ownership. CAs are suitable mechanisms to sell items in packages, instead of

single items. In transportation, CAs have gained attention for selling airport departure and arrival

slots [3], assigning trucking carriers [1], assigning city bus routes [1], and selling tradable permits in

ride-sharing market [2]. We propose a new application of CAs: the fractional AV ownership market.

In the proposed market, the auctioneer is a car manufacturer or leasing company who sells

AVs, and the bidders are customers who co-lease a car. In the proposed market, first, bidders

submit their time-slot packages. Next, the auctioneer pools all the bids and solves the Winner

Determination Problem (WDP) to determine the winners. The winners are awarded the right to

use the same vehicle in these time-slots within a week for a certain period.

We design a combinatorial auction for fractional ownership of autonomous vehicles, which is of

a novel type with continuous-time bidder-defined items. On the contrary to the most existing CAs

where products are pre-defined discrete items, in the proposed auction, items are bidder-defined



and continuous time intervals. We show that the social welfare from the discrete-time approach

does not monotonically increase with the number of discrete time slots, which makes discrete-time

approximation difficult. We formulate the WDP, with numerically efficient reformulations, and

develop an algorithm based on conflict graph and maximal cliques. Using the California Household

Travel Survey, we verify the performance of the algorithm. When the WDP is solved sub-optimally,

under the VCG mechanism, we show that the revenue of the auctioneer approaches to the optimally

solved case as the optimality gap decreases, although the payment of each winner does not.

2 The Winner Determination Problem

Suppose I denote the set of bidders, and V denote the set of vehicles in the fractional AV ownership

CA. Each bidder i ∈ I submits a set of bids Bi. Each bid j includes the bidding price cj , the set of

trips Tj , and the location of the bidder at the origin and the destination of each trip. Each trip

n ∈ Tj is represented by the pair (sn, en), where sn is the start time and en is the end time of that

trip. A parameter rikemsn represents the time it takes for an AV to drive from bidder’s i location

at time em to bidder’s k location at time sn. We can formulate the WDP as follows:

(P1) max
xjv

∑
v∈V

∑
i∈I

∑
j∈Bi

cjxjv (1)

s.t.
∑
j∈Bi

∑
v∈V

xjv ≤ 1 ∀i ∈ I (2)

emxjv ≤ sn + M(1− xlv) ∀i, k ∈ I, j ∈ Bi, l ∈ Bk, (3)

m ∈ Tj , n ∈ Tl : sm ≤ sn ≤ em

em + rikemsnxjv ≤ sn + M(1− xlv) ∀i, k ∈ I, j ∈ Bi, l ∈ Bk, (4)

m ∈ Tj , n ∈ Tl : sn ≥ em

xjv ∈ {0, 1} ∀i ∈ I, j ∈ Bi,∀v ∈ V (5)

The decision variable xjv is 1 if bid j is assigned to vehicle v and is 0 otherwise. Constraint (2)

states that at most one bid from each bidder can be determined as a winner. Constraints (3) and

(4) ensures that conflicting bids do not get matched. Since the building and solving (P1) is time

consuming, we propose a conflict-based formulation, which can be constructed and solved faster.

3 Computational Method and Experiments

We can replace (3)–(4) in (P1) with the following conflict constraints:

xjv + xlv ≤ 1 ∀v ∈ V, i, k ∈ I, j ∈ Bi, l ∈ Bk : j, l are conflicting (6)



and we call the new formulation (P2). Constraint (6) requires finding all conflicting bids that

have overlapping trips. We can design an efficient algorithm to find the set of conflicting bids in

polynomial time. Once we determine the conflicting bids, we can solve the WDP by CPLEX or any

other integer programming solver.

To find a high-quality solution for large-sized instances in a short time, we develop a greedy

algorithm in which we decompose the CA problem to a |V|-round single vehicle CA. At each round,

considering the set of remaining bidders, we solve the WDP for a single vehicle and find the winners.

Then, we update the set of bidders by excluding the winners from the list of bidders and go to the

next round. This procedure continues until we assign all the vehicles to the bidders.

To show the quality of the solution obtained from the greedy algorithm, we propose a good

relaxation of (P2), which is based on maximal-cliques. Constraint (6) can be viewed as a simple

clique constraint. We can derive a better formulation by replacing Constraint (6) with stronger

constraints based on maximal cliques. We introduce the following relaxation of problem (P2):

(R) max
yj

∑
i∈I

∑
j∈Bi

cjyj (7)

s.t.
∑
j∈Bi

yj ≤ 1 ∀i ∈ I (8)

∑
j∈Cm

yj ≤ |V| ∀m ∈M (9)

yj ∈ {0, 1} ∀i ∈ I, j ∈ Bi (10)

where Cm is the set of all maximal cliques. We solve problem (R) to compute a dual bound for

(P2). Since enumerating all maximal cliques is computationally expensive, we consider a subset.

For numerical experiments, we use 2010–2012 California Household Travel Survey, which includes

the travel information of 2908 vehicles in a week. We use this dataset to extract the trip schedules

of bidders and to generate the instances. We compare the performance of the proposed greedy

algorithm and the relaxation (R) with CPLEX. As the performance profile in Figure 1a shows, the

greedy algorithm outperforms CPLEX for all instances. As Figure 1b represents, the dual bound

found by (R) is smaller than the CPLEX dual bound for 37 out of 40 instances.

4 VCG Payments and Suboptimal Solutions

After winners are determined, we calculate the payments. We adopt the well-known VCG payments

for the proposed auction. The VCG mechanism assumes optimal solutions of the WDP. When the

WDP is solved sub-optimally, the desired properties of auctions such as incentive compatibility and

rationality do not necessarily hold. We examine the impacts of suboptimal solutions in this paper.

Moreover, we obtain the following bounds:
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Figure 1: Comparing primal solution and dual solution with CPLEX solution

Proposition 4.1 Let p∗i and pεi denote the payments of a bidder i under the optimality and a

optimality gap of ε, and R∗ and Rε denote the auctioneer’s revenue under the optimality and an

optimality gap of ε under the VCG mechanism, respectively. Then the following bounds hold:

|pεi − p∗i | ≤ εmax
{
Zε
WDP, Z

ε
WDP−i

}
+ max

j∈Bi

cj , (11)

|Rε −R∗| ≤ εmax

{
(|I| − 1)Zε

WDP,
∑
i∈I

Zε
WDP−i

}
. (12)

This proposition implies that the revenue of the auctioneer will be close to the optimal case, although

each winner’s payment may not be. Through numerical experiments, we provide further insights on

the payments and the revenue in this paper.
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1 Introduction 

Inland drayage operations account for 20 to 80 percent of the total transportation cost of a shipping 

container, despite being the shortest distance segment of a  container’s trip [1], [2]. The considerable 

share of the drayage operations in the container transportation costs has placed the efficient planning of 

these operations at the centre of attention for shipping lines and transportation companies [3]. Moreover, 

the truck movements are often blamed for slowing the delivery, as well as increasing road congestion, 

environmental pollution, and road safety risks in the service area [4], [5].  

These challenges have led to an increasing attention from the research community to seek solutions 

through optimization models for drayage operations. The objective of the models is to develop an optimal 

plan for a fleet of trucks to move a fixed set of containers during a specific planning horizon. However, 

due to the complexity of the drayage operations, most of the existing models include some simplifying 

assumptions. Examples include one truck-one container [6]–[8], homogeneous truck fleets [9], [10], one 

container size [11], a central point for all delivery and pickup [6], [12], uninterruptable pickup-and-

delivery operation [7], [13], and considering only the live loading/unloading of containers where trucks 

have to stay with the container [10], [14].   

The main implication of such assumptions is that the resulting formulation of the drayage operations 

cannot be applied to real world settings. To address this problem, we have developed a novel formulation 

of drayage operations by relaxing the above mentioned set of assumptions. The proposed model supports 

a heterogeneous truck fleet, multiple container sizes, live as well as separation mode un/load operations, 

and it has no restrictions on the number, location, or type of the stakeholders who need container 

transportation. Finally, the proposed model allows for combining multiple transport requests into one 

trip, which leads to the reduction of costs, emissions and congestion in the service area.  

2 Methodology  

We have formulated drayage operations as a mixed integer linear programming (MILP) problem. In the 

proposed model, the planning and optimization of drayage operations is performed from the point of 
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view of a transport company. The company owns a fleet of trucks with different capacities to carry the 

two common sizes of shipping containers, 20 and 40 feet, full or empty.  

Transport requests are received from consignees and shippers with already defined origins and 

destinations. The requests can be divided into three types: single, live composite, and drop-in (separation 

mode) composite. A single request includes the origin and the destination of where to pick up and drop 

off a container, the associated time windows to visit the pickup and delivery locations, and the container 

identification number and size. A live composite request includes the container pickup location, the 

customer location to be visited after pickup, and the final delivery location of the container. Also, the 

time windows to visit the pickup, customer, and final delivery locations are defined as well as the service 

time required for the live (un)loading of the container at the customer site. A drop-in composite request 

(separation mode) has a structure similar to a live request; however, as the two parts of the request 

(pickup to customer, and customer to final delivery) do not need to be performed without interruption, a 

composite request is translated into two single requests for the planning system. Time dependency 

implies that the second single request should be executed after the first request. 

The planning is performed for one planning horizon. The input to the planning is the set of all requests, 

and the output is a plan for each truck and its driver where and when to pick up and deliver a set of 

containers. The objective of the planning is to minimize the travel time for as many requests as possible, 

rather than for all the requests. Any infeasible request that cannot be fitted in the optimal plan, either has 

to be postponed if the timing allows or should be assigned to a contractor.  

3 Data 

The performance of the proposed mechanism is evaluated through simulation-based experiments, seeded 

from a real data set collected from a medium-size transport company, operating in the service area of the 

Port of Brisbane, Australia. 

Regarding the sample size, three problem groups are considered: small, medium and large (as defined in 

Table 1). To design the fleet, we consider the ratio of the number of trucks to the number of requests. 

Based on the literature and similar experiments, the ratio is fixed at 0.27 and 0.48. The first ratio creates 

a tight capacity, and the second one provides a more relaxed capacity to accommodate the transport 

requests. To design a heterogeneous fleet, we consider the fleet to include trucks with capacities from 

20 to 80 feet, equivalent to 1 to 4 TEUs (Twenty foot Equivalent Unit). To design the combination of 

trucks in a fleet, three types of fleets are designed: a Low Capacity (LC) fleet with mostly 20-ft and 40-

ft trucks, a High Capacity (HC) fleet with mostly 60-ft and 80-ft trucks, and a Balanced Capacity fleet 

(BC) with a mixed balance of 20-ft, 40-ft, 60-ft, and 80-ft trucks. As a baseline for comparison, a 

homogenous fleet of 40-ft trucks is added to support the 20-ft and 40-ft containers. We have 24 problem 

sets in total, as presented in Table 2. For each problem set, 10 instances are generated. The time window 

to visit a pickup or drop off location is fixed at 30 minutes.  

Table 1. Definition of sample size Table 2. Experiment Design Parameters 

 

Sample 

size 

#requests #customers #depots 

Small 37 15 1 

Medium 56 20 2 

Large 75 30 4 
 

Parameter  Values  

Sample size Small, Medium, Large 

Fleet type LC, BC, HC, Baseline 

Truck to 

request ratio 

0.27, 0.48 



4 Results 

The results show that the success rate (SR: ratio of the number of requests satisfied to the total number 

of requests) is quite high across the three sample sizes; it is 92% in small, 87% in medium and 66% in 

large samples. As expected, the complexity of the large sample size makes it more difficult for the 

mechanism to match transport requests to the fleet.  

Looking at the fleet type, SR is plotted in Figure 1. As we can see, in the small sample, the HC fleet has 

the highest SR (96%), closely followed by the balanced (95%) and the baseline (90%). The LC fleet has 

the lowest SR (86%). The medium sample shows similar results, except for the HC fleet where SR 

decreases to 73%. In the large sample, the SR of the high capacity fleet drops to 28%. The balanced fleet 

follows a less dramatic fall, being equal to 55%. 

 

Figure 1. Average Success Rate (SR) versus sample size and fleet type 

The decrease in SR can have two interpretations: (i) the inability of the HC fleet to accommodate 

transport requests; (ii) the complexity of the optimization problem prohibiting the high capacity fleet 

from achieving high SR. As with small sample size, the HC fleet is performing as well as other types of 

fleets, so it is more likely that the low SR in large and medium sample sizes is caused by the complexity 

of finding an optimal solution for drayage operations. 

Checking the optimality gap (the difference between the best solution found by the end of the solve time 

and the objective bound, divided by the objective bound) in each sample size / fleet type group confirms 

our intuition about the complexity of the problem. As presented in Table 3 below, we can see that the 

average gap for the HC fleet-large sample is 3.71 (371%) indicating that the feasible solution in this 

group is on average far from optimality.  

Table 3. Average gap of the feasible solution based on sample size and fleet type 

Fleet Type 

Sample Size 

Baseline LC BC HC Grand Total 

Large 0.01 0.01 1.17 3.71 1.19 

Medium 0.00 0.00 0.06 0.53 0.15 

Small 0.00 0.00 0.01 0.02 0.01 

Grand Total 0.00 0.00 0.41 1.38 0.45 

 

Considering the fleet utilization (the ratio of the number of trucks used in allocation to the total number 

of trucks available), the small sample has the highest fleet utilization (86%). The medium sample follows 

closely at 84%, and the large sample size has a fleet utilization rate of 71%.  

The average fleet utilization rate is plotted against sample size and fleet type in Figure 2. In each sample 

size, the low capacity fleet has the highest fleet utilization, closely followed by the  baseline. In small and 



medium sample sizes, the balanced and HC fleet have close fleet utilization to other fleet categories. 

However, in large sample size, the high capacity fleet is behind by a relatively large gap (40% for the 

HC fleet compared to 93% for the LC fleet). The low utilization rate is again due to the complexity of 

the problem and the inability of the model to get close to optimality in the given solve time. 

 

Figure 2. Average fleet utilization versus sample size and fleet type 

The results so far indicate that the complexity of the problem leads to lower SR and fleet utilization for 

the HC fleet. The question becomes then about the advantage of having a heterogeneous fleet and 

combining multiple trips into one trip, and the advantage is the cost. Our results show that the proposed 

model achieves lower costs for performing transport requests when high capacity and balanced capacity 

fleet are employed in any of the sample sizes. 

The average cost per request (the ratio of the trip-related component of the objective function to the 

number of requests satisfied) is plotted against the sample size and fleet type in Figure 3. In each sample 

size, the lowest cost is achieved by the high and balanced capacity fleets. As expected, the LC fleet 

performs the requests with the highest cost, as the possibility of combining trips is much less. Our 

baseline, homogenous fleet of 40-ft trucks, performs better than the low capacity fleet, as the LC fleet 

includes 20-ft and 40-ft trucks and have less possibility to combine trips compared to a fleet of all 40-ft 

trucks.  

 

Figure 3. Average cost per transport request versus sample size and fleet type 

5 Conclusion 

The proposed model relaxes the commonly used simplifying assumptions in the optimization models for 

drayage operations. The clear advantage is that the optimization model operates in a setting applicable 

to real world scenarios compared to existing approaches. Our experiments show that, despite the 

complexity of the problem, our formulation can efficiently allocate container transport requests to trucks 

for small and medium problem sizes. The results also show that a heterogeneous fleet consisting of high 

capacity or balanced capacity trucks can achieve lower costs for transport requests by combining 



multiple requests into one trip, compared to a homogenous fleet. Due to the complexity of the problem, 

the future work needs to address an exact or heuristic method to solve the proposed model, rather than 

solely relying on existing commercial solvers. Such a method would improve success rate and fleet 

utilization for large samples, as well as high and balanced capacity fleets. 
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1 Introduction

The forecasted emergence of Autonomous Vehicles (AVs) in urban traffic networks provides new op-

portunities to reduce urban congestion. In particular, AVs are expected to be able to communicate

with traffic intersection managers to coordinate movements through intersection. This paradigm

has been first proposed by [2] who introduced reservation-based traffic intersection control. In

this paper, we study a traffic intersection control problem wherein vehicles have the possibility to

indicate their preferences over a set of outcomes. This can be modeled as a combinatorial auction

mechanism wherein AVs bid for intersection access and the coordination of traffic is influenced by

these bids. A desirable property of mechanism design in the context of public goods is incentive-

compatibility. That is, the traffic coordination mechanism should incentivise agents to be truthful

and reveal their true preferences when bidding. A mechanism is said to be Incentive-Compatible

(IC) if every agent can achieve the best outcome to itself just by acting according to its true pref-

erences [4]. Our goal is to design an IC mechanism for traffic intersection control assuming that

AVs are allowed to bid for intersection access upon arriving at the intersection. The motivation

for such a mechanism design is to optimise social welfare by providing agents with the opportunity

to influence the system by truthfully reporting their value of time.



Few auction-based mechanisms have been proposed for traffic intersection control [5, 6, 1].

These mechanisms discussed the notion of incentive compatibility and vehicle blocking effects

induced by First-In-First-Out (FIFO) constraints at lane queues. Yet, a limitation of the proposed

mechanisms is that agents can only participate in the auction if they are either at the front of the

queue or if all agents in front of them have been assigned a reservation. Recently, [3] developed

a conflict-point formulation to optimize AVs trajectories throughout an intersection. We build on

this work and extend the conflict-point model introduced therein for maximizing social welfare in

a traffic intersection auction context. By explicitly controlling AVs trajectories, the conflict-point

model can account for vehicle blocking effects when considering the bids of participating agents and

evaluating each outcome of the auction. We contribute to the field by proposing a Vickrey-Clarke-

Groves (VCG) mechanism—which are known to be IC—for AVs traffic control at intersections.

Our mechanism takes the form of a combinatorial auction wherein outcomes of the auction are

determined by a Mixed-Integer Linear Program (MILP) that maximizes social welfare based on

agents’ bids. This mechanism is IC and we explore its behavior in a multi-period setting wherein

agents have the possibility to participate in multiple auctions until they are able to traverse the

intersection. In particular, we discuss fairness considerations and identify refinements of the basic

mechanism to prevent low-bidding vehicles to remain delayed for arbitrarily long periods of time.

2 Traffic Intersection Auction Model

We consider a network intersection with pre-defined, possibly conflicting, vehicles movements.

We assume that AVs communicate with the intersection manager upon entering a lane queue to

access the intersection. The intersection manager is in charge of coordinating vehicle movements

through the intersection by providing them with an intersection entry time and a speed. In a

congested scenario, AVs may need to wait before traversing the intersection due to conflicting

vehicle movements. Hence, we assume that AVs have the possibility to participate in an auction

and bid for augmenting their chances to traverse the intersection as soon as possible. The outcome

of the proposed traffic intersection auction is a vector of binary values indicating which vehicles

will travel through the intersection at the next time period. These binary values are determined

by solving the proposed conflict-point MILP which explicitly models all participating agents time-

space trajectory through the intersection.

Formally, let V be the set of vehicles that can bid in the auction with |V| = n. Let X be the

set of outcomes of the traffic intersection auction. For each outcome x ∈ X , let zv(x) be a binary

variable which takes value 1 if vehicle v traverses the intersection in outcome x and 0 otherwise,

i.e. X is a set of n-dimensional binary vectors. Let bv be the bid of vehicle v ∈ V, we assume

that the value function of each agent v ∈ V is bvzv(x). Using this value function, the outcome x?



maximizing social welfare is:

x? ∈ arg max
x∈X

∑
v∈V

bvzv(x) (1)

To determine the payoff of each agent involved in the auction, we adopt a traditional VCG

mechanism together with Clarke’s Pivot Rule [4]. Specifically, let πv be the payoff of vehicle v ∈ V,

i.e. the amount that v is charged after the auction, the payoffs of vehicle v is:

πv = max
x∈X

∑
v′∈V\{v}

bv′zv′(x)−
∑

v′∈V\{v}

bv′zv′(x?) (2)

Computing all payoff values π requires the resolution of n + 1 optimization problems: one

problem involving all n agents and n problems involving all but one agent. Each optimization

problem seeks the optimal coordination of agents based on their bids subject to conflict-free traffic

conditions. We adapt the conflict-point formulation from [3] to find the outcome x? maximizing

social welfare as defined by (1).

The conflict-point formulation is a MILP wherein the trajectory of each agent is modeled

explicitly and collision avoidance constraints are imposed at each conflict point in the intersection.

We assume that the path of each vehicle through the intersection is known (exogenous route choice)

and we denote pv = (γ−v , . . . , γ
+
v ) the path of v corresponding to a sequence of conflict-points

starting from γ−v and ending at γ+v . Let tv(c) ≥ 0 (resp. τv(c)) be the arrival (resp. reservation)

time of v at conflict point c ∈ pv. Collision avoidance at conflict points are handled using binary

variables δvv′(c) to model the ordering of vehicles v and v′ at conflict point c. Each value of the

vector of decision variables (t, τ , δ) corresponds to an outcome x ∈ X of the traffic intersection

auction. Hence the set of outcomes X implicitly represents the feasible region of conflict-point

MILP presented in [3].

We model the proposed traffic intersection auction for the time period [t, t + ∆t] where t

is the earliest departure time of any vehicle and ∆t represents the period of time over which

vehicle trajectories are optimized. We redefine zv(x) as a binary variable indicating if vehicle v

traverses the intersection or not at the time period [t, t + ∆t]. Variable zv(x) can be adjusted

using the linear constraint (3) wherein Mv is a large enough constant. Hence zv(x) takes value 1

if tv(γ+v ) + τv(γ+v ) ≤ t+ ∆t and is free otherwise.

tv(γ+v ) + τv(γ+v ) ≤ t+ ∆t+ (1− zv(x))Mv ∀v ∈ V (3)

The MILP formulation for the proposed social welfare traffic intersection auction consists of

variables t, τ , δ and z, the feasible region of the conflict-point MILP presented in [3] together with

the constraints (3) and the objective function (1). We refer the reader to [3] for more details on

the conflict-point model.

The proposed MILP formulation maximizes social welfare among all agents participating in the

auction. To determine the payoff πv of each agent v, we need only to modify the objective function



(1) by removing vehicle v from V and solve the corresponding modified MILP. Hence the proposed

auction-based mechanism can be implemented as follows:

1. Identify the set of participating agents V, i.e. AVs that can traverse the intersection within

the time period [t, t+ ∆t]

2. Find x? by solving the proposed MILP with all agents v ∈ V

3. Calculate the payoff vector π by solving n MILPs, each with one of the n AVs removed from

the bidders’ set V

The resulting payoff vector p is IC, hence participating AVs are incentivised to truthfully report

their value of time. Further, Clarke’s Pivot Rule ensures that agents are not forced to bid and

that the mechanism does not need to pay the bidders since pv ≥ 0. The revenue of the mechanism

is the sum of the agents’ payoffs, i.e. R =
∑

v∈V pv. The revenue R may be used in subsequent

time periods to subsidize agents with either a low value of time or a low travel budget to avoid

the situation of “starvation” (agents waiting an arbitrarily large amount of time) discussed in [5].

We will explore to which extent re-allocating the mechanism revenue among low-bidding agents at

ulterior time periods can be used to promote fairness while remaining an IC mechanism.
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1 Introduction

We propose a scenario-based stochastic model for integrated emergency preparedness and re-

sponse planning for the distribution of emergency supplies after a disaster or catastrophic event.

This model extends to a robust possibilist-stochastic version, which incorporates the risk asso-

ciated with the choice of the expected values to the objective function, as well as penalties for

material convergence at the demand points and violations to flow balance constraints.

The model minimizes the social cost associated with deprivation and waiting, identifying a

set of possible supply points, where flows are consolidated and sent to predefined facilities, in

addition to considering purchasing decisions or prior and subsequent emergency acquisitions.

Uncertainty is considered basing our approach in an stochastic programming model based on

a set of scenarios constructed from historical occurrence of emergency events. Epistemic un-

certainty present in model’s parameters is included in the modellig by using fuzzy numbers as

values for some of these parameters.

2 Stochastic model of location, allocation and distribution

The distribution network is composed by aggregated demand points (ADP) i ∈ N and supply

points (SP) j ∈M . At SPs is possible also to make pre-positioning and post-emergency supply

decisions including contributions from external zones to the occurrence of the emergency. ADPs

are served with supplies pre-positioned and with flows of supplies received from SPs. On

surplus, ADPs can also collaborate with each other. Uncertainty is included in the demand,

transport costs and deprivation associated with the time that elapses until the demand at ADPs

is satisfied.



The mathematical formulation considers several scenarios of predefined disasters s ∈ S (each

with a probability θs of occurrence, determined based on historical records of similar events in

the area), including also possible network‘s damages, as well as deprivation costs Πs
ji. The

robust formulation is constructed considering the deterministic costs manifested in phases prior

to an emergency, such as the activation or location of supply nodes, purchases or acquisitions

and transportation for the prepositioning plus the expected value and a variability measure of

the total cost.

Costs associated with post-emergency phases are dependent on different scenarios. We split

the post-emergency cost in two parts: ξ
(1)
s , ξ

(2)
s . The first part, ξ

(1)
s includes the traditional cost

considered in humanitarian logistics associated with purchases or acquisitions, transport and

inventory management. The second objective ξ
(2)
s includes opportunity costs and inter-temporal

effects of human suffering, characterized by deprivation costs calibrated in previous studies [1].

The objective function results then a wighted sum of the three terms corresponding to the

deterministic pre-emergency cost and the two parts of post-emergency cost:

Ω =
∑
j∈M

(FjYj + P 0
j ) +

∑
i∈N

Fixi +
∑
j∈M

∑
i∈N

TC0
jiT

0
jiq

0
ji

ξ(1)s =
∑
k∈V

∑
i∈N

ΘsTC
s
kiT

s
kiq

s
ki +

∑
j∈M

∑
i∈N

ΘsTC
s
jiT

s
jio

s
ji +

∑
j∈M

ΘsP
s
j p

s
j +

∑
k∈V

ΘsHkI
s
k

ξ(2)s =
∑
i∈N

ΘsW
s
i u

s
i + (

∑
k∈N

∑
i∈N

Θsπ
s
kiq

s
ki +

∑
j∈M

∑
i∈N

Θsπ
s
jiq

s
ji +

∑
j∈M

∑
i∈N

Θsπ
so
kio

s
ji)

Here, Fj and Fi represent fixed costs for supplying and locating points for prepositioning (SPj)

and receiving help (ADPi) and Yj , and Xi, are the corresponding activation binary variables,

respectively. TC0
ji and P 0

j represent transport and procurement costs for pre-positioning and

pre-emergency procurement, while the variables q0ji and p0j represents associated flows (with

known travel distances and given by T 0
ji) and pre-disaster purchases.

Scenarios s ∈ S are previously enumerated and characterized by transport costs (pre-settled

or subsequently acquired stock, with distances given by T ski, T
s
ji, respectively), post-emergency

supply costs and maintenance of inventories, given by TCski, TC
s
ji, Hk (k ∈ V = N ∪M) . For

each scenario, post-emergency decision variables are defined for the existing supply flows or

subsequently acquired (qski, o
s
ji) and inventory available at the demand nodes Isk.

Finally, πski, π
s
ji, π

so
ki denote deprivation costs when serving the node i ∈ N with flow com-

ing from supply nodes, near demand nodes or post-emergency purchases (corresponding flow

variables are qski, q
s
ji, o

s
ji). Unattended demand or shortage in scenario s is represented by the

variable usi and the corresponding deprivation cost is W s
i .



The optimization modelo includes the following constraints:

p0j ≤ cjYj , ∀j ∈M (1)

p0j ≥ v
0
j =

∑
i∈N

q0ji,∀j ∈M (2)

q0i =
∑
j∈M

q0ji ≤ ciXi, ∀i ∈ N (3)

ϕs
i q

0
i − a

s
i + bsi = Ds

i ,∀i ∈ N, s ∈ S (4)

asi ≤ |ϕ
s
i q

0
i −D

s
i |,∀i ∈ N, s ∈ S (5)

bsi ≤ |D
s
i − ϕ

s
i q

0
i |, ∀i ∈ N, s ∈ S (6)

qsik ≤ a
s
i ,∀i, k ∈ N, s ∈ S (7)∑

i∈N

qsji = p0j − v
0
j − I

s
j , ∀j ∈M, s ∈ S (8)

psj ≤ o
s
jYj ,∀j ∈M, s ∈ S (9)

qsni ≤ b
s
i , ∀n ∈ V, i ∈ N, s ∈ S (10)

osji ≤ b
s
i , ∀j ∈M, i ∈ N, s ∈ S (11)

asi − b
s
i −

∑
n∈N

qsin +
∑
n∈N

qsni +
∑
j∈M

(osji + qsji) = Isi − µ
s
i , ∀i ∈ N, s ∈ S (12)

Yj , Xi ∈ {0, 1}, ∀j ∈M, i ∈ N (13)

q0ji, q
0
i , v

0
j ≥ 0, ∀j ∈M, i ∈ N (14)

qsni, I
s
n ≥ 0, ∀n ∈ V, s ∈ S (15)

asi , b
s
i , µ

s
i , o

s
ji ≥ 0, ∀i ∈ N, j ∈M, s ∈ S (16)

Constraint (1) limits pre-emergency acquisition for each SPj , (2) and (3) restrict stock preposi-

tioning for SPj , ADPi. (4) represents equilibrium equation in ADPi (post-emergency scenarios),

while (5) and (6) determine available amount asi or required bsi in ADi
1. Constraint (7) limits

the flow that can be sent from one ADP to another for each post-emergency scenario. Equa-

tion (8) represents flow equilibrium for each SPj , while constraint (9) limits capacity in SP for

post-emergency acquisitions. (10) and (11) are capacity constraints on the ADP that receive

deliveries from SP or ADP . Finally, (12) defines flow and inventory balance for ADPi, where

usi represents shortage or lack of inventory in ADPi for a scenario s ∈ S. Constraints (13) to

(16) indicate the nature of the variables.

2.1 Robust and multi-objective formulation

The robustness of the solutions is considered by minimizing the absolute value of the variability

in post-emergency costs.

The final objective funcion considered in the model then becomes:

min Ω +
∑
s∈S

ξ(1)s + λ
∑
s∈S

θs|ξ(1)s −
∑
s′∈S

θs′ξ
(1)
s′ |+

∑
s∈S

ξ(2)s + λ
∑
s∈S

θs|ξ(2)s −
∑
s′∈S

θs′ξ
(2)
s′ |

Finally, we use the fuzzy chance constrained programming approach to deal with the un-

certainty on some parameters. Constraints using fuzzy numbers became possibilistic chance

constraints within selected confidence levels, in order to provide a adequate reliability for the

satisfaction of these restrictions. It should be noted that the use of the credibility measure

guarantees the satisfaction of the possibilistic objective function and limits the level of cer-

tainty according to the modeler’s preferences [4]. In the current formulation, parameters T ski, T
s
ji

corresponding to post-emergency travel times are modeled as triangular fuzzy numbers.

1ϕs
i represents proportion of the resources prepositioned at ADPi ∈ N that remains usable in scenario s ∈ S



2.2 Preliminary Results

Taking as a case study the scenarios and instances of [2], [3], the proposed model manages to

reduce global costs as the robust and possibilist versions are incorporated, allowing the decision

maker to sensitize results to face new disaster scenarios (obtained from fieldwork), as well as to

evaluate their impact on the design of public emergency management policies.
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1 Introduction

Traveling as quickly as possibly from a given origin to a given destination in a probabilistic network

may require an adaptive routing strategy rather than choosing only a single path (see, e.g., [2]).

Consequently, routing decisions that adapt to the probabilistic nature of the network are required

in order to minimize expected arrival time. This has already been observed in many different

contexts, e.g., for the problem of arriving on time in a bus transport network [3].

In the case of freight transport, where several units of goods need to be sent through a network,

network flows are an important and well-studied modelling tool. Real-world freight transport

networks, however, are inherently stochastic (e.g., regarding the travel times of trucks or trains on

single parts of a route) and the available connections in the network usually vary over time. As the

reliability of deliveries as well as the cost of operations are becoming main concerns for transport

operators, this provides a strong motivation for studying the computation of reliable, cost-efficient



flows in stochastic, time-varying networks. To the best of our knowledge, this problem has not

been studied so far.

For the context of hinterland container transport, we define a model to address the problem of

determining the value of adaptively routing flow in a capacitated network with stochastic, time-

varying arrival times. The goal is to minimize the total costs incurred for reserving capacity

on services prior to the execution of the adaptive plan while reaching a given minimum level of

reliability.

Container transport in the hinterland is operated on transport means having different charac-

teristics, chiefly in terms of per unit costs, capacity, and speed. An integrated deployment of those

modes led to intermodal transport solutions, where a deterministic planning approach is usually

applied. As flows increase and shippers require more reliable transportation, transport operators

need to take stochasticity into account directly during their planning. One recently proposed so-

lution is that of synchromodal transport, which extends the concept of intermodal transport by

allowing for adaptive decisions about mode and route choice [4, 5]. Our work is motivated by the

need to study the value of such a planning approach in order to understand its viability in practice.

2 Model definition

Let G = (V,R) be a directed graph, where the nodes in V represent locations and the arcs in R

represent transport services. Let s, t ∈ V be the source node and the sink node, respectively, and

let K ∈ N be the number of containers to be routed from s to t earlier than a given deadline

T ∈ T , where T = {t0, t1, . . . , tl} is the discretized time horizon. Let cr ∈ N be the per unit cost

for booking capacity on an arc r ∈ R. We define time-dependent upper capacities ur,θ ∈ N≥0

(r ∈ R, θ ∈ T ). For r ∈ R and θ ∈ T with ur,θ > 0, we let τr,θ be a T -valued random variable

representing the arrival time of service r departing at time θ. We let κ ≥ 0 denote the desired

minimum expected number of containers being delivered earlier than time T .

Our aim is to select integer capacities ~x = (xr,θ)r∈R,θ∈T such that 0 ≤ xr,θ ≤ ur,θ for all

r ∈ R, θ ∈ T in such a way that the total cost
∑
r∈R,θ∈T crxr,θ is minimized, while guaranteeing

that an optimal adaptive routing strategy using only the booked capacities ~x can deliver at least

κ containers earlier than time T in expectation.

By selecting a suitable state space S(~x), action space A(~x), reward function Rew(·), transition

probabilities, and strategy space ΠMD(~x) depending on the capacity selection ~x, the adaptive

problem can be formulated as a Markov Decision Process (MDP). The overall optimization model

can then be formulated as follows:



min
∑
r∈R

∑
θ∈T

crxr,θ

s.t. 0 ≤ xr,θ ≤ ur,θ ∀r ∈ R,∀θ ∈ T

xr,θ ∈ N≥0 ∀r ∈ R,∀θ ∈ T

y ≥ κ

y = max
π∈ΠMD

E

[
T−1∑
i=0

Rew(Xi, di(Xi)) + RewT (XT )|X0 = s

]
(1)

s.t. S = S(~x) (2)

A = A(~x) (3)

ΠMD = ΠMD(~x). (4)

3 Solution approach

We use two different approaches for solving the problem. A first method performs a neighborhood

search on the arc capacities solving the MDP for each capacity vector. An optimal solution of the

MDP is constructed using backward induction. As only arrival times are stochastic, it is possible

to speed up the computations by considering only state transactions having positive probabilities.

The second approach follows results of [1], which allowed for a mixed integer programming (MIP)

formulation for the whole problem, thus being able to rewrite the whole MDP.

Preliminary results are shown in Figure 1b for the simple graph given in Figure 1a. For each

service, there is a positive probability of missing the connection with a following one. Per unit

costs have been set to cr = 1 for all r ∈ R. We compare the cost of sending an increasing amount of

flow through the network for two levels of reliability ρ := κ
K (ρH = 0.8 and ρL = 0.5) by choosing

κ◦ = Kρ◦ according to the amount K of flow. Our results show that the additional amount of

capacity required to maintain the same level of reliability depends on the reliability itself, but also

on the amount of flow. This is in contrast to a deterministic minimum cost flow solution, where

sending one additional unit of flow only requires 2 units of additional capacity in total.

4 Conclusion

Our preliminary results focus on the capacity allocation required to send an adaptive flow meeting

a certain performance measure. We compare the effect of different levels of reliability on the

marginal cost for sending an additional unit of flow. This is done to understand the difference

in the planning approach required when including stochastic elements. In a deterministic setting,

allocating single units of flow to the cheapest available remaining path in a network is appropriate



(a) Graph instance for Fig. 1b (b) Cost as a function of the amount of flow K

as minimum cost flows can be decomposed into paths. Our next goal is to study the structure of

solutions in the stochastic setting and to investigate whether a flow decomposition into simpler

structures (not necessarily paths) similar to the deterministic case is still possible in the stochastic

scenario. The results of this formal investigation will support the dialogue with planners who

currently operate ad-hoc at a path level to allocate containers on running services. Moreover, we

have already discussed our model with practitioners, which led to several possible extensions of

the model that will be considered in future research. For example, multiple container sizes could

be studied, which might also make it necessary to include stowage at intermediate nodes into the

model. Moreover, in addition to uncertainty regarding arrival times, uncertainty may also appear

with respect to the departure time of services, which could be integrated into the model.
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1 Introduction and Motivation

Presence of autonomous vehicles (AVs) affects traffic flow characteristics of a mixed traffic stream

comprising human-driven vehicles. In particular, AVs can increase the saturation flow of arterials

and freeways. As such, studies have been carried out to investigate the effects of AVs in combination

with conventional human-driven vehicles (or normal vehicles (NVs)) on the road networks [1, 2].

The main aims of the research in this area are partly to understand the characteristics of the

mixed traffic [1] and partly to propose new algorithms to incorporate the real-time information

and benefits from connected and automated vehicles (CAV) to improve the mobility of the traffic

network [1, 2]. Since AVs have not yet been commercialized, there are numerous aspects that need

to be scrutinized regarding the impacts of AVs on road users (i.e. human factors), as well as the

traffic flow characteristics of the urban roads and freeways.

To model this impact, we propose an analytical model to derive the expected value of the to-

tal delay of a two-lane interrupted road serving a traffic stream with mixed AVs and conventional

human-driven (or normal) vehicles (NVs), given the Expected Penetration Rate (EPR) of AVs. The

models are based on the previously established saturation flow estimator (see [3]) for various pos-

sible lane management policies: (a) dedicated lanes, and (b) mixed-mixed lanes. Microsimulation

studies demonstrate the validity of the developed delay models.



2 Delay Analysis for a Two-lane Interrupted Road with

Mixed Traffic

Total vehicle delay experienced by vehicles stopped behind a traffic light, is a crucial criteria to

measure the efficiency of traffic control plans on an arterial road. Let us represent the signal cycle

length, and the green time, red time, and loss time of the approach by C, G, R, and L, respectively.

It is clear that C = R+ L+G. Number of vehicles that should be served by the approach in one

cycle is thus na = bqaCc, where qa is the arrival flow of traffic at the controlled approach. We

assume the arrival flow is bounded in a way that the approach remains undersaturated.

2.1 Dedicated Lanes Policy

In this policy, one lane is dedicated to AVs and one lane is dedicated to NVs. Since the number

of AVs arriving during a cycle is a random variable, we use a a binomial distribution to derive

the delay relationships. The expected vehicle delay at the approach assuming EPR of p with the

dedicated lapolicy can be formulated as [4]:

E[Dnv-av(k, na)] =

na∑
k=0

Dnv-av
k P (X = k), (1)

where

Dnv-av
k =

∑
ζ=nv,av

βζk
qa,ζk kj

kj − ka,ζk
(R+ Lζ)

2
, (2)

βζk =
kc,ζk

(
kj − ka,ζk

)
kj
(
kc,ζk − k

a,ζ
k

) , (3)

k is the number of AVs arrived during the cycle, and kj is the jam density per lane. Moreover,

qa,avk = k
na
qa, qa,nvk =

(
1− k

na

)
qa, Dnv-av

k , ka,ζk , and kc,ζk respectively denote the arrival flow of

AVs, the arrival flow of NVs, the total vehicle delay of the approach, and the arrival and saturation

densities for vehicles of mode ζ = {av,nv}, given k AVs arrived during the cycle. Concretely,

independent from the penetration rate k/na, the saturation flow for each dedicated lane can be

calculated as

qc,avk = qc,av =
1

hav−av
, (4)

qc,nvk = qc,nv =
1

hnv−nv
, (5)



where hav−av is the headway of an AV following another AV, and hnv−nv is the headway of an NV

following another NV. To add, given the free flow speed of the upstream traffic, v, the arrival and

saturation densities can be directly calculated as follows (ζ = {av,nv,m}):

ka,ζk = vqa,ζk , (6)

kc,ζk = vqc,ζk . (7)

2.2 Mixed-Mixed Lanes Policy

In the mixed-mixed lanes policy, each lane could have the mixture of AVs and NVs. Intuitively,

under this policy user equilibrium dictates that AVs get distributed almost equally among the

two lanes. Hence, we make this assumption and later justify it via microsimulation experiments.

Accordingly, the expected vehicle delay of the approach reads as

E[Dm-m(k, na)] =

na∑
k=0

Dm-m
k P (X = k), (8)

where

Dm-m
k = βm

k

qa,mkj

kj − ka,m
(R+ L)

2
, (9)

qa,m = 0.5qa, and ka,m = 0.5ka. Moreover, the saturation flow of each lane is obtained from the

formula below, and the saturation density can be read from (7):

qc,mk =
1

h̄m−m
k

, (10)

where h̄m−m
k = 1

na−1Ak(na)H/Ckna
, H = [hnv−nv, hav−av, hnv−av, hav−nv]T , hnv−av is the headway

of an AV following an NV, hav−nv is the headway of an NV following an AV, Ckna
is the number

of combinations of k AVs in a platoon of na vehicles, and Ak(·) is the (k + 1)th row of matrix

A(·) ∈ R(n+1)×4, which is defined in [3].

2.3 Validation of the Delay Models Using Microsimulation Studies

The evaluation is valuable due to the possible effects coming from the following assumptions (or

simplifications) made to develop the delay models: [I] the stochasticity of the headway components

(hij , i, j ∈ {nv, av}) is ignored, [II] the arrival flow rate is assumed to be constant, [III] under the

mixed-mixed lane policy AVs are equally distributed between the lanes, and [IV] the average delay

of each lane is approximated by the kinematic wave model [4]. Note that the saturation flow models

have been formerly validated via microsimulations in [3].



We conducted microsimulation studies (10 replications of an 1 hr experiment) on a hypothetical

intersection, and measured the total vehicle delay at a two-lane approach for various EPRs and

different lane management policies. Given that the microsimulation model relaxes the above-

mentioned simplifications [I-IV] to mimic the actual behavior of the traffic, one can consider the

average delay obtained from the microsimulation model as the ground truth. The results of the

microsimulations and their comparison with the proposed models are given in Fig. 1. According

to the figure, the modelled delays are close to the microsimulation results for each studied policy.
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Figure 1: Comparison of the expected total vehicle delays obtained from the proposed models and
microsimulation studies for various EPRs and different lane management policies, conducted on a
two-lane approach.
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1 Introduction 

Interesting classes of transport problem concern emergency response vehicle fleets, and these are 

generalizable to “mainstream” transport problems. As key examples, we can be seeking to determine the 

sizes and base locations of air and/or terrestrial vehicle fleets, understand patterns and variability in 

demand for emergency response services, or dynamically allocate vehicles to bases and/or standby 

locations in near real-time. Our focus here is on wildfires in grasslands and forests, and is largely based 

on a case study of a forestry company in Chile. For firefighting this company uses a mixed fleet of 

helicopters (used for fire crew transport and some water carrying), light aircraft (Air Tractors, [1], used 

for smaller-scale water bombing), and terrestrial brigades. This company has primary firefighting 

responsibilities through approximately a third of the country by surface area. 

Wherever, and whenever, there is significant grass fire or forest fire risk, fire suppression in the 

initial two hours after ignition is critical. This is often referred to as the initial attack phase. Overall 

wildfire damage minimization outcomes for a fire season hinge on the responsible organisation 

responding rapidly and containing as many fires as possible during the initial attack phase, especially 

during periods of more dangerous fire activity (high winds, high ambient temperatures, low relative 

humidity and/or forest and grassland fuels that are dry). For example, a statistical analyses of Australian 

wildfires [2,3] show that the fire size encountered at the beginning of fire combat, which is minimised 

by response rapidity, is one of two important variables for predicting the probability of a wildfire burning 

100 ha or more. The other important variable is the severity of fire behaviour due to meteorology and 

fuel dryness conditions. 



Here, we consider an air fleet sizing problem (AFSP) and a dynamic air fleet repositioning 

problem (DAFRP). These are founded on data analysis regarding fire occurrence, as well as an 

evaluation of data on the relative success of initial attack responses which differ in the mix of air and 

terrestrial vehicles used, and on the time of entry into combat of these brigades. The AFSP we address 

using statistics and data analysis, whereas the DAFRP is an operational transport fleet optimization 

problem we address using a hybridization of linear programming and either Model Predictive Control 

(MPC) or Real Options Valuation (ROV) using Monte-Carlo simulation and control randomization [4]. 

2 The air fleet sizing problem 

Wildfire causes vary, but in many places including Chile and much of Australia, human intentional or 

negligent causes are in the majority [5,6]. By contrast, in Southern Australia and parts of the United 

States, lighting strikes especially in mountainous areas are a major cause and can lead to a large number 

of fires initiated at roughly the same time [7,8]. Occurrence rates have a high spatial variability, with 

complex dependencies on environmental and social factors. There is a strong diurnal profile in 

occurrences, with peak times-of-day being specific to classes of fire cause. 

Day-to-day variability in fire occurrences is explained partly by ambient temperature, wind 

speed and humidity. More extreme values of these variables are indicative of higher numbers of 

(detected) fires, as well as fires that are more difficult to suppress and are more likely to lead to major 

damage. Except for lightning storm events, the rate of fire occurrence per unit time, or the time between 

events, is well represented as a random stochastic process.  

Our approach is based on statistical simulation that builds upon data analysis regarding fire 

occurrence. We estimate the maximum observed initial attack demand on the firefighting system, 

expressed in terms of the number of initial attacks needing to be addressed during a two hour period (for 

our Chilean case, where intentional and negligent causes predominate). The statistical simulation makes 

use of a region-by-region estimation of the time between fire ignitions, and has a dependency on time-

of-day as well as a forest fire danger index. Monte-Carlo simulations of fire seasons are carried out, and 

statistics are gathered concerning the initial attack demand in each of three zones: North, Central and 

South. The result is a quantified cumulative probability distribution where the “likely maximum” number 

of new fires in a two-hour period across a fire season is taken as the near-100% percentile for each zone. 

The value of this is nine fires for the busiest zone, and does not exceed twelve fires in total across the 

company’s territory as a whole in any two hour window. Further consideration of flight distances and 

the likely maximum in each zone has been used in practice to recommend that a total of 13 pairs of 

firefighting aircraft and helicopters are on duty each day of the fire season (a force increase of around a 

third). For the first year that this fleet was in place, the total area impacted by fire was the lowest in a 

decade, and was less than 5% of the impact in the preceding year. 

3 The dynamic air fleet repositioning problem 

The DAFRP involves optimally updating the assignments of a fixed number of helicopters and air 

tractors to bases and to active fires, at intervals over the course of a single day (noting that aerial 

firefighting is generally not safe at night). These relocations are performed so as to minimise the total 

expected fire damage, which accumulates from existing fires as well as new fires that might start over 



the remainder of the day and which will require initial attack response if significant damage is to be 

avoided. There is also an operational requirement that no aircraft can exceed its maximum flying hours 

for the day. 

The main operational decisions are around whether to relocate aircraft from their current 

locations to different locations where there are established fires (that are already beyond being 

suppressed in initial attack) and/or locations where there are too few aircraft present relative to the risk 

of new fires (where risk is taken as likelihood multiplied by consequence). There is consumption of 

airframe flying hours associated with a relocation, trade-offs between the total risk at the origin and 

destination, and the partial loss of firefighting capacity while the aircraft is repositioning. The risk 

consideration is most important. We are required to compare the risks posed by existing and potential 

new fires in different regions (which becomes complex in a stochastic environment where there are 

existing fires underway), and to avoid wasteful “chasing” of fire risk around the country over the course 

of a day as a result of risk hotspots moving spatio-temporally due to (predictable) meteorological 

variation as well as diurnal fire occurrence patterns in each region. 

To solve the DAFRP we use a Mixed Integer Linear Programming (MIP) formulation either 

within an MPC rolling-horizon approach, or use MIP in combination with ROV techniques. The MIP at 

the centre of the DAFRP assigns aircraft to bases, and aircraft to fires, through binary variables. The 

MIP objective function has, in effect, two components: one associated with the benefits of assigning 

aircraft to existing fires and reducing the damage caused by them, and one associated with the benefits 

of aircraft being present in areas where new fires are more likely. In the MPC approach, there is a fixed 

proportionality between these objective function components. In the ROV approach, the control 

decisions (for each hour over the remainder of daylight hours) involve adjusting the weighting between 

the objective function components. As such, the controls act as decisions at a higher level that the aircraft 

assignments in the MIP, and can compensate for undue myopia (too much relocation) or inertia (too little 

relocation) that can otherwise stem from the MIP harnessed within a deterministic MPC approach. 

The overall state of the system at a time t we represent as a tuple of three vectors: (i) a measure 

of the combined severities of burning fires in each region; (ii) the fire behaviour danger in each region, 

measured by an index; (iii) the cumulative flying hours for each aircraft on the day. There are 16 regions 

in the problem instances used for developing the algorithms. The expected wildfire damage D(t) for the 

remainder of the day (“damage to go”), is estimated by a Bellman equation which is recursive over time 

and incorporates system states and the values of decision variables of the MIP solved at time t. The 

overall DAFRP objective at time t is to minimise the expected value of D(t).  

In the simpler MPC approach, we are limited to a rolling horizon where just one particular 

realisation of fire occurrence and propagation is considered as the horizon moves forwards. In the ROV 

approach we estimate D(t) using a large number of Monte Carlo simulations in which fire occurrence 

times and locations vary between every simulation run. Within each run, the MIP is solved at each future 

timestep (i.e., hour subsequent to time t) and the control values are also randomized. The results of the 

large number of simulation runs are regressed so as to build the estimate of D(t) as well as the 

approximately-optimal control settings. The MIP is nested within the ROV, and even when we smartly 

decide (algorithmically) when execution of the MIP can be avoided, the approach has an extreme 

computational expense and requires high performance computing (the nesting is reversed in the road 

design problem addressed in [9], leading to more moderate computational demands).  



The main difference between the capabilities of the MPC and ROV approaches is that in ROV 

we optimize against a large number of possible future realisations at every timestep, whereas the MPC 

accounts only for expected values and a single deterministic fire scenario that unfolds over time. The 

ROV should therefore be much more robust to variability in future firefighting demands (which are 

spatio-temporally predictable but highly variable), and give better long-run (day after day) performance 

avoiding “catastrophes” when more extreme events occur. 

4 Conclusion 

The MPC approach to the DAFRP problem shows how MIP-based optimisation can be applied to 

dynamically reposition a heterogenous multi-asset fleet so as to maximise emergency response 

effectiveness. The ROV approach to DAFRP demonstrates that the hybridization of real options and 

combinatorial optimization is feasible not just for strategic planning as in [9], but for near real-time 

applications of decision-making under uncertainty. This we believe is an exciting and under-explored 

intersection of research into combinatorial optimisation (OR), financial mathematics and stochastic 

control, and by necessity involves the harnessing of high performance computing resources. 
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1 Introduction

This paper presents an adaptive large neighborhood search algorithm for the pickup and delivery

problem with the choice of truckload synchronisation through multiple cross-docks. The problem

is to find a set of minimum-cost routes as well as the proper vehicle load synchronization at cross-

docks to satisfy a set of pickup and delivery requests. In the distribution network, cross-docks act

as freight consolidation points to achieve economies of scale.

All studies in this problem consider a network with a single cross-dock and the main optimiza-

tion concern is to synchronize the pickup and delivery routes ( See [1],[2] and [3]). In this paper, we

extend the problem and studied the general network with multiple cross-docks. Similar to all stud-

ies in routing problem with cross-docking, we consider two separate routes (pickup and delivery)

for products transportation. However, in each route the transferred products can be consolidated

with other products through transshipment operations at multiple cross-docks.

2 Problem description

A logistic company operates with multiple cross-dock facilities. The company is responsible for

transferring a set of n customer requests (r ∈ R, |R| = n). Requests can pass through multiple

cross-docks to be consolidated with other requests. We identify each request r ∈ R with three

attributes : 1) demand load, 2) pickup location and 3) delivery location. The transportation



process is divided into two separate shifts (pickup and delivery), where each shift has a maximum

working time. The company uses identical vehicles (k ∈ K) of capacity Q. All vehicles start

and end their route at their assigned cross-dock. Moreover, multiple visits of the same cross-dock

during the same shift are forbidden. The problem is defined on a directed graph. With each arc

in this graph, we associate two non-negative values: a travel distance and a service time. The

scheduling problem involves decisions on route design and consolidation at cross-docks in order to

minimize the total travel distance.

In order to model vehicle load synchronization at the cross-docks, we represent the transporta-

tion network by means of two planning levels. At the first level, we focus on the flow of products

moving from one vehicle to another for the entire planning horizon (pickup and delivery shifts) as

well as on the vehicle routes between cross-docks. We decompose vehicle route into segments. Each

segment has its origin and destination cross-docks, and no cross-dock can be visited in between.

Moreover, for each segment, we define three modes to transport requests. The mode determine

whether the vehicle will pick up, deliver or haul the request. For each request a binary variable is

used to decide about its transport mode using vehicle k on its route between cross-docks.

The first-level decisions are then linked to those at the second level where explicit routing

decisions have to be made for each vehicle. We use the three-index binary variable to model vehicle

route. Additional variables are also used to control the maximum travel time. The objective is to

find a set of minimum-cost vehicle routes to serve all requests.

3 Solution approach

We have devised an adaptive large neighborhood search (ALNS) heuristic. The algorithm has three

main components: 1) destroy operators to remove a set of requests from the solution, 2) repair

operators to re-insert the destroyed requests into the solution, and 3) an adaptive mechanism to

allocate the search time among the operators, based on their historical performance and also to

control the intensification and diversification of the search.

The value of solution S is computed as F (S) = Z(S) + ξ1L(S) + ξ2T (S), where Z(S) is total

travelled distance, L(S) denotes the total capacity violation (the load that exceeds the vehicle

capacity), and T (S) represents the total violation of working time. In our implementation, we

allow infeasible solutions and penalize total violations by means of parameters ξ1 and ξ2 which are

dynamically adjusted during the search process.

At each iteration the algorithm modifies the current solution by applying a destroy operator and

a repair operator. The newly constructed solutions are then evaluated and are possibly accepted

according to a criterion. The search process terminates after a given number of iterations.

We have developed eight operators to destroy a solution. Some of these operators are adopted



from those proposed by Pisinger and Ropke [4]. The destroy operators seek to modify the current

solution S by removing requests from it.

We have also developed three repair operators: cluster insertion, best route insertion and regret

insertion. The cluster insertion operator follows a cluster-first route-second strategy. The key idea

behind this approach is to cluster request locations according to their geographical distance from

cross-docks. The best route insertion follows the same request selection criteria as the cluster

insertion. However, the operator gives the highest priority to the routes with minimum insertion

cost. Finally, the regret insertion use a look-ahead strategy on selecting requests. For each location,

the regret value is defined as the difference between inserting it in the best and the second best

routes. Similar to the best route insertion, this operator gives the highest priority to the route

regret value.

4 Computational experiments

The algorithm was coded in C++ and we chose the solution of our mathematical formulation as a

benchmark to evaluate the performance of the algorithm.

We evaluate the performance of the ALNS algorithm on a set of instances derived from the

one proposed by Solomon [5], which differ according to the distribution of nodes: random (R),

clustered (C) and a mixture of cluster and random (RC). For each type, we have considered 18

settings by varying the number of available cross-docks, the number of vehicles and the number

of requests. Finally, we have generated four instances for each case and overall 72 instances are

tested. We ran the algorithm five times for each instance and compared the best and the average

solution values with that of the solution obtained by running CPLEX with a time limit of 24 hours.

Table 1 summarizes the computational results on the C, R and RC instances. For each group

of instances we report the best (Max Best Imp.) and the mean (Mean Average Imp.) percentage

improvement of the ALNS solution value with respect to the best CPLEX solution. The average

ALNS solution time in seconds is reported under “Mean Time (seconds)”. The headings “Min Gap

LB” and “Max Gap LB” report the minimum and the maximum percentage difference of the best

ALNS solution value with respect to the best lower bound found by CPLEX.

For most of the instances, the average solution value obtained by ALNS over five runs is very

close to that obtained by CPLEX. However, the best solution reported by the ALNS is better than

that obtained by CPLEX. This improvement is considerable for instances with a larger number of

requests. For most of the instances the ALNS solution value is around 5% higher than the best

lower bound returned by CPLEX.



Table 1: Summary of computational results, two cross-docks

|K| = 4, Q = 500 |K| = 6, Q = 300 |K| = 8, Q = 250

Number of requests (n) 15 30 50 15 30 50 15 30 50

C Max Best Imp. 0.00% 0.00% 0.22% 0.00% 0.00% 1.00% 0.00% 0.00% 2.26%

Mean Average Imp. -0.47% -0.76% -1.22% 0.00% -1.16% -0.13% 0.00% -1.23% -0.79%

Mean Time (seconds) 71.72 141.70 378.27 61.74 122.18 347.18 63.21 106.38 295.76

Max Gap LB 1.89% 2.81% 5.24% 0.00% 3.24% 4.57% 0.00% 6.19% 8.17%

Min Gap LB 0.00% 0.00% 3.59% 0.00% 0.09% 1.72% 0.00% 0.65% 5.00%

R Max Best Imp. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mean Average Imp. 0.00% -0.02% -2.02% 0.00% -0.43% -1.89% -0.02% -0.97% -1.42%

Mean Time (seconds) 71.25 138.86 411.43 66.99 137.76 300.75 65.05 137.05 192.71

Max Gap LB 0.00% 0.00% 3.94% 0.00% 2.86% 3.39% 0.00% 2.45% 4.85%

Min Gap LB 0.00% 0.00% 1.69% 0.00% 0.00% 1.71% 0.00% 0.00% 3.56%

RC Max Best Imp. 0.00% -0.60% -0.06% 0.00% 0.00% 1.00% 0.00% 0.00% 1.45%

Mean Average Imp. 0.00% -1.93% -1.45% -0.02% -0.68% -1.05% -0.33% -1.84% -0.75%

Mean Time (seconds) 62.15 136.14 361.38 71.17 117.55 391.03 60.46 122.68 443.92

Max Gap LB 0.00% 3.14% 4.23% 0.00% 3.55% 4.25% 0.00% 4.65% 4.72%

Min Gap LB 0.00% 0.60% 2.12% 0.00% 0.00% 1.68% 0.00% 0.00% 2.54%

5 Conclusions

We have described a pickup and delivery problem in which requests have to be processed at least by

one cross-dock. The aim of the problem was to compute a minimum cost routes by synchronizing

the vehicle loads via several cross-docks. We have presented a mathematical formulation of the

problem and provided an adaptive large neighborhood search algorithm. The results demonstrate

that our algorithm can find high quality solutions within reasonable computation time
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Response to Reviewers
Thank you for the careful review of our paper ”Max-Pressure Based Autonomous Intersection
Management with Pedestrians”, and for the thoughtful comments. We carefully considered the
comments. The following describes how we addressed the comments (reviewers’ comments are in
italics):

Reviewer #1
The study addresses a problem with the existing Autonomous Intersection Management methods,
the fact that they do not consider the pedestrian flow at the intersections. A modified max-pressure
control algorithm is proposed for that to account for the pedestrian flow in determining the optimal
throughput for intersections of a network. The algorithm is used to calculate the activation of each
turning movement and pedestrian signals at every time step by defining movement weights. The
algorithm optimizes the sum of the pressure of all movements. The algorithm is based on the
assumption that all pedestrians are served in a single time step. The study is interesting. The
mathematics of the problem have been defined rigorously.

1) What challenges implementation of such algorithm might impose on real practice? What
are the solutions for those?

The first challenge is to get the measured queue length of vehicles at the intersection. It requires
all vehicles are equipped with V2I devices so they can transmit their location information to the
controller at the intersection. Another challenge is to get the estimated arrival rate of pedestrians,
for which we need to know the route choice and the trip distribution of pedestrians.

2) The input from pedestrian parts of the objective function, can they be gathered in actual
practice?

To calculate pedestrian weights, estimated pedestrian queue length and pedestrian waiting time
are needed. Pedestrian time can be directly collected with the timer connected with the press
button at the crosswalk and we assume that pedestrians will press the button when they arrive the
crosswalk. However, the estimated pedestrian queue length requires the information on pedestrian
paths, which is hard to measure in the field.

3) Can this intersection optimization scheme be administered in practice?
The algorithm proposed in this study is a distributed intersection optimization algorithm. Each

intersection only needs to optimize its own intersection control. A central controller can be utilized
to connect with all intersections and collect information from each of the intersection to monitor
the performance of the network.

4) The proposed method to estimate the queue length of pedestrians, how accurate is that, and
to what degree the optimization outcome is sensitive to the accuracy of such estimation?

There is still uncertainty in the variation of pedestrian queues in the network under the control
of the max-pressure algorithm. According to the simulation, the difference between the actual
pedestrian queue length and the estimated pedestrian queue length is bounded.

We modified the abstract to address question 1 and 2. We are unable to address question 3 and
4 in the abstract because of the page limit, but we will include them in the full paper.
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Reviewer #2
The proposed research aims to add consideration of pedestrian flows to existing autonomous traffic
control strategies. The mathematical problem formulation is provided in detail and seems plausi-
ble. I am looking forward to seeing numerical examples that demonstrate the model.

Thanks. Because of the page limit, we will not put the numerical examples in the extended
abstract but we will include numerical examples in our paper on max-pressure intersection control.
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1 Introduction

Autonomous intersection management (AIM) is an intersection control mechanism in which all

vehicles approaching an intersection send their information to the controller of the intersection

and follow its instructions. It was first proposed by Dresner and Stone [1]. They modeled an

intersection with autonomous vehicles as a multi-agent system and proposed a reservation-based

approach which outperformed the traditional intersection control with traffic lights. Hausknecht

et al. [2] applied AIM-based agents to control interconnected intersections in a network. Existing

studies about AIM show great efficiencies compared with traditional intersections but ignore the

pedestrian flow at the intersection. This is a limitation of existing models since in practice pedes-

trian trajectories cannot be precisely controlled like those of autonomous vehicles. To improve the

accessibility of AIM, it is necessary to consider pedestrian flows when designing an AIM algorithm.

The control algorithm proposed in this study is based on max-pressure control algorithms.

Max-pressure algorithm allows a network to use decentralized controllers for each of the intersec-

tions with the traffic state data from its adjacent intersections, so it uses less time to calculate

signal timings compared with centralized controllers (SCOOT and OPAC). Although max-pressure

controls have been applied to control intersection signals [3, 4], their formulations do not account



for pedestrian flows. This study proposes a modified max-pressure control based on Varaiya’s

study [4] and considers pedestrian flows in the network to produce the optimal throughput for

each intersection after defining the weight of movements.

2 Network Model

Consider a traffic network consisting of a road network for vehicles G(N ,L) and a sidewalk network

for pedestrians R(N ,L). For both networks, N denotes the node set, L denotes the link set. The

link set can be divided into three subsets Lentry, Linter, Lexit representing entering, internal, and

exiting links respectively. The entering link set includes links that bring vehicles or pedestrians to

the road network or the sidewalk network. The exit link set includes links that take vehicles or

pedestrians out of the road network or the sidewalk network.

In the road network, a pair of links (i, j) denotes a turning movement leaving link i and entering

link j. The capacity of turning movement (i, j) is calculated by Qij = min{Qi, Qj}. LetM be the

set of all turning movements. Let Γ−i and Γ+
i be the sets of incoming and outgoing links of link i

respectively. We assume an intersection is divided into several conflict regions where trajectories of

turning movements intercept with each other. Let C be a set for all conflict zones at an intersection.

Cij is the set of conflict zones on the trajectory of turning movement (i, j). The capacity of conflict

zone c is Qc and is determined by Qc = max{(i,j)|c∈Cij}{Qij}. Let δcij denote the relation between

turning movement (i, j) and conflict region c. If turning movement (i, j) intersects with conflict

region c, δcij = 1, otherwise, δcij = 0. The activation of turning movement (i, j) is represented by

Sij ∈ [0, 1], which is the percentage of time used for activating turning movement (i, j) in a time

step. The number of vehicles allowed to move from i to j is calculated by yij = SijQij . For each

conflict region, the sum of Sij should not be larger than 1, because the total time occupied by any

turning movement should not be larger than a time step.

In the sidewalk network, two sidewalks are directly connected or connected by a crosswalk. A

pair of sidewalks (m,n) can denote a crosswalk which connects sidewalks m and n. Let Γ−m and Γ+
m

be the sets of incoming and outgoing sidewalks of sidewalk m. Let W be the set of all crosswalks.

In some cases, different pairs of sidewalks may represent the same crosswalk when it connects

multiple pairs of sidewalks. If vehicle turning movement (i, j) intersects with crosswalk (m,n),

δmn
ij = 1, otherwise, δmn

ij = 0. Let Qmn be the maximum service rate of crosswalk (m,n), which is

assumed to be larger than the maximum pedestrian arrival rate at crosswalk (m,n). In this study,

pedestrian flows are controlled by signals. We assume that all pedestrians can be served in a time

step. The activation of crosswalk (m,n) at time t is represented by Zmn(t). When the pedestrian

signal is activated, Zmn(t) = 1, otherwise, Zmn(t) = 0. The actuation of the pedestrian signal is

related with the queue length. Let τmn(t) be the waiting time of pedestrians from sidewalk m to

sidewalk n since the last actuation of the pedestrian signal. τmn(t) can be updated with equation

(1).

τmn(t) =


τmn(t) + 1, τmn(t) ≥ 0 ∧ Zmn(t) = 0

1, τmn(t) = 0 ∧ xmn(t) ≥ 0

0, Zmn(t) = 1 ∨ xmn(t) = 0

(1)



To update queue lengths of movements, a point queue model is used, as shown in equation (2).

xjk(t) is the queue length of turning movement jk at time t, yjk(t) is the turning flow at time t,

and the last term is the total amount of flows that join the queue jk from upstream links. pjk is

the proportion of vehicles on link j going to link k. The information on the route choice and the

trip distribution are needed to calculate pjk. The flow yij(t) is calculated at every time step based

on the control algorithm.

xjk(t+ 1) = xjk(t)− yjk(t) +
∑
i∈Γ−

j

yij(t)pjk(t) (2)

2.1 Stability region

Let the demand vector d represent the traffic entering the network through entering links. Let fi,

fij denote the total flows on link i and on a turning movement (i, j) respectively. A demand vector

d can uniquely determine a flow pattern on the network. Let S(t) be an intersection control matrix

that includes values of Sij(t) for all vehicle turning movements at time step t. S is an intersection

control sequence which includes all S(t) from time step 1 to T . The long-term average time used

for activating the turning movement (i, j) can be calculated by getting the average value of Sij(t).

Sij = lim
T→∞

1

T

T∑
t=1

Sij(t) (3)

A demand vector d can be stabilized if there is an intersection control sequence S that can

make the average link flow rate fi and the average serving time Sij follow the relation in equation

(4) for every link. Let Do denote the set of demands that can be stabilized.

fipij ≤ SijQij ,∀i, j ∈ L (4)

2.2 Max-pressure control policy

This study uses a max-pressure algorithm to calculate the activation of each turning movement

and pedestrian signals at every time step. The weight of each vehicle turning and crosswalk can

be calculated by equation (5) and (6) respectively. The weight is the queue length at the upstream

link or sidewalk minus the average queue length at downstream links or sidewalks. In equation (7),

to calculate the weight of crosswalk (m,n), an estimation of queue length xpedmn is used because it

is hard to measure the pedestrian queue length. In equation (7), τmn is the waiting time since the

last actuation of the pedestrian signal. u is the mean arrival rate of pedestrians at the crosswalk

(m,n) and need to be estimated in advance using the information on the route choice and the trip

distribution of pedestrians. We assume that the difference between the estimated queue length

and the actual queue length is bounded, which is |xped
mn(t)− umnτmn| ≤ ε.

wveh
ij = xij −

∑
k∈Γ+

j

xjkpjk (5)



wped
mn = xped

mn −
∑
o∈Γ+

n

xped
no pno (6)

xped
mn = τmnumn (7)

After calculating the weight for each turning or crosswalk, a mathematical program is used to

calculate the intersection control strategy, as shown in equation (8).

max
∑

(i,j)∈M

wveh
ij yij +

∑
(m,n)∈W

wped
mnQmnZmn (8a)

s.t. yij ≤ Qij(1−Zmnδ
mn
ij ), ∀(i, j) ∈M,∀(m,n) ∈ W (8b)∑

(i,j)∈M

yij(t)δ
c
ij ≤ Qc, ∀c ∈ C (8c)

yij ≤ xij , ∀(i, j) ∈M (8d)

Zmn ∈ {0, 1}, ∀(m,n) ∈ W (8e)

yij ≥ 0, ∀(i.j) ∈M (8f)

The max-pressure control aims to optimize the sum of pressures of all turnings and crosswalks.

yij represents the number of cars in turning movement (i, j) that is allowed to move. The values of

Sij can be calculate by Sij = yij/Qij . Let S∗ to denote the max-pressure control of all intersections

in the network.

Proposition 1. If the demand vector d ∈ Do, this max-pressure control is stabilizing.

The control method is proved to be stabilizing. The queue length of vehicles and pedestri-

ans in the system is bounded. This control method can also achieve optimal throughput as an

optimization model is used to get the control strategy.
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1 Introduction

The Service Network Design Problem with In-Tree Constraints (SNDPITC) is the problem

of finding a minimum-cost transportation plan for shipping multiple less-than-truckload

(LTL) commodities from their respective origin to their respective destination. In addition,

if any commodities sharing the same destination should meet at any given point in their

respective paths, then they must continue on the same path from that point forward. This

restriction implies not only that each commodity follows a single path, but that the paths

for commodities having the same destination induce an in-tree rooted at the destination.

More formally, let G = (N,A) be a directed graph with node set N and arc set A.

Let the cost of a truck traversing arc a ∈ A be ma ∈ R>0. Let K denote the set of all

commodities, o(k), d(k) ∈ N denote the origin and destination for commodity k ∈ K,

respectively, and q(k) ∈ (0, Q] denote its quantity, where Q is the capacity of a truck.

In what follows, we take Q = 1 (commodity quantities are scaled accordingly). The

SNDPITC seeks a shipping plan in which each commodity k ∈ K follows a single path in

G from o(k) to d(k). Furthermore, for any k1, k2 ∈ K such that d(k1) = d(k2), if the paths

for k1 and k2 visit node n ∈ N , then both paths must depart n on the same arc a ∈ A.

The cost of the shipping plan, which the SNDPITC seeks to minimize, is modeled by∑
a∈A

ma

⌈ ∑
k∈K:a∈Pk

q(k)
⌉

where Pk ⊆ A denotes the arcs used in the path for commodity k.

Service network design (SND) problems in which the flow of a commodity must follow

a single path, (it cannot be split to be sent on multiple paths), are known as SND with

unsplittable or nonbifurcating flow, and have been relatively well studied (Frangioni and

Gendron, 2009), as have SND problems with various transport cost functions (Fortz et al.,

2017). However, LTL companies often, in load planning, require the in-tree restriction

1



(Powell and Koskosidis, 1992), which is used to simplify operations at handling terminals

(crossdock facilities and the like): dock workers loading trucks need only look at the

destination of a commodity to know the next destination it should be loaded to. To our

knowledge, the SNDPITC has only been studied, to date, by Powell and Koskosidis (1992),

who present a local improvement heuristic which manipulates the tree constraint, as well

as primal-dual algorithms that provide upper and lower bounds.

Here we formulate and compare alternative integer programming (IP) models of the

SNDPITC in terms of their size and strength, both theoretically (Section 2) and compu-

tationally (Section 3). We also consider approaches to strengthening the formulations.

2 IP models for the SNDPITC

We give three IP formulations. All use na, a non-negative integer variable representing the

number of truckloads needed on arc a, for each a ∈ A. Two use binary flow variables to

model the path for each commodity: let xak for arc a in the network be a binary variable

indicating whether the arc is used (xak = 1) or not (xak = 0) in the path for commodity

k. Our IP Formulation 1 (F1) is given below:

min z =
∑
a∈A

mana (1)

∑
a∈δ+(i)

xak −
∑

a∈δ−(i)

xak =


1, if i = o(k)

−1, if i = d(k)

0, otherwise

, ∀i ∈ N, ∀k ∈ K (2)

xak +
∑

a′∈δ+(i),
a′ 6=a

xa′k′ ≤ 1 ∀i ∈ N, ∀a ∈ δ+(i), ∀k, k′ ∈ K(d) and k 6= k′ (3)

na ≥
∑
k∈K

qkxak ∀a ∈ A (4)

where δ−(i) and δ+(i) denote, as usual, the set of arcs coming into and going out of node

i, respectively, and K(d) denotes the set of all commodities with destination d. Constraint

(3) models the in-tree requirement. Integrality constraints are assumed.

Our IP Formulation 2 (F2) introduces the binary variable, yad indicating whether arc

a is used (yad = 1) or not (yad = 0) in the in-tree for commodities with destination d.

These variables induce a tree rooted at node d with arcs directed towards the root. F2

uses objective (1) with constraints (2) and (4). The relationship between the xak and yad

variables, together with the in-tree requirement, is now modeled as

xak ≤ yad, ∀a ∈ A, ∀d ∈ D,∀k ∈ K(d) (5)∑
a∈δ+(i)

yad ≤ 1, ∀i ∈ N, ∀d ∈ D (6)



where D ⊆ N denotes the set of commodity destination nodes.

Our IP Formulation 3 (F3) introduces the continuous variable wad ∈ R≥0 indicating

the quantity flowing on arc a that is destined for d, which replaces the binary xak variable

for k ∈ K(d). F3 uses objective (1) with constraints (4) and (6), along with

∑
a∈δ+(i)

wad −
∑

a∈δ−(i)

wad =


∑

k∈K(d):o(k)=i

qk, if i 6= d

−
∑

k∈K(d)

qk, if i = d
, ∀i ∈ N, ∀d ∈ D (7)

wad ≤
( ∑
k∈K(d)

qk
)
yad, ∀a ∈ A,∀d ∈ D. (8)

The following three simple constraints can be added to strengthen the models:

na ≥ xak, ∀k ∈ K, yad ≤
∑

k∈K(d)

xak and
(

min
k∈K(d)

qk
)
yad ≤ wad, ∀d ∈ D, ∀a ∈ A.

The first applies to all of F1, F2 and F3, the second to F2 only and the third to F3 only.

It is not difficult to see that F1 has O(|K||A|) variables and O(|K|2|A|) constraints,

F2 has the same order of number of variables but only has O(|K||A|) constraints, while F3

has O(|N ||A|) variables and constraints. Hence F3 is the smallest of these formulations.

Indeed, since it is generally the case that |N | << |K|, F3 is significantly more compact.

We can prove the following result analytically.

Proposition 2.1 F2 is the strongest of these formulations.

Thus the large number of constraints required for F1 is not accompanied by an associated

formulation strength; the most interesting trade-off is between F2 and F3.

By observing that the in-tree for each destination node is a Steiner tree in a graph,

we may exploit Steiner tree concepts, as in (Koch and Martin, 1998), to strengthen F3,

in particular. All formulations may be strengthened by cut-set inequalities (Raack et al.,

2011), however there are challenges in separating such inequalities (Chouman et al., 2016).

3 Preliminary computational results

We have generated multiple instances of the SNDPITC, using the approach described

by Baubaid et al. (2018), with varying parameters. The number of end-of-line (EOL)

terminals in the network ranges from 10 to 15, while the number of breakbulk terminals

ranges from 2 to 4. The percentage of EOL terminals with demand between them is 50%,

so the number of commodities ranges from 45 to 105.

We used the commercial solver Gurobi to attempt to solve each instance with a 30

minute CPU run-time limit. The table shows preliminary results on four instances. The

solver reached the run-time limit on almost all instances (instance 1 was solved within 6



Instance and No. No. Root Node Final No. B&B Primal

Formulation Variables Constraints Gap (%) Gap (%) Nodes Gap (%)

F1 1,932 10,284 6.53% 0.01% 8,009 0.00%

1 F2 2,352 3,422 5.98% 0.01% 14,743 0.00%

F3 882 1,532 9.67% 0.72% 76,382 0.00%

F1 2,852 14,022 5.98% 2.30% 11,911 0.00%

2 F2 3,472 4,852 4.85% 1.34% 23,367 0.00%

F3 1,302 2,192 13.96% 5.78% 29,142 0.71%

F1 6,572 49,153 3.77% 0.90% 31,241 0.00%

3 F2 7,502 10,457 5.13% 0.75% 70,674 0.00%

F3 1,922 3,347 5.34% 1.36% 50,482 0.04%

F1 9,222 69,159 5.84% 4.35% 995 0.59%

4 F2 10,527 14,097 5.47% 3.86% 4,175 0.00%

F3 2,697 4,557 8.21% 4.74% 11,027 0.28%

minutes for F1 and F2). The primal gap reported is the difference between the least cost

feasible solution found by the formulation, relative to that found by any formulation.
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1 Introduction

In the past decade the inclusion of Unmanned Aerial Vehicles, commonly referred to as drones, into

various logistic transportation systems has received increased attention from researchers. It is not

difficult to imagine the potential of a vehicle that is not bounded to the road network nor dependent

on a driver and which is even able to deliver a parcel on your doorstep or in your back yard. Early

concepts proposed by companies such as Amazon suggested that drones can deliver goods directly

from the depot to the consumer. While such a system has the advantage that routing becomes

trivial as the drones fly directly between depot and customer, the distance covered by a drone

will be much greater than the distance covered by a truck performing an optimized vehicle tour.

As a consequence, different approaches where drones collaborate with other vehicles or operate

within a multi-echelon setup are now being considered. Many of these new approaches give rise to

interesting new routing problems.

One of the approaches that was proposed is to have a truck collaborate with a drone. By

acting as a mobile depot to the drone, the unique advantages of the drone can be exploited to

make deliveries to locations that are far away or difficult to reach for a truck, while the truck

can make other deliveries at the same time. This way the total distance covered by the vehicles



remains reasonable, yet the time required in which all deliveries can be performed is decreased

substantially due to the parallel operations of both vehicles. In computational experiments with

random Euclidean instances where the drone travels twice as fast as the truck, it was observed

that 30% of time can be saved compared to an approach where only the truck is used [Agatz et al.,

2018]. A theoretical analysis finds that the efficiency improvement is related to the square root of

the ratio of the speeds of the truck and drone [Carlsson and Song, 2017]. A generalization where

multiple trucks and multiple drones perform the deliveries was considered by Wang et al. [2017]

and Poikonen et al. [2017] and the authors provide a number of worst-case bounds.

A first formalization of the routing problem where a single truck collaborates with a single

drone was introduced by Murray and Chu [2015] as the flying sidekick traveling salesman problem

along with a polynomial sized yet relatively weak MIP formulation and a suitable local search

heuristic. One notable feature of the flying sidekick traveling salesman problem is that it is not

allowed for the vehicles to visit the same location twice. As the approach assumes that the drone

and truck can only interact with each other at customer locations and not on the road, it can be

beneficial to allow repeated visits to location as to create more rendez-vouz opportunities for both

vehicles. This aspect was included in the traveling salesman problem with drone studied by Agatz

et al. [2018], which does make the assumption that the vehicles can only interact at customer

locations, but does allow for repeated visits. This variant was solved using a MIP formulation with

an exponential number of constraints and variables, which turned out to be able to solve instances

of up to 10 locations exactly. Furthermore, a number of heuristics which outperform the earlier

heuristics were introduced and applied to instances of up to 250 locations. In a follow up work

[Bouman et al., 2018] dynamic programming algorithms were developed which allow us to solve

instances in the range of 15 to 20 locations exactly.

In this talk, we discuss recent advancements in the development of techniques that can solve

larger instances to these problems, and provide insights into the challenges going forward.

2 Column Generation and Cutting Planes

The different approaches introduced by Agatz et al. [2018] rely on the concept of an operation,

which consists of a start location, and end location, a set of locations visited by the truck and

optionally a single drone location that is visited by the drone exclusively. At the start of the

operation the drone and truck are together, but in between their paths may vary. The MIP

approach can now be summarized as follows: choose a set of operations that visit all locations

such that the sum of their costs is minimized, ensuring that if we interpret operations as arcs

from their start to end location the operations span a directed Eulerian subgraph. An Eulerian

subgraph is generalization of a tour that allows for locations to be visited multiple times and as



a consequence the formulation bears similarities to common formulations for the regular TSP. As

a single operation can include any number of locations which are visited by the truck and the

formulation introduces a variable for each operation, it is clear that this formulation does not

scale very well when the number of locations in the instance increases. To make matters worse,

the formulation depends on an exponential number of subtour elimination constraints. In this

talk we consider how we can overcome these obstacles using column generation and cutting plane

techniques to generate the variables and subtour elimination constraints on the fly.

To deal with the exponential number of variables in the model, we consider column generation.

The pricing problem of this approach consists of finding a new operation that improves the current

solution of the master problem. This pricing problem requires us to select a start location, end

location and a drone location, and optionally a route visiting any number of truck locations. We

investigate both a MIP based approach and a labeling algorithm to solve the pricing problem. We

also consider some rules that can be used to prune the set of valid operations to a smaller set which

is still guaranteed to contain an optimal solution. In preliminary computational experiments we are

able to find optimal solutions to instances with up to 34 locations. Furthermore, the pruning rules

for the sets of operations are able to provide considerably reductions in the number of operations

that have to be considered. Finally, a heuristic variant of the proposed exact techniques is able to

improve upon the solutions obtained by the local search heuristics that were developed earlier.

To deal with the exponential number of subtour elimination constraints, we consider cutting

plane procedures. As a first step we have developed a MIP model that can be used to separate

the subtour elimination constraints. We find that this procedure already results in a significant

improvement of the solution procedure. Furthermore, we have considered whether a useful class of

valid inequalities, the comb inequalities [Hong, 1971], can be extended to the traveling salesman

problem with drone. While we were unable to find a satisfactory class of valid inequalities that

can deal with the situation where locations can have repeated visits, we were able to formulate

additional valid inequalities for the setting where repeated visits are forbidden. We propose two

separation procedures that can separate subsets of these valid inequalities. The first is an exact

MIP-based procedure that is able to separate blossom inequalities. The second is a heuristic

separation procedure derived from the procedure by Padberg and Rinaldi [1990]. Furthermore, we

include the set of logical inequalities that were introduced for the orienteering problem [Leifer and

Rosenwein, 1994]. In preliminary computational experiments we find that this last class improves

the solution procedure considerably. We also find that the comb based valid inequalities can be

violated when no violated subtour elimination constraints exist, yet as this is a relatively rare

occurence for the instances we tested it is currently a challenge to show their effectiveness in

practice.



3 Discussion and Challenges

Using our proposed methodologies for the traveling salesman problem with drone, we are able

to solve considerably larger instances than we were able to solve before. We introduce a column

generation procedure that can generate operations dynamically rather than having to generate

all operations a priori. Furthermore, we introduce a cutting plane procedure for the subtour

elimination constraints and introduce additional valid inequalities and separation procedures for

the case where locations can not have repeated visits. This suggests that allowing repeated visits

yields a more challenging problem. As a direction for future research, it would be interesting to

analyze in which circumstances repeated visits yield better solutions, and how likely these situations

occur in practice. One dimension of this question is whether repeated visits are actually necessary

in cases where we allow the truck and the drone to interact on the road.
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1 Introduction

Dynamic ridesharing and ride hailing has seen a significant increase in the recent past [1]. A growing

number of private companies participate in the shared market of providing rides to customers in

real-time, including Uber, Lyft, DiDi, and Via, and naturally compete against each other to gain

a significant market share. This competition may lead to non-optimal behavior, in terms of the

service rate achieved, and of the number of cars present on the roads. In this work, we aim

to provide a realistic model of the competition between ride-sharing companies operating at a

city-scale, and quantify its impact in terms of the deviation from optimality.

Modeling competition among private entities has been studied in different areas of transportation

including network design problems [2]. In a recent work [3], the taxi market is modeled as a multiple

leader-follower game and an approximate Nash equilibrium for the competition is solved. However,

these models assume a large extent of information sharing among the private companies which is

not realistic, like assuming that each company knows the location of each vehicle of every other

company. In addition, extending these models to large scale networks and to dynamic settings is

a challenge. Recent works [4, 5] provide solutions for solving the centralized real-time city-scale

ridesharing problem, by mapping incoming batch of requests with available vehicles, in a three-step

procedure: (i) selecting candidate vehicles to serve requests, (ii) computing serving costs meeting

ridesharing constraints, and given those computed costs (iii) performing optimal assignments of

requests to vehicles. It is highlighted that linear assignments can perform as good as more elab-

orated assignments, when run at a high enough sampling rate. Hence we propose to evaluate the

competition structure between ridesharing companies by modeling ridesharing as batches of linear

assignment problems. A system optimal assignment is defined as the one that minimizes the total

system cost of assigning any vehicle to a rider, and this goes on for consecutive batches of requests.

The main contribution of our work is the modeling of the competition and cooperation scenarios

under different realistic settings of information sharing between the ridesharing companies and a



given central authority, e.g. a city authority.

2 Method

The actors of the ridesharing system under consideration are the users requesting the rides via their

smartphones in real-time, the multiple companies offering the rides via their available vehicles, and

possibly a central agent coordinating the process depending on the level of information shared.

LetM denote a set of customer trip requests at time t and P denote a set of competing companies.

For a given batch of requests, each company p P P has a fleet of available vehicles, denoted by

set Cp, which are available for the riders to request. C denotes the set of all available vehicles,

C �
�

p Cp. Let xij P t0, 1u, i P C, j PM be the set of binary variables: xij � 1 only if vehicle i

is assigned to customer j, otherwise xij � 0. Let cij P R� denote the cost incurred by vehicle i

if it is assigned to customer j. This cost is typically defined as the travel distance or travel time,

considering the different vehicle and rider parameters including detour time required to add the

new customer to the current schedule, vehicle capacity, preference of customers already on-board

etc.

For each new batch of requests, the system optimal assignment is the solution of the linear as-

signment problem of Equations (1), referred as LAP(C,M). We assume equal number of riders

and vehicles, that is |C| � |M|, for solving this assignment problem. If |C|   |M| (respectively,

|C| ¡ |M|), we can add dummy vehicles (riders) with infinite cost of being assigned to every other

rider (vehicle).

min
xijPt0,1u,iPC,jPM

¸

iPC

¸

jPM
cijxij rLAP(C,M)s

subject to:
¸

iPC
xij � 1, @j PM

¸

jPM
xij � 1, @i P C

cij � Ipi, jq, @i P C, j PM

(1)

We focus on three protocols of interaction between multiple companies, highlighted in Figure 1.

The arrows represent information sharing between the entities. We have:

• A Centralized protocol where a centralized agent computes the costs associated with assign-

ing each vehicle to any rider and seeks to find the optimal solution to the LAP(C,M). This

can be solved using efficient and scalable algorithms, e.g. centralized auction algorithms [6].

• A Distributed protocol where the central agent does not require access to the location of

the vehicles, instead the central agent interacts with each company by iteratively asking for



Figure 1: Three different settings for multi-company information sharing. (a) Centralized pro-

tocol (b) Distributed protocol (c) No-communication protocol

the two best bid prices for the yet unassigned riders. This protocol, which is essentially

an extension of the distributed auction algorithm [7], runs until all riders are assigned to

vehicles. It relies on a distributed architecture, and minimizes information sharing (no pro-

prietary information of the companies is shared) but, as we shall prove, still enables to solve

LAPpC,Mq to optimality. Extensions of this protocol are the Stochastic Distributed

protocol which aims to model the noise that can come from the vehicle positioning errors

and the routing computations, and the Stochastic Distributed with Bias protocol as

the routing/map service may be different among the companies and a given routing service

may provide consistently shorter/longer travel times compared to others.

• A No-communication protocol where there is no central agent to coordinate the assignment

process, and riders send their requests to the company, for example through a broker ap-

plication on their smartphone. Each company p solves LAP(Cp,M) and submit bid offers

directly to riders j with xij � 1, i P Cp. The riders who receive an offer then select the best

offer among the companies and are considered assigned. Each company then resolves the

assignment considering all unassigned riders. The process continues until all riders are as-

signed. An extension of this protocol is the No-communication with Preference protocol

which models the fact that riders always choose the offer from the company they prefer.

Our objective is to compare the performance of the information sharing settings in Distributed

and No-communication protocols against the optimal performance of the Centralized protocol.

3 Selected results

We get the following results:

1. We prove that the Distributed protocol converges to the optimal assignment and the number



of iterations for convergence is a quadratic function of the number of vehicles. The proof

follows closely the one in [7].

2. We prove that with the No-communication protocol, the total system cost at convergence is

at worst 3 times more than the optimal cost.

3. We test the performance of the protocols on different cost matrices. As an example, Figure 2

shows the optimality gap in % for some randomly generated cost matrices (benefit is defined

as the negative of the cost). As observed, in the case of 2 and 3 companies, it is between

0.1–16%.

4. We conduct tests on large scale ridesharing instances, using the NYC Taxi dataset [8]. We

show how an increased optimality gap significantly leads to deteriorating the service rate for

the protocols under consideration.

Figure 2: Results for different randomly generated matrices for No-communication protocol

The findings of the presented research advocate the presence of a central agent that coordinates the

assignment process between the different companies (the Distributed protocol). We also draw

conclusions on how the results can help design policies that can improve system performance even

in the case of pure competition between ridesharing companies (the No-communication protocol).
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1 Introduction

Instead of assuming a perfectly rational person with a clear system of preferences and perfect

knowledge of the decision-making environment, we can consider boundedly rational persons with

(1) an ambiguous system of preferences and (2) lack of complete information, following Simon [6].

When decision makers are indifferent among alternatives within a certain threshold, they are called

satisficing decision makers [6], opposed to optimizing decision makers. Satisficing decision makers

choose any alternative whose utility level is above a threshold, called an aspiration level, even when

the alternative is not optimal.

The satisficing behavior is related to the first source of boundedness—an ambiguous system

of preferences. While the travel-time minimization has been traditionally used as a basis for

drivers’ route-choice modeling, sub-optimal route-choice behavior has also gained attention [1–3],

as empirical evidence has supported it [7]. In the literature, a traffic pattern equilibrated among

rational drivers is called the perfectly rational user equilibrium (PRUE), while a traffic pattern

equilibrated among satisficing drivers is called a boundedly rational user equilibrium (BRUE). We

will use satisficing user equilibrium (SatUE) instead of BRUE to emphasize that it only considers

the ambiguous system of preferences.

The main contribution of this paper is the quantification of how bad the total travel time in

SatUE can be, both analytically and numerically. We introduce the user equilibrium with perception

error (UE-PE) model to capture SatUE flow vectors. Next, similar to the notion of price of anarchy

[5], which compares the performances of the system optimal solutions and the PRUE solutions, we

define the price of satisficing (PoSat) as the ratio between the worst-case total travel time of SatUE

and the total travel time of PRUE. We provide some theoretical bounds for PoSat. We utilize



the sensitivity analysis of parametric variational inequalities [4] for the numerical quantification of

PoSat.

2 Notation and Definitions

Let us define the set of path flow variables f and the set of link flow variables v as

F =

{
f :

∑
p∈Pw

fp = Qw ∀w ∈ W, fp ≥ 0 ∀p ∈ P
}

V =

{
v : va =

∑
p∈P

δpafp ∀a ∈ A, f ∈ F
}

where fp is the flow in path p, W is the set of OD pairs, Pw is the set of all paths for OD pair

w, P is the set of all paths, Qw is the demand for OD pair w, and constant δpa is 1 if link a is on

path p and is 0 otherwise. We denote arc travel time function with arc traffic volume of v by ta(v).

We denote the travel time function along path p with flow f by cp(f). Moreover, we denote the

arc-based total travel time function by Z(v) and the path-based total travel time function by C(f).

Furthermore, we define F1+κ as the set of feasible path flows when the travel demand is increased

by the factor of (1 + κ); that is

F1+κ =

{
f :

∑
p∈Pw

fp = (1 + κ)Qw ∀w ∈ W, fp ≥ 0 ∀p ∈ P
}
.

We define the PRUE and SatUE as follows:

Definition 2.1 (Perfectly Rational User Equilibrium) A traffic pattern f0 is called a per-

fectly rational user equilibrium (PRUE), if

(PRUE) f0
p > 0 =⇒ cp(f

0) = min
p′∈Pw

cp′(f
0) ∀p ∈ Pw, w ∈ W (1)

Definition 2.2 (Satisficing User Equilibrium) A traffic pattern fκ is called a satisficing user

equilibrium with κ, or κ-SatUE, if

(SatUE) fκp > 0 =⇒ cp(f
κ) ≤ (1 + κ) min

p′∈Pw
cp′(f

κ) ∀p ∈ Pw, w ∈ W (2)

In the context of bounded rationality and satisficing, we are more interested in comparing the

total travel time under approximate Nash equilibrium—equivalently SatUE—and the perfectly

rational user equilibrium; C(fκ) and C(f0), respectively. We define the price of satisficing (PoSat)

of instance ρ as follows:

PoSat(ρ) = max
fκ∈Ψκ(ρ)

C(fκ)

C(f0)
, (3)

where Ψκ(ρ) represents the set of SatUE flows in instance ρ.

Related to SatUE, we introduce the user equilibrium with perception error (UE-PE) model. In

this model, network users are seeking the shortest path; however, they have their own perception of

the travel time function.
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Figure 1: Comparing the SatUE worst-case total travel time with the PRUE total travel time for

the Sioux Falls network

Definition 2.3 (UE-PE-V) Let εa denote the users’ perception error of travel time along arc a. A

flow link vector v ∈ V is a solution to the UE-PE-V model, if∑
a∈A

(ta(v)− εa)(va − va) ≥ 0 ∀v ∈ V (4)

for some εa ∈ [0, κ
1+κ ta(v)].

We can show that UE-PE-V implies SatUE.

Lemma 2.1 (UE-PE-V =⇒ SatUE) Suppose v is a solution to UE-PE-V in (4) with some ε where

εa ∈ [0, κ
1+κ ta(v)] for all a ∈ A. Then v is a κ-SatUE flow.

3 Theoretical Bounds for PoSat

Using Lemma 2.1, we can provide a bound on the performance of UE-PE flows for a special case:

Theorem 3.1 When the link travel time functions are in the monomial form of ta(va) = ba(va)n,

let vκ be a solution to UE-PE-V. Then Z(vκ) ≤ (1 + κ)n+1Z(v0), where v0 is the PRUE flow.

For general cases, comparing equilibrium flows in F with those in F1+κ, we show that

supρ PoSat(ρ) = (1 + κ)n+1 under some mild conditions.

Theorem 3.2 Suppose the link travel time functions are in the polynomial form of ta(va) =∑n
m=0 bam(va)

m, where bam ≥ 0. Let fκ ∈ F be any κ-SatUE and f̂0 ∈ F1+κ be the PRUE flow.

Suppose that κ ≥ 0 is sufficiently small, in particular, so that
∑
p∈P [cp(f̂

0)− cp(fκ)](f̂0
p − fκp ) ≥

κ
∑
p∈P cp(f

κ)
∣∣∣f̂0
p − fκp

∣∣∣. Then we have C(fκ) ≤ (1 +κ)n+1C(f0), and supρ PoSat(ρ) = (1 +κ)n+1.



4 Numerical Bound for PoSat

Using UE-PE-V, we formulate the SatUE worst-case total travel time as follows:

max
vκ,ε

Z(vκ) =
∑
a∈A

ta(vκ)vκa (5)

subject to
∑
a∈A

(ta(vκ)− εa)(va − vκa ) ≥ 0 ∀v ∈ V (6)

0 ≤ εa ≤
κ

1 + κ
ta(vκ) ∀a ∈ A (7)

We utilize sensitivity analysis of variational inequalities [4] to develop an algorithm for this problem.

We use the Sioux Falls network to compare the SatUE worst-case total travel time with the PRUE

total travel time both numerically and theoretically. As Figure 1a shows, as κ increases, the

worst-case SatUE total travel time increases, while the PRUE total travel time is constant. As

Figure 1b represents, there is a considerable difference between the numerical and analytical bound

for worst-case SatUE total travel time.
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1 Introduction

Most vehicle routing problems consider a customer-based graph, where an arc between a pair of

customers corresponds to a shortest path in the underlying road network. In a time-dependent

context, though, the shortest path is not fixed and may change depending on the time of the day.

To account for this reality, we consider the Time-Dependent Vehicle Routing Problem with Time

Windows on a Road Network (TDV RPTWRN ). This problem is defined on a graph G = (V, A),

where V is the set of nodes (e.g, street intersections) and A is the set of arcs (e.g., street segments

between two intersections). A subset C of nodes corresponds to customers. Each customer i ∈ C

has a demand qi, a time window twi = [ai, bi] and a service or dwell time si. It should be noted that

a vehicle cannot arrive at customer i after the upper bound bi of the time window, but can arrive

before the lower bound ai, in which case the vehicle has to wait until time ai to start its service.



Node 0 is the depot where a fleet of vehicles is located, each vehicle having capacity Q. The time

window at the depot is [a0, b0] where a0 and b0 define the beginning and end of the operations day,

respectively. A time-dependent speed function is associated with each arc by dividing the day into

time slots and by associating a speed with each time slot [1]. The problem is then to generate a

set of feasible vehicle routes, starting and ending at the depot, to serve all customers at minimum

cost. The latter is the sum of route durations (travel time + waiting time + service time).

We propose a tabu search heuristic to solve the TDV RPTWRN . An important contribution of

this work is the development of techniques that allow a constant time evaluation of every solution

in the neighborhood of the current solution (i.e., without any need to propagate the impact of a

modification along a route). This is described in the following.

2 Dominant shortest-path structure

First, a pool of different shortest paths between each pair of customers i and j is generated by

considering different starting times during the day and by calculating a time-dependent shortest

path for each starting time. Dijkstra’s algorithm is used for this purpose, where the travel time

extension from one node in the road network to the next along an arc is calculated with the

procedure in [1]. For each path in this pool, we generate a piecewise linear function that gives the

arrival time at customer j given the departure time at customer i. Then, the dominant shortest

path structure is obtained by identifying crosspoints between the generated paths. In Fig. 1, the

resulting structure over three different paths between i and j is indicated by a continuous line.
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Figure 1 – Dominant shortest path structure between customers i and j

This structure indicates the path to follow to go from customer i to customer j at a given time

of the day. It is used to determine the feasibility of a solution in the neighborhood of the current



solution in constant time during the tabu search heuristic. It is used similarly at each iteration of

the greedy construction heuristic when an initial solution is created for the tabu search.

3 Problem-solving

3.1 Initial solution

First, a greedy insertion heuristic, where the routes are constructed sequentially, is used to create

an initial solution for the tabu search. At each iteration, a customer is randomly selected and

its best feasible insertion place in the current route is determined, while checking the feasibility

and evaluating the approximate cost of each insertion in constant time (see how it is done in the

context of the tabu search in the following section). This is repeated until all customers are visited.

3.2 Tabu search

The initial solution is improved by the tabu search. We focus here on its two most important

components: the neighborhood used and the constant time evaluation of each neighbor solution.

3.2.1 Neighborhood structure

The tabu search exploits a neighborhood structure based on CROSS exchanges [3]. This type of

exchange has proven to be well suited for problems with time windows because it does not reverse

segments of routes. An example of a CROSS exchange is shown in Fig. 2, where the sequences of

customers from e to f in Route 1 and from h to k in Route 2 are exchanged.

e f g Route 1

h k l Route 2

Figure 2 – CROSS exchange

3.2.2 Solution evaluation

When a CROSS exchange is performed, the feasibility of the new solution is checked and its

approximate cost is calculated. Both can be done in constant time as it is explained below.

Feasibility

To determine if a neighbor solution is feasible (apart from the capacity constraint which is

easily checked), we maintain at each customer i in the current solution the latest departure time t̄i

that allows the route of customer i to remain feasible. This is done while taking into account time-

dependency. In particular, the dominant shortest path structure (see Fig. 1) is used to associate



the appropriate shortest path between consecutive customers i and j in a route that matches t̄i

and t̄j . The latest departure time values are then used to evaluate in constant time the feasibility

of a neighbor solution. For example, in the CROSS exchange of Fig. 2, the neighbor solution is

not feasible if the new departure times at l (now from f) and g (now from k) exceed t̄l and t̄g,

respectively.

Approximate cost

If the neighborhood solution is feasible, its approximate cost must then be evaluated. For

this purpose, we maintain at each customer i in the current solution a penalty pi. This penalty

corresponds to the delay incurred at the successor of customer i, if the actual departure time at i

is delayed by one time unit. In the CROSS exchange of Fig. 2, if the departure times at customers

l (now from f) and g (now from k) are delayed by ∆l and ∆g time units, respectively, then the

impact on the route cost is estimated at ∆l×pl + ∆g×pg. The best m feasible neighbor solutions,

based on this approximate cost, are then considered and the best one, using the exact cost obtained

through propagation along the modified routes, is selected at the end.

4 Experiments

Our tabu search heuristic will be tested on two different sets of test instances. The first set is

generated using the procedure described in [2]. There are instances for a road network of 50 nodes

with 16 and 23 customers; 100 nodes with 25, 33 and 50 customers; 200 nodes with 25 and 50

customers. The second set of test instances, used in [4], is based on a real network of the central

urban area of Aix-en-Provence. The network contains 5, 437 nodes and 10, 181 arcs with 5, 10 and

25 customers. Computational results on these two sets of test instances will be presented at the

conference.
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[3] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin, “A tabu search heuristic

for the vehicle routing problem with soft time windows”, Transportation Science 31(2), 170-186

(1997).

[4] H.B. Ticha, “Vehicle Routing Problems with Road-Network Information”, Doctoral disserta-
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1 Introduction

The introduction of various Ride-sourcing (RS) platforms has significantly altered the urban transporta-

tion landscape where the taxi market was a monopoly to what is arguably now an oligopoly. To date, we

have observed that the substantial differences between RS and traditional taxi service led to disruptive

yet controversial changes in the market, but the underlying mechanisms on how these differences drive

the dynamics of the market remain unknown. Modeling the operation dynamics for RS is a challenging

research problem primarily due to its two distinct operation features: 1) the entry-deregulation scheme

and 2) the spatial-temporal surge pricing scheme. Entry-deregulation implies that drivers may join or

leave the market at any time, which suggests that the market supply is a variable and depends on the

revenue level of the market. However, almost all existing studies consider the supply as a fixed input

which is used to constraint the total labor hours in the market [1, 2, 3, 4]. On the other hand, surge

pricing introduces the third player (the RS platform) into the market besides the passengers and the

drivers. In addition, the spatiotemporally varying price also brings the issue of curse of dimensionality

for the modeling of market dynamics. And studies exclusively assume that the price will only vary with

time [4, 5, 3], while the whole study area will share the same price multiplier. These simplifications are

apparently different from the actual dynamics of RS market following our previous discussion.

The study presents the mathematical model for the daily operations of the RS market, where the

market is entry-deregulated and has spatiotemporal dynamic pricing. The competition among the RS

operators (the platform), the riders, and the drivers is explicitly considered: the operators propose the

spatiotemporal dynamic pricing and subsidy policies to maximize their revenue, riders decide whether or

not make the trip based on the perceived travel cost, and the drivers decide whether they will leave/enter

the market and the location to pick up riders based on their perceived utility. The game among the three

major players is formulated as a dynamic programming problem with equilibrium constraints (DPEC).



We introduce the time-expanded service network to represent such competition at the network level, and

propose a rolling-horizon approach for the DPEC by solving a sequence of mathematical problems with

equilibrium constraints. We collect real-world cruising data from one RS provider in New York City

(NYC) and the data from NYC taxicabs to validate behavioral parameters, calibrate model coefficients,

and conduct numerical experiments. Our results suggest that RS markets are self-regulated even though

the fleet size and entry are deregulated, and this characteristic contributes to a more efficient market

than the traditional taxi industry. We observe that dynamic pricing plays an important role in ensuring

the efficient of the system. Besides dynamic pricing, our results also suggest the necessity for subsidizing

drivers, which is found to be a win-win strategy for the operators, the passengers, and the riders of the

RS market.

2 Method

2.1 Preliminary

We introduce the RS triangle among the passengers, the drivers, and the RS operators (Figure 1). In

Dynamic pricing policy
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Departure time
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Figure 1: RS Triangle: the decision making framework among the operator, riders, and drivers in the RS
market

general, the RS is a two-sided market that is entry-deregulated. It has a fixed time-distance-based trip fare

structure, and the price will be dynamically adjusted with spatial-temporally varying price multipliers

(PM). The RS operator (the platform), the drivers, and the passengers are seeking to maximize their own

utility, which in return affect each others’ decision-making behaviors. The objective of the passengers

in RS market is to decide whether to make the trip or not, which is primarily affected by the cost

of travel and the cost of waiting. The set of decisions made by potential passengers gives rise to the

demand distribution, which largely determines the distribution of existing drivers in the market and may

also affect the potential entry locations of drivers in the immediate future. The drivers, based on their

schedules, tend to play the strategies to maximize their trip revenue. Their strategies may involve a series

of decisions, including the time to enter or leave the market, and the locations to receive the orders from

the platform. Once the order is dispatched, the drivers should take the passengers to their designated



destination. Upon the completion of assigned trips, the drivers become available and need to determine

the next location for receiving future orders, which combined with newly entered and left drivers shape

the supply distribution of the RS market. Note that the decision making of passengers and drivers are

coupled together since the passengers’ waiting time is a function of the number of passengers who request

a ride and the availability of nearby drivers, and the drivers’ searching cost is a function of the number

of drivers that are competing for passengers as well as the availability of potential passengers. On top of

the game between passengers and drivers is the decision making process of the RS operator, who designs

PMs at different locations and time intervals to achieve their objective (e.g., maximizing total revenue or

minimizing empty trips). And the resulting PMs will further impact the trip cost of passengers and trip

revenue of drivers, which in return will change the demand and supply distributions of the RS market.

2.2 Modeling approach

It is intuitive that the dynamic pricing problem for RS market can be modeled as a dynamic programming

problem. Based on the RS triangle and the assumptions, we presents the general formulation for the RS

market with surge pricing as follows:

maximize

T∑
t=0

N∑
i=1

ft(P
t
i , D

t
i , π

t
i)

subject to

D̄t
i = Q(Dt

i , π
t
i), ∀t, i

P t
i = G(D̄t

i , P
<t
∗ , P t

−i, π
t
i), ∀t, i

(1)

Problem 1 seeks to maximize the total system revenue in N zones over T time intervals, and the

set of constraints describes the operation dynamics of RS market. In particular, Q(Dt
i , π

t
i) represents

the induced demand function that models passengers’ reactions to the proposed PM πt
i . As the most

crucial component of the dynamic programming problem, G(D̄t
i , P

<t
∗ , P t

−i, π
t
i) refers to the state transition

function, which maps the supply distribution in previous time intervals (P<t
∗ ) and present induced demand

and PM to the supply distribution of current time interval.

Solving problem 1 is extremely difficult due to the state transition function being an

equilibrium constraint. The equilibrium constraint comes from the game among the market operator,

supply, and demand as illustrated by the RS triangle. Due to page limit, we only highlight the solution

methods developed to solve this problem:

1. A time-dependent service network (TSN) is proposed to characterize the game among the RS players

at network level. The network structure is able to capture the entry and leave behavior of drivers

and the implementation of spatial-temporal varying PM.

2. We decompose the dynamic programming problem with equilibrium constraints into solving a series

of mathematical programming problem with equilibrium constraints (sub-horizon game), based on

the developed TSN and the rolling-horizon heuristic.

3. We introduce novel functions to capture the leaving and entry behavior and the searching behavior

of drivers. These functions are calibrated using real-world RS driver data.



4. We prove the solution existence of the problem and develop an algorithm to find the strongly

stationary point for each sub-horizon game.

3 Results

We introduce two networks to validate the quality of our solution algorithm and demonstrate the value

of our model. The first network is a four-nodes toy network, where we obtained the following major

findings:

1. The algorithm scales very well with increasing size of sub-horizon games and each sub-horizon game

can be solved efficiently.

2. The TSN-based rolling-horizon algorithm may find near optimal solution as compared to solving

the original problem directly.

The second network is an abstraction of NYC with 81 OD pairs. We use real-world trip data as input.

The key findings are summarized below:

1. Though RS market is deregulated, the RS supply is self-regulating and adaptive to the demand

distribution. The operation efficiency of RS market is therefore much better than traditional taxi

industry with less significant over-supply and under-supply issues.

2. Dynamic pricing is essential to RS market for effective supply management and revenue optimiza-

tion. Dynamic pricing helps to induce additional drivers during supply shortage, and effectively

restricts greedy behavior of drivers when demand and supply are aligned.

3. We find that subsidizing drivers will be an effective complement to the dynamic pricing strategy.

Introducing subsidy for drivers will improve total revenue for both operators and drivers, contribute

to serving more passengers, and reduce the passengers’ out-of-pocket cost.
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1 Introduction

Urban areas are world-wide affected by severe road congestion problems. Traffic congestion is a

result of an economic growth that causes an increase of private and commercial transportation.

Almost all vehicles are nowadays equipped with sat-nav devices that can also display the current

traffic flows and return the fastest path for the vehicle. The route suggested by these devices

does not consider the impact of simultaneous individual choices on the congestion of the road

network. For example, all commuters entering the network in the same point and heading to the

same destination have the same information and, consequently, the same path will be suggested to

them generating congestion, even though multiple paths with similar travel time may be available.

Coordination among vehicles is a potentially powerful tool to prevent congestion.

Traditionally, traffic assignment concerns assigning routes to users (vehicles with, and in the

future possibly without, drivers) and is usually defined on a road network with an origin-destination

(OD) matrix specifying the demand for transportation, i.e, the number of vehicles per time unit

that is expected to travel from each origin to each destination. The objective is to minimize the

total travel time experienced by users in the system. Experienced travel times are computed for

each network arc a through the so-called latency function ta(x), which depends on the arc traffic

flow, or simply flow, x.

Traffic assignment models were first presented in the seminal work [4] where the two most

famous principles on traffic assignment (the user equilibrium and the system optimum) are stated.

The user equilibrium represents an assignment in which the travel times along all used routes from

an origin to a destination are equal and not more than the travel time that would be experienced

by a single user on any other route. On the other hand, the system optimum is an assignment

in which the total travel time is minimized. The difference in terms of total travel time between



implementing a user equilibrium and a system optimum traffic assignment is called price of anarchy

and is well-known in the literature. While the user equilibrium ensures fairness for users travelling

between the same origin and destination, in a system optimum traffic assignment some users may

be assigned to paths that require much more time than paths assigned to other users for the same

OD pair, generating a high level of unfairness among users.

In order to reduce the total travel time while maintaining fairness among users, a constrained

system optimum traffic assignment model was first presented in [3]. The model is convex non-

linear and considers as eligible those paths that have a normal length within a certain percentage

of the path with the shortest normal length. The normal length of an arc (and thus of a path)

is an a priori estimate of its travel time. The authors propose different options to compute this

measure such as the Euclidean length, the free-flow travel time and the travel time under user

equilibrium. The first attempt to use a linear programming model to solve the constrained system

optimum traffic assignment problem is presented in [1]. The total travel time is minimized while

keeping the network non-congested, if possible, or at its minimum congestion level, otherwise. The

set of eligible paths is restricted as in previous works. In [2] a linear programming model, in

which a traffic-dependent latency function is embedded, is presented. The proposed model adopts

a piecewise linear approximation of the convex latency function that makes use of continuous

variables only.

All these models assign paths to OD pairs identifying a priori the set of eligible paths. However,

when traffic flows on the road network, a path that is eligible a priori could turn out to be more

unfair than expected a priori. Moreover, there may be paths not considered a priori that, if

considered, would be fair. To the best of our knowledge, no model for the traffic assignment

problem has been proposed that limits the unfairness experienced a posteriori by the users.

In this paper, a model is proposed that embeds in the mathematical programming formulation

constraints ensuring that the traveling time of used paths does not exceed by a given percentage

the fastest path from origin to destination. The resulting model requires the introduction of binary

variables. The quality of a path for a user traveling from an origin to a destination is measured

through the so called fastest path unfairness, that is the relative difference between its traveling time

and the traveling time on the fastest path, computed on all paths, used and unused. The traveling

times are, in all cases, traffic-dependent. A mixed-integer linear programming (MILP) model,

called Fastest Path Unfairness Constrained System Optimum (FP-UC-SO) model, is presented

that minimizes the total travel time experienced by the users while bounding the fastest path

unfairness of each used path to be lower than a maximum threshold called maximum fastest path

unfairness. A variant of the FP-UC-SO model, called Loaded Unfairness Constrained System

Optimum (L-UC-SO), is also presented which uses the loaded unfairness measure for a path

which compares the traveling time on a path with the fastest path actually used by some users



(see [3]). The FP-UC-SO and L-UC-SO models require the a priori enumeration of all possible

paths from origin to destination. Each path is associated with a binary variable. A piecewise

linear approximation of the traffic-dependent latency function ensures the linearity of the model.

A matheuristic is proposed for the solution of the models and computational results are obtained

on benchmark instances.

2 The models and the matheuristic

Let G = (V,A) be a directed network, where V and A ⊆ V × V represent, respectively, the set

of vertices and the set of arcs. Arcs represent road segments while vertices represent junctions

between roads and/or an origin or destination point for an OD pair. A latency function tij(xij),

representing the arc travel time depending on the rate of vehicles xij entering the arc, is consistently

associated with each arc (i, j) ∈ A. In addition, each arc is associated with a number of parameters

as the free-flow travel time tFF
ij (= tij(0)) and a tuning parameter uij used to shape the latency

function. The most popular latency function is the U.S. Bureau of Public Road (BPR) function

tij(xij) = tFF
ij [1 + 0.15(

xij

uij
)4] and is the one used in the model. Transportation demand rates

are represented by the set C of origin-destination (OD) pairs. Each OD pair c ∈ C is associated

with an origin Oc ∈ V , a destination Dc ∈ V , and a demand rate dc from Oc to Dc. The set of

paths from Oc to Dc is denoted by Kc. An indicator akcij takes value 1 if path k ∈ Kc contains arc

(i, j) ∈ A and takes value 0, otherwise. The maximum fastest path unfairness allowed is denoted

by φ.

The total arc travel time tij(xij)xij is linearized as follows. An upper bound Uij on the flow

rate xij is fixed and each non-linear term tij(xij)xij is linearized on the range [0, Uij ] by a piecewise

linear function. The FP-UC-SO model turns out to be a MILP model, where a binary variable is

associated with each path.

If the loaded unfairness is used to measure the fairness of a path, the relative difference between

its traveling time and the traveling time on the fastest path is computed considering only the

actually used paths. In the L-UC-SO model, the maximum loaded unfairness is denoted by φ.

Also the L-UC-SO model turns out to be a MILP model.

The FP-UC-SO and L-UC-SO models contain a huge number of variables and constraints

for each OD pair c. For this reason, a heuristic, called Path Construction Matheuristic (PC-M)

algorithm, has been developed.

We refer here to the FP-UC-SO model only. Let Rel-UC-SO denote the linear relaxation

of the FP-UC-SO model. The PC-M algorithm starts considering only the fastest paths under

free-flow condition for each OD pair, solves the Rel-UC-SO model restricted to these paths and

uses the values of the variables to weight an auxiliary network on which a path search is performed.



A new set of paths is identified and the procedure is repeated until no new paths can be found.

Eventually, a restricted version of the FP-UC-SO model is solved.

3 The results

All models have been solved using CPLEX 12.6.0 on a Windows 64-bit computer with Intel Xeon

processor E5-1650, 3.50 GHz, and 64 GB RAM. To speed up the solution of the PC-M algorithm, a

relative gap tolerance on the MILP solver has been set to 1%, which was shown through preliminary

experiments to achieve a good trade-off between speed and solution quality. For all the experiments,

the BPR latency function has been used with Uij = 4uij .

A set of 32 instances with 24 nodes, different in terms of geography and demand pattern, 4

increasing size instances with 270, 300, 330 and 360 nodes and 2 real-world instances have been

used in a computational study to assess the performance of the FP-UC-SO and the L-UC-SO

models, and of the PC-M algorithm.

The computational results show that the models are effective in terms of trade-off between

travel time and fairness. Moreover, the average and maximum errors produced by the heuristic,

with respect to the optimum, are 0.22% and 1.55%, respectively.
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1 Introduction

In classical job scheduling, the processing time of jobs is considered constant. However, in many

real-world applications processing time is an increasing function of when the job is started. Fire-

fighting and medical emergencies are instances of jobs where delayed response leads to a larger

amount of processing time (Wang et al. 2018). The application that motivated our work is pothole

repair. It is a classic case of scheduling deteriorating jobs since the chemicals that bind pavement

deteriorate over time making pothole repair an increasing function of time. Providing humanitarian

relief to victims after a disaster also belongs to this class of scheduling problems, since more time

for treatment is needed if medical attention is delayed. In these situations, the actual processing

time is larger than the normal service time and is a function of degradation rate and start time

(Kunnathur and Gupta, 1990).

Another set of applications of scheduling problems are jobs that are distributed spatially. In

many machine scheduling problems, the location of machines are considered fixed and jobs move

through them, but there are many occasions that jobs are fixed and machines are mobile. Emer-

gency response is an example where jobs are distributed over a spatial region and mobile servers

serve them. Other examples include humanitarian relief supply and pothole repair. All of these

examples need to consider the network-based nature of the problem and use solution algorithms

that consider distances that servers has to traverse to access jobs. The most basic algorithm that



is useful in solving spatial problems is the traveling salesman problem.

In this paper, we use an MIP formulation to find the optimal schedule for a set of spatially

distributed deteriorating jobs. Its objective is to minimize the sum of the processing times of all

jobs plus the sum of the travel time for all servers.

Our main contributions are as follows:

1. We present a scheduling problem for spatially distributed deteriorating jobs.

2. We model job deterioration continuously over time such that it occurs even when servers are

idle.

3. We demonstrate an application of our model for pothole repair, and explore features that al-

low consideration of continuously arriving jobs and equity considerations between impacted regions.

2 Formulation

Consider the scheduling of n spatially distributed jobs with specified degradation rates and k

servers. Let G = (N,A) be a complete undirected graph with node set N = {0, 1, 2, ..., n, n + 1}

and set of links A = {(i, j) | i, j ∈ N, i 6= j}. In this graph, node 0 represents the beginning depot

for each day and node n + 1 represents the ending depot for each day, and other nodes represent

jobs. Note that nodes 0 and n + 1 do not have any processing time associated with them. We

now focus on non-depot nodes. For node i we consider ai as the fixed time required to process

it and αi as its degradation rate, what we mean by this is that if job i starts processing at time

w, its processing time is ai + αiw (i. e. linear degradation). For every link (i, j) ∈ A let τij

be the travel time between node i and node j. We let k denote the number of identical servers.

Let m be the number of days or time periods (each 24 hours duration) over which the jobs must

be processed. Each server is available only during the first T hours of each day, with T ≤ 24.

Each day, every server leaves the depot at the beginning of the day, travels to its assigned jobs in

the specified sequence, processes each of its assigned jobs, and returns to the depot within T hours.

To formulate the mathematical programming model, we use the following decision variables.

Binary variable xijt is equal to 1 if a server travels from node i to node j during day t, 0 otherwise.

Continuous variable wit specifies the time that a server arrives to start the job associated with node

i in day t. For space reasons we do not present our formulation. We do note that our formulation

does not have an index for servers. This is because its solution provides us with the sequence of

jobs for each server for each day. We chose not to have an index for servers as it greatly reduces



computation time for solving.

Intuitively, jobs with high degradation rate should be done sooner, as our model seeks to min-

imize the sum of job processing times as one component of its objective. Also, a job with less

travel time to reach it should be done earlier, as this assures an earlier start to jobs and hence less

processing time. So if there is a match between the degradation rate ordering and the travel time

ordering we have an optimal solution to our model. This condition is rare but provides a useful

basis for our greedy heuristic. In general, the optimal route is some combination of VRP consid-

erations (sum of travel times for servers) as well as scheduling of deteriorating job considerations

(sum of job processing times).

3 Computational study

We have done extensive computational testing of the model. This includes development of a chrono-

logical decomposition heuristic, a comparison of the greedy versus the chronological decomposition

heuristic, and studying the impact of key parameter values on the objective function, for which

we performed a factorial design experiment, which studies one-way, two-way and three-way effects.

We are interested in finding the impact of three parameters of our model. Therefore, we ran a 33

full factorial design. Here lk represents a factorial design in which there are k factors that each one

has l levels. We considered the following three factors for our design: degradation rate (factor A)

with three levels of low, medium and high; distance between jobs (factor B) with three levels of

short, medium and long; and the number of hours that each worker can work during a day (factor

C) which we considered three levels of 8, 12, and 16 hours. Our results show hat degradation rate

and work hours have the largest impact.

4 Pothole repair case study

To demonstrate applicability of our model we have studied the case of pothole repair. Pothole

repair is usually done after the winter season is over. It consists of several spatially distributed

jobs (potholes) at various points in the transportation network under study. These jobs are also

degrading because potholes tend to become larger and more time consuming to fix if their repair is

delayed. The community our university is housed in, Buffalo, New York, is a classic pothole prone

area because it receives an average of 93 inches of snowfall in the winter, and a typical winter day

has daytime high temperatures above freezing and night time low temperatures below freezing.

These constant melting and freezing cycles rapidly create potholes and their size increases as the



winter progresses, leaving significant work for the road repair crews at the end of the winter season.

We gathered data for our case study from many different sources. Degradation rates were

assumed to be a function of the annual average daily traffic on the road segment. Initial repair times

were estimated using a queuing model. Equity considerations fro pothole repair were investigated

by adding suitable constraints to the model. The case of continuously arriving jobs was also

investigated. The impacts of degradation, spatial distribution and equity were isolated so as to

better understand their individual impacts.

5 Conclusions and ongoing work

Our conclusions are as follows: (i) It is important to consider the elements of spatial distribution of

jobs and degradation of jobs together in one integrated model. (ii) It is important to incorporate

equity considerations.(iii) It is important to address situations where jobs arrive continuously over

time.

Several extensions are being investigated. The entire problem can be viewed as a queue control

problem when jobs arrive continuously over time and theories from spatially distributed queues

could potentially be applied. We are presently working on this aspect. We have uncovered some

interesting managerial insights in this regard. Server cooperation is viewed to be a highly positive

aspect of spatial queues, as it improves overall performance. With degradation of a job occurring,

server cooperation has to be carefully done, because placing a server in a poor location can lead

to large travel times and hence significant job degradation. This job degradation in turn leads to

further server unavailability, a domino effect. One way to combat this is to refer calls to an outside

service for a penalty cost in certain situations as opposed to insisting on server cooperation to

respond to calls when a server is available.

The model can be specialized for many different application settings, such as forest-fire control

or emergency response. We have plans to work on this aspect in the near future.
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In many cities in the world, ride sharing companies, such as Uber, Didi, Grab and Lyft, have

been able to leverage on Internet-based platforms to conduct online decision making to connect

passengers and drivers. These online platforms facilitate the integration of passengers and drivers’

mobility data on smart phones in real-time, which enables a convenient matching between demand

and supply in real time. These clear operational advantages have motivated many similar shared

service business models in the public transportation arena, and have been a disruptive force to the

traditional taxi industry.

Matching passengers (demand) with drivers (supply) in real-time is a challenging problem for

the ride sharing platforms. Greedy policy, as a common used benchmark matching policy, assign

passenger to the “nearest” available driver, based on the pick-up time estimated from each driver’s

location and surrounding traffic conditions. Note that the pick-up time of the assigned driver

affects whether a passenger will cancel the booking, or show up at the pick up location. In reality,

platforms also consider many other objectives in the matching policy. One important objective is

the rating for drivers. Uber, for instance, uses rating provided by passengers to rate the drivers,

and booted those drivers whose rating fall below a threshold from their system. Platforms usually

give priority to drivers with higher ratings in the matching policy, especially during the off-peak



hours with sufficient supply. Such preference to drivers with higher rating could encourage drivers

to provide better service, which will also improve the overal service quality in the system. Another

important objective is the passenger revenue (i.e., the order estiamted fare). Platforms also give

priority to passengers with higher revenue in the matching policy, especially during the peak hours

with a large number of passengers. Such preference to passengers with higher revenue could bring

more revenue and profit to the platforms.

In general, the matching decisions between drivers and passengers are supposed to take the

trade-offs between multiple objectives into account. Although piles of efforts have been devoted to

designing matching policies for the two-sided sharing market, the majority of these works focused

on a single-objective optimization problem. For example, Zhang et al. (2017) [1] develop a batch

matching system, with the objective to maximize the driver acceptance rate for each order. Differ-

ent from the traditional one-order-to-one-driver matching mechanism, they dispatch each order to

multiple drivers and let drivers compete for the order. Hu and Zhou (2016) [2] study the dynamic

matching control of a two-sided, discrete-time matching system in which both the supply and de-

mand may leave the platform if the wait time before getting passengers or drivers are too long,

with the objective to maximize the expected total discounted profit. Ozkan and Ward (2016) [3]

propose a linear programming based matching policy that accounts for temporal changing demand

and supply and customer patience, with the objective of maximizing the overall number of passen-

gers being served. Wang et al. (2017) [4] introduce the concept of stability in dynamic ride sharing

and provide mathematical programming approaches to solve stable and nearly stable ride-share

matching problems, with the objective of minimizing the pick-up detour distance. However, few

studies shed light on the multi-objective matching policy in the ride sharing markets.

In this paper, we study the matching problem for ride-sharing platform with multiple objectives,

and design an online matching policy that simultaneously achieves multiple objectives in a balanced

manner. More precisely, we aim to achieve a solution that has the smallest deviation, based on

some pre-determined distance function, to an “utopia point”, i.e., an ideal solution maximizing

the performance of all objectives, but is otherwise non-attainable at the same time. The obtained

solution with shortest deviation to the target is called the “compromise solution”. We apply

the online policy in ride sharing market settings, and provide an online matching policy that

simultaneously incorporates driver service scores (driver ratings), pick-up distances and passenger

revenues. To be more specific, the platforms would want to dispatch more passenger orders to

drivers with higher service rating. This helps to retain the better drivers in the system, and provide

better service experience to the customers. However, this could not come without sacrificing the

average pick-up distance between dispatched drivers and passengers. Moreover, the platform needs

to manage the impact on the bottom line - longer waits lead to lower answer count (passengers

drop the bookings) and lower revenue. To balance these different Key Performance Indexes (KPIs),



three key considerations need to be taken into account to design the matching policies in these

markets: (1) Passengers with higher revenues should be served with higher priority; (2) Passengers’

waiting time for pick-up should be as small as possible; (3) Drivers with higher scores should be

dispatched with higher priority.

Note that the traditional approach to multi-objective optimization problem entails a delicate

selection of weighting function to aggregate the multiple objectives into a single one, and the

central issue there is the choice of the weighting function to be used for aggregation. Our approach

exploits the multiple period setting, and the existence of natural performance targets (i.e., the

utopia point), to develop an adaptive weighting function that learns from historical performance

to drive the algorithm towards the compromise solution. Our detailed numerical studies on the

driver dispatching problem show that this approach is able to learn from data the appropriate

weighting function that can be used in each period to guide the system towards a good matching

solution.

We extracted real world data from Didi Chuxing, the largest on-demand ride sharing platform

in China, and conducted industrial implementation of the proposed matching policy. Compared

to legacy policies currently in use, such as the weighted average policy (Legacy Policy) or the

“closest distance” policy (CD Policy), we observe that all parties in the ride-sharing eco-system,

from drivers, passengers, to the platform, are better off under our proposed online matching pol-

icy generating the compromise solution (CM Policy): (1) drivers with higher service scores are

dispatched with more orders; (2) passengers are more likely to be matched to drivers with higher

service scores, and passengers with higher revenues (longer travel distances) are served with higher

answer rates; (3) the platform obtains a higher revenue and better long-term brand reputation. For

instance, we observe that more jobs are assigned to drivers with higher service quality. Figure 1

demonstrates that expected total revenue earned by drivers with higher service scores (e.g., higher

than 101) increases under the CM policy. We also find that the revenue increment for these drivers

is indeed due to more orders being dispatched to them. This outcome would motivate drivers to

increase their service score by providing better ride sharing service to passengers. We observe a

decreasing trend in total revenue for these drivers with extreme high service scores. One possible

explanation is that a large proportion of drivers are part-time and their revenue also depends on

their total business hours (i.e., active time as a driver on the platform). The dataset reveals this

pattern: these drivers with service scores in the interval [98, 108] are more active than the ones

with scores in the interval [109,116]. Even so, our proposed policy dispatches more orders to these

drivers with higher service scores consistently. As a side effect, the total revenue obtained by the

platform during the whole day under the our policy also increases by 0.26% and 0.56% in two

cities, respectively.



(a) City A (b) City B

Figure 1: Driver Service Score vs. Driver Revenue
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1 Introduction

When self-interested travelers make route choices in a traffic network, a state of Wardrop user

equilibrium (UE) is reached in which agents cannot do better by shifting paths unilaterally. It is

well known that this state is inefficient compared to a system optimal (SO) flow which minimizes

the total travel times of users. At the SO state, all travelers experience equal and minimal marginal

costs, but self-interested travelers have an incentive to shift to shorter paths. Congestion pricing

can theoretically align self-interested travelers with an SO flow, but this solution is politically

unpopular. We thus study the problem when only a subset of travelers can be controlled, perhaps



by providing a monetary incentive for voluntary participation. Finding the optimal flow with

a fraction of centrally-controlled agents in a traffic network can be modeled as a Stackelberg

game, in which the “compliant” agents are routed by a leader, and the “non-compliant,” self-

interested agents form a user equilibrium in response ([1]–[3]). In this context, some recent studies

focus on identifying the compliant agents for different origin-destination (OD) pairs (see [4] and

[5]). In our earlier work on this topic, we addressed this problem of achieving the SO state by

minimizing the total number of compliant agents using a linear program (LP) [5]. Results on

standard transportation test networks indicated that the percentage of compliant users required

increases with network size and varies from 13% (Sioux Falls) to 54% (Chicago Regional).

In this paper, we extend our prior work by further considering the variability in the value

of time (VoT) of drivers. Understanding the relationship between VoT and the set of compliant

agents necessary to achieve system optimum is critical: to the extent that voluntary participation

in the system relies on a monetary incentive, the incentive needed to induce participation likely

depends on the traveler’s VoT. Different individuals may respond differently to incentives, and

there may be a “cheaper” subset of agents to target for compliance. Our proposed model will

not only identify the spatial distribution of compliant users needed for an SO state but will also

suggest which groups to target. In the following sections, we fist present the idea of finding the

fewest compliant travelers in homogeneous settings, and then we provide a sketch of our extensions

to the heterogeneous case.

2 Network with Homogeneous Travelers

Consider a network G = (N,A) where N and A are the set of nodes and links respectively. Assume

that Z2 ⊆ N × N represents the set of OD pairs and the demand between (r, s) ∈ Z2 is drs. In

this section, we assume that the demand is homogeneous in VoT, and that units are chosen so

that VoT is uniformly 1. The travel time on link (i, j) is assumed to depend on its flow xij as

a nonnegative, continuous, increasing function tij(xij). Under these conditions, it is well known

that the UE and SO solutions respectively minimize the convex functions
∑

(i,j)∈A
∫ xij

0
tij(x) dx

and
∑

(i,j)∈A xijtij(xij), and that these solutions exist and are unique in the link flows x.

Denote the SO solution as x∗, and let t∗ij denote the link travel time on (i, j) at the SO solution.

These are the link flows and travel times we wish to manifest in the network. Given these SO travel

times, let PUE
rs represent the set of r-s shortest paths with respect to the link travel times t∗ij , and let

P SO
rs represents the set of r-s shortest paths with respect to the link marginal costs t∗ij +x∗ijt

′
ij(x

∗
ij).

Under our proposed system, non-compliant agents will select paths from PUE
rs , while compliant

agents may be assigned to paths belonging to P SO
rs .

Finding the least number of compliant drivers is in fact equivalent to selecting an SO path
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Figure 1: Finding the minimum number of compliant drivers.

Table 1: Three path flow solutions.

Path 1-2-3 1-2-7 5-2-3 5-2-7 4-3 1-6 4-7 5-6

Travel time 7 7 8 8 9 9 9 10

Flow (a) 3 0 0 0 0 0 1 1

Flow (b) 1 1 1 0 1 1 0 0

Flow (c) 2 0 1 0 0 1 1 0

flow solution which maximizes the number of drivers using paths in PUE
rs . For such an SO path

flow, drivers using paths not in PUE
rs experience longer travel times compared to paths in PUE

rs and

must hence be complaint. Maximizing the number of travelers choosing paths in PUE
rs will thus

minimize the total number of compliant agents needed for achieving a SO state. To illustrate this

idea, consider the following example adapted from Zangui et al. [6]. Suppose there are 5 travelers

between 1 and 4 in Figure 1. The delay functions are indicated above the links, and the SO link

flows x∗ij and link travel times t∗ij are respectively shown in green and red. There are multiple SO

path flows solutions which produce the SO link flows x∗, three of which are shown in Table 1.

The set PUE
14 is {1-2-3, 1-2-7} and the flow pattern (a) loads maximum travelers on these

paths compared to the others. Thus, we need only two compliant drivers in flow pattern (a)

versus three in patterns (b) and (c). From a practical perspective, algorithms involving path flows

are computationally prohibitive. Instead, we formulate an LP using an origin-based approach to

address this issue.

For each origin r, the following formulation maximizes the flow frs on PUE
rs by loading them

one origin at a time on a sub-network consisting of links Ar for each origin. This set is constructed

by finding links which have zero reduced-cost links with respect to weights t∗ij and t∗ij +x∗ijt
′
ij(xij)

∗.

(A link (i, j) is said to have zero reduced cost with respect to a vector of link weights (cij)(i,j)∈A

if µr
i + cij = µr

j , where µr
i represents the length of the shortest path from r to i.) The variables

xrij represent origin-based compliant link flows and the aggregate link flows are bounded above by

the SO solution.



max
∑

(r,s)∈Z2

frs (1)

s.t.
∑

j:(i,j)∈Ar

xrij −
∑

h:(h,i)∈Ar

xrhi =


∑

s∈Z fis if i = r

−fri if i = s

0 otherwise

∀ r ∈ Z (2)

∑
r∈Z

xrij ≤ x∗ij ∀ (i, j) ∈ A (3)

xrij ≥ 0 ∀ (i, j) ∈ A, r ∈ Z (4)

0 ≤ frs ≤ drs ∀ (r, s) ∈ Z2 (5)

3 Network with Heterogeneous Travelers

When travelers have different VoT, the system optimum solution minimizes the expected perceived

cost
∑

(i,j)∈A ᾱijxijtij(xij), where ᾱij is the average value of time of users on link (i, j) [7]. The

optimum solution to this problem can be computed using Dial’s bicriterion traffic assignment

model. If the VoT distribution is discrete and finite, we can easily find the demand associated with

each VoT value. In this case, denote the support of the VoT is {α1, . . . , α|K|}. Its probability mass

function can be used to find the demand of the corresponding class of travelers dkrs and the earlier

LP formulation can be extended to find compliant flows for different VoT classes in the following

way. The set Ark denotes the subset of links which have zero reduced cost with respect of weights

t∗ij and αkt
∗
ij + ᾱijt

′
ij(x

∗
ij)x

∗
ij . As before, assume that the SO link flow solution is x∗.

max
∑
k∈K

∑
(r,s)∈Z2

fkrs (6)

s.t.
∑

j:(i,j)∈Ark

xrkij −
∑

h:(h,i)∈Ark

xrkhi =


∑

s∈Z f
k
is if i = r

−fkri if i = s

0 otherwise

∀ r ∈ Z, k ∈ K (7)

∑
k∈K

∑
r∈Z

xrkij ≤ x∗ij ∀ (i, j) ∈ A (8)

xrkij ≥ 0 ∀ (i, j) ∈ A, r ∈ Z, k ∈ K (9)

0 ≤ fkrs ≤ dkrs ∀ (r, s) ∈ Z2, k ∈ K (10)

We investigate the results of this formulation for different test networks for an assumed VoT

distribution. We also consider a modified objective which minimizes a weighted sum of flows

using the VoT values to reflect the level of incentivization. Extensions to problem instances with

continuous VoT models will also be presented.
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1 Introduction

New automated driving technology allows trucks to be virtually linked to drive behind one

another in platoons [1]. This means the first truck takes the lead and the following trucks

automatically brake, steer, and (de)accelerate based on the leader.

Truck platooning allows for a reduction in the fuel consumed and consequently, the emissions.

Studies have shown fuel savings of six percent for the leader and ten percent for the followers

[2]. Moreover, trucks in a platoon occupy less space which means road utilization decreases and

so does the likelihood of head-tail collisions. These benefits have made platooning the subject of

heightened interest recently (see [3] for an overview of platooning projects). As a result, multiple

field tests have been conducted or are planned around the world (see for example [4])

In the platooning literature, most research thus far has focused on technological and human

factor issues. Recently, researchers have started looking into platoon planning from a transport

and optimization perspective (see [2] for a recent review). Proper planning of platoons is required

when the number of trucks equipped with technology is limited. For trucks to form a platoon,

we need to synchronize their departure times and routes. For instance, it may be necessary for

a truck to make a detour or depart a little later (or earlier) to join a platoon.

In the initial stages of platoon deployment on open roads, platoons are likely to be restricted

to two trucks due to safety and legal reasons [1]. In this study, we focus on this setting.

2 The two-truck platooning problem

Consider a set of trucks in which each truck is associated with an origin, a destination, an earliest

departure time, and a latest arrival time. The latest arrival time determines the time flexibility

for a truck. The flexibility is the additional time a truck is able to spend as compared to the

shortest time between its origin and destination. The source of this additional time might be a

small detour to meet up with another truck or waiting for another truck.

The two-truck platooning problem involves forming platoons to minimize costs. For each

possible two-truck platoon, this involves determining whether it is time feasible to platoon and,

if so, finding the meeting and split points such that the arrival deadlines are met. A simple

representation of a platoon is shown in Figure 1. Note that if the origins (destinations) of the



trucks are the same, there is no first (last) leg. We denote the percentage fuel saving in the

platooning leg as compared to driving alone by ρ ∈ (0, 1).

1

2

1

2

origin

destination

first leg

platoon leg

last leg

Figure 1: The three legs in a typical platooning trip

3 Solution approaches

Our approach to finding the best platoons consists of two steps. First, we create all the possible

platoon matches from the set of trucks. In the second step, we represent the problem as a

general matching problem by creating two identical sets of nodes with each node representing a

truck. Two nodes (one from each set) are connected with an arc if the two represented trucks are

distinct and may feasibly form a platoon. The weight of a connection denotes the cost (savings)

of platooning. We maximize the number of matches (platoons) and then minimize total costs

for this number of matches. Though it is true that the maximal platoon matching may not

be cost optimal, we choose to maximize the number of platoons from the practical standpoint

that it might be beneficial for the long term future of platooning to involve as many trucks (or

companies) as possible (as we discuss in more detail in [2]). In this abstract, we describe different

algorithms to create the set of possible platoons for a special case without time windows.

3.1 Creating optimal platoon matches

Due to the limited space available, we focus on the network case of platooning. In the full paper,

we also consider platooning in Euclidean space.

To compute (possible) platoon benefits, we determine the optimal paths of trucks in the

situation they were to meet. We can then compare the costs of platooning with the costs of the

trucks travelling on their shortest paths.

3.1.1 Reducing the two-truck problem to a shortest path problem (SP)

In this exact approach, we formulate the two-truck platooning problem as a shortest path prob-

lem on an auxiliary graph. To create this auxiliary graph for a pair of trucks, we use the three

parts of a route as shown in Figure 1. To the original graph, we add a source node and connect

this source node to every other node by means of arcs. The weight of an arc from the source



node to a particular node is the sum of the shortest distances for each truck to get to that node

from its respective origin. Then, the arc represents the sum of the first legs if both trucks meet

at the node in consideration to form a platoon. We do the same for the last legs by connecting

every node to a sink node with an arc whose weight is the sum of the shortest distances for each

truck to get from that node to its respective destination. The arcs in the original graph may

represent the platoon leg of the route and their weight is reduced by the fuel savings factor ρ.

The shortest path between the source and the sink on the auxiliary graph represents the platoon

route. The trucks meet at the node succeeding the source and split up at the node preceding

the sink.

3.2 Heuristic approach to create platoons (H)

In this approach, we heuristically reduce the number of options to explore viable platoon pairs

by fixing the route of one of the trucks to be its shortest path. From the original graph, we create

a modified graph in which we reduce the cost of travelling on this path by the platoon savings

factor. The arcs along this path then represent the platoon leg. We then find the shortest path

of the other truck on this modified graph. If there is an overlap in the routes, the trucks may

form a platoon along the overlap. We then reverse the roles of the truck and repeat this process

again and choose the platoon (if any) with minimum costs. If there is no overlap in the routes,

the trucks travel on their shortest paths.

3.2.1 Improvements to the heuristic approach

Improved platoon routes (H1). We fix the matches generated by the heuristic as platoon

pairs. Only for each of these platoon pairs, we reduce the problem to a shortest path

problem as described earlier to find the platoon route.

Hybrid approach (H2). We fix the matches generated by the heuristic as platoon pairs. For

each platoon pair, we reduce the problem to a shortest path problem but with a smaller

set of candidates for the meeting and split points. We consider the points on the routes

generated in the heuristic (H) as candidates for the meeting and split points, instead of

all the nodes in the graph.

4 Preliminary results

We use a real life instance with 100 truck trips to be routed on a network representing the street

network of the Netherlands with 13112 nodes. We assume that the fuel savings factor ρ is 7%.

Figure 2 shows the savings as a result of forming two-truck platoons for the special case without

time windows. These results indicate that the heuristic along with its improvements have a good

potential to perform well.



SP (Exact) H H1 H2

1.5

2

2.5

3

3.5

P
la

to
o
n
in

g
b

en
efi

ts
(%

)

Figure 2: Preliminary results - platooning benefits

5 Work in progress

We are currently working on iterative approaches to incorporate time windows into our algo-

rithms. In these approaches, we forbid certain meeting and split points if they are time infeasible

and solve the problem further. We are presently testing these on smaller networks by compar-

ing results to the optimal solution which we calculate by smartly enumerating over nodes in

the network. In doing so, we are investigating the effect of introducing time windows on the

performance of the heuristics by comparing the results to the case without time windows.

In addition to the approaches described above, we are building a heuristic that draws in-

spiration from our analytic approach for the two-truck platooning problem in Euclidean space.

At the TRISTAN conference, we will present results from these and also from more experi-

ments showing effects of various factors such as the number of trucks, percentage of trucks with

platooning technology, varying network configurations etc. on platooning benefits.
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1 Introduction

In recent years, intelligent transportation systems made it possible for operators to adapt in real-

time the transportation supply to travel demand via new mobility services. Among these services,

ride-sharing is becoming popular. Ride-sharing is a transportation mode in which passengers can

share a car and travel costs. Dynamic ride-sharing refers to a system which supports an automatic

ride-matching process between participants on very short notice or even en-route [1]. The dynamic

ride-sharing problem involves two subproblems: 1) How to serve the upcoming trips (optimal fleet

management) - 2) How to accurately predict the travel times to determine vehicles availability and

pick up/drop off times.

The first subproblem is complex and has attracted a great number of research proposals ([2,

3, 4]). Following this track of research, we express the optimal fleet management problem as a

constrained multi objective integer linear programming.

The second subproblem is less studied in the literature but is very important for real field

operations. Network congestion can have significant impacts on the ride-sharing service. The

optimization system of the ride-sharing service uses estimates for the predicted travel time coming

from a ”prediction model”. When the rides are realized, a gap can exist between the estimation

and the real traffic condition, that is represented by the ”plant model”. This gap may require

dynamic adjustment of the initial assignment to fit with the observed conditions. When simulating

a dynamic ride-sharing service, it is important to properly distinguish the prediction and the plant



model to propose a realistic solver.

In most of the researches, the plant model and the prediction model are the same [4, 5]. However,

there are some researches that consider dynamic traffic conditions on ride-sharing. Goel et al. [4]

consider an overhead randomly chosen of 10-20 percent to reflect different traffic conditions when

computing the end time for a driver in their proposed approach. Nevertheless, They just use

the prediction model and assume that the travel times used in the assignment process stay the

same during the execution of the vehicle schedules. In some researches, only the plant model is

considered. They use a simulator to assess the dynamic ride-sharing but it is not the optimal

matching [5, 6, 7]. Other works use only static travel times in the optimization process [8].

In this paper, we define the plant model besides the prediction model to assess the impact of

traffic conditions on the dynamic ride-sharing system performance for large-scale problems. The

considered prediction model is based on the last observed travel times, while the considered plant

model is a trip-based Macroscopic Fundamental Diagram (MFD) model which is able to reproduce

the time evolution of mean traffic conditions for a full road network using the MFD as a global

behavioral curve [9, 10]. In this paper, for a given urban network, we are going to compare the

reference situation where all trips are done with personal cars with a situation where a fraction of

the trips (market-share: 20%,60% and 100%) are served by a fleet of vehicles with different levels

of maximum sharing (1,2,3) for all passengers.

2 Methodology

Our system has two main parts. The fleet management part works to assign the optimized match of

riders to the vehicles. Then the simulation part executes the optimal car schedule while considering

the complete dynamic traffic conditions.

We have defined an algorithm to find the optimized schedule for the shared cars. The algorithm

solves a constrained optimization problem to minimize the total travel time and distance for vehicles

and the total travel time and waiting time for passengers. The constraint functions in the problem

are on capacity, time window, number of sharing (a number defined by the passengers to show

their willingness to share their ride) and the quality of service. Let us to recall here that the

optimization problem is solved with predicted travel time but then the simulation of the vehicle

operation is matched with another model with a more refined description of the system dynamics.

To solve the optimization problem efficiently, we could refer to heuristic methods but we notice

that a proper exploitation of the constraints can help to narrow the search of feasible solutions

even if the size of the space is very large. This is why we design our own solution method based on

the classical branch and bound algorithm but with specific properties to fit with fleet management

problem.



A simulation platform is used as the plant model to simulate the function of both shared and

personal cars. This simulator should be able to simulate the time evolution of traffic flows on the

road network. In this research, we use the trip-based MFD to accommodate individual trips while

keeping a very simple description of traffic dynamics. The general principle of this approach is to

derive the inflow and outflow curves noting that the travel distance L by a driver entering at time

t− T (t) when n(t) is the number of en-route vehicles at time t and the mean speed of travelers is

V (n(t)) at every time t, should satisfy the following equation:

L =

∫ t

t−T (t)

V (n(s))ds (1)

At each time step, the simulator computes the current speed of the cars considering the current

traffic situation (the number of en-route vehicles). Then the vehicle can cover a distance based

on the current speed, every time step (10 seconds). So the state of en-route cars is updated every

10 seconds in our simulation. To make travel time prediction for the optimization part, In our

prediction model, we predict the traffic situation for the next assignment time horizon (every 10

minutes) and we assign the passengers to the cars based on this prediction.

3 Numerical experiments

In the proposed research, we use a realistic O-D trip matrix for the city of Lyon in France. The

network is loaded with travelers of all ODs with given departure time in order to represent 4 hours

of the network with more than 62000 requests based on the study of [11]. 23 different scenarios are

defined with number of sharing 0,1,2 and 3 (Number of sharing 0 means that the car serves just

one passenger without sharing like traditional taxi services, number of sharing 1 means that it is

possible to share the passengers trip with 1 other passenger and so on), market shares 20%,60%

and 100% (Only the trips that are fully inside the studied area are considered as candidates for the

service. So the market share of 100% corresponds to 22% of all trips), two intervals for pick up and

drop off time window (5 minutes and 10 minutes). Here, we put a part of results to show the system

performance. Figure 2 shows the accumulation of cars in the network for different market shares

when there is no sharing (like traditional taxi services). As the market share increases, the travel

distance increases so the accumulation of cars moving in the system increases. In other words,

the traffic conditions are deteriorated if we replace all the internal personal trips with service trips

because idle vehicles are adding extra travel distances between two trips to be served.

Table 1 shows the cars travel time and number of cars for different numbers of sharing when

the market share is 20 percent comparing with the case that all the trips are done with personal

cars. Results show that with sharing, the number of cars and total travel time is less than the case

without sharing or even the case with zero market rate.



Figure 1: Cars accumulation for different market shares

Table 1: Simulations results for market-share = 20%

Sharing properties Simulation results

Market
rate

Number
of sharing

Total travel time
for shared cars (s)

Total travel time
for personal cars (s)

Total travel time
for all cars

Number of
shared cars

Number of
personal cars

Total number
of cars

0 0 0 38723249 38723249 0 62450 62450

20

0 1092250 37827210 38919460 2113 60214 62327

1 993790 37749480 38743270 1184 60214 61398

2 975050 37744950 38720000 992 60214 61206

3 962170 37721130 38683300 929 60214 61143

When 20 percent of internal trips are served with service cars without any sharing, the number

of needed service cars is 2113 and the total travel time for shared trips is 1092250 seconds. But

then with sharing the ride between just two travelers, the number of needed cars decreases to 1184

and the total travel time is 993790. It means that with almost half number of cars, the travel time

is 98460 seconds less than before. With applying more sharing, the number of needed cars and the

total travel time decrease then for number of sharing 2 and 3, our proposed ride-sharing system

works even better than the situation that all the trips are done with personal cars. It should be

mentioned that the increase in passengers travel time and waiting time is negligible compared to

the service improvements in our results.

In future researches, we will implement our system on larger networks with more number of

trips. We will improve the optimization algorithm introducing spatial clustering on the network.

Also we try to switch the plant model to a more refined one. Sensitivity analysis can be done on

the system setting characteristics to select proper values based on the network and demand size.
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1 Introduction 
 

Traffic management applications rely on timely, precise and as complete as possible traffic flow 

information, in order to appropriately react to the road network’s situation. Considering the sensing 

infrastructure required to collect said information, several approaches have been developed in order to 

determine both quantity and location of sensors required to reach a sufficient level of information, both 

in terms of quality and quantity [1].   

Among others, the link flow inference problem leverages the algebraic relationships between 

different flows in a network, considering both node-link relations (conservation of flows at nodes) and 

link-route relations (conservation of vehicles at routes) [2]–[4]. These works are largely static in 

nature: optimal sensor locations are determined based on the network topology itself, without explicit 

consideration of changes in the network’s behaviour due to the dynamic nature of transportation 

demand. Few works in literature have focussed on developing sensor location approaches that 

explicitly consider this variability, by means of stochastic optimisation [5]–[8], at an unavoidable loss 

in computational efficiency. 

In this work we evaluate, through comparative analysis, how link flow inference-based sensor 

location approaches, albeit static in nature, behave when dealing with different demand levels. 

Specifically, our objective is assessing the amount and variability of estimation error induced by 

disregarding the stochasticity of demand when determining the optimal set of sensor locations.  

By comparing two different static sensor location problem methodologies we showcase both 

how relevant the chosen static algorithm is, and quantify the effective information loss due to demand 

variability. 

 

2 Methodology 
 

Variations in the volume of traffic demand induce considerable changes in the user’s preferred route 

set: when overall demand is very low, users will choose the topologically shortest path to their 

destination, disregarding any other, longer alternative. As demand rises, the formation of congestion 

pushes users towards other alternatives, in order to maintain their own perceived cost as low as 
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possible [9]. In link flow inference problems, route information is assumed fixed and static, and the 

resulting sensor locations are largely related to which routes are included in the chosen set [10].  

In this work we compare the impact of two different route set enumeration policies, namely 

the simpler K-Shortest Path [11] and our recently developed hypergraph-based approach [12], and 

evaluate how the sensor locations determined through this static selection of routes compares to those 

dynamically arising from deterministic assignment. Full observability solutions are obtained for both 

route enumeration approaches using Castillo’s Pivoting technique [13]. The overall comparative 

approach is summarised in Figure 1. 

 

 

Figure 1: Flowchart of  this work’s comparative approach 

Both a-priori sensor location sets ,KSP HG   are determined based solely on topological network 

costs, whereas the ex-post counterparts ( ), ( )KSP HG dd   are determined considering the link travel 

costs arising from Dial’s B deterministic traffic assignment procedure [cit dial]. Repeated assignment 

is carried out considering a base Origin-Destination demand matrix 
n

b

nX  ,  which is gradually 

multiplied by an amplitude modifier 1[ ,..., ]D  = . This implies that, rather than considering 

variations in the spatial distribution of demand, we are focussing, in these preliminary results, in 

demand amplitude variations, and how these affect the overall user’s route choice.  

Demand-dependent cross-comparison is carried out considering three indicators: 

• The total amount of sensors necessary to fully observe the given network; 

• The percental overlap between the sensors resulting from the a-priori approaches and those of 

the ex-poste approach 

• The partial observability level resulting by locating only sensors according to the a-priori 

approaches, as measured by the NSP metric (eq. 1) 

 
* *

*

*

|| ( ) ' ||
( ))(

|| ( ) ||

T

F

T

F

B
NSP







 =


   (1) 



where *( )  is the full observability matrix pertaining to the ex-post solution, while * 'B  is 

the partial observability solution obtained by considering the set of sensors in the intersection 

* *( )  , that is, those sensors pertaining both to the a-priori and the ex-post solution. 

3 Experimental results 
 

We apply our cross-comparison on a simplified version of the road network pertaining to the Dutch 

city of Rotterdam, including its Ring Road and the main surrounding motorway accesses, as shown in 

Figure 2. 

 

Figure 2: The Rotterdam road network. 

 Demand representing morning peak conditions is used as the base scenario, we consider 

multiplicative factors [0.1,...,3] =  with steps of 0.1 . The three comparative metrics discussed 

above are showcased in Figure 3. 

 

Figure 3: Test results for the three chosen comparison metrics 



Interestingly, while the total amount of sensors required to fully observe the network increase 

with demand (which is rather expectable, as higher demand levels directly imply a more widespread 

usage of the network), this quantity is independent of the chosen route set generation approach. 

Conversely, considerable differences arise both in terms of percental overlap between a-priori and ex-

post sensor locations, and resulting partial observability level. Indeed, the hypergraph generated 

approach, due to its inherent higher level of prior information, is an overall better candidate than the 

standard K-Shortest Path approach, even for varying levels of demand. From this preliminary analysis 

we can anyhow conclude that, using the better approach, information loss due to route choice 

mismatch reaches an average level of 40%, attesting to the fact that while static solutions can be lossy, 

a considerable amount of information on link flows can still be extracted successfully. 

Further comparison results, considering variations not only in the amplitude of demand, but 

also on its geographical distribution, will be presented at the symposium. 
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1 Introduction
Advances in autonomous driving technology have fostered the idea of truck platooning.

Thereby, several trucks drive in close succession, connected by a data link, thus exploit-

ing the predecessor’s slipstream. This allows for fuel savings by up to six percent. An

additional savings potential implies a proposal currently debated by the European Union.

The bill suggests that the time spent in the platoon partially counts as rest time for the

drivers in the following trucks. Hence, less stopovers are needed, which would help to cut

cost as well as to reduce the issues pertaining overcrowded parking spots.

For carriers, truck platooning is most beneficial if they are willing to travel together

with others. Thus, we assume that all carriers in the system share their trip information

(origin and destination, earliest start and latest finishing time) with a central platform.

Out of the registered trips, the platform creates platoons and returns information to the

carriers if a trip is accepted and what the savings will be. A portion of the savings is

kept by the platform as reward for the planning. Furthermore, the platform provides the

carriers with individual routes and schedules for their tour.

Since we look at long distance networks like the European or the North American

highway system, a planning period may cover several days or even up to one week. As a

result of this long planning period, we distinguish between two types of trips: On the one

side regular trips, which are planned some days or weeks in advance (e.g. factory traffic,

inter-hub traffic of parcel services), on the other side ad-hoc trips that are dispatched on

a short notice (e.g. transports of seasonal products). To provide planning security, the

platform needs to give a reply to the regular trips a sufficient time in advance. However,

ad-hoc trips may allow for additional or bigger platoons and thus for more savings. Hence,

the platform operator could consider reserving capacities for ad-hoc trips when planning

the regular trips. The platform is compensated for this risk by returning less savings

for ad-hoc trips and by keeping a portion of additional savings that follow from possible



new platoons that are formed thanks to ad-hoc trips. This motivates us to formulate the

following research question: How to set-up a profitable service network for truck platoons

that combines the off-line platooning of regular trips with the real-time platooning of ad-hoc

trips?

To plan the platoons formed by regular trips, we use a service network design model

where we reserve spots for ad-hoc trips by assigning a value for reservation. This value

is regularly updated based on historical information about ad-hoc trips. As soon as the

ad-hoc trips are revealed, the actual platoons need to be planned on an operational level.

Thereby, we have to guarantee the savings for all trips that were already accepted in the

first stage.

The main contributions of our work are the following: (1) We propose a model that

allows the formation of truck platoons that consists of regular and ad-hoc trips, (2) we

develop a solution method that allows the application of the model to real-life settings, (3)

based on our numerical study, we provide insights on the value of information, the influence

of ad-hoc trips on the profitability of the network and different influencing parameters.

2 Problem description and assumptions
We assume that there exists a central platform, which coordinates the formation of pla-

toons. Shippers can register their trips for a certain time period T = [T s;T e] at this

platform. All trips that are announced up to a registration time T r < T s are called regu-

lar. Trips registered in the interval [T r;T s) are called ad-hoc. Since every trip is associated

with a truck, we refer in the following to trucks and denote the set of all trucks by K. To

reserve capacities for ad-hoc trips when building the platoons at T r, the platform operator

can add a subset Kvir of ”virtual trucks” to K. We introduce a node set V that includes (i)

the origins and destinations of the trucks, (ii) the parking lots along the highways and (iii)

forming nodes, which are virtual points that represent the highway entrances and exits.

We name the last two type of nodes waypoints and collect them in the subset VW ⊊ V. We

say that platoons can only be formed or disbanded at those waypoint nodes. The objective

is to reduce the total travelling cost for all registered trucks. We assume that there exists

a mechanism that fairly distributes the cost between the trucks within the same platoon.

To synchronize the schedules of the trucks, we divide the planning period T into t finer

intervals of equal length (e.g. 15 minutes). To track the movements of the trucks, we use

a space-time network where we expand each node v ∈ V t times. The node set VK contains

the time-expanded truck nodes, that is: ∣VK ∣ = t ⋅ ∣V ∣. We presume that the platoon size

will be limited to smax trucks, which results in (smax −1) different platoon sizes. Since we

need to distinguish platoons also by their size, we have to expand VW in the platoon layer

not only in time but also in in the platoon size. We call VP , the set of these expanded

nodes, platoon nodes and it holds that ∣VP ∣ = (smax−1) ⋅ t ⋅ ∣VW ∣. We interpret a platoon as



a direct service that ”transports” a certain number of trucks from one point to another at

a given cost at a given time. Thus, in this space-time-size network, the origin node op ∈ VP
and the destination node dp ∈ VP define at which waypoint and at which time platoon

p ∈ P starts and ends and how many trucks in this platoon are included. Note that it

is possible that there are several platoons of type p. However, we assume that highway

capacities limit this number to νp ∈N.

The nodes in VK form the truck layer, the nodes in VP the platoon layer. Together

with the arc set A, V = VK ⊍VP describes a graph G(V,A). We partition A into truck arcs,

interlayer arcs and platoon arcs. The truck arcs interconnect nodes on the truck layer,

the platoon arcs nodes within the platoon layer. Trucks can wait at physical nodes, that

is at their origins and destinations as well as at parking lots. To model this option, we use

waiting arcs that connect a node in the truck layer to the identical physical location one

time step later. Since every truck has a time window [ek; lk], we create only those arcs

that leave the truck’s origin earliest at ek and enter the destination not later than at lk.

Movements within the truck layer and the platoon layer are represented by travel arcs. The

construction of those arcs is based on τij(T r), the traveltime forecasts for nodes i, j ∈ V at

time T r. The truck layer and the platoon layer are linked via interlayer arcs. These arcs

connect only truck-waypoints and platoon-waypoints that are identical in location and

time period. An interlayer arc from a truck-waypoint-node to a platoon-waypoint-node

with size s represents the formation of a platoon of size s at the specific location and time

period. Similarly, an interlayer arc leading from a platoon-waypoint-node with size s to

the truck-waypoint-node means that a platoon of size s is disbanded at this location at the

specified time interval. Consequently, every truck-waypoint is connected bidirectionally

to the (smax − 1) platoon-waypoints that are identical in location and time.

A cost is assigned to every arc. The truck travel arcs are associated with the full

cost of driving, cijk. Among other things, these cost include fuel expenses, wages, tolls

and depreciation and they depend on the truck k. cp denotes the cost associated with

the corresponding platoon arc. We assume that this cost is lower than it would be if all

participants were to travel the same route at the same time individually. Furthermore,

the cost share per truck is indirectly proportional to the platoon size. Interlayer arcs are

associated with cost ci,op,k for forming a platoon or leaving a platoon, cdp,j,k. These cost

also allow to even out cost differences in the platoons due to different truck types. Truck

waiting arcs have zero cost. For that reason, we use the convention that truck k’s origin

node ok ∈ VK is the node that represents the truck’s physical origin at time interval t = T s.

By the same convention, we assume that the destination node dk ∈ VK is associated with

the physical destination at time T e. For all other arcs (which do not fulfil the criteria

stated above), we set the travel cost to infinity.



3 Model formulation
We propose a mixed-integer linear program for planning the regular trips. It is defined on

the space-time network G that we discussed above. We introduce two decision variables.

The binary decision variable xijk is set to 1 if truck k uses arc (i, j), i, j ∈ V . The integer

decision variable yp counts how many platoons p travel on arc (op, dp), op, dp ∈ VP . sp

denotes the size of platoon p. The Platoon Network Design Problem (PNDP) reads as

follows:

min ∑
p∈P

cpyp + ∑
k∈K
∑

i,j∈V
cijkxijk (1)

s.t. ∑
j∈VK

xok,j,k = 1 ∀k ∈ K (2)

∑
i∈VK

xi,dk,k = 1 ∀k ∈ K (3)

∑
j∈VK

(xijk − xjik) = 0 ∀i ∈ VK/{ok;dk}, k ∈ K (4)

∑
k∈K

∑
i∈VK

xi,op,k = spyp ∀p ∈ P (5)

xi,op,k − xdp,j,k = 0 ∀i, j ∈ VK , k ∈ K, p ∈ P (6)

yp ≤ νp ∀p ∈ P (7)

xijk ∈ {0; 1}, yp ∈N0 ∀i, j ∈ V, p ∈ P, k ∈ K (8)

Equalities (2) and (3) ensure that each truck leaves his origin and enters his destination.

For all other nodes in the truck layer, (4) conserves the flow. Equation (5) states that a

platoon can only be formed if the correct number of trucks meets at the waypoint and

according to (6), a truck that joined a platoon has to leave it at the platoon’s destination.

The number of platoons p is limited by (7). In the objective function (1), the total cost

of travelling in the network is minimized.

4 Conclusion
We present an approach that brings together the tactical and operational planning and

scheduling of truck platoons. For the tactical planning, we use a space-time network

and include the possibility of reserving capacities for possible ad-hoc trips that may be

announced on short notice. We want to develop a planning tool for the practical use

and therefore we aim at achieving good solutions in reasonable time. For that purpose

we focus on developing a matheuristic. This heuristic as well as further details on the

inclusion of the ad-hoc trips will be presented together with the numerical results during

the conference.
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1 Introduction and Motivation

Ride-sourcing systems (e.g., traditional taxis) are a popular mode of transportation because of their

convenience and recent affordability caused by emerging on-demand services that use mobile apps as

a platform to match passengers with vacant taxis. These new platforms enable the service provider

to implement dynamic matching and transfer of ride-sourcing vehicles to increase the system’s profit

while ensuring a satisfactory level-of-service such as keeping the expected passenger waiting time

below a threshold. The properties of the ride-sourcing system are investigated according to the

minimum number of the ride-sourcing fleet [1, 2], improving the network delay [3], or reducing the

travel time for ride-sourcing customers [4]. In this work, we introduce a ride-sourcing system to

reduce the waiting time for ride-sourcing customers and search time of the ride-sourcing vehicles,

and to improve the trip travel time.

To this end, we introduce a ride-sourcing method for matching ride-sourcing vehicles and pas-

senger’s travel requests while transferring unmatched ride-sourcing vehicles to the regions with

excess of unmatched passengers to balance the supply and the demand of the ride-sourcing market.

The method consists of two layers: (i) matching layer that is responsible for matching the passen-

gers to the unmatched ride-sourcing vehicles and (ii) transfer layer that transfers the unmatched

ride-sourcing vehicles to the regions with excess of unmatched passengers. The effectiveness of the

proposed method is tested in a microsimulation case study.



2 Methodology

2.1 Framework Description

The proposed dynamic ride-sourcing system consists of the top layer (i.e. matching layer) and

the bottom layer (i.e. transfer layer), as illustrated in figure 1. The matching layer includes two

methods: (i) matching method and (ii) an adaptive rejection method. The matching method

finds the optimum, in terms of total matching distance, allocation of the unmatched ride-sourcing

vehicles and unmatched passengers. The adaptive rejection method declines the matchings where

the pickup distances are longer than an adaptive threshold. The transfer layer consists of an

optimization and transfer allocation methods. The first method derives the optimum number of

the transferred ride-sourcing vehicles to be requested to move (without any passenger) from their

current region to another region to address the shortage of ride-sourcing vehicles and excess of

waiting passengers. The latter method determines the set of individual unmatched ride-sourcing

vehicles that are selected to be transferred.

The urban network is assumed to be partitioned into different regions based on homogeneity

of traffic states (e.g. passenger arrival). The matching layer acts at the network level and very

frequently (e.g. in order of seconds) and the transfer layer transfers the unmatched ride-sourcing

vehicles between regions less frequently (e.g. in order of minutes). The matching layer is triggered

every km time step. This layer obtains the position of individual unmatched ride-sourcing vehicles,

cum(k), position of unmatched passengers, pum(k), and the position of transferred ride-sourcing

vehicles, ct(k), at time step k. It allocates the unmatched passengers to the union of transferred

and unmatched ride-sourcing vehicles.

The transfer layer is triggered every kt time step ( kt > km). The optimization method col-

lects the total number of the transferred and unmatched ride-sourcing vehicles, and unmatched

passengers in region i from the plant and matching layer to return the total number of the de-

sired transferred regional ride-sourcing vehicles, ‖c̃ti(k)‖. The transfer allocation determines which

unmatched ride-sourcing vehicles in region i must be transferred to region j, i 6= j.

2.2 Matching Layer

The optimum matching between unmatched ride-sourcing vehicles and waiting passengers is de-

termined by solving the minimum weighted matching problem for a bipartite graph. We construct

the problem as a bipartite graph by considering, (i) V1 as the set of transferred and unmatched

ride-sourcing vehicles, (ii) V2 as the set of the waiting passengers, and (iii) E as the edges connect-

ing each element of the V1 to V2 (V1 and V2 are disjoint and independent sets). The weights of

the E are the distance between the elements of the V1 and V2. We obtain the minimum weighted
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Figure 1: Proposed hierarchical ride-sourcing system

matching for this bipartite graph via integer linear programming method:

min
∑
e∈E

xew(e), (1)

s.t.
∑
e∼v

xe ≤ 1 ∀v ∈ {V1 ∪ V2} & xe ∈ {0, 1} ∀e ∈ E, (2)

where, w(e) is the weight of each edge e ∈ E and e ∼ v denotes e is an incident on v.

The adaptive threshold for rejecting the matching is formulated as:

δ(k) = A
ν(k)

ρ̄
, (3)

where, A is a constant scaling factor. ν(k) and ρ̄ denote the average network speed at time step k

and average probability for appearing new passengers in the urban network. The matches between

ride-sourcing vehicles and waiting passengers that requires the pick up distance to be longer than

δ(k) are discarded and the unmatched vehicles and passengers remain in the system to be matched

at the next time interval, i.e. k + km.

2.3 Transfer Layer

The transfer layer balances the demand and supply of the ride-sourcing system within each region.

The boarding function that estimates the number of the boardings (actual pickups of passengers



by ride-sourcing vehicles) in each region is assumed as a Cobb-Douglas form with time-invariant

elasticities. Hence, the optimum number of the transferred ride-sourcing vehicles to maximize the

number of the boarding in all regions is obtained via:

max

(
N∑
i=1

αi‖pumi (k)‖βi
(
‖cmi (k)‖+ ‖cti(k)‖+ ‖c̃umi (k)‖

)γi)
, (4)

s.t.

N∑
i=1

‖c̃umi (k)‖ =

N∑
i=1

‖cumi (k)‖ & ‖c̃umi (k)‖ ≥ 0, (5)

→ ‖c̃ti(k)‖ = ‖c̃umi (k)‖ − ‖cumi (k)‖, (6)

where, βi and γi are elasticities with respect to unmatched passengers and vacant ride-sourcing

vehicles for region i. αi denotes the total productivity factor of region i and N is the number of

the regions.

The transfer allocation method solves the minimum weight problem for the bipartite graph

with integer linear programming. The two independent sets of the graphs are: (i) all individual

unmatched ride-sourcing vehicles in regions with extra unmatched passengers and (ii) all the can-

didate location in regions with extra unmatched passengers. The weights of the edges are the

distance between unmatched ride-sourcing vehicles and the locations.

3 Preliminary Results

We utilize the calibrated microsimulation model of the city center of Barcelona to evaluate the

proposed ride-sourcing method. In Table 1, simple distance-based matching scenario matches

the ride-sourcing vehicles with passenger’s travel requests based on minimizing the total distance

without considering the adaptive threshold and transfer layer.

Table 1: Assessment of the proposed ride-sourcing system

Matching Travel

Distance [km]

Search Travel

Time [min]

Passenger Trip

Time [min]

Passenger Waiting

Time [min]

Total Mean Total Mean Total Mean Total Mean

Distance-Based

Matching
1916 0.93 13792 6.67 17722 8.58 13107 6.34

Proposed

Ride-Sourcing
1214 0.59 12067 5.88 17211 8.38 9802 4.78

Matching travel distance is the distance that matched ride-sourcing vehicles traverse to pick

up a matched passenger. Search travel time is the time that unmatched ride-sourcing vehicles

spend to pickup a passenger. Passenger trip time is the time that passengers are in a ride-sourcing

vehicle. Passenger waiting time refers to the time between the passenger’s travel requests and



the time she/he board a ride-sourcing vehicle. Total number of the boardings by applying the

simple distance-based matching and the proposed method are 2066 and 2057. Table 1 shows the

effectiveness of the proposed method to reduce the search time of vacant ride-sourcing vehicles and

waiting time of passengers.
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1 Introduction

Traditional studies related to sensor positioning have focused upon locating sensors to enhance

the quality of traffic origin-destination (OD) demand [1] or travel time [2] estimations. This paper

integrates automated traffic signal operation and sensor location problem in a connected vehicle

environment with advanced data analytics. As a variant of mobile facility location problem, this

study optimally allocates road-side sensors connected to traffic signal controllers to extend green

light to prevent queue spillback, considering the future predicted delay of each intersection over

the course of the day. Although previously developed author’s two-stage stochastic programming

model [3] provides scenario-based solutions with better performance than deterministic model, the

high relocation cost has made researchers overlook the benefit of dynamic sensor relocation. With

scheduling of autonomous robots, the synchronously commanding robots, drones, autonomous

vehicles will present a reliable performance.

To improve approximation methods proposed in previous research [4], we employ heuristic

algorithms to solve the proposed combinatorial optimization problem. Lagrangian relaxation de-

composes the problem into two subproblems. Within feasible solutions provided by the first sub-

problem (relocation problem), the second subproblem (location problem) is solved until best bound

is found. Cutting plane method adds a valid cut to the subgradient algorithm with better bound.

To remedy the convergence problem in the subgradient algorithm, the location problem is solved

with a variable neighborhood search method.



2 Anticipatory Dynamic Sensor Location Problem (SLP)

While previous signal optimization depends on the available resources [5], this study uses limited

resources by relocating sensors. Until the increase in the penetration rate reaches a certain point,

the transportation authority may be reluctant to relocate sensors because the rewards are low.

By restricting the relocation frequency to once per sensor, we can have a partially anticipatory

assumption. In this restricted problem setting [6], once one sensor is relocated, no more relocation

can occur to that sensor. The formulation is simplified by assuming that there is no linkage

between demand realizations and location decisions between some time periods. The independence

assumption enables us to rewrite the multi-stage stochastic programming as a large two-stage

stochastic programming. This assumption greatly reduces the complexity of the problem to solve

much larger and more realistic instances.

We introduce a new auxiliary variable zt
(i) be equal to 1 if node i has a new sensor installed,

-1 if a sensor at node i is relocated to another location, and 0 if there is no relocation. The vector

difference of location is expressed as the sum of relocation variables yt
(j)(l)(j, l ∈ N ) that is equal

to 1 if there is a relocation from location j at time t to location l at time t + 1.

∑
j

yt
(j)(l) −∑

l
yt
(j)(l) = zt

(i) ∀i ∈ N , ∀t ∈ T (1)

We enforce that there is no more sensor removal can occur when zt
(i) = −1, and sensor cannot

be installed at a location with an existing sensor when zt
(i) = 1. Let z be a decision vector, then

a sequence of zt
(i) for all time periods t ∈ T can be defined as

[
z1
(i), . . . , zT(i)

]
. The frequency of

z =
{
− 1, 1

}
is restricted to less than once for given operation period T as follows:

|z = −1, 1| ≤ 1 ∀i ∈ N (2)

We replace these relocation associated constraints and presents the multi-period dynamic SLP

with restricted relocation.

SLP max
µ

E ξ1,ξ2,...,ξT

[
T
∑
t=1

ψt(xt, ξt)

]
(3)

s.t.

x1 = µ(ξ1);

xt = µ(xt−1, ξt) ∀2 ≤ t, t ∈ T ;
(4)

∑
i∈N

x1 ≤ c ∀t ∈ T ; (5)[
yπ

]t

(j)(l)
≤ bt

(2) ∀t ∈ T , j = l; (6)

bt
(2) = bt−1

(2) −
[
yπ

]t

(j)(l)
+ bt

(1) ∀t ∈ T ; (7)

xt
i ≤

N

∑
j=1

yt−1
(j)(l) ∀i; (8)

|z = −1, 1| ≤ 1 ∀i ∈ N (9)

xt ∈ {0, 1} yt ∈ {0, 1} ∀t; (10)



3 Solution Method

To solve large instances of dynamic sensor location problem, we enhance the solution efficiency

through decomposition. We introduce a tight Lagrangian bound and an efficient dual heuristic that

embedded a search heuristic. We will show that even with a reduced number of sensors, fair delay

savings are guaranteed under feasible relocations. After reaching the maximum efficiency of the

relocation, the level of diminishing marginal delay savings will become identical to a model without

relocation. Since we cannot solve our SLP with submodular function, we introduce Lagrangian

relaxation.

Lagrangian relaxation: First, we solve relocation problem to provide initial solutions with feasible

links between optimal locations in each time period. Second, by fixing feasible links on the tree, the

problem is simplified to find a reduced set of locations with some fixed locations defined by future

relocations. Applying a relaxation guided variable neighborhood search to the reduced problem

instances yields significantly better solutions in shorter time than when applying these metaheuris-

tics to the original instances. We introduce lagrangean relaxation to separate the problem into

two. Then, cutting plane algorithm is introduced to solve Lagrangian dual problem, and we move

into the search heuristic.

The decomposition of L(λ) = L1(λ) + L2(λ) will offer significant computational advantages

over the original formulation. L1(λ) is calculated by solving solely relocation problem. L2(λ) is

calculated by scenarios only the first stage influencing the rest of the stages. xΛ will be a reduced

set of location decision vector that has future relocations defined. The term of L2(λ) can be

replaced by ∑Tt=1 E ξ1,ξ2,...,ξT

[
ψt(xΛ, ξt)

]
with fixed relocations. Since we find an upper bound for

each value of λ, as long it is nonnegative, we want to find the value of λ that leads to the tightest

upper bound. We define this as Lagrangean dual problem as minλ≥0L(λ). By calculating the

optimal solutions of two subproblems x̄t
i and ȳt

j , we can solve L1(λ) and L2(λ). A subgradient of

L(λ) is expresses as δt
i (λ) = ȳt

j − x̄t
i f or i = j.

Cutting plane algorithm: we use a subgradient algorithm enhanced with valid cuts and a dual

heuristic. The subgradient algorithm starts by fixing the value of the Lagrangian variables k and

solving for the primal variable vectors x and y. Then the Lagrangian variables are updated based

on the violation of the relaxed constraints.

Variable neighborhood search: We employ a variable neighborhood search based on transformations

of solutions that determine one neighborhood structure on the solution space [7]. The structure

uses a finite set of pre-selected neighborhood structures denoted by Ξω. We start the algorithm

with 1) initialization that selects the set of neighborhood structures Ξω, for ω = 1, . . . , ωmax used

in the shaking phase, the set of neighborhood structures Ξv for v = 1, . . . , vmax used in the local

search, and a stopping condition. In the 2) shaking step, the incumbent solution is perturbed.

The algorithm generates a solution x̃′ at random from ωth neighborhood Ξω of x̃ = (x̃1, ..., x̃i). It



takes sensor location to be inserted at random, if it satisfies DelaySavings(x̃′) > DelaySavings(x̃)

and find location to be deleted at random. In the 3) local search step, the algorithm explores

neighborhood to find the best neighbor x̃′′ of x̃′ in Ξv(x̃′). In the 4) move or not step, if the local

optimum x̃′′ is better than the incumbent, move there (x̃ ← x̃′′), and continue the search with

Ξ1(ω ← 1); otherwise, set ω ← ω + 1.

4 Conclusion

Offering an efficient solution to urban traffic congestion, this paper explores the dynamic relocation

of sensors to improve the network delay by controlling traffic signals under demand uncertainty.

The proposed methodology to CV technology with micro simulation can be applied to any sensor

location problem handled with portable devices. Lagrangian relaxation and the cutting plane

method add a valid cut with a better bound, and the second subproblem is solved faster with

a variable neighborhood search method. Among three multi-period stochastic models, the look-

ahead policy provides the maximum benefit, and accelerated diminishing delays with additional

sensors. With limited budget, the traffic operation may achieve maximum benefit by having more

relocations. The proposed model can be applied repeatedly in each stage in a rolling horizon.
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1 Introduction

Competitive markets, increased fuel costs, underutilized vehicle fleets and stricter customer de-

mands are characteristics that currently define the logistics sector. Due to the increasing compet-

itive pressure, many transport companies have optimized their operations up to an extent where

further improvements are not achievable on an individual level [1]. A study conducted by IFEU

[2] observed that on average trucks on European roads are only half-full, where nearly a quarter

of these trucks run empty.

The implementation of collaboration networks is an approach that could help tackle this grow-

ing lack of efficiency. Past studies have demonstrated that collaboration among competitors can

result in considerable cost savings [3]. In addition, these horizontal alliances have been linked to

various environmental benefits, including the reduction of CO2 emissions, road congestion and

noise pollution. Due to this immense potential, freight-sharing has recently become a widely stud-

ied subject in the field of vehicle routing. In reality, however, transport companies have been

reluctant to enter horizontal collaborations. Potential participants of collaboration networks have

expressed concerns on working with competitors. They fear that instead of profiting from synergy

effects, they will lose valued customers and give up potentially damaging information to their com-

petition. A fair workload and profit distribution is considered to be one of the most important



aspects to enable horizontal collaborations in real-world applications.

In this context, we suggest that certain constraints can be imposed to set up acceptable freight-

sharing frameworks among carriers. These constraints relate to (i) specific sets of customer carriers

do not want to share, (ii) minimum number of customers, and (iii) minimum post-collaboration

profits achieved by the carriers. We observe that these additional restrictions for single vehicle

problems eliminate possible benefits. However, for the more realistic multi-vehicle cases, they

come for a very low cost.

2 Problem formulation and solution approach

The underlying problem is a multi-depot pickup and delivery problem as an extension of the

classical pickup and delivery problem. Each depot belongs to and therefore represents one carrier.

Each carrier is associated with a number of paired requests consisting of a pickup and delivery

point, which will be referred to as the initial customer distribution. Additionally, each carrier is

equipped with a certain number of vehicles, starting and returning to their depot. Each vehicle is

only capable of performing one tour. Due to the context of the problem, a delivery point has to be

served after its associated pickup point by the same vehicle. Both a single and a multi-vehicle case

are examined in our study. In the Multi-Depot TSP with Pickups and Deliveries (MDTSPPD)

each carrier only has access to one vehicle with unlimited capacity. The problem is extended to a

multi-vehicle case (MDVRPPD), including duration and capacity constraints for each vehicle.

Solutions of MDTSPPD as well as MDVRPPD may lead to unevenly distributed solutions

where all customers are assigned to only one carrier. In a collaborative setting, this is clearly

not desirable and will scare-off potential participants. Companies may be more likely to enter

collaborations if they can, e.g, keep some of their current customers. This is a reasonable request,

given that many companies have valuable long-term customers that they do not want to lose [4].

We examine the potential of collaborative solutions by considering three different fairness con-

straints for MDVRPPD. First, the requirement that each carrier will get to keep a minimum

amount of their initial customers (A). Second, the effect of only keeping a certain number of cus-

tomers - regardless of their initial carrier - will be examined (B). This way an upper bound on

customer share loss can be established. Finally, a minimum profit with respect to the status quo

is set, resulting in an upper bound on profit losses (C).

While relatively small instances can be solved to optimality, solutions for larger instances are

generated using an adaptive large neighborhood search (ALNS) algorithm. The ALNS was chosen

because it is widely used in the field of PDP problems and has been proven to find good solutions

in a reasonable time. It is applied to five cases. First, the costs of a non-collaborative situation

constrained by the initial customer distribution are computed. This means each carrier faces a



Table 1: The cost of keeping 1
3 or 2

3 of the initial customers. We report the decrease in collaboration

profit compared to the total collaboration profit without constraints A-C (No).

MDTSPPD MDVRPPD

Instances No 1
3 kept 2

3 kept No 1
3 kept 2

3 kept

O1 12.53% -6.16% -9.16% 8.46% -0.86% -1.64%

O2 24.28% -9.21% -16.34% 18.12% -1.76% -5.05%

O3 39.38% -21.03% -31.46% 25.22% -2.95% -11.33%

classical PDP with only one depot and one (MDTSPPD) or multiple (MDVRPPD) vehicles at their

disposal. Additionally, the collaborative solutions are determined with and without constraints (A-

C). The ALNS is based on the work of [5]. However, two problem-specific operators are introduced.

These operators take constraint violations (A-C) into account.

3 Computational study

The computational experiment aims to quantitatively measure potential benefits of collaborative

solutions in comparison to the status quo, as well as the trade-offs when constraints (A-C) are

introduced. We use an extensive set of test instances covering different problem characteristics.

In particular, different degrees of customer area overlaps are considered [6]. These scenarios are

denoted as O1 (low overlap), O2 (medium overlap), and O3 (high overlap).

We present numerical results, where we observe that freight-sharing among carriers can lead to

cost savings of around 25% on average. These findings go in line with past studies, where collabo-

rative gains of 20-30% are reported [3]. We show that the cost savings could even go up to around

35-40% when there is a strong regional overlap of customers. Despite these large potential savings,

companies hesitate to enter horizontal collaborations for the fear of customer and profit loss. Our

study supports this obstacle by showing that for some instances, one carrier ends up serving nearly

all customers. Additionally, in almost all instances customers are unevenly distributed among

carriers. This can be explained by the fact that once a customer from a competitor is included in

a tour, all other customers of that carrier can easily be reached as well. In either case, it is clear

that this distribution is not desirable for potential participants. These findings enforce the need

for constraints A-C to generate acceptable solutions for all participants. The effect of introducing

these constraints is quantified and analyzed.

In Table 1 results for constraint type A are presented.

The results show that constraint A is detrimental in case of MDTSPPD problems: given a

potential collaboration profit of 39.38% of the initial solution of instances O3, constraints of type

A decrease this by 31.46%. Leaving less than 8% post-collaboration gain. However, this does not



hold for MDVRPPD settings. Our results show that for these - more realistic settings - constraints

of type A can be imposed by relatively low cost. On average, the collaboration profit decreases by

about 6%. We can show that similar results can be obtained for constraints B and C. Constraint B

comes with particularly low cost. On average, less than 3% are lost compared to a solution where

no constraints are introduced.

4 Conclusion

The aim of this study is to assess potential trade-offs in collaborative pickup and delivery problems

under a centralized collaboration framework. Trade-offs relate to the fact that carriers do not

want to share their full set of customers with collaboration partners. We observe that the cost

of introducing such constraints rises with the degree of regional customer overlap. Overall the

study demonstrates that collaborations can provide a high potential for cost savings even if these

constraints are introduced. Carriers may therefore explicitly exclude certain long-term valued

customers from being shared and still benefit from the collaboration.
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1 Introduction

It has been observed that there is a strong relationship between land development and infras-

tructure investments. Transforms in land use change the travel demand patterns and in turn,

the altered traffic flows on transportation networks drives the investment on transportation facili-

ties. This development leads to changing the accessibility pattern, which drives the re-location of

activities and land uses. Figure 1 illustrates the schematic co-evolving relationship between trans-

portation networks and urban transformation. During this feedback loop, both transport networks

and land use are continuously evolving, leading to urban spatial transformation. It is worthwhile

to mention that other exogenous factors such as new technologies, traffic management, policy on

economic growth, land availability, spatial policies, etc. play a role on this process.

There are only a few number of study that take the long-run full cycle of land use and transport

networks interaction into account and only a few cases examine population changes in urban areas

[1, 2, 3, 4, 5, 6]. In part, that is due to the lack of more sophisticated analytical techniques to

analyze network elements, in part due to historical data availability.

In most analysis, the relationship between infrastructure and travel demand has been considered

as one-way direction in which the infrastructure network (supply) as the explanatory variable and

traffic (demand) as the dependant variable [1]. The reasons of increases in traffic can be categorized

in the temporal changes: shifts in route, mode, or departure time in the short term; changes in



Land use development

Travel demand pattern

Transportation 

facilities development

Accessibility pattern

+ +

+ +

Figure 1: Land use and transit network interaction

destination and more trips by trip-makers in the medium term; and more trip-makers in the long

run [1].

While these studies provide better understanding of the characteristics of transit networks,

there is a lack of knowledge on how transit networks and land use could evolve into their current

unique state, form, and structure patterns as they are born, grow, mature, and decline over time.

Although a variety of actors are involved in developing an urban transit networks that pursue

their interest [4], there is a research gap to understand the co-evolution of land use and large-scale

transit systems, particularly railways networks embedded in a metropolitan area.

This article considers the relationship between transit infrastructure and land development,

and examines the railway network as a centralized/decentralized force. It is widely believed that

high population density is an important factor in the success of rail systems (density represents

potential ridership). However, just because rail depends on high population density for success

does not inherently mean that either high density areas generate rail investment or rail creates

high-density areas around stations [1].

In this article, it is tested whether high density land development encourages the investment in

rail infrastructure and in return rail infrastructure increases densities. Similar to all other transit

networks, the railway enables movement, and as such, it increases the densities for certain activities

in some places and for other activities in different places. By increasing densities for jobs in CBD,

it is simultaneously decreasing housing densities in those places by making housing in the core

more expensive and making housing outside the core have greater accessibility. This joint process

of infrastructure and land development location is called co-development which transport drives

land use, land use derives transport network [1, 7]. This research begins a longer investigation.

Sydney, as a great example of a rapidly developing city, had public railway transport services

beginning in the 1850s, which facilitated and responded to the development of suburbs. The



advent of first steam railways occurred in 1855 which formed the basis of the New South Wales

Government Railways. The first line was opened for passenger and freight trains between Sydney

and Granville, which at the time was a center of agriculture. Railways were soon complemented

by an extensive tram system, but the transit system was in the twentieth century disrupted by the

rise of the automobile. Figure 2 demonstrates the evolution of Sydney railway network during the

time.

Figure 2: Evolution of Sydney Railway Network

Railway service, by increasing the travelled distance in a given time over previous transport

modes enabled commutes to be lengthier and thus made more area accessible for residences at a

given commute time [1]. As a result, population moves out from the core of a city to the outer

suburbs in specific commute times which increase the population density in suburbs. In order

to investigate the effect of railway on land use and how land use changes a railway network the

following hypothesis are tested based on the available historical data:

• Population density

– Population density in the periphery is positively associated with the lagged increase in

density of new rail stations



– population density in the periphery is positively associated with the lagged population

density of the nearest suburbs (neighbor effect)

– Population density in the periphery is positively associated with the lagged network

density of the nearest suburbs (neighbor effect)

– Population density in the core is negatively associated with the lagged increase of new

rail stations.

• Network density

– Network density in the periphery is positively associated with the lagged increase in

population density

– Network density in the periphery is positively associated with the population density of

the nearest suburbs (neighbor effect)

– Network density in the periphery is positively associated with the network density of

the nearest suburbs (neighbor effect)

– Network density in the core is negatively associated with the lagged increase in popu-

lation density
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1 Introduction

Transportation systems are evolving fast under the impact of many factors. These include car

manufacturers, who are actively promoting communicating vehicles, and vehicles exhibiting vari-

ous levels of automation or autonomy. They are also proposing new technology for motorization

(electric engines) and new services such as on demand vehicles. Other factors result from economic

pressure and environmental concerns. Social networks also contribute significantly: they offer new

services such as Uber, or Waze. The latter also contributes to the propagation of information

through the network. Travellers are more and more connected: this opens the door to effective

seamless multimodality. Even the first/last mile transportation may now be taken in charge by a

micro-mobiliy based on new individual electrical vehicles and implements. Regional agencies are

therefore concerned and need fully multi-modal models that have the capacity to describe the new

complex transportation systems, including communication and information flows. For instance

information impacts of course routing [1], [2] but also may have significant large scale impact [3].

Regional agencies also need tools to estimate regional equilibria, both for long term planning pur-

poses and short term network management. Such concerns have been considered for instance in

[4], [6], [7] and [5] . The study introduced in this paper aims to contribute to addressing these

issues.



2 The model

The multimodal model proposed in this paper is based on the GSOM model introduced in [8],

[9], and applied to networks with information in [10], but in the context of reactive dynamic

assignment. The model was extended to fully multmodal transportation systems in [11] and [12].

The main features of this extension are the following:

• There are two flows, vehicular and passengers. The passenger flow is subordinated to the

vehicular flow (vehicles carry passengers).

• Vehicles end passengers may be endowed with attributes which are passive and neutral (such

as direction and path), passive (passenger or vehicle type and caracteristics), or active (in-

formation, battery charge, engine temperature etc).

• vehicular dynamics follow regular first order-like dynamics. Passengers are described as a

specific attribute of vehicles, the passenger load. Passive attributes are advected, active

attribute dynamics follow an advection equation with source terms.

Thus the basic notations of the model are the following:

• x the position, t the time;

• ρ(x, t) the density, v(x, t) the speed and q(x, t) the flow of vehicles.

• I(x, t): the vector of attributes. It comprises:

– $(x, t): the load of passengers;

– some neutral passive attributes required for assignment, notably χ(x, t)
def
=
(
χd(x, t)

)
d∈D:

the vector of fractions of vehicles with destination d ∈ D (χd(x, t) denotes the fraction

of vehicles at time t and location x with destination d) and µ(x, t)
def
=
(
µd(x, t)

)
d∈D: the

vector of fractions of passengers with destination d ∈ D (µd(x, t) denotes the fraction of

passengers at time t and location x with destination d);

– κ(x, t) denotes a vector of supplementary attributes pertaining to passengers or vehicles,

possibly active.

• $ has the unit of number of passengers per vehicles, thus ρ$ denotes the density of passengers

per unit length of links. The speed of passengers is equal to the speed of vehicles v(x, t). It

follows that the flow of passengers is given by:

p
def
= ρ$v (1)

• Velocity and density are connected through the fundamental diagram:

v = Ve(ρ, κ) (2)



• The vehicles have an attribute which is their capacity with respect transport passengers,

$max. This attribute is connected to vehicles, thus must satisfy an advection equation

∂t$max + v∂x$max = 0 (3)

The passenger load is bounded by the vehicular capacity:

0 ≤ $(x, t) ≤ $max(x, t) ∀x, t (4)

This attribute $max must be included into I:

I = (χ,$max, $, µ, κ) (5)

Finally the model is described by the following equations in eulerian coordinates (x, t):

∂tρ+ ∂x (ρv) = 0 (6.1)

∂t (ρI) + ∂x (ρIv) = −ρΦ(I, ρ) (6.2)

v = Ve(ρ, ) (6.3)

I = (χ,$max, $, µ, κ) (6.4)

0 ≤ $ ≤ $max (6.5)

(6)

The source term Φ concerns only κ. Thus passengers can board or unboard only at nodes, at which

locations passengers and vehicles can change their path.

The main complexity of the transportation dynamics is recaptured at nodes, which may rep-

resent intersections, but also stations or multimodal poles. Links are monomodal, and walking

occurs in nodes; passengers possibly change mode in nodes. Some of these issues, as well as some

discretization issues, are addressed in [11] and [12].

3 Assignment

For dynamic assignment we will consider two main ideas

• a scheme based on cross-entropy which is a local scheme in the sense that it is arc based:

path choice is carried out at each node. This scheme follows ideas outlined in [13] and [14].

It can also be related to ideas expressed in [15];

• a scheme based on a global path base fixed point approach inspired by ideas from [16].

A simple test case is shown in figure 1. Note the central node which acts as a multimodal pole.

Travellers may change mode there. An example of multimodal path assignment, via fixed point

search, is shown below on figure 2. Path costs and flows are depicted, with convergence shown

despite the fact that the optimal solution entails mode changes. These mode changes result in

path flow time-discontinuities.
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Figure 1: A simple multimodal network with road, bus, metro
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a function of iteration
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1 Introduction and motivation

In the last decade, the advent of e-commerce radically changed the shopping habits. Nowadays,

customers can compare, in very few minutes, a huge number of alternatives and offers, directly

from their laptop, tablet, smartphone or even smartwatch, without leaving their house or their

office. Home delivery has established new standards in terms of quality of service, and the number

of users choosing to adopt this purchasing method is constantly growing. The large increment of

home delivery requests started to have a crucial impact in last mile delivery, as pointed out in [2].

In fact, given the large amount of request, companies cannot perform the delivery in the moment

preferred by the customers (generally at the end of the day when they are at home) and it is

obliged to increase the length of the delivery window to a buffer of several hours, within which

the customer is asked to be home if it does not want to miss the delivery. This will results in a

negative impact on the quality of service perception by the user and, consequently, on the customer

satisfaction. Moreover, this issue generated drawbacks not only for customers but also for delivery

companies which are often obliged to perform twice the delivery, because at the first attempt the

customer was absent. This would create a decrease of efficiency in the logistic companies, in terms

of costs, and an increment of traffic congestion in urban areas. To overcome this issue, in the very

last years a new delivery system, named unattended delivery, in which delivery are performed to

shared facilities, such as Digital Lockers Terminals (DLTs), has been introduced. These facilities

are generally located into a supermarket open 24h/day, at a train station, or in other places with a

very wide opening window. The advantage of such a system is twofold. Customers do not have to

attend the delivery at home but can autonomously pick-up their goods when it is more convenient

for them. On the other hand, transport companies may perform the delivery at anytime and can

consolidate goods destined to different customers but associated to the same DLT, reducing the



number of locations to visit, with a positive impact on both delivery costs and traffic congestion.

An analysis of the economic benefits of such a system have been provided in [2] and [1] and , while

an analysis of the reaction of customers to this new trend in parcel delivery has been reported in

[3]. Despite the evident advantages of a DLT based distribution system, this strategy still has some

drawbacks. In fact, in rural areas, where the diffusion of DLT is still very limited, customers must

cover several kilometers to pick-up their goods and their level of satisfaction may sensibly decrease.

Furthermore, old aged people or customers with disabilities may experience some difficulties to

reach the DLT, even if it is not far from their house. Logistic companies, such Amazon, offer

a service in which each customer can chose between two delivery alternatives. Delivery can be

performed at home (or at another place indicated by the customer, such as the office) without any

indication about the moment of the day in which it will be carried out (therefore the customer

must stay at home waiting for the delivery) or the delivery can be performed at the DLT indicated

by the customer when he can pick it up when it is more convenient for him. The aim of this paper

is to propose a new delivery system which combine home delivery with DLT deliveries in a more

convenient way in order to increase both customers satisfaction and companies revenue. In this

newly proposed system, customers may choose between three options for the delivery:

1. to receive their delivery at home within a short time window they indicate within which they

must attend at home

2. to receive their delivery at one of the DLTs they indicated in their order (one can choose DLTs

near his house, near the office, the gym where he goes in the evening, the house of his parents, and

so on..) receiving a small compensation for the discomfort to pick it up at the DLT

3. to let the company to decide whether to delivery their package at home, within their preferred

time window or in one of the DLTs they indicated, obtaining a small compensation

In this system, people who need to receive home delivery will choose option 1, people who are

very interested into receiving the compensation, or who, for personal reasons, prefer not to receive

their delivery at home, will choose option 2, while for customers for which it is indifferent where to

receive their delivery the company can choose the most convenient option in their delivery planning.

This way, customers satisfaction increases for each category of customers and the company may

reduce its transportation costs without downgrading the quality of service.

2 Mixed Integer Programming Formulation

The goal of the problem is to serve a set of delivery requests I starting from a depot, 0. Each

delivery must be performed at customer location or at one of the DLTs indicated by the customers.

A set F of DLTs is available, but each request i is compatible only with a subset of F . To each

DLT, f , is associated a maximum number of request that can be contemporaneously assigned to it,



Bf , representing the number of empty lockers at f . A service time si is defined for each customer

and DLT. The service time associated with a DLT does not depend on the number of packages

delivered to it. Each customer i can be served only within a fixed time window [Ei, Li] while DLTs

can be accessed at any time. Let us define the set N = I ∪ F and N0 = N ∪ 0. For each pair of

nodes i, j in N0 are known travel time, tij and travel cost, cij . Each vehicle start at the depot and

must return to the depot within a given time limit Tmax. We indicate with δ the compensation

paid to a customer if its delivery has been performed to a DLT , while with γ the fixed cost related

to the usage of each vehicle. The objective is to minimize total distribution costs, given by the

sum of travel costs, vehicle usage costs and compensations paid to the customers. Without loss

of generality we assume that each DLT may be visited by at most one vehicle. In fact, given the

small size of objects that can be delivered to a DLT , respect to the capacity of the vehicles, and

the small number of available lockers, we can assume that the demand of a DLT can be fulfilled by

a single vehicle. Therefore, in an optimal solution it will never happen that a DLT will be served

by more than one vehicle.Before to report the mathematical formulation we need to introduce the

following decision variables types:

Xij : binary variables representing whether node i is visited just after node j or not

Yif : binary variables representing whether customer i order is delivered to DLT f or not

Zf : binary variables representing whether DLT f is visited or not

Ti: non-negative variables representing the time in which customer i is reached

The formulation is reported in the following:

min
∑
i∈N0

∑
j∈N0

cijXij + δ
∑
i∈I

∑
f∈F

Yif + γ
∑
j∈N

X0n (1)

∑
i∈N0

Xij +
∑
f∈F

Yjf = 1 ∀j ∈ I (2)

∑
i∈N0

Xij =
∑
i∈N0

Xji ∀j ∈ N0 (3)

Zf ≥
1

|I|

∑
i∈I

Yif ∀f ∈ F (4)

∑
i∈N0

Xif = Zf ∀f ∈ F (5)

Tj ≥ Ti + tij + sj − 2Tmax(1−Xij) ∀j ∈ N ∀i ∈ N0 (6)

−Tmax

∑
f∈F

Yif + Ei ≤ Ti ≤ +Li + Tmax

∑
f∈F

Yif ∀i ∈ I (7)

Tj + sj + tj0 ≤ Tmax ∀j ∈ N (8)

∑
i∈I

Yif ≤ Bf ∀f ∈ F (9)



The objective function is reported in 1. Constraints 2 imply that each order must be delivered or

directly to the customer or to one of the compatible DLTs. Constraints 3 ensure route continuity. If

at least one order has been assigned to a DLT , it must be visited, as specified by the combinations of

Constraints 4 and 5. The arrival travel time at each node is ruled by Constraints 6. Customers time

windows must be respected if and only if its order is delivered directly at customer’s location, as stated in

Constraints 7. Each vehicl must return to the depot before Tmax as implied by Constraints 8.Finally, the

number of orders delivered to a DLT must not exceed its capacity, as imposed by Constraints 9.

3 A Matheuristic for the VRP-DLT

To solve large size instances a matheuristic approach is proposed. Starting from an initial feasible solution,

at each iteration, p customers are randomly draw. All the other N − p customers are forced to be assigned

to the same DLT they were assigned in the current solution, or forced to be directly served if they were

directly served in the current solution. The selected p are let free to be assigned to a DLT or directly

served. This overconstrained version of the model is solved with a very short time limit and the best

feasible solution is kept as current solution.

4 Computational Results

Computational results, carried out on instances of different size, show the efficiency and effectiveness of

the proposed matheuristic approach. A study on the impact of an increment of the number of DLTs on the

total delivery cost has been performed. Furthermore, a comparison of this mixed delivery strategy with the

classical strategy in which all the customers are directly served at home, and the strategy in which all the

customers are served through DLTs, is performed and the obtained results show that the mixed strategy

is the most convenient both for the transport companies and for the customers. All detailed results, with

a deep analysis and discussion, will be presented at the conference.
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1 Introduction

With increased urbanization and densification, public transport ridership has increased dramati-

cally in many urban areas. As a result, crowding and congestion have also increased. With capacity

limited, the level of service can deteriorate significantly. The adoption of means of collecting data

automatically from systems such as Automatic Fare Collection (AFC) and Automatic Vehicle Lo-

cation (AVL) facilitates the development of relevant metrics and the monitoring of system state

without costly manual data collection (Bagchi and White, 2005; Agard et al., 2006; Zhao et al.,

2007; Chan, 2007; Pelletier et al., 2011; Ortega-Tong, 2013; Langlois et al., 2016; Koutsopoulos

et al., 2017).

The paper introduces a probabilistic Passenger-to-Itinerary Assignment Model (PIAM) that is

applicable under capacity constraints for trips with and without transfers and route choices. PIAM

infers details of the journey passengers made on a particular day based on the actual AFC and

AVL data from that day, while the traditional schedule-based assignment models (e.g. Nuzzolo

et al., 2001; Poon et al., 2004; Hamdouch and Lawphongpanich, 2008; Sumalee et al., 2009; Nuzzolo

et al., 2012) are mainly planning tools that target future conditions.

At the disaggregate level, PIAM infers individual passenger movements at a high resolution

(journey time components, passenger location inference, etc.). At the aggregate level, the output

(route choice fractions, train load estimation, journey time decomposition, etc.) provides useful

performance metrics for operators to assess the capacity utilization and evaluate the impact of



near capacity operations on passengers.

2 Methodology

We assume a closed AFC system, where both the tap-in and tap-out times of passengers are known.

Train arrival and departure times at stations are also known from the AVL system. For a passenger

with transfers, itineraries represent different combinations of trains to complete all the segments

for this journey on the chosen route. The main challenges with the general assignment problem

are: (i) the number of possible itineraries can be very large, especially for trips involving transfers,

and (ii) the route choice inference. To address those problems, we assume that the probability of

being left behind at a transfer station is the same for transfer and non-transfer passengers (i.e.

passengers who enter the system at that station) who arrive on the boarding platform at the same

time. We further use left behind probabilities estimated from passengers without route choices to

infer the route choice fractions for passengers with transfers.

Figure 1 illustrates the framework of PIAM: i) the left behind model estimates the probability

of being left behind using data from trips without route choice or transfers; ii) The route choice

model estimates the route choice fractions by time interval given the left behind probabilities; iii)

The assignment model assigns passengers to itineraries based on the left behind probabilities and

route choice fractions. The dimensionality and complexity of the assignment problem is reduced,

especially for transfer trips.

Station layoutAVL AFC

Access/Egress/Transfer Time Model

Passenger segmentation

Left Behind Model

Feasible itinerary set for each passenger

Assignment Model

Train loads,
Crowding,

Individual journey time components

Access/Egress/Transfer time distributions

Left behind probabilities 
by time interval

Probability of each itinerary

PIAM

Passenger segmentation

Route Choice Model

Left behind probabilities by time interval Route choice fractions by time interval

Figure 1: PIAM framework with route choice

Access/Egress/Transfer Time Model

Zhu (2017) proposed a model for the estimation of access/egress time distributions using AFC and



AVL data that consists of two components: the walk speed model, and the walk distance model.

The model can be directly extended for the estimation of transfer time distribution.

Left Behind Model

An important assumption of PIAM is that the probability of being left behind is the same for

transfer and non-transfer passengers at the same station and time period (based on the arrival

time at the platform). The left behind probabilities, at the aggregate level, can be estimated

using the approaches proposed in Zhu et al. (2017), based on data from trips without transfers.

Assuming that the access/egress speed distributions are known, the likelihood of observing the

journey times of all passengers in the group can be derived. Zhu et al. (2017) examined maximum

likelihood and Bayesian inference methods to estimate the left behind probabilities.

Route Choice Model

Figure 2 illustrates the possible instances for a passenger with two routes (each with one transfer).

P (r1) and P (r2) denote the probabilities of choosing routes r1 and r2 respectively. After tapping-

in, the passenger walks to the boarding platform, and he/she may arrive during different trains’

departures. After alighting at the transfer station, he/she may arrive during different trains’

departures for the next segment. If the coming train is full, the passenger will be left behind (Pn

represents the probability of left behind n times).

For a trip with multiple routes, the conditional probability of using each itinerary and tapping-

out at the observed tap-out time, given the corresponding route choice, can be derived according

to Figure 2, and is a function of the access/transfer/egress time distributions and the left be-

hind probabilities. The probability of choosing different routes, i.e. P (r), can be estimated by

maximizing the total likelihood of the observed tap-out times for all passengers.

Passenger	taps-in

P(r1) P(r2)
Route	2

Before	Train	1_1	Departs					 Before	Train	1_2	Departs			 Before	Train	1_3	Departs		
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Passenger	i taps	out	

Train	1_1	
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Train	2_1	 Train	2_3	Train	2_2	
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P2
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P0
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Figure 2: PIAM structure for a passenger with route choice



Assignment Model

With left behind probabilities and route shares estimated by time interval, the probability of using

different itineraries for a given passenger, can be calculated based on Bayesian Theorem using the

graph depicted in Figure 2.

3 Model Validation

In order to validate the proposed method, synthetic data for a small portion of the network, was

generated using actual tap-in times and train movement data with four OD pairs. Passengers with

route choices were randomly assigned to a path according to pre-defined fractions. At all stations,

transfer/tap-in passengers are loaded onto the trains based on a first come, first served (FCFS)

basis according to their arrival time at the boarding platform.

The left behind probabilities at all the origin/transfer stations are estimated by station and

time interval. The route choice fractions were estimated using maximum likelihood. Given the

estimated route fractions and left behind probabilities, the assignment model is used to estimate

the probability of each feasible itinerary for each passenger.

Figure 3a shows the estimated probability, of choosing path r1 compared with the “true” in

the synthetic data in 30 min intervals. The estimated probability is consistent with the actual

(synthetic) data. Figure 3b shows the distribution of the estimated probabilities of assigning to

the actual itinerary for passengers with route choices. The probabilities of assigning passengers

to their actual routes and itineraries are high, despite the large number of feasible itineraries for

many passengers (up to 60 in some cases). As the assignment is estimated without dependency on

the upstream (which is usually the case for traditional assignment), the estimation can be run in

parallel for the OD pairs of interests.
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Figure 3: Model Validation
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1 Introduction

With the advancement of technologies, information becomes more accessible with improved

quality and diversity (e.g. via sensors, phones and smart devices, or social networks, etc.). The

literature review by Balakrishna et al. [1] showed important impacts of information services, e.g.,

the advanced traveller information systems (ATIS), to users and system performance, i.e.,

(a) Increased information’s quality (e.g., updated frequency and perception variation) improves

the system performance.

(b) The system performance is also improved as the market penetration increases, and then be-

comes stable after 50% penetration.

(c) Guided or equipped users gain most benefit in low market penetrations (i.e. below 30%), then

start to lose some in the high penetration.

(d) Unequipped users mostly gain benefit at any positive penetration.

As several information providers like Google Map support free services to general users, trav-

ellers are not willing to pay for the premium services unless there is a considerable improvement of

travel cost. According to the above fact, the pay-as-you-go services are more reasonable for users

to economically utilise the real-time information. Even though the role and impact of information

services have been studied extensively in the literature, most of them base their models on a given



market penetration. In this paper, we aim to investigate the elastic users of information services

(or variation of penetration) where the traveller would prefer to use the service only if their gain

of travel time is large in the comparison with the uninformed users.

Due to the elasticity of the informed users, we study the problem of equilibrium service choice in

a mixed-user dynamic traffic assignment (ES-MUDTA) with real-time information. Particularly,

the uninformed travellers follow the user equilibrium (UE) route choices before they enter the

network, while the informed ones follow the system optimal (SO) choices with the capability of

en-routing during their journey. There are several reasons that informed users would be more

cooperative than the uninformed ones. Firstly, van Essen et al. [4] shows an increasing trend of

bounded rational and non-selfish (social) route choices because the service providers could propose

several options for users to, for example, save the fuel cost or eco-friendly reduce the pollution

(in addition to the shortest paths). These alternative choices lead the system to operate closely

to the SO solutions. Secondly, point (b) in the first paragraph indicates that the operators only

need a fraction of users that commit to the guided instruction, to obtain a high or full achievable

system performance. However, Gao [2] shows that this fraction could rise up to 60% in the UE

solution of en-routing route choice. By using the system optimal choice, we expect the decrement

of required committing users which certainly benefit the operators. Lastly, the future of connected

and autonomous vehicles liberates drivers behind the wheels, therefore, avoids their cognitive

expectation on route choices. It is reasonable that these smart cars will cooperatively work together

to bring the best benefit to the system without sacrificing significantly the individual benefit.

In the following sections, we briefly describe the formulation of the ES-MUDTA problem, which

is based on the link transmission model-LTM [5] for single-destination networks.

2 Problem formulation

The transportation network is represented by a directed graph G = (V,A) where V is the set of

vertices, and A is the set of directional arcs (or links). Let AR denote the set of arcs from sources,

AS denote the set of arcs to sinks, and AI denote the remaining arcs. Note that, the arcs in AR

and AS are the virtual links that store traffic at sources and destinations to maintain the rule

of flow conservation. The set of all possible paths, connecting source r and destination s in this

network, is denoted by P(rs). Let T denote a set of discrete times where T is the maximum time

horizon, i.e., T = {1, 2, . . . , T}. Let Υ−a denote the set of inflow links to link a, and Υ+
a denote the

set of outflow links from link a for any a ∈ A. For any network topology in this paper, we have

Υ−a = ∅ ∀a ∈ AR, and Υ+
a = ∅ ∀a ∈ AS .

The set of demand scenarios (or profiles) is denoted by X. Each scenario x ∈ X has the

probability ρx such that
∑

x∈X ρx = 1. Let Drs,t|x denote the amount of traffic demand at time



t from the source r to the destination s in the scenario x. For each link a ∈ A, its characteristics

are follows: La for length (m), Ka for vehicle density (veh/m), Va for free-flow speed (m/s), Wa

for backward-propagation speed (m/s), Qa for flow capacity (veh/s). The set of user classes is

denoted as M = {i, n}, where the letter i represents the informed users, and the letter n represents

the uninformed users. The flow variable fmab,t|x represents the amount of traffic belonging to the

user-class m from link a to link b at time t in the scenario x. In the ensuing paper, we describe

the formulation of LTM as linear constraints in the DTA problem, the information-based routing

model and the overall model.

2.1 LTM-based constraints

In this part, we present the LTM in each scenario x ∈ X for the network loading as a set of

side constraints in the DTA problem. For further details of the linear formulation of the LTM-type

constraints, we refer to the work [3]. The constraints of free-flow movement, backward shock-wave

and flow capacity are shown below:∑
b∈Υ+

a

∑
h≤t

fmab,t|x ≥
∑
b∈Υ−a

∑
h≤t−La/Va

fmba,t|x ∀a ∈ A, t ∈ T, x ∈ X (C.1)

∑
m∈M

∑
b∈Υ−a

∑
h≤t

fmba,t|x ≤ KaLa −
∑
m∈M

∑
b∈Υ+

a

∑
h≤t−La/Wa

fmab,t|x ∀a ∈ A, t ∈ T, x ∈ X (C.2)

∑
m∈M

∑
b∈Υ−a

fmba,t|x ≤ Qa a ∈ A, t ∈ T, x ∈ X (C.3)

∑
m∈M

∑
b∈Υ+

a

fmab,t|x ≤ Qa a ∈ A, t ∈ T, x ∈ X. (C.4)

For the FIFO constraints, we first denote fmab,t,h|x be the amount of traffic towards the desti-

nation s that enters link a at time t and entering link b at time h in the scenario x. Let nsa,t,h|x

be the amount of traffic towards the destination s that enters link a at time t and remains in this

link at time h in the scenario x. The FIFO constraints are follows:

fmab,t,h|x = πab,t,h|xn
m
a,t,h−1|x ∀a, b ∈ A; t, h ∈ T;x ∈ X (C.5)

(nma,t,h|x − n
m
a,t,h−1|x)

∑
k<t

nma,k,h|x = 0 ∀a ∈ A; t, h ∈ T;x ∈ X. (C.6)



The above variables are defined below:

nma,t,h|x =


0 if h < t+ La/Va∑

b∈Υ−a
fmba,t|x if h = t+ La/Va

max(nma,t,h−1|x −
∑

b f
m
ab,t,h|x, 0) if h > t+ La/Va

(C.7)

∀a ∈ A, t ∈ T, x ∈ X

fmab,h|x =
∑

t≤h−La/Va

fmab,t,h|x ∀a, b ∈ A, h ∈ T, x ∈ X. (C.8)

2.2 Information-based routing

Real-time information Let Xt|x be the set of possible scenarios realised at time t in scenario

x. In this study, we assume the homogeneity of travellers (that they follow the same routing

strategies) and the consistency of information (that it is provided equally to any travellers) in each

user class. Therefore, the information at time t in scenario x, denoted as yt|x = {Xt̃|x, t̃} (t̃ ≤ t),

represents

• The updated traffic states up to time t̃, i.e., {fab,t|x′ : ∀a, b ∈ A; s ∈ AS ; t ≤ t̃;x′ ∈ Xt̃|x},

• The updated uncertainty of traffic demand up to time t̃, i.e., Xt̃|x.

We further assume that the quality of information is improved over time, i.e.,

Xt|x ⊆ Xt−1|x (1)

for all x ∈ X, t ∈ T. By writing Xyt|x , we mean Xt̃|x, i.e., Xyt|x = Xt̃|x. According to the

definition of real-time information yt|x, travellers receive the same information at time t1 and t2

in scenarios x1 and x2 respectively if yt1|x1
= yt2|x2

, which also means that yt1|x1
= {Xt̃|x1

, t̃},

yt2|x2
= {Xt̃|x2

, t̃}, Xt̃|x1
= Xt̃|x2

. The information-based flow split reads:

fmab,t|x′ = fmab,yt|x
(C.9)

for all x′ ∈ Xyt|x . It shows that if travellers receive the same information at time t1 and t2, i.e.,

yt1|x1
= yt2|x2

, then they follow the same traffic split.

Estimation of the travel cost Tn
p,yt|x

of uninformed users Let Tn
p,t|x denote the travel

time on path p for uninformed traffic demand departing the source at time t in scenario x. The

computation of Tn
p,t|x is based on the departure flow at the source and the arrival flow at the

destination along the path. Therefore, we compute Tn
p,yt|x

from Tn
p,t|x as follows:

Tn
p,yt|x

=
1∑

x′∈Xyt|x

ρx′

∑
x′∈Xyt|x

ρx′T
n
p,t|x′ . (C.10)



Note that, fnp,t|x = fnp,t|x′ ∀x
′ ∈ Xyt|x . Let τna,yt|x

be the estimation of the average travel time to

destination s at the downstream of link a for a given information yt|x. The conditions of UE path

choices are follows:

Tn
p,yt|x

≥ τnyt|x
∀p ∈ P(rs) (C.11)

fp,yt|x(Tn
p,yt|x

− τnyt|x
) ≤ 0 ∀p ∈ P(rs). (C.12)

Elastic informed users Given the fixed demand in each scenario, let dirs,t|x and dnrs,t|x be the

amount of informed and uninformed traffic respectively. Therefore, the conservation of traffic

demand reads,

dirs,t|x + dnrs,t|x = Drs,t|x (C.13)

for all t ∈ T, x ∈ X, and the O-D pair (r, s). We hypothetically assume that a user is willing

to pay for the information service if the difference of average travel time between informed users

(τ iyt|x
) and uninformed users (τnyt|x

) is at least β. This condition is presented below:

min{τ iyt|x
+ β, τnyt|x

} ≥ τ∗yt|x
≥ 0 (C.14)

dirs,t|x(τ iyt|x
+ β − τ∗yt|x

) ≤ 0 (C.15)

dnrs,t|x(τnyt|x
− τ∗yt|x

) ≤ 0 (C.16)

for all t ∈ T, x ∈ X, given the O-D pair (r, s). In this paper, Eqs. (C.15) and (C.16) are also called

the conditions of equilibrium service choice, and τ∗yt|x
is the equilibrium service cost.

2.3 The overall model

We propose the following model for the mixed-user DTA problem as follows:

Objective: maxF =
∑

x∈X
∑

t∈T
∑

a∈Υ−s
ρx(T + 1− t)(f ias,t|x + fnas,t|x)

s.t. Constraints Eqs. (C.1) - (C.16).
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1 Introduction

Many cities and urban areas already suffer under large amounts of traffic and congestion. Moreover,

the growing e-commerce and the increasing population in cities further challenge the network.

Therefore, under the name City Logistics, new concepts and business models are developed [1, 5].

Especially the concept of Two-Tier City Logistics Systems found a lot of attention recently [3]. One

main idea in these systems is the use of environmental-friendly vehicles for the last mile delivery.

One option for such an environmental friendly vehicle is the cargo bike. Recent studies showed

that more and more companies are developing new cargo bikes and also that cities and delivery

services are considering cargo bikes as an alternative for delivery [6]. But even if the transportation

mode is changed from a diesel truck or van to a cargo bike, the problem still remains a Vehicle

Routing Problem (VRP). While in the classical formulations, the travel time between two nodes is

assumed to be constant, the travel times in the time-dependent VRP depend on the actual travel

time if you want to reflect the different travel speeds and effects on emissions over the day [4].

To the best of our knowledge, all models assume a travel time that is independent of the vehicle

load. So far, only load-dependent costs and emissions are considered in VRPs (e.g., [2]). Since the

VRP is mostly used for scheduling trucks or delivery vans, the effect of the load on the speed is

also negligible. Even for electric vehicles, the weight of the load takes only a small share in the

total weight. However, when using cargo bikes for the final distribution of goods, the weight of the

load is an important factor.

Therefore, we introduce the Vehicle Routing Problem with Load-Dependent Travel Times (VR-

PLDTT). As opposed to the classical VRP, we consider travel times that depend on the load of



the vehicle. We show how to calculate the possible speed depending on the weight and the slope of

a street. Further, we formally define the VRPLDTT and introduce a new mixed-integer program-

ming formulation. We define a new set of instances for the new problem setting, which is based on

real cities. In an extensive numerical study, the importance of considering load-dependent travel

times and influencing factors is shown.

2 Mathematical formulation

The VRPLDTT is defined on a graph G = (N,A) with the set of customers N0 = {1, . . . , n}, the

depot 0 (N = N0 ∪ {0}), and the set of arcs A. Each customer has a service time si, a demand qi,

and a time window [ai, bi]. dij defines the distance matrix and Q is the vehicle capacity.

The goal of our model is to minimize the total travel time of the bikers. The binary decision

variable xij equals 1 if a vehicle drives on arc (i, j), and 0 otherwise. The continuous decision

variable fij defines the load of the vehicle that is transported between node i and j. The arrival

time at customer i ∈ N0 is given by the continuous decision variable yi and the number of vehicles

leaving the depot by the positive integer variable is K.

Similar to the idea of speed levels as introduced by [2], we define a set of load levels L =

{1, . . . , l, . . .}. Each load level corresponds to a load interval [pl, rl] with p1 = 0 and r|L| = Q.

Using this definition, we define the travel time in each interval l ∈ L based on the average weight

(pl + rl)/2 and the characteristics of the road segment (i.e., slope) as tlij . The binary decision

variable zlij equals 1 if the travel time tlij is used on arc (i, j) and 0 if not.

Using the introduced notation and decision variables, the problem is formulated as follows:

min
∑

(i,j)∈A

∑
l∈L

tlijz
l
ij (1)

subject to ∑
j∈N

x0j = K (2)

∑
j∈N

xij = 1 ∀i ∈ N0 (3)

∑
i∈N

xij = 1 ∀j ∈ N0 (4)

∑
j∈N

fji −
∑
i∈N

fij = qi ∀i ∈ N0 (5)

qjxij ≤ fij ≤ (Q− qi)xij ∀(i, j) ∈ A (6)

yi − yj + si +
∑
l∈L

tlijz
l
ij ≤Mij(1− xij) ∀i ∈ N, j ∈ N0, i 6= j (7)

ai ≤ yi ≤ bi ∀i ∈ N0 (8)



∑
l∈L

zlij = xij ∀(i, j) ∈ A (9)

∑
l∈L

plzlij ≤ fij ≤
∑
l∈L

rlzlij ∀(i, j) ∈ A (10)

xij ∈ {0, 1} ∀(i, j) ∈ A (11)

fij ≥ 0 ∀(i, j) ∈ A (12)

zlij ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L (13)

K ∈ N0 (14)

The objective function is to minimize the total travel time. Constraint (2) ensures that K vehicles

leave the depot. Constraints (3) and (4) ensure that each customer is visited exactly once. The flow

balance constraints (5) guarantee that each customer demand is satisfied and the vehicle load is

decreased after each customer visit. The vehicle capacity is ensured by constraints (6). Constraints

(7) update the visiting times at each customer and together with constraints (8) ensure that the

time windows are met. Constraints (9) state that a travel time level is only selected if a vehicle uses

the arc. Since (9) further ensures that exactly one travel time level is selected for each traversed

arc, constraints (10) guarantee that only the travel speed level that corresponds to the load weight

is selected.

3 Load-dependent travel times

The power consumption when riding an (electric) bike depends on many factors. We assume that

a cyclist drives on a straight line at constant speed in the considered segment. Then a cyclist has

to face four main forces: the air resistance FD, the rolling resistance FR, the gravity when climbing

up a hill FG, and the friction of the mechanical parts FF .

Besides physical constants and bike specific parameters, the power consumption depends on

the following variable parameters: the speed of the bike v, the total mass m (of bike, biker, and

cargo), and the slope of the street h. The total power is calculated as follows:

P = (FD(v) + FR(m,h) + FG(m,h) + FF )v (15)

The detailed calculations will be shown during the presentation.

4 Numerical results and conclusions

We used the cities of Fukuoka (Japan), Madrid (Spain), Pittsburgh (USA), Seattle (USA), and

Sydney (Australia) and placed a depot and 20 demand nodes in each city to generate a distance

matrix using Google Maps. Further, different demand scenarios were generated which finally

resulted in a total of 1,080 instances.



We analyze the effect of time windows and loading weight. We further show the benefits and

compare them to classical models from the literature.

The results show that ignoring load-dependent travel times can lead to infeasible solutions in

the presence of time windows. The consideration of load-dependent travel times can reduce the

travel times by up to 23%. The benefits are particularly high if weights are low and the time

windows are not too small, which reflects a typical last mile setting. The results show that a

fitter cyclist can not only reduce the average travel time but also the battery consumption; even

if the battery is the primary energy source. Moreover, the reduction of travel times comes with a

reduction of energy consumption. Therefore, the model can provide parcel delivery services with

more efficient options for routing. This is particularly important if you want to make the cargo

bike a competitive alternative for a greener last mile delivery.
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1 Background

Across the range from microscopic simulation to regional strategy, traffic modelling relies on many
assumptions about trip purpose, habitual behaviour, peak periods and scaling of impacts. Specifi-
cally, many analyses, such as strategic-level four-step models or cost-benefit assessment of a project
will focus on the morning peak period in order to capture the system at maximum demand and
simplify diversity of trip purpose and passenger demographic— modelling a complex and dynamic
system becomes feasible by focusing on morning commuters.

But commutes are a minority of trips [1], not all trips are habitual [2], and the peak period may
be too restrictive to accurately reflect the evolving labour ecosystem of shift work, flexible working
arrangements, hot-desking, remote work, etc. Concerns about these and other assumptions in
travel modelling have motivated the development of activity-based and dynamic approaches [3].

As new data becomes available, it is possible to validate the assumptions adopted in practice and
quantify the extent to which these assumptions distort the modelling results. Notably, transit smart
card data records habits and variations in travel longitudinally [4]. Furthermore, the importance
of the assumptions should be particularly striking for public transit because systems are often
optimised for a certain type of travel and traveller (habitual peak-period travel to and from the
central business district (CBD)).

This paper explores demand variability using transit smart card data. The aim is to identify
to what extent transit demand is influenced by predictable variation (time of day and day of week
patterns) versus other phenomena. Assumptions about regularity are helpful for modelling, but
they contribute to abstracting away variability and diversity in the system. This work quantifies the
prevalence of repetitive travel, establishes a link between demand variation and system performance
and explores the inter-dependencies between variation in public transport system components. In
light of the findings,the discussion considers how some aspects of how those assumptions might
contribute to misleading results at all modelling scales.

2 Repetitive travel on public transport

The following results are extracted from one month (April 2017) of transit smart card use in
New South Wales (NSW), Australia. Each observation consists of a tap-on-tap-off pair with an
anonymised card ID, date, time and location. The segments (defined by one tap-on and one tap-
off) are chained into trips. Segments belong to the same trip if the same card taps on to the
system within one hour of the previous tap-off. Repetition is defined when the same card ID
travels between the same origin and destination more than once irrespective of time of day. Figure



1 shows the regularity of trips made in the first week of April 2017. There are 1,816,706 repeated
trips. Over the same period, there are 2,110,525 unique cards being used.

Figure 1: While repetition is extremely common, most trips do not match the picture of a commuter
making the same journey five weekdays per week. Nearly half of all repeated trips only happen
twice per week.

Without exogenous knowledge of the trip purpose, we define commute trips as those that occur
more than three times in a week that start in the morning peak period (7-9am). For example, on
05 April 2017, there were 1,855,363 trips. 763,111 of these trips were repeated at least three times
that week. Only 259,357 repeated trips occur in the AM peak. A model based on repeated (more
than 3 times per week) trips occurring in the AM peak therefore captures only 13.9% of the daily
travel on the NSW public transport system.

3 The link between passenger volume and system perfor-
mance

Fluctuations in demand are expected. Figure 2 shows a pattern of predictable variations driven by
days of the week and holidays. The remaining variability (day-to-day variability) is on the order
of 100,000 trips per day. This variability is driven by diverse factors. For example, the comparison
between number of trips and number of system users in Fig 2 shows that fluctuations in trip
demand (important for an operational perspective) are influenced significantly by fluctuations in
participation (number of users) as well as some variability in the intensity of participation, which
explains why the number of trips and the number of users do not align perfectly.

Network operators can plan ahead for predictable variation though timetabling, route design
and transfer coordination. Day-to-day variability in demand causes accompanying variability in
the system performance. Figure 3 shows how the median travel time responds to changes in pas-
senger volume for four journeys. Each observation represents a single hour in the month of April
2017 and the median travel times for all users making that trip is recorded. The fit is done on the
weekday AM peak data (7-9am, a subset of the points shown) to control for timetable effects. All
four journeys show how performance (inverse travel time) is anti-correlated with demand.

For the bus journey from Neutral Bay to Freshwater in Sydney’s north, the longer travel times
associated with high demand reflect road congestion (in-vehicle travel time) as well as delays at
the transfer associated with bus bunching and crowding. The trip from Rozelle to Townhall has
no transfers. Since bus-riders only tap-on when they board, it is not possible to measure bus
bunching, schedule delay or crowding from this data.



Figure 2: Number of trips per day over three months showing predictable (weekends, holidays,
etc.) and unpredictable variations. The alternate vertical axis shows the variation in daily system
users, which imperfectly mimics the pattern in the trip volumes.

Train-riders tap when they enter the station, so their travel times include waiting time at the
origin as well as transfer points. Because train transfers do not require tap-off-tap-on, it is unknown
how many transfers occurred in a journey, although the ones shown here are likely to be direct
services. In contrast with Lidcombe, Strathfield is a major transfer station with roughly double
the demand to Central.
The trip from Lidcombe to Central highlights two attributes of the data. First, the single weekend
observation with a high travel time is likely to be misleading. Because a trip is defined as the
collection of segments where tap-on occurs within an hour of the previous tap-off, the trips that
comprise this datum might include multiple waypoints that distort the actual travel time. Second,
the segregation between weekend and weekday data highlights why the relationship is fit to weekday
AM peak— travel times are slower when train services are less frequent or make more stops as
they do on the weekend. The larger scatter in the weekend points also suggests a difference in
travel behaviour between peak commuters and weekend travellers. These features both support
the rationale of using simplifying modelling assumptions and illustrate their inaccuracies.

4 Proportionality and independence in variation between
modes

The phenomenon, shown for the bus journeys in Figure 3, that high passenger demands occur
during periods of general congestion on the road suggests that variation across modes is correlated–
the transport system as a whole varies, and its components vary proportionally. Transit smart card
data contains information on the day-to-day variations of routes and modes as well as patterns
in the types of users and their behaviours. Figure 4 shows how bus trips and train trips both
follow time of day and day of the week patterns but exhibit independent variation. If demand
in the transport system varied perfectly proportionally across the modes, the data in Figure 4b
would lie on the fitted line. However, observations from the first part of the day (light colours)
tend to have a lower than average fraction of train trips per hour whereas trains are slightly above
average in the second half of the day. Moving through the day, the data trace a hysteresis loop
on the plot. This dependency might be driven by behaviour associated with trip chaining (leisure
and shopping activities located in rail-served activity centres are more likely to take place after
work than before work). Day-to-day fluctuations in demand might also vary between train and
bus because of differences in the service. For example, discretionary bus-riders might be more
weather-sensitive than discretionary train-riders because bus stops tend to be more exposed than



(a) Bus trip from Neutral Bay to Freshwater with
a transfer in Manly.

(b) Bus trip from Rozelle to Town Hall with no
transfers.

(c) Train trip from Lidcombe to Central. (d) Train trip from Strathfield to Central.

Figure 3: Relationship between system performance and demand for different types of trips.

train stations. The complexities of the relationship between variations in the modes is removed
by common simplifications and assumptions in travel modelling, but it leads to inaccuracies as
fundamental as the ratio of train to bus demand.

5 Discussion

This work used transit smart card data to highlight nuances in variability in public transit demand.
This evidence highlights a weakness in many of the modelling tools used in transport decision-
making. Assessments of project benefits that rely on scaling of benefits from peak-period models or
assume that all travel behaviour follows a archetypal commute pattern are likely to underestimate
variability and undervalue a majority of trips. These weaknesses should be addressed to respond
to growing awareness of the value of reliability and to consider the value of public transport
more broadly. Due to the complexity of the transport system, simplifications are necessary to
effectively assess hypotheticals and contingencies. However, the rising availability of data now
makes it possible to quantify the likely impact of those assumptions and introduce more nuanced
approaches where it counts.

5.1 Regular trips as a driver of consistent performance

One aspect of demand variability for future consideration is the habitual nature of travel. Commute
trips are habit-driven and over-represented on public transit. 11.4% of all trips in the 2012-2013
New South Wales Household Travel Survey were on train or bus compared to 20.6% of work trips
and 27.2% of education or childcare trips [1]. However, peak-period trips that repeat more than



(a) Number of trips per hour for train and bus show-
ing the strong time of day and day of week pat-
terns discussed above. However, the patterns are not
strictly proportional.

(b) There are always more bus trips than train trips,
but the relationship varies during the day with bus
trips dominating in the morning and train trips in the
evening and at night. The displayed fit is Train =
0.15Bus + 236.20.

Figure 4: Proportionality, independence and hysteresis in the variation in demand for trains and
busses.

3 times per week account for less than half of all public transit trips (943,000/2,003,000 in the
first week of April). Transit smart card data give a more functional view into trip regularity by
identifying habitual trips regardless of purpose. Evidence of variation in regular trips will offer
insight into existing literature on habitual travel [7, 6], contact networks [2] and learning behaviours
such as after a home or work relocation [5, 8].
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The aim of the research is to observe if congestion charges and public information given to 

participants can improve efficiency of the transport system, by conducting a laboratory experiment on 

a modified Market Entry Game (MEG), which represents the traffic coordination problem. 

Specifically, we will use a laboratory experiment to examine whether a congestion pricing mechanism, 

or toll, could reduce congestion of a traffic network with two routes, to its socially optimal level. In 

particular, we are interested in exploring four empirical issues.  We intend to investigate: 1) whether a 

toll can reduce congestion, 2) whether there is a high variance in entry rates after implementing the 

toll, 3) whether the provision of public travel information before entry can reduce the variance level 

and improve efficiency, and 4) whether the group size of participants matters for entry decision. 

The interest in using economic experiments to address whether a congestion tax is necessary 

is that it allows researchers to disentangle the specific impact that each dimension of the problem has 

in determining a given outcome. Laboratory settings allow for a controlled environment, within which 

to conduct much cleaner social engineering experiments. This is paradoxically so, as data generated in 

an experimental setting are not affected by having to determine any causality relationships between 

variables of interest, and are akin to eliminating any endogeneity problems as opposed to data 

extracted from real world situations. A number of experiments have investigated route-choice, 

including: [1],[2], [3], [4], [5],[6] and [7]. 

In this experiment based on a MEG, and following [8] and [9], a two-route congestion game 

is used to emulate a tragedy of the commons. Specifically, the subjects will face a two-route choice 

scenario in a controlled environment. In particular, a group of N commuters will choose, 

simultaneously and independently, between two routes: a slow reliable route and a faster, but 



potentially congested route. Commuting time is fixed on the first route and is an increasing function of 

traffic on the second route. The average payoff an entrant benefits from is decrease in the number of 

entrants. This average payoff should be the same as the payoff from taking the slow reliable route. This 

equal-payoff equilibrium outcome is not socially optimal since entrants do not consider the effects of 

their own entry decisions on the other entrants. Therefore, the total payoffs with x entrants and N-x 

non-entrants is maximised when the marginal social benefit equals the marginal social cost. However, 

the variance of the entry rate also matters. This is so, because variance reduces welfare due to higher 

entry imposing external costs on more people, whereas fewer people get to enjoy any savings from 

lower entry. Therefore, we use a MEG to mimic the decision of choosing to either drive on a faster 

highway but at an additional cost, or endure possible congestion with no extra cost. 

We will have a number of sessions. Each session will take approximately 90 minutes, and no 

more than 120 minutes. Some sessions will have 12 participants and some others will have 24 to check 

for robustness with regards to the numbers. Each session will involve 20 rounds of decision-making 

tasks. In each round, participants decide whether to enter the market. In every round in which 

participants did not enter, they will collect a fixed amount of experimental currency units (ECUs), i.e., 

converted, at a pre-specified ratio, into cash at the end of the experiment. Whereas, in every round in 

which participants did enter, they will collect an amount of ECUs determined by the total number of 

who else also entered in that round, to be also converted at the same pre-specified ratio, into cash at the 

end of the experiment. In this alternative scenario, the amount of ECUs for entry decreases with the 

number of the entrants, whereas the amount of ECU for exit is kept fixed. Furthermore, in the first 10 

rounds, participants need not pay any fee to enter.  

This is done to collect information about how individual decisions whether to enter are 

affected by the introduction of a toll, for example. In the remaining 10 rounds, participants need to pay 

a fee that corresponds to the level of what an optimal user fee should be, from a theoretical standpoint. 

Once again, this is done to see how participants respond to differing fee levels, particularly when 

contrasting their behaviour in the presence of a fee that is not necessarily the optional one with that 

behaviour when the fee is set at its optimal level, instead. This exercise will provide us with valuable 

insights regarding the entry rate, that is, whether it reaches the optimal level at any particular level of 

entry fees.  

We also intend to vary the experimental sessions to allow for some treatments in which 

participants do not receive any of the collected fees, and other treatments in which instead such 

collected fees will be equally split among all participants, i.e., regardless of their idiosyncratic choices 

in the experimental session they participated in. The aim of such regime switch in the experimental 

setting is to see whether returning the collected fees to participants, a little like collected tolls on a 

road, could sponsor the provision of public goods providing participants with some form of rebate, 

would make them behave differently than when not returning such fees, thereby impacting differently 

on congestion.  

Several more treatments will concentrate on the scenario with non-simultaneous entry 

decisions. We will let participants decide when to enter or exit, that is potentially while we show in 

real-time what the entry decisions of any other participants were, just like in the rush hour traffic 

reports. We will also let the participants decide the fees themselves in some additional sessions. 

Specifically, participants will vote on the level of the entry fee every 10 rounds and will split the fees 



so collected. The purpose of this treatment is to check how close a voting process can be to an optimal 

or near-optimal fee levels. In theory, we expect to detect free-riding behaviour, of the kind associated 

with using roads as a public good. It would be interesting to see what the magnitude of such free-riding 

behaviour is in practice.  

Furthermore, we will increase the group size from 12 to 24, to see if the findings are robust to 

larger groups (i.e. 24 participants) where no individual participant has as high of a direct influence on 

the congestion level, than when interacting with relatively smaller size groups (i.e. 12 participants).  

Ultimately, at the end of each experiment, participants are asked to complete a questionnaire. 

The questionnaire involves a few demographic questions. Please see the attachment. Answers in the 

questionnaire are only meant to be used as control variables in our empirical analysis of the 

experimental data. It will only take 5 minutes to complete the questionnaire. Questionnaire will be 

printed on the paper and given to all participants at the end of the experiment.  

Participants will be recruited from the University of Auckland through the Online 

Recruitment System for Economic Experiments (ORSEE), created by [10]. This is a web-based online 

recruitment system that is specifically designed for organising economic experiments. That includes 

sending email invitations via the system directly to the pool of participants who already registered, 

envisaging their participation in some future experiments conducted at the University of Auckland. 

Details of the system can also be found at www.orsee.org. Specifically, the ORSEE system allows to 

draw from a pool of 2,000+ students from all subjects, levels and faculties at the University of 

Auckland, and who voluntarily signed up to receive invitations to take part in various experiments held 

by researchers based at the University of Auckland. Participants in the experiments are invited through 

the system, by means of an e-invite. We provide a sample of such e-invite to this application, for 

further consideration. Following an invitation, those who are willing to take part in the lab experiments 

will be able to do so, by attending any of the scheduled experimental sessions they receive an 

invitation to. The experimental sessions are to be conducted at the Laboratory for Business Decision 

Making (DECIDE) at the University of Auckland Business School. We will use z-Tree by [11] to 

conduct computerised decision-making experiments. This is a widely used software package for 

developing and carrying out economic experiments. Details of the software can be found at 

www.ztree.uzh.ch. To keep the experiment unbiased, we will use a neutral environment rather than 

explicitly mentioning transportation, fuel tax or congestion price. All participants who are willing to 

take part in the lab experiments have to attend the experiment by person. 

In conclusion, although it is quite natural to expect that congestion taxes will decrease the 

number of travellers, thereby increasing social welfare, and that the variance in entry rates will be high, 

quantifying those effects. Helping calibrate how varying levels of the tax and the precision of the 

information available to travellers remain of extreme importance. The significance of our results would 

be manifold. They would provide the necessary and scientifically based evidence to assist 

urban/transport planners and policymakers to gain a better understanding of how pricing schemes, and 

the provision of public travel information, will influence commuters’ route-choice behaviour in New 

Zealand. The laboratory experiments will also offer a cost-effective way to identify market and policy 

drawbacks before any legislative changes. 

 

 

http://www.ztree.uzh.ch/
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Abstract

Analytical BusPlus is a framework for solving a multi-modal public tranportation network design

problem using Benders Decomposition [Benders, 1962]. It incorporates state-of-the-art techniques

for enhancing Benders and uses a novel technique to solve the Benders sub-problem. Our main

contribution is a method to derive Pareto-optimal Benders cuts using an analytical procedure

inside a branch-and-cut scheme.

Canberra is a planned city designed by American architect Walter Gri�n in 1913. It features

a large number of semi-autonomous towns separated by greenbelts. As a result, Canberra covers

a wide geographic area, which makes public transportation particularly challenging. Bus routes

are long and hence bus frequencies, and patronage, are low, especially during o�-peak periods.

To address these limitations, the BusPlus project designed, optimised, and simulated a Hub and

Shuttle Public Transit System (HSPTS). The Hub and Shuttle model consists of a combination of

a few high-frequency bus routes between key hubs and a large number of shuttles (or multi-hire

taxis) that bring passengers from their origin to the closest hub and take them from their last bus

stop to their destination.

A preliminary study for this project was conducted in Mahéo et al. [2017], by the �rst author.

The study focused on designing a Hub-and-Shuttle Public Transit System, which is the problem

of choosing a set of bus legs between pre-selected hubs in the city in order to minimise operation

cost and maximise service convenience. The study presented a number of problem-speci�c pre-

processing steps, then showed the advantage of using a Benders decomposition approach. In the

study, the Benders decomposition was augmented using: a Pareto-optimal sub-problem, de�ned

in Magnanti and Wong [1981], with a core point update policy from Papadakos [2008], and cut

bundling using the problem structure [Birge and Louveaux, 1988]. We propose to extend the

previous work by using an analytical framework to derive Pareto-optimal Benders cuts from the

solution of the sub-problem and embed the cut generation process in a branch-and-cut framework.

The problem of linking a set of hubs using arcs is called the Hub-Arc Location Problem (HALP),



or hub-and-spoke network design problem. It was introduced by Campbell et al. [2005a,b] and is

de�ned as the problem of locating a number of hub arcs in such a way that the total �ow cost is

minimised. As such, it is closely related to the well-known Hub Location Problem [O'Kelly, 1986].

The HALP is mostly used in transshipment contexts where economies of scale can be expected

by grouping �ows. Our formulation is very similar to Model HAL4 but we relax one important

restriction: it is not necessary for paths to contain a hub-arc.

We modelled the HSPTS design problem as an Hub-Arc Location Problem. In the following,

we use shuttles and taxis interchangeably, since the shuttles in our case study are multi-hire taxis,

which are available in large numbers in Canberra. Bus routes can be opened for a �xed cost which

represents the cost of operating high-frequency buses along the arc. The aim is to select among

a number of hubs those that will form circular routes for buses. All other stops are reserved for

shuttles. The objective is to minimise the cost of operating the system � i.e., the �xed cost of

operating the bus lines and the variable cost for each taxi trip, together with maximising the

convenience for the travellers. We use the trip duration as a proxy for traveller convenience in the

model.

In the HSPTS, opening a bus leg is tantamount to opening an arc with a discounted �ow. Thus,

the HSPTS can be seen as a two-level decision problem: deciding which arcs to open �rst and then

how to route the �ow at minimum cost. As such, its structure appears ideally suited for Benders

decomposition.

Our dataset represents a month's worth of trips in Canberra using the current public transit

network. On average, weekdays have over 21,000 trips with around 60,000 passengers. The current

bus network comprises about 2,800 bus stops, located on 94 bus lines. Each trip has an origin and

a destination and a number of passengers. A time and distance matrix gives the on-road distance

and average travel time between each pair of nodes, it is asymmetric and respects the triangle

inequality. Finally, we have access to a pre-selected set of stops to base the bus network on.

Network problems are known to be highly degenerate. When modelling a network problem

as a linear program, such as the sub-problem in BusPlus, this means its dual will admit many

equivalent solutions. Because Benders relies on linear duality to generate cuts, we have to decide

which dual solution to use. To enable an e�cient choice Magnanti and Wong [1981] developed a

procedure to generate �Pareto-optimal cuts.� To derive such cuts, they propose solving two linear

programs: the original sub-problem and a modi�ed problem called a �Pareto sub-problem.� We

demonstrate how to derive dual costs from the primal solution of the Benders sub-problem in

BusPlus and then prove these dual costs allow us to generate Pareto-optimal Benders cuts.

In general, for computing Benders cuts, we rely on a linear solver. In the case where we want

to have Pareto-optimal cuts, this means solving two linear programs, which is computationally

expensive. In BusPlus, the sub-problem is a shortest path. This problem can be solved to



optimality by dedicated algorithms faster than by using a general purpose linear solver. We propose

an analytical framework to derive Benders cuts from the primal solution of our sub-problem.

Our idea to generate dual costs is to use their natural interpretation. This means that from

the primal solution we should be able to derive the dual costs. At each Benders iteration, for each

trip, we want to �nd the shortest path on the graph composed of:

� the union of the trip's origin and destination nodes with the potential hubs;

� the arcs selected at the current master iteration.

A summary of the interpretation of the dual costs associated with the nodes and arcs is as

follows:

� For each node in the graph, the dual cost represents the potential savings achievable by going

through the node.

� For each edge of the graph, which includes the closed arcs, the cost associated with an arc

represents the potential savings incurred by opening the corresponding bus leg.

We provide results of three di�erent setups: modeling and solving the HSPTS as a single MIP;

solving the HSPTS using a tailored Benders decomposition; and, solving the HSPTS using our

analytical Benders framework.
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1 Introduction 
 

Despite a large body of literature on the conventional network design models, very few work dealt 

with the network design problem for optimizing the High-Occupancy Toll (HOT) lanes, e.g. [1]. This 

study proposed a new activity-based approach for the captioned network design problem to investigate 

whether HOT lanes should be retrofitted into existing road links. The study hypothesizes that High-

Occupancy Vehicles (HOVs) result from the joint travel of members within the same household. The 

motivation of intra-household joint travel is that household members often perform their daily 

activities and travel jointly with others [2, 3], often derived from household resource scarcities, such as 

vehicle allocation, and/or social, psychological and economic benefits [4].  

The HOT optimization problem is formulated as a bi-level mathematical programing with 

equilibrium constraints (MPEC). The upper-level decision variables are related to whether HOT lanes 

are retrofitted into candidate road links and how much toll should be charged for Single-Occupancy 

Vehicles (SOVs). The lower-level decision variables are used to solved the household daily activity-

based network equilibrium problem. Intuitively, the above bi-level problem is a mixed-integer 

optimization problem. Fortunately, it can be relaxed as a continuous problem by considering only 

continuous toll variables at the upper level. Then, a zero link toll for SOVs indicates no retrofit is 

necessary for the link, otherwise the retrofit is needed. It is also assumed that the budget for retrofitting 

HOT lanes into exisitng road links is negligible. 

The new approach is based on the development of a new daily household activity-based 

network equilibrium model at the lower level, which takes into account the joint activity-travel 

scheduling behavior of household members. Household daily activity and travel choices are 

simultaneously represented by a joint activity-travel path (JATP) choice on a joint-time-space (JTS) 

supernetwork representation. The lower-level model is formulated as an equivalent variational 

inequality (VI) problem and solved by a heuristic solution method without the need to enumerate the 

feasible JATP choice set in advance. 

 

2 Model formulation 

2.1 Multi-lanes road network 

Consider a road network ( , )B S A  where S  is the set of nodes and A  is the set of links. A node

s S  can be a zone centroid or activity location. A link a A  represents lanes on a directed road link.  

Let 1A  and 2A , where 1 2A A A  , denote of the sets of links representing General-Purpose (GP) and 
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HOT lanes, respectively. Let K  be a finite set of discretized time intervals K . It is assumed that 

HOVs can travel on any lanes without toll while SOVs can only use HOT lanes with a toll. Let y  be a 

toll vector, i.e. 2{ ( ) : , }ay k a A k K  y  where ( )ay k  is the toll on link a  at interval k . Then if 

( ) 0ay k   indicates no HOT lane retrofit is necessary on link a  at interval k , otherwise retrofit is 

needed. 

Let J  be the set of activities, such as at-home activities, work, waiting for pick-up and drop-

off. Let H  denote the set of household classes. For each household h H , let hI  denote the set of 

household members, and hZ   the set of all subsets of hI  including hI  itself but not the empty set. 

Then hz Z  represents a group of persons of household h . Let hQ  denote the set of feasible JATPs 

for household h H , and rsP  the set of feasible paths from location r S  to location s S , which 

includes the sequence of links, i.e. either GP or HOT lanes, connecting r  and s . 

2.2 Joint activity-travel path 

The concept of  joint activity-travel path (JATP),  suggested by [5], is adopted in this study to represent 

daily household activity and travel choices. A JATP choice is a set of interrelated decisions including 

(i) the trip chain and the car allocation for each member in the household, (ii) the activity location, start 

time, activity duration, and participating household members in each activity in the trip chain, and (iii) 

the path, departure time, travel time, and participating household members in each trip between two 

activity locations. 

The daily (net) utility for household h  using JATP q , denoted by h
qU , is expressed as the 

difference between the total utility of daily activities participated in and the total disutility of daily 

travel of the household. That is, 

 ( ) ( ) ( ) ( ), , ,h hz hzq hz hzq
q js js prs prs

k j s z k r s p z

U U k k disU k k q h       (1) 

where ( )hz
jsU k  is the utility for  group z  of household h  performing activity j  at location s  during 

interval k , ( )hz
prsdisU k  is the disutility for group z  of household h  entering path p  from r  to s  at 

interval k , ( )hzq
js k  equals 1 if group z  of household h  using JATP q  performing activity j  at 

location s  during interval k  and 0  otherwise, and ( )hzq
prs k   equals 1 if group z  of household h  

using JATP q  entering path p  from r  to s  at interval k  and 0  otherwise.  

Note that in Eq. (1) group  z  of household h  performs joint activity/travel if | | 1hzI   and 

solo activity/travel otherwise, where | |hzI  is the number of persons in group z  of household h . Then 

| | 1hzI   indicates the travel with a HOV and otherwise a SOV. 

2.3 Household dail activity-based network equilibirum 

Household members make activity-travel decisions to maximize household daily net utility. This leads 

to an equilibrium state at which no household can improve its daily utility by unilaterally changing its 

JATP choice to any other feasible one. The equilibrium condition is equivalent to the solution to the 

finite-dimensional variational inequality (VI) problem given by: finding a vector * f  such that  



 

3 
 

* *( , ) ( ) 0, ,h h h
q q q

h q

U f f      f y f       (2) 

where h
qf  is the number of households with class h  using JATP q , f  is a vector of feasible JATP 

flows, i.e.  ( ) : , 0, ,h h h h h
q q qq

f f F f q Q h H    f , and   the feasible region for feasible 

JATP flows  at equilibrium, and hF  is the number of households with class h . 

2.4 HOT lanes optimization problem 

The HOT lanes optimization problem can be represented as a leader-follower, or Stackelberg game, 

where the HOT optimization is the leader, and household JATP equilibrium choices are the followers. 

Because building HOT lanes may reduce the number of SOVs but not the congestion level [6], the 

adopted objective function for the leader in this study is to minimize the total vehicle travel time 

instead of increasing car occupancies in the system. Then the interaction game can be represented as 

the following bi-level programming problem: finding a toll vector * nRy , 2| | | |n A K  , and a flow 

vector * f  such that  

* *
,( , ) arg min ( , ) ( )a a

k a

t k u k y fy f f        (3) 

subject to (2) and ( ) , ,a au k C a k  , where ( , )at k f  is the travel time (in intervals) on link a  at 

interval k  under f , ( )au k  is the vehicular flow entering link a  at time interval k , and aC  is the 

capacity of link a  (in vehicles/interval). The link inflow is derived by 

,

( ) ( ) ( ) , ,h hz rs
a q prs apk

k h q z r s a p k k

u k f k k a k 


   

 where ( )rs
apk k   equals 1 if vehicular flow entering path p  from r  to s  at interval 'k  arrives link a  

at interval k  and 0  otherwise. 

 

3 Solution method 
 

At the lower level, the VI problem (2) for the followers requires an explicit enumeration of feasible 

JATPs in advance. To avoid the need for enumerating feasible JATPs, a JTS supernetwork 

representation first is proposed such that a path in the supernetwork represents a feasible JATP. Thus 

the problem for searching the maximum utility JATP is transformed to a conventional path-finding 

problem in the supernetwork, which can be efficiently solved. Such a path-finding problem is 

integrated into the column generation procedure of the VI problem. A diagonalization method, based 

on the methods used in [7, 8], is then proposed to solved the VI problem. At the upper level, the 

continues HOT optimization problem is formulated as a mathematical programming with equilibrium 

constraint (MPEC), which can be efficiently solved by [9]. 

 

4 Discussion 
 

Compared to trip-based approaches, such as [1], the two desirable features of our proposed activity-

based approach at the lower level are (i) simultaneously considering of household activity and travel 
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choices when endogenously estimating car occupancies in the context of time-varying and network-

wide congestion; and (ii) consistently modeling the number of persons in each car trip by the time of 

day to better reflect various levels of car occupancies and their impacts on travel cost and network 

performance. The above features facilitate the application of proposed model for a robust estimation of 

car occupancies and better evaluation of the ridesharing performance for the implementation of HOT 

lanes in practice. 
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1 Introduction

In this work, we consider the standard Capacitated Location-Routing Problem (LRP), which is

defined on a weighted undirected graph G = (I ∪J,E∪F ). Vertices in I represent a set of possible

depot locations, J denotes a set of customers. Edges E = J × J and F = I × J represent cheapest

paths, with costs c : E ∪ F → R+, between pairs of vertices. Additionally, we associate capacities

W : I → N+ and opening costs f : I → R+ with depots, and demands d : J → N+ with each

customer. There are identical vehicles with integer capacity Q. In this context, a route is an

elementary cycle in G containing exactly one depot in I and a subset of the customers J . A LRP

feasible solution is a set of routes such that: (i) each customer belongs to exactly one route; (ii) the

sum of the demands of the customers in a route does not exceed Q; (iii) the sum of the demands

of the customers in all routes associated to depot i ∈ I does not exceed Wi. The goal is to find

a feasible solution that minimizes the total route cost, the sum of the costs of the edges in each

route, plus the opening costs of the depots used in the solution.

As observed by Contardo et al. [4], the LRP generalizes two important NP-hard problems:

the Capacitated Vehicle Routing Problem (CVRP) and the Capacitated Facility Location Problem

(CFLP). In fact, the integration of two levels of decisions, i.e., location and routing, makes LRP an

interesting model for several practical applications, from the design of telecommunications networks

to the operation of very competitive supply chains. As already shown by Salhi and Rand [3], the



integration of location and routing decisions may lead to significant savings. We indicate Schneider

and Drexl [6] as a recent survey on LRP.

2 Formulation with an exponential number of variables

Let Ωi be the set of all routes associated with depot i ∈ I that respect the capacity Q. For a set

K ⊆ I, define Ω(K) as ∪i∈KΩi. Denote Ω(I) simply by Ω. For every i ∈ I, let yi be a binary

variable equal to 1 iff the depot i is opened. For every edge (i, j) ∈ F , let zij be a binary variable

equal to 1 iff the customer j is served by depot i. Given ω ∈ Ω, let aωe ∈ N be a coefficient

indicating how many times edge e ∈ E ∪ F is traversed by the route ω. If a route ω from depot i

visits a single customer j, then aωij = 2. For routes with two or more customers, aωe ∈ {0, 1}, for

e ∈ ω. Finally, let λω be a binary variable equal to 1 iff the route ω is used in the solution. Then

the LRP can be formulated as

min
∑
ω∈Ω

( ∑
e∈E∪F

cea
ω
e

)
λω +

∑
i∈I

fiyi (1)

subject to
∑
i∈I

zij = 1 ∀ j ∈ J, (2)

∑
ω∈Ωi

∑
e∈δ(j)

aωe λω = 2zij , ∀ i ∈ I, j ∈ J, (3)

zij ≤ yi ∀ i ∈ I, j ∈ J, (4)∑
j∈J

djzij ≤Wiyi ∀ i ∈ I, (5)

together with non-negativity and integrality constraints for all variables. Constraints (2) guarantee

that every customer is served by exactly one depot. Constraints (3) are the degree constraints for

customer nodes assuring that, if the customer j is served by depot i, then there must exist a route

leaving depot i and passing through customer j. Constraints (4) imply that a customer can only

be serviced by an opened depot and constraints (5) guarantee that the total demand supplied by

the depot does not exceed its capacity.

For every e ∈ E ∪ F and every i ∈ I, let xie be an additional integer variable counting how

many times e is used by a route from depot i used in the solution. Variables x and λ are linked

by the following identities:

xie =
∑
ω∈Ωi

aωe λω, ∀ e ∈ E ∪ F, ∀i ∈ I. (6)

The integrality constraints on λ variables can be replaced by integrality constraints on x variables.



3 Valid inequalities

For a set S ⊆ J , define d(S) as
∑
j∈S dj . For a route ω ∈ Ω, d(ω) denotes the sum of the demands

of customers visited by ω. For a set K ⊆ I, define W (K) as
∑
i∈KWi. The following family of

inequalities can be obtained from the fact that capacity of the opened depots must be large enough

to accommodate the whole demand. Define ȳi = 1− yi, for i ∈ I. Inequality
∑
i∈IWiyi ≥ d(J) is

clearly valid and is equivalent to: ∑
i∈I

Wiȳi ≤W (I)− d(J). (7)

While (7) is redundant, the Covering Inequalities for the binary knapsack polytope defined by it

are not redundant. These inequalities can be written as∑
i∈C

(1− yi) ≤ |C| − 1, ∀ C ⊆ I : W (C) > W (I)− d(J). (8)

Additionally, we introduce a new family of valid inequalities. Let θqi ∈ N be a variable indicating

how many routes with a total load of exactly q units leave depot i. Denoting Ωqi = {ω ∈ Ωi : d(ω) =

q}, then variable θqi can be expressed as θqi =
∑
ω∈Ωq

i
λω. The following inequalities are valid for

the LRP:
Q∑
q=1

qθqi ≤Wiyi, ∀ i ∈ I. (9)

While those inequalities are redundant, they define integer knapsack polyhedra and can be used

as source of violated cuts, that we call Route Load Knapsack. Those cuts were separated using the

procedure proposed by Chopra et al. [2].

4 Algorithm and results

We have extended the Branch-and-Cut-and-Price Algorithm of Sadykov et al. [5] to solve formu-

lation (1)–(5) reinforced by (8) and by the Route Load Knapsack derived from (9). The algorithm

employs a number of techniques proved to be effective for solving classic Vehicle Routing Problems:

ng-route relaxation, automatic dual price smoothing stabilization and enumeration of elementary

routes. The branching here is performed on variables y, z and x. Multi-phase strong branching

is used to select the candidate for branching. Additionally we separate Rounded Capacity Cuts

and limited-memory set packing Rank-1 cuts. The bucket graph based labeling algorithm is used

to solve the pricing problem and generate feasible routes. The new cutting planes we propose are

non-robust, i.e. the labeling algorithm has been appropriately modified to take them into account.

Preliminary results showed that our algorithm could solve to optimality, for the first time,

12 open instances of the most difficult classes F2 and F4. These instances, containing up to 200

customers and 10 depot locations, could not be solved by the state-of-the-art approach by Contardo



et al. [4]. The only remaining open instance for class F2 is now 200-10-3b. In the table below we

present the running times of the algorithm. The underlined optimum solution values improve the

best known solutions from Schneider and Löffler [7].

Instance Init. UB Optimum Time Instance Init. UB Optimum Time

100x5-1b 213570 213568 10m05s 200x10-1b 375180 375177 1h55m

100x10-1a 287670 287661 1h32m 200x10-2a 448080 448005 4h45m

100x10-1b 231000 230989 1h38m 200x10-2b 373700 373696 5h53m

100x10-3a 250890 250882 1h17m P113112 1239.00 1238.24 2h29m

100x10-3b 203120 203114 11h01m P131112 1893.00 1892.17 36m52s

200x10-1a 474860 474702 20m42s P131212 1961.00 1960.02 34m59s

It should be noted that existing exact approaches for the LRP are based on enumeration of

subsets of open depots and thus impractical for instances with more than 10 depot locations. Our

algorithm is free of this drawback. It has already solved to optimality some instances of class F4

with 20 depot locations. No exact approach has been devised in the literature for such instances.
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1 Introduction 

Fully-autonomous vehicles (AVs) and shared autonomous mobility services (SAMSs) are expected to 

offer considerable cost advantages over existing driver-operated non-fixed-route mobility services (e.g. 

taxi, paratransit, demand-responsive transit), thus providing transit agencies the opportunity to redesign 

their entire service regions and service networks. This study is predicated on the premise that significant 

opportunity may exist for providing (or subsidizing/contracting third party) SAMSs in lieu of low-

frequency transit service in low-density regions of a metropolitan area, redirecting resources towards high-

frequency, high-quality rapid transit services, resulting in a win-win situation for transit agencies and transit 

users.  

To test this premise, this study introduces the joint transit network (re)design and SAMS fleet size  

determination problem; presents a bi-level mathematical programming formulation; and outlines a solution 

approach for the bi-level mathematical program. This study models the upper-level problem via adapting a 

transit network frequency setting problem (TNFSP) formulation. The TNFSP formulation is adapted in this 

study to (1) allow possible removal of transit service patterns, and (2) incorporate the utility of SAMS users 

into the objective function. The lower-level problem is an integrated mode choice-traveler assignment 

problem that takes the SAMS fleet size and transit pattern frequencies as input and returns mode- and 

pattern-specific demand. The formulation for the lower-level problem is a gap-based fixed-point 

equilibrium formulation. Both the upper-level and the lower-level problems are analytically intractable; 

hence, this study develops and demonstrates an effective heuristic solution approach for large-scale network 

applications.  

Features of the modeling framework presented in this paper include (i) capturing congestion (boarding 

rejections and seat/standing space availability) and transfers in the transit network; (ii) incorporating three 

transit modes: transit-only, SAMS-only, and transit-SAMS; (iii) extending the concept of route patterns 

first used in the TNFSP by (Verbas and Mahmassani, 2013) to include the frequency setting of limited-stop 

lines; (iv) considering spatial and temporal heterogeneity of demand in the lower level, while upper-level 

takes the demand supplied by the lower-level; (v) quantifying the response of modal shares due to the 

service changes. 

Route patterns are subsets of ordered stops for a certain route and dispatch time. The application in 

TNFSP of this concept is extended by including all existing patterns of a route throughout the year as a 

potential pattern for each time interval, so that limited-stop lines are considered before the decision to fully 

eliminate a route. This extension provides a more complete analysis, with a larger feasible set of patterns. 

Direct benefits of limited-stop lines are higher likelihood of meeting demands and expected operator 

savings from shorter cycle times, as well as improvements in the level of service from the user’s perspective 

because of reduced travel times (Ibarra-Rojas et al., 2015). 

Few studies have included limited-stop lines in the TNFSP (Afanasiev and Liberman, 1983; 

Chiraphadhanakul and Barnhart, 2013; Freyss et al., 2013; Leiva et al., 2010; Ulusoy et al., 2011). 

Additionally, this work captures urban modal split response to the frequency setting of route patterns 

(including of limited-stop lines) using simulation, as part of the integrated mode choice and transit 

assignment-simulation modeling framework to support joint transit-SAMS service planning. 



2 Modeling Framework 

The joint transit network redesign and SAMS fleet size problem is modeled as a bi-level mathematical 

program. The generic formulation of a bi-level mathematical program is presented in Equations (1-2).  

Upper Problem: min
𝑥

𝐹[𝑥, 𝑦] ;  𝐺[𝑥, 𝑦] ≤ 0 (1) 

Lower Problem: min
𝑦

𝑓[𝑥, 𝑦] ;  𝑔[𝑥, 𝑦] ≤ 0 (2) 

𝐹[∙]: objective function of the upper-level decision makers 

𝑥: decision vector for the upper-level decision makers 

𝐺[∙]: constraint set of the upper-level decision vector 

𝑓[∙]: objective function of the lower-level decision makers 

𝑦: decision vector for the lower-level decision makers 

𝑔[∙]: Constraint set of the lower-level decision vector 

𝑦 = 𝑦(𝑥) is typically referred to as the reaction or response function. The key to solving the bi-level 

programming model is to obtain the response function from the lower-level problem. Then the variable 𝑦 

in the upper-level problem can be replaced with the relationship between 𝑦 and 𝑥 (Sun et al., 2008). 

The bi-level mathematical program can be seen as a Stackelberg game in which the leader is the transit-

SAMS designer, and the followers are the travelers. In this study, the transit-SAMS designer sets the transit 

pattern frequencies (𝑓𝑝), and the SAMS fleet size (𝑆) with knowledge of how travelers will respond to a 

given design. Given the transit-SAMS design, travelers choose their modes and routes. The objective of the 

transit-SAMS designer is to maximize the utility of all travelers, whereas the objective of an individual 

traveler is to maximize their own utility.  

The demand for each pattern and the SAMS mode is fixed in the upper-level problem and determined 

in the lower-level problem. The upper-level model determines the transit pattern frequencies, and the SAMS 

fleet size. This information is fed into the lower level problem which is an integrated mode choice-traveler 

assignment problem. The lower level problem returns the mode- and pattern-dependent demand/flow 

information to the upper level problem. 

3 Mathematical Formulation 

3.1 Upper-Level Formulation 

Let 𝑝 denote a pattern in the set of transit route patterns (𝑃), wherein 𝑃𝑏 denotes the subset of bus transit 

patterns, and 𝑃𝑟 the subset of rail transit patterns. Let 𝑙𝑝 be the length and 𝑑𝑝 the dispatch time interval of 

pattern 𝑝 ∈ 𝑃. The dispatch time interval (𝑑𝑝) is a member of the set of time intervals 𝑇, indexed by 𝑡 ∈ 𝑇. 

The lower-level problem determines the demand for each pattern 𝑒𝑝 and the demand for the SAMS mode 

during time interval 𝑡 ∈ 𝑇, 𝑒𝐴𝑉
𝑡 . 

The transit-SAMS designer aims to maximize the utility of all travelers, subject to a budget Γ. The 

designer can set the pattern frequencies 𝑓𝑝; determine whether to remove a pattern (𝑦𝑝 = 1) or keep a pattern 

(𝑥𝑝 = 1); and set the SAMS fleet size 𝑆. The upper-level problem formulation is presented in Equations 

(3-11). 



min
𝑓,𝑥,𝑦,𝑆

∑
𝑥𝑝𝑒𝑝

2𝑓𝑝
𝑝∈𝑃

+ ∑ ∑ (𝑦𝑝𝑒𝑝 + 𝑒𝐴𝑉
𝑡 ) × 𝑤𝑜 (1 + 𝛼 (

𝑦𝑝𝑒𝑝 + 𝑒𝐴𝑉
𝑡

𝑟𝑠𝑆
)

𝛽

)

{𝑝∈𝑃𝑏|𝑑𝑝=𝑡}𝑡∈𝑇

  (3) 

∑ 𝑦𝑝𝑒𝑝

{𝑝∈𝑃𝑏|𝑑𝑝=𝑡}

+ 𝑒𝐴𝑉
𝑡 ≤ 𝑟𝑠𝑆 × (1 + γ) 

∀𝑡 ∈ 𝑇 (4) 

𝑐2 ∑ 𝑓𝑝𝑙𝑝

𝑝

− 𝑐2 ∑ 𝑦𝑝𝑓𝑚𝑖𝑛𝑙𝑝

𝑝

+ 𝑐3𝑆 ≤ Γ  (5) 

𝑥𝑝𝑓𝑚𝑖𝑛 < 𝑓𝑝 ∀𝑝 ∈ 𝑃 (6) 

𝑥𝑝 + 𝑦𝑝 = 1 ∀𝑝 ∈ 𝑃 (7) 

𝑓𝑝 ≥ 𝑓𝑚𝑖𝑛 ∀𝑝 ∈ 𝑃 (8) 

𝑥𝑝 = 1 ∀𝑝 ∈ 𝑃𝑟 (9) 

𝑆 ≥ 0  (10) 

𝑥𝑝, 𝑦𝑝 ∈ {0,1} ∀𝑝 ∈ 𝑃 (11) 

where, 𝑤𝑜 is the minimum average traveler wait time; 𝑟𝑠 is the service rate of an AV; 𝑐2 is a multiplier for 

the transit operational costs and 𝑐3 is the cost per AV; and 𝑓𝑚𝑖𝑛 is the minimum transit pattern frequency. 

The objective function in Equation (3) aims to minimize the disutility of travelers. The first term 

represents the cumulative wait time of transit travelers that are assigned to transit patterns that remain (𝑥𝑝 =

1). Assuming travelers arrive randomly, the average traveler wait time on pattern 𝑝 ∈ 𝑃 is 
0.5

𝑓𝑝
. Multiplying 

the average traveler wait time, by the demand for pattern 𝑝 ∈ 𝑃 (𝑒𝑝) gives the cumulative wait time of 

travelers using pattern 𝑝 ∈ 𝑃. 

The second term in the objective function represents the cumulative wait time of the travelers originally 

assigned to an SAMS (𝑒𝐴𝑉
𝑡 ) and the travelers that were assigned to pattern that was removed (𝑦𝑝𝑒𝑝). The 

term ∑ (𝑦𝑝𝑒𝑝 + 𝑒𝐴𝑉
𝑡 ){𝑝∈𝑃𝑏|𝑑𝑝=𝑡}  represents the cumulative demand for SAMSs at time interval 𝑡 ∈ 𝑇; 

whereas, ∑ 𝑤𝑜 (1 + 𝛼 (
𝑦𝑝𝑒𝑝+𝑒𝐴𝑉

𝑡

𝑟𝑠𝑆
)

𝛽

){𝑝∈𝑃𝑏|𝑑𝑝=𝑡}  represents the average  wait time of SAMS travelers during 

time interval 𝑡 ∈ 𝑇. The parameter 𝑤𝑜 represents the average SAMS traveler wait time if the SAMS fleet 

size (𝑆) is large and the SAMS demand (𝑦𝑝𝑒𝑝 + 𝑒𝐴𝑉
𝑡 ) is small.  Holding fleet size constant, as the SAMS 

demand increases the average SAMS traveler wait time should steadily increase until the demand rate 

approaches the service rate, at which time the average SAMS traveler wait time should grow exponentially.  

Equation (4) requires that the SAMS demand is not much greater than the AV fleet service capacity.  

Equation (5) is a budgetary constraint. The first term represents the operating cost of providing service on 

a pattern 𝑝 ∈ 𝑃 of length 𝑙𝑝 at a frequency 𝑓𝑝. The second term corrects for the patterns that are removed 

(𝑦𝑝 = 1). The reason this term is needed is because the frequency of a pattern cannot be set to zero due to 

Equation (8). If Equation (8) is removed the first term in the objective function would need to go to infinity 

to represent the removal of transit pattern. The third term in Equation (5) represents the cost of an SAMS 

fleet size 𝑆.  



Equation (6) requires the pattern frequency 𝑓𝑝 to be greater than the minimum frequency 𝑓𝑚𝑖𝑛 if the 

pattern remains (𝑥𝑝=1). Equation (7) requires a pattern to be removed (𝑦𝑝=1) or not removed (𝑥𝑝 = 1). 

Equation (8) ensures that the pattern frequency of all patterns (𝑓𝑝) is greater than or equal to the minimum 

pattern frequency (𝑓𝑚𝑖𝑛). Equation (9) requires the rail transit patterns to remain. Equation (10) requires the 

fleet size to be positive and Equation (11) requires 𝑦𝑝 and 𝑥𝑝 to be binary.  

3.2 Lower-Level Formulation 

The lower-level formulation is an integrated mode choice-traveler assignment problem based on a 

formulation introduced in (Verbas et al., 2016).  

4 Solution Approach 

Both the upper-level and lower-level formulations of the bi-level transit network redesign and SAMS 

fleet size modal are analytically intractable; hence, we present a brief overview of a heuristic solution 

approach (see Figure 1). The algorithm begins by solving the traveler assignment problem given initial 

origin-destination-mode-departure time (ODMT) demand, an initial transit network, an initial set of transit 

pattern frequencies, and an initial SAMS fleet size. The SAMS simulator obtains experiences for individual 

travelers via running a simulation and dynamically operating an SAMS fleet, using advanced assignment, 

routing, and scheduling algorithms. The transit assignment-simulation model, solves a congested multi-

modal time-dependent assignment problem via iteratively (1) determining least-cost transit hyperpaths on 

a time-dependent network; (2) assigning transit travelers to a transit hyperpath; and (3) simulating the 

performance of transit travelers and vehicles in a congested urban transit network. The transit-assignment 

simulation model returns the performance of the transit network and the experience of individual travelers.   

The performances of the SAMS and the transit network at the ODMT-level are fed into a mode choice 

model. The mode choice model assigns or reassigns individual travelers to transit-only, SAMS-only, or 

SAMS-transit, based on the ODT performances of each mode. The mode choice model then feeds this 

demand into the traveler assignment module. This process repeats until the modal shares, and the mode 

choice probabilities converge. This is a challenging problem as the mode choice probabilities depend on 

the transit and SAMS system performance; yet, the transit and SAMS system performance depends on the 

modal shares. Hence, many iterations of the mode choice model are required to reach equilibrium.  

The integrated mode choice-traveler assignment problem returns transit pattern-level demand and time-

dependent SAMS demand to the transit-SAMS design module. With this information, the transit-SAMS 

design module solves the mathematical program displayed in Equations (3-11). This is a non-convex, non-

linear, integer programming problem. Hence, a heuristic solution approach that efficiently explores the 

solution space is required to obtain good, feasible solutions (finding optimal solutions is highly unlikely). 

The transit-SAMS design module returns transit pattern frequencies, as well as the transit patterns that have 

been removed, along with the SAMS fleet size. This information is fed back into the integrated mode 

choice-traveler assignment module. This process repeats until the transit-SAMS design solution converges 

in terms of either the objective function or the decision variables. 



 
Figure 1: Algorithm to solve the bi-level transit network redesign and SAMS fleet size problem 

5 Computational Results 

The model is applied to the Chicago, Illinois area, featuring a large-scale multimodal transit system, as well 

as actual demand patterns calibrated for the existing network.  The computational analysis will (i) test the 

ability of the solution algorithm to improve the utility of travelers; (ii) analyze the impacts of SAMSs on 

transit network design and transit patterns frequencies; (iii) test hypothesis that SAMSs will replace low-

frequency, low-demand transit patterns; (iv) perform sensitivity analysis on relevant model parameters 

including AV cost and transit fare, as well as transit-SAMS joint fare; and (v) examine design trade-offs 

between conventional transit service and SAMs service from the standpoint of overall performance and 

user experience.  
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1 Introduction

The Dynamic Traffic Assignment (DTA) refers to the procedure of assigning trips to paths in a

given transportation system considering the Origin Destination pair (OD) flow demand and the

network dynamic traffic states. The main output of DTA is path flow distribution over all feasible

paths for all OD pairs. Travelers in the traffic network usually attempt to minimize their own travel

time (cost). The solution of the assignment problem which is based on Wardrop’s first principle is

called User Equilibrium (UE).

The goal of this study is computing UE solutions in a simulation-based DTA process. There

are many researches that have shown this problem can be represented as a fixed-point problem [1].

There are many solution algorithm in the literature that have been proved to be efficient to solve

DTA. Nevertheless, in a large-scale and trip-based setting it is not possible to guarantee that fixed

point algorithms converge towards the optimal solution because of the step size and because there

is no exact method for determining the step size in the literature [2]. There are some criteria such

as the total gap [3] to see how far the solution is from the optimal solution. It often happens that

the total gap stops improving after some iterations because the step size is small and prevents the

solution from being improved further. From a computational point of view, the main drawback of

these methods for addressing DTA on large-scale networks is that they are not parallelizable. This

is because all algorithms need to know the last iteration results to determine the next best path



flow for the next iteration. Indeed, they need the state of the network before carrying out the next

iteration. Therefore all of the existing methods work behave as serial algorithms to find the UE.

The goal of this study is to overcome the drawbacks of serial algorithms. This study proposes a

new solution method based on the Simulated Annealing (SA) method and uses parallel simulations

to better explore the solution space. The algorithm is developed generally to solve traffic assignment

with parallel computation in order to consider more than one path distribution per iteration. It is

obvious that with parallel simulation, the algorithm is going to run more simulations in comparison

with existing methods but it is expected to carry out a better exploration of the solution space

and consequently achieve better solutions in terms of quality and closeness to the optimal solution.

Moreover with parallelizing the framework, the algorithm could solve the problem with better

computation time in comparison with classic methods.

2 Methodology

SA algorithm is a meta-heuristic method, it is inspired by annealing in metallurgy. The basic

simulated annealing algorithm is presented in [4]. This study redesigns and adapts the classic SA

to simulation-based traffic assignment. Figure 1 presents the solution algorithm of this study:

Figure 1: Solution algorithm flowchart



The algorithm starts with an initial solution which is generated randomly. The next solution

is generated with respect to the current one based on the temperature (T ) of the current iteration.

The current phase of the iteration depends on the temperature of the process. Inspired by the

physics of matter, this study distinguishes three different methods to generate a neighbor solution,

gas, liquid and solid; these methods represent the states of matter in nature. When the temperature

is high (T > α where α denotes the boiling temperature), the gas method is applied. During the SA

algorithm, by decreasing the temperature the algorithm enters the liquid phase (α > T > α′ where

α′ denotes the melting temperature) and then the liquid method is applied. When the temperature

is quite low (T < α′), the solid method is applied.

In the gas phase, we explore the solution space without limitation of any step size. There-

fore, the candidates for neighbor solution are generated randomly for path flow distribution. The

algorithm applies the process on every OD by changing randomly their flow assignment with re-

spect to the constraints applying to the demand (feasible OD-assignment). In the liquid Phase,

we target exploring the solutions space randomly and also apply step size methods. First, we

apply a randomizing process on the current solution, Then we optimize it by applying the Method

of successive Average (MSA) [5] to get the first solution and the Gap-Based method [3] to get

the second solution. In the solid phase, we execute the same process as liquid phase but without

randomization. It means the two solutions are generated based on the current solution.

Afterward, the algorithm runs parallel simulations to update the network based on new different

path distributions that are obtained form the previous step. For a new solution s′, the total

gap TGap(s′) between the users’ travel time and the shortest path travel time is calculated and

corresponds to the energy of solution (E) compared to the current solution s. The last step consists

in making a decision about accepting one of the best new solution based on TGap compared to the

current solution of the algorithm. The acceptance decision is made by the binary test. If Ps ≥ Rs,

the new solution will be accepted. Here, Ps = e
−∇E

T , ∇E = TGap(s′) − TGap(s) and Rtr is the

random number (0 < Rtr < 1). The quality of the solution is evaluated in the convergence check

step. At the end of each iteration the temperature is decreased (T = T0

ln(k+1) where T0 denotes the

initial temperature and k denotes the iteration index) and the algorithm iterates until converging

to the optimal solution or the lowest temperature (Tmin) is reached.

3 Numerical Experiments

In order to compare the performance of this new method, this study evaluates the algorithm in

the static case and compares the method with MSA method and then apply the method to DTA

problem for the large-scale test case. In the static case, the method is applied to a 5 × 5 grid

network with static cost functions. The primary results for 3 and 6 ODs with the fixed demand



of 50 users per OD are presented in Figure 2. The results shows that the new method dominates

the MSA method even in the small-scale and static network. We are currently running simulations

on a large-scale network (Lyon 6e + Villeurbanne: 1,883 Nodes, 5,935 Links, 94 Origins, 227

Destinations, 54,190 trips) with dynamic implementation and the results are very promising.

Figure 2: Total gap in 5× 5 grid network for SA and MSA methods.

(a), (c): results for 3 ODs. (b), (d): results for 5 ODs.
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1 Extended Abstract

Package express companies world-wide are facing a rapidly changing environment due to the ex-

plosive growth of e-commerce and due to the push by retailers to satisfy their customers’ desire for

instant gratification by offering faster and faster delivery times. This is especially true in China

where the value of B2C e-commerce in 2015 reached $766.5 billion and where more than 430 million

people shopped online that year.

To be able to accommodate the expected growth in demand volume and the need for faster

service offerings, package express companies are looking for optimization-based tools to support

both their planning and operations functions. Motivated by the environment encountered at SF

Express, we have designed and implemented optimization models to support express shipment

network design which take into account many of the critical features of the environment, such as the

integration of ground and air operations, the use of company-owned capacity (in the form of cargo

planes) as well as purchased capacity (in the form of belly capacity offered by commercial airlines),

the need to offer of multiple service products, and shipments entering the system throughout the

day. This environment is far more complex than those typically presented and analyzed in the

literature. However, there is a clear practical need for optimization tools that incorporate these

complicating features, and, equally important, that can handle instances of the size encountered in



practice. Our efforts are a first step towards providing the industry with such tools and we hope

that these efforts stimulate other researchers to do the same.

To accommodate varying demand distributions and densities (due to differences in the markets)

we design and implement two optimization models, which can be viewed as being at opposite ends

of a spectrum. For the small package market, in which demand is more densely distributed over

the service area, and cargo plane capacity is the limiting resource, efficient use of the cargo plane

capacity is critical to reducing operational costs. In this case, using cargo planes to serve a limited

set of high-volume origin-destination pairs with direct flights is an effective strategy to maximize

the utilization of the available transportation capacity, among others because it avoids the use of

a “central hub” with time-consuming sorting operations. On the other hand, for the high-value

items/products market, in which demand is smaller and less densely (and more evenly) distributed

over the service area (compared to the small package market), available flight time is the limiting

resource (rather than cargo plane capacity) and the use of transshipment, i.e., allowing planes

to meet and exchange cargo at certain locations) is a more effective strategy. In both cases, we

formulate and solve novel mixed integer programming models, where, because of the size of real-life

instances, we have to exploit the special structure of the models and, in one case, rely on column

generation techniques for their solution.

To summarize, the main contributions of this study are the following.

• To accommodate different demand profiles, we propose two novel models to determine high-

quality express shipment network designs maximizing company profit.

• Different from can be found in the literature, our models (1) integrate ground and air trans-

port options, (2) consider company-owned and purchased air capacity, (3) consider multiple

service products, and (4) consider realistic order arrival patterns. We propose efficient exact

algorithms that exploit specific structure to solve large real-life instances.

• We conduct an extensive computational study using real-life data to obtain valuable man-

agerial insights.

Our study differs from the existing literature in several respects. Almost all of the existing

studies [5, 2, 4, 1, 3, 6, 7] focus on hub-and-spoke networks, whereas we do not impose any network

structure. In our direct shipment model, we only consider transporting shipments from one airport

to another, eliminating the need for sorting and repackaging at a hub airport. In our transshipment

model, we consider transshipments, i.e., some locations function as “hubs” where planes meet and

exchange their cargo, but different from more traditional hub-and-spoke systems, no sorting takes

place at the the transshipment hubs. Another important difference is our treatment of ground

transportation. In most previous studies, the assignment of stations (cities without airports) to

gateway hubs (cities with airports) are fixed. In our models, such assignments are an integral



part of the service network design. Contrary to most traditional express shipment service network

design settings, our models consider both company-owned capacity as well as purchased capacity

(belly capacity available on commercial flights), which is especially important in China. Finally, we

consider an environment in which the express carrier offers multiple service classes, and in which

shipments enter the air transportation network throughout the day.

1.1 Direct Shipments Model

In the direct shipments model DSM, a demand that is transported by air only occupies one flight

leg. That is, in DSM, a demand is either transported from its origin city to its destination city by

ground transportation, or it is transported in three phases: (1) from its origin city to an airport

city using ground transportation, (2) from an airport city to another airport city on a single flight,

either on a company-owned cargo plane or on a commercial plane (i.e., using purchased belly

capacity), and (3) from an airport city to its destination city using ground transportation. In the

latter case, one or both of the ground transportation phases may be “empty”. The DSM makes

the most effective use of the company-owned cargo plane capacity, as any demand transported

using the cargo planes uses the capacity for the shortest possible distance.

For the direct shipments, we have developed an optimization model that is capable of handling

realistic-size data. More specifically, we have use it solve an instance with more than 100,000

demands, 6,000 commercial flights (from 86 origins to 109 destinations), 34 hub-cities, 56 cargo

planes (with three different types), and more than 2,500 city pairs for the ground transportation.

The spatial distribution of the demand is illustrated in Figure 1 and the schedules (for the three

types of cargo planes) found by our solution approach can be seen in Figure 2.

Figure 1: The spatial distribution of express package demand.

1.2 Transshipment Model

In the transshipment model (TSM), a demand transported by air may occupy more than one flight

leg, often, but not necessarily, on more than one cargo plane. That is, cargo planes are allowed to



(a) Type 1 planes (42 tons) (b) Type 2 planes (28 tons) (c) Type 3 planes (14 tons)

Figure 2: The cargo plane routes found by the optimization algorithm.

meet in a transshipment location to exchange some or all of their cargo. Conceptually, each demand

uses one pickup and one delivery flight that meet at a transshipment location. If the transshipment

location happens to be the hub-city where the demand enters or exits the air network, then the

demand uses only a single flight (either a pickup or a delivery flight). In TSM, each cargo plane’s

route is composed of two distinct parts: a pickup flight and a delivery flight (where one of them

may be the “empty” flight). On the pickup flight, the cargo plane collects demands at various

hub-cities to take them to a transshipment location. On the delivery flight, the cargo plane takes

demands from the transshipment location and drops them of at various hub-cities. As in the direct

shipment model, ground transportation can be used to transfer demand from/to a non-hub city

to/from a hub-city. The TSM makes most effective use of the flying time available for company-

owned cargo planes to provide broad coverage, i.e., seeks to provide connections between a large

number of cities (possibly at the expense of reduced capacity utilization).

For the transshipments model, we have developed an optimization approach that utilizes a path

segment formulation approach to directly solve realistic-size problems with 100 origin destination

pairs (derived from the real world data) and 34 hub-cities all of which can function as a transship-

ment point. The spatial distribution of the demand is illustrated in Figure 3 and the amount of

demand (value and count) that could be covered by various number of cargo planes is shown in

Figure 4.
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1 Background 
 

With the increasing ubiquity of multiple forms of “Mobility as a Service” (MaaS) options to travelers 

provided by both public agencies and private operators, travel forecast models for different transportation 

network designs need to focus on both the decisions of travelers and operators [1]. We need to consider 

assignment of both flows and cost allocations to users and operators as a descriptive travel forecast 

model. The problem of determining cost allocation and corresponding stable matches with transferable 

utility between players is called an assignment game [2], which involves a set of buyers and sellers. 

Different types of assignment games exist: one-to-one games involve matching individual buyers to 

individual sellers; many-to-many games match one seller to many buyers, and each buyer can themselves 

be matched to many sellers [3].  

 Applications of matching in multicommodity flow problems can be found in the network literature. 

However, much of this literature either looks only at coalition formation between operators ignoring the 

allocations to decentralized users (e.g. [4]) or propose specific cost allocation mechanisms between users 

and operators (e.g. [5]-[6]). Neither address the problem of assigning travelers onto an operator route 

composed of a sequence of nodes with line capacities and route-level cost allocation decisions of 

operators. 

 Rasulkhani and Chow [7] proposed a many-to-one assignment game in which users constrained by 

line capacities on routes are each matched with one operator of a bundle of routes to get from an origin 

to a destination (OD). The 

output of the model is a set of 

unimodal route flows for 

travelers under line capacity 

constraints with the 

corresponding stable outcome 

space for cost allocations 

based on the core.  

 We propose to extend 

that work in a significant new 

direction by considering 

many-to-many matches between users and operators. In effect, a single traveler’s trip may be split into 

multiple legs served by different operators to get them to the destination while each operator serves 

multiple users up to a certain line capacity. The difference from [7] is illustrated in Fig. 1. The output of 

Fig. 1. Illustration of difference in methodology between (a) [7] 

and (b) this study. 
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such a model is not just the flows, but the range of cost allocations needed to incentivize the users and 

operators to accept those flows.  

2 Methodology 
 

The multimodal assignment game is a multicommodity capacitated fixed charge network design problem 

(MCND) shown in Eq. (1) – (4). Let 𝐺 = (𝑁, 𝐴)  be a directed network, where 𝑁 is the set of nodes and 

𝐴 set of links. We define 𝑡𝑖𝑗 as the user’s travel cost on link (𝑖, 𝑗) ∈ 𝐴. We also define 𝑐𝑖𝑗  as the cost of 

operation of that link and 𝑤𝑖𝑗  as the capacity of the link. 𝑁𝑖(+) and 𝑁𝑖(−) respectively are the sets of 

incoming and outgoing nodes from node 𝑖 ∈ 𝑁 in the network. Flow on link (𝑖, 𝑗) ∈ 𝐴 for each user 𝑠 ∈

𝑆 is 𝑥𝑖𝑗
𝑠 , where user 𝑠 is characterized by demand 𝑑𝑠 for an OD pair.  A binary variable  𝑦𝑖𝑗  indicates if 

a link (𝑖, 𝑗) ∈ 𝐴 is operated. The MCND is well-defined in the literature. The problem can be solved 

using conventional MCND methods like the branch-and-price-and-cut algorithm. 

min ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗
𝑠

𝑠∈𝑆(𝑖,𝑗)∈𝐴

+ ∑ 𝑐𝑖𝑗𝑦𝑖𝑗

(𝑖,𝑗)∈𝐴

  

(1) 

 

 

𝑠. 𝑡. ∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁𝑖(+)

− ∑ 𝑥𝑗𝑖
𝑠

𝑗∈𝑁𝑖(−)

= {
𝑑𝑠            𝑖𝑓 𝑖 = 𝑂(𝑠)

−𝑑𝑠         𝑖𝑓 𝑖 = 𝐷(𝑠)

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ∀𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆 (2) 

∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆

≤ 𝑤𝑖𝑗𝑦𝑖𝑗  ∀(𝑖, 𝑗) ∈ 𝐴 (3) 

𝑥𝑖𝑗
𝑠 : 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑦𝑎: 𝑏𝑖𝑛𝑎𝑟𝑦  

(4) 

 
 

 

Let 𝑅 be the set of user paths for user 𝑠 ∈ 𝑆. 𝐴𝑟 ⊆ 𝐴 is the set of links of path 𝑟 ∈ 𝑅. When a user 

is assigned to a path, a payoff is generated and divided between the user and operator(s) of the links of 

that path. Each operator 𝑓 ∈ 𝐹 stays in the coalition if they get an allocation greater than or equal to the 

amount they can earn by unilaterally breaking away from the coalition and making another coalition. Let 

𝐶(𝑠, 𝑥) equal a set of links that user 𝑠 is matched to under link assignment 𝑥 from Eq. (1) – (4). Let 𝐿(𝑓) 

be the set of links owned by operator 𝑓 ∈ 𝐹. We denote 𝑝𝑖𝑗
𝑠  as the ticket price that each of the individual 

user 𝑠 should pay to link (𝑖, 𝑗) ∈ 𝐴. The ticket price that operator 𝑓 ∈ 𝐹 gets from the users that are 

matched to his links, should cover the operation cost of the links 𝑓 is operating. Moreover, 𝑈𝑠 is the 

utility that user 𝑠 gets from completing their trip. 

 

Feasible outcome: the outcome ((𝑢, 𝑝); 𝑥) is feasible if: 

(i) 𝑢𝑠 + ∑ 𝑝𝑖𝑗
𝑠

(𝑖,𝑗)∈𝐴𝑟
= 𝑈𝑠 − ∑ (𝑡𝑖𝑗)(𝑖,𝑗)∈𝐴𝑟

 𝑖𝑓 𝑥𝑖𝑗
𝑠 ≥ 1 𝑎𝑛𝑑 𝑢𝑠 ≥ 0, 𝑝𝑖𝑗

𝑠 ≥ 0 ∀𝑠 ∈ 𝑆, (𝑖, 𝑗) ∈

𝐴 

(ii) ∑ ∑ 𝑝𝑖𝑗
𝑠  𝑥𝑖𝑗

𝑠
𝑠∈𝑆(𝑖,𝑗)∈𝐿(𝑓) ≥ ∑ 𝐶𝑖𝑗(𝑖,𝑗)∈𝐿(𝑓)      ∀𝑓 ∈ 𝐹   

Let 𝜇𝑖𝑗 be the revenue loss of link (𝑖, 𝑗) ∈ 𝐴 when the operator of that link wants to make a coalition 

with a new user, where 𝜇𝑖𝑗 = min
𝑠

{𝑝𝑖𝑗
𝑠 │(𝑖, 𝑗) ∈ 𝐴𝑟} if ∑ 𝑥𝑖𝑗

𝑠
𝑠∈𝑆 = 𝑤𝑖𝑗 , 𝜇𝑖𝑗 = 0 if ∑ 𝑥𝑖𝑗

𝑠
𝑠∈𝑆 < 𝑤𝑖𝑗 , and 

𝜇𝑖𝑗 = 𝑐𝑖𝑗 if ∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆 = 0. 

Stable outcome: The feasible outcome ((𝑢, 𝑝); 𝑥) is stable if Eq. (5) is satisfied. 



3 

 

∑ 𝜇𝑖𝑗

(𝑖,𝑗)∈𝐴𝑟

+ 𝑢𝑠 ≥ 𝛿𝑠𝑟 [𝑈𝑠 − ∑ (𝑡𝑖𝑗)

(𝑖,𝑗)∈𝐴𝑟

] 
∀𝑟 ∉ 𝐶(𝑠, 𝑥) 

∀𝑠 ∈ 𝑆 
(5) 

 

We divide the systems that we are analyzing into two different categories, centralized and decentralized 

decision-making systems. In centralized decision making, each operator can own more than one link in 

the network, whereas decentralized system operators own only one link (i.e. each link is an operator).  

In a decentralized system, we propose to obtain the allocation without enumeration by perturbing 

allocations to ensure the resulting paths for each OD pair matches the costs of positive link flow 

outcomes in the MCND using inverse optimization (see [8]) in a process similar to [4]. Algorithm 1 is 

proposed to create this stable outcome space.  

 

Algorithm 1: Construct stable outcome space 

------------------- 

For each user 𝑠, 

Step 0.  Update the travel cost 𝑐𝑖𝑗
𝑠 = 𝑡𝑖𝑗 + 𝑝𝑖𝑗

𝑠  for each link (𝑖, 𝑗) ∈ 𝐴𝑟∈𝐶(𝑠,𝑥) 

For links (𝑖, 𝑗) ∈ 𝐴𝑟∉𝐶(𝑠,𝑥): 

If ∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆 = 𝑤𝑖𝑗  then create 𝑤𝑖𝑗  copies of link (𝑖, 𝑗) and assign each with cost 𝑐𝑖𝑗
𝑠 = 𝑡𝑖𝑗 +

𝑝𝑖𝑗
𝑠 ; 

If 0 < ∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆 < 𝑤𝑖𝑗  then leave the link (𝑖, 𝑗) with the cost 𝑐𝑖𝑗
𝑠 = 𝑡𝑖𝑗; 

If ∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆 = 0 then update the link (𝑖, 𝑗) cost as 𝑐𝑖𝑗
𝑠 = 𝑡𝑖𝑗 + 𝐶𝑖𝑗. 

Step 1.  Add the following to the constraint set: 

If (𝑖, 𝑗) ∈ 𝐴𝑟∈𝐶(𝑠,𝑥) then 𝑐𝑖𝑗
𝑠 − (𝜋𝑖

𝑠 − 𝜋𝑗
𝑠) = 0, where 𝜋𝑖

𝑠 is the node potential for user 𝑠 at 

node 𝑖; 

If (𝑖, 𝑗) ∈ 𝐴𝑟∉𝐶(𝑠,𝑥) then 𝑐𝑖𝑗
𝑠 − (𝜋𝑖

𝑠 − 𝜋𝑗
𝑠) ≥ 0. 

Step 2.  Make the constraints to address feasibility condition (ii) by setting ∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆 𝑝𝑖𝑗
𝑠 ≥ 𝑐𝑖𝑗 for            

each link (𝑖, 𝑗) ∈ 𝐴. 

---------------------- 

 

The cost allocation model is to maximize an objective (e.g. set prices to obtain user- or operator-optimal 

prices), subject to the stability condition which is either Eq. (6) or the constraints constructed in 

Algorithm 1 in decentralized system. For the constraints that are made by Algorithm 1, we use a Dantzig-

Wolfe decomposition method to solve the cost allocation model since the dual of the inverse optimization 

problem has a “primal block angular” structure. 

3 Experiments 
 

We consider a 4-node network first, as shown in Fig. 2. The 

numbers on the links represent travel times. We assume 6 O-D 

pairs 𝑠 = {12,13,23,32,41,42}, where demand for (1,2) is 4 and 

the rest of the OD pairs hold unit demand: 𝑑𝑠 = [4,1,1,1,1,1]𝑇. 

Each pair 𝑠 has a utility of completing the journey  𝑈𝑠 = 20 and 

there is a capacity of 𝑤𝑖𝑗 = 2 for each link. In centralized system, 

the red, green and black link colors in Fig. 2 represent different 

operators. 

The solution flow and cost allocation space (which ranges between the user-optimal and operator-

optimal solutions) for both centralized and decentralized systems are shown in Table 1. The observed 

flows and stable payoff range required from the users is the result of link capacities and the combination 

of operator network interactions with each other. The centralized matching for user (1,2) includes both 

Fig. 2. Each color represents a 

different transit operator. 
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red and black operators. Each of the passengers of this OD would pay between $4.25/person to 

$11/person in which red operator would earn between $1.25/person to $3.125/person. The cost for the 

red operator to leave the coalition is between $0 to $7.5 and between $2 to $21.5 for the black operator. 

The stable payoff space is wider under the centralized system. 

Table 1. Model results  

 Operated links 12 13 14 32 42 13 23 32 41 42 

Total 
 O-D (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,3) (3,2) (4,1) (4,2) 

 Total flow 𝒙𝒊𝒋 2 2 1 2 2 2 1 2 1 2 

Decentralized  

𝑝𝑖𝑗
𝑠  

User Optimal 
9 4 5 2 0 1 5 3 5 5 39 

𝑝𝑖𝑗
𝑠  

Operator 

Optimal 
17 2.5 5 11.5 8 7.5 11.5 14.5 10.5 18 106 

Centralized 

Operator            

𝑝𝑖𝑗
𝑠  

User Optimal 
8 0 0 5 4 0 3.5 6.5 0 0 27 

𝑝𝑖𝑗
𝑠  

Operator 

Optimal 

17 1.5 0 12.5 13 16 11.5 18 10.5 18 118 

 

In addition to the toy network, the 

proposed model and algorithm are tested on 

two case studies. The first one deals with 

evaluating flow and range of cost allocations 

for a hub-and-spoke transit system with feeder 

buses and a trunk metro line. We demonstrate 

how to apply our model to evaluate the 

sensitivity of the feeder buses’ negotiating 

power against the metro relative to vehicle 

capacity, demand patterns, travel costs, and consolidation of feeders. In a second study, we determine 

prices that can be charged for an operating strategy [9] in which ride-share service borrows from public 

transit capacity in delivering passengers. 
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1 Introduction

Traffic equilibrium models are fundamental tools for the analysis of transportation networks perfor-

mance as well as their design and planning. The traffic assignment problem consists in predicting

arc flows over a network, given the known travel demand for each origin-destination (OD) pair.

Flows are determined by the interaction of two mechanisms, users’ travel decisions and congestion.

Users’ route choice preferences are incorporated in a generalized travel cost function which indi-

vidual travelers aim to minimize, the primary component of which being travel time. Congestion

is generally modeled by letting travel impedance functions depend on the usage of the network.

As path costs increase with the amount of flow, travelers are induced to reroute on cheaper, less

congested paths. The equilibrium assignment of travelers to routes is thus the result of a fixed

point problem which is usually solved in an iterative manner. However, the classical equilibrium

principles do not hold any more when side constraints, such as arc capacities, are entered into the

model. A solution to that issue, proposed in [1], is to embed within the users’ objective function

the probability that a link be unavailable, thus introducing a stochastic element that induces the

strategic behaviour of users.

The main contribution of this work is to generalize this model by including another source of



stochasticity, stemming from users’ imperfect knowledge of travel times. By adopting the frame-

work of Markovian equilibrium introduced by [2], our model then generalizes the latter by incor-

porating arc capacities. More specifically, we embed the concept of strategies governing travelers’

movements under capacity constraints in a Markovian traffic equilibrium setting. The key paradigm

is to view strategies with recourse, according to which travelers readjust their path when reaching

a saturated arc, as route choice behavior under imperfect information, similarly to [3]. In order to

deal with partial information, we expand the state space of the Markov Chain in [2], such that a

state encompasses two variables, an arc and an information set. User path choice behavior is then

characterized by sequences of local arc choices depending on the current state and the destination.

The network loading gives rise to availability probabilities, which are akin to access probabilities in

[1] and at the same time characterize action-state transition probabilities in the context of Marko-

vian decision processes. The strength of the approach is to encompass two sources of stochasticity

in the model by incorporating both unobserved elements and the risk of failure to access an arc

in the cost of travel. In addition, the proposed model is arc-based and does not require path

enumeration.

2 Strategic Markovian traffic equilibrium model

We consider a directed connected graph G = (A,V), where A is the set of arcs, or links, and V is

the set of nodes. Links are denoted either by k or a and A(k) is the set of outgoing links from the

tail node of k. We assume that every link a has a strict capacity ua and an associated generalized

cost ca. Assuming users have an imperfect knowledge of costs, we model perceived arc costs as

random variables c̃a = ca + µεa, letting the measured arc cost be disrupted by an error term with

E(εa) = 0. We add absorbing links without successors to each destination node and call D the

set of destination links. We consider the demand to originate from each network link, and let gd

characterize the vector of demand from each link given a destination d ∈ D. We assume that the

network has sufficient capacity to accommodate the whole demand.

Users traveling in this network aim at finding the shortest path to their destination d ∈ D.

However, because of limited network capacity, some arcs may be saturated and thus inaccessible

depending on route choices made by other travelers. Similarly to [1], we assume a realistic modeling

of user behavior, dictating that travel decisions be strategic and include recourse actions, should

a link in the preferred itinerary turn out to be unavailable. In addition, we make the hypothesis

that travelers do not know in advance what arc will prove to be available, and only observe the

outcome when reaching the source node of an arc. Under these assumptions, the problem bears

similarities to the stochastic shortest path problem in a probabilistic network. As observed in [3],

stochastic programming with recourse can be viewed as a stochastic control problem with imperfect



information, and may be solved with dynamic programming methodology. Namely, instead of

defining recourse actions, user behavior may equivalently be characterized by an optimal policy

given the current state, where the state indicates the realization of the random variables. Below,

we explain how we formulate the model following this paradigm.

We assume that the set of available outgoing arcs from link k is a random subset of A(k), and

define the random vector Ik, which indicates whether each outgoing arc is accessible and may take

values in Ωk = {0, 1}|A(k)|. Consequently, we define a state (k, ik) as a set of two variables, i.e., a

link k and a realization ik of random vector Ik. The set of states at link k is denoted Sk, while the

set of all possible states is denoted S. A policy, or action, is then a choice of outgoing arc among

the set A(s) of available links depending on the current state s = (k, ik). For unvisited arcs k, the

random vector Ik follows availability probability distribution πk, which has support on {0, 1}|A(k)|.

Upon arrival at the tail node of arc k, the user learns the realization of Ik. Therefore, travelers

choose their paths sequentially in a dynamic fashion, choosing in each state an action that leads

stochastically to a new state.

Travelers’ route choice behavior is characterized by the destination specific choice probability

matrix P d = {P ds,a}s∈S,a∈A, which describes in what proportion individuals choose each action

conditionally on the state and the destination. The role of availability probabilities π is analog to

that of state transition probabilities conditional on choices in a Markov Decision Process. Given a

state st = (k, ik) and an action a ∈ A(s), the probability Pr(st+1|st, a) of reaching the new state

st+1 = (a, ia) is given by the distribution πa of random vector Ia. In other words, the new state

consists of the chosen available link and a realization of the availability random vector at that link.

We can here draw a parallel with the model of [2], where the choice of outgoing link may also be

viewed as a choice of action leading to a new state.

We can formulate the equilibrium problem as a variational inequality. We first define the

expected cost wda of actions a ∈ A(s) as

wda = ca + Eia∼πaV
d(a, ia), (1)

and the expected minimum cost of traveling to destination d from state (k, ik) by the Bellman

equation

V d(k, ik) = Eεa

[
min

a∈Ai(k)

{
ca + Eia∼πa

V d(a, ia) + µεa
}]
. (2)

We then define the cost Cds,a as the sum wds,a +µ ln(P ds,a), where wds,a is equal to wda if a ∈ A(s)

and ∞ otherwise. Then, for each destination, the equilibrium choice probabilities P ∗s,a are the

solution of

〈Cs(P ∗), P ∗s − Ps〉 ≤ 0 ∀P ∈ P, ∀s ∈ S, (3)

where the destination index is omitted for the sake of simplicity.



Expected minimum cost V d
o Gap (%)

Heuristic µ OD1 OD2 OD3 OD4 gR(P )

Common step size 0.5 119.74 138.92 114.72 99.61 2.15 · 10−2

Disaggregate step size 119.69 138.84 114.15 99.60 3.21 · 10−2

Common step size 5 116.83 131.42 113.00 96.23 6.26 · 10−3

Disaggregate step size 117.05 131.34 112.61 96.16 4.13 · 10−2

Common step size 10 112.00 119.25 107.38 88.50 7.99 · 10−2

Disaggregate step size 112.59 119.80 107.21 88.57 1.10 · 10−1

Common step size 20 95.57 106.02 94.11 80.25 9.10 · 10−3

Disaggregate step size 95.18 105.59 93.38 79.88 7.62 · 10−2

Table 1: Expected minimum cost of OD pairs after 1000 iterations of the solution algorithm with

different values of µ

3 Results

The main challenge to solving the problem is that the cost Cds,a of state-action pairs in (3) is not

available in closed form as a function of choice probabilities P d. Instead it depends on P d through

availability probabilities π, which induce nonlinearity in the cost mapping and must be obtained

through an inner algorithm related to that found in [1].

We apply the proposed model to several networks, in particular the Sioux Falls network depicted

in [1]. We use the method of successive averages and two inner algorithms to find the equilibrium

flows and choice probabilities in the network. We resort to a well-defined gap function to evaluate

the proximity of the iterate with the equilibrium solution. We compute the equilibrium for several

values of µ, the scale of the random term ε and display the results in Table 1. We find that as the

value of µ tends to zero, the solution is close to a deterministic user equilibrium (with respect to

the arc costs), whereas when µ becomes large it is equivalent to a random walk on the network.

We conclude by emphasizing that the following work has very recently been submitted for publi-

cation to Transportation Science, but has not been presented before at an international conference.
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1 Introduction

Public transit is crucial for sustainability, efficiency, and equity in serving urban populations.

However, it faces significant outside competition from ride-sharing companies and private bus or

shuttle services. Many cities such as Philadelphia, Los Angeles, and Washington D.C. are seeing

declining bus ridership, prompting transit authorities to consider what can be done to halt this

decline. A recent bus network re-design in Houston led to a 6.8% increase in ridership across the

bus and light rail networks [1], inspiring cities such as Boston, Philadelphia, and St. Louis to also

consider re-designing their bus networks.

Our goal will be to optimally design a transit network in order to maximize ridership subject

to budget constraints, and we aim to do so both realistically and tractably. In order to model

ridership, we will have to account for the key aspects of the commuter decision-making process,

which involves both travel time and transfers. We also scale our models up to a 410-station, 4,893

edge network taken from Boston using column-and-constraint generation.

Much of the early work on transit network design focused on heuristic solution methods [2, 3, 4].

Typically, the origin-destination demand matrix was sorted from highest to lowest demand, and

bus routes were generated using fast shortest-path computations between high-demand nodes.

generate an initial line set by computing the shortest paths between terminal nodes, and then



uses local search to iteratively improve the total travel time on the network. Along a similar vein,

metaheuristics such as genetic algorithms [5, 6], simulated annealing [7], and tabu search [8] have

also been used to iteratively improve upon initial heuristically-generated route sets.

Another area of work has employed mathematical optimization to solve network design prob-

lems. The benefit of mathematical optimization is a certificate of optimality; however, many models

have had scalability issues at practical network sizes. Many papers restricted their attention to

the optimal selection of a subset of bus stops [9] or heuristically-generated bus routes [10, 11],

without considering the generation of new routes. Even with these limitations, they only scaled to

networks of tens of stations.

Relatively fewer papers have addressed exact route generation due to further scalability issues.

Approaches based on mixed-integer optimization [12, 13] and constraint programming [14] have

scaled only to tens of stations. In contrast to these smaller-scale examples, [15] employed column

generation to scale up their model to a network of hundreds of stations and one thousand edges,

a truly large-scale application. However, they remained closely tethered to the original network

design by only considering edges that already existed in the network in their computational study,

so that the new lines that were produced were rearrangements of existing lines.

Our approach builds on this well-established framework of beginning with an initial set of

lines, then selecting the best subset of these lines to operate, and finally iteratively generating new

candidate lines. We use column-and-constraint generation to provide optimality guarantees, and

scale to a network of hundreds of stations and thousands of edges.

2 Methods

We formulate an integer optimization model that addresses maximization of ridership, budget

constraints, and a model of commuter choice. Our commuter choice model assumes that commuters

will take public transit if they can get from origin to destination with at most one transfer; later

in this section, we will also build in travel times. Although our model can generalize to arbitrary

number of transfers, we restrict our attention to single transfers so as not to place undue burdens on

commuters. At its core, our model is a best subset selection problem: similar to many approaches

in the literature, we assume that the problem is initialized with some set of candidate bus lines,

and the transit agency’s decision is to decide which bus lines to operate.

The immediate drawback with the approach of initializing with a set of candidate bus lines

is that such a set must be exhaustive in order to guarantee the quality of the solution. Rather

than starting with all possible bus lines, we use column-and-constraint generation to selectively

generate bus lines, focusing only on those that are profitable for our problem. For an overview

of column-and-constraint generation, see [16]. We show that the profitability condition for a new



Figure 1: Synthetic bus network generated from single-transfer model with travel time constraints
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bus line has a simple and intuitive interpretation, which informally is that the increase in ridership

must outweigh its costs. Bus lines satisfying this profitability condition can be generated using

integer optimization.

A limitation of the model thus stated is that one of its solutions would be to connect all

stations in a Hamiltonian path, if such a path is within budget. However, this solution is clearly

not appealing for commuters, particularly those between terminal stations, for whom this solution

is inefficient due to high travel times. We address travel times by enforcing that for all pairs of

stations on a bus line, the travel time between those stations should not be more than some constant

factor above the shortest possible travel time between those stations. This is implemented using

lazy constraints in our bus line generation integer optimization model. Enforcing this condition is

admittedly more stringent than allowing longer bus lines that some commuters may elect not to

take. However, we show that this stronger condition is more tractable, resulting in the addition of

significantly fewer lazy constraints. Furthermore, we have found in computational experiments on

the Boston network that the vast majority of bus lines adhere to this stronger condition, indicating

that it is a desirable property in practice.

3 Computational Results

We present a selection of our computational results on both synthetic and real data.

Our synthetic network was a four-by-four grid of stations with equal demand between all pairs

of stations. On this problem, our model terminated in eight iterations totaling approximately one

minute, producing the network shown in Figure 1. From Figure 1, we see the intuitive appeal of

grid networks: every origin can reach every destination with at most one transfer, and travel times

remain modest.

We also demonstrate our algorithm’s tractability on a real dataset from Boston, comprising 410

stations and 4,893 edges, where any edge was considered if it had length of one mile or less. Demand

data was obtained from the Massachusetts Bay Transit Authority (MBTA). Select results for a



range of budgets are shown in Table 1, showing increases in ridership of about 5-15%. Furthermore,

our algorithm was tractable, terminating in about 12 hours for each case. These running times

are reasonable given that network design is an offline problem, only undertaken once every several

years.

Budget
Original Network Optimized Network

Running Time (hrs)
Objective % Ridership Objective % Ridership

50 73,575 70.4% 80,267 76.8% 12.1

100 88,716 84.9% 98,487 94.3% 11.1

150 89,472 85.7% 103,092 98.7% 12.1

Table 1: Objectives values of the original Boston network and the optimized network, and algorithm

running times

4 Summary

We have addressed the problem of designing bus lines for urban transit networks. In particular, we

seek to maximize ridership on a bus network, accounting for the fact that passengers will choose

to take the bus if one of their possible routes is appealing in travel time and number of transfers.

In our computational experiments, we demonstrate that our algorithm produces intuitive results

on a synthetic network, and demonstrate significant potential gains on a real dataset from Boston

comprising hundreds of stations and thousands of edges. All of these are achieved with reasonable

running times. This presents opportunities for transit authorities to perform holistic redesign

of their transit networks in order to offer a service that is both cost-efficient and appealing to

commuters.
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1 Introduction

Transportation networks often involve two distinct layers: vehicles vs. end users. For instance,

public transit systems operate subways and buses to transport riders; logistic systems operate

container ships, cargo aircraft and delivery trucks to transport packages; and air transportation

systems operate aircraft to transport passengers. Although interconnected, these layers do not

always coincide due to multi-leg itineraries involving connections between vehicles. Extensive

routing and flow management research has focused primarily on the optimization of vehicle op-

erations. However, this might not result in optimal outcomes from end users’ perspectives when

travel itineraries involve connections between multiple vehicles (e.g., multi-line itineraries in public

transit, multi-modal deliveries in logistics, and multi-leg passenger itineraries in air transportation).

We develop an original user-centric approach to traffic flow management, with a focus on Air

Traffic Flow Management (ATFM). ATFM consists of controlling the flows of aircraft across air

traffic operations networks to mitigate congestion costs. Specifically, it optimizes flight operations

at capacitated airports and through capacitated air traffic control sectors to absorb delays at de-

parture airports or in the en-route airspace rather than in the terminal airspace at the arrival

airport, where they are most costly to operate from safety, economic and environmental perspec-

tives. Successful implementation of ATFM initiatives in practice has enabled significant reductions

in congestion costs faced by airlines, airports and passengers [Ball et al., 2007, Vossen et al., 2012].

Existing ATFM developments are based on flight delay considerations exclusively. However, the

costs of congestion do not depend only on the magnitude of flight delays, but also on their impact on

passenger itineraries. First, the same levels of flight delays can induce higher passenger costs if they

are borne by flights carrying more passengers. Second, flight delays can create disproportionate

disruptions for passengers traveling on multi-leg itineraries if they result in misconnections. In

fact, passenger delays increase non-linearly with flight delays, and this effect is amplified by such



factors as congestion at connecting airports, high load factors, and limited flight frequency in some

markets [Barnhart et al., 2014]. From a system-wide standpoint, nearly 50% of congestion costs

are borne by passengers, mostly driven by 2% to 5% of itineraries being disrupted due to flight

cancellations or missed connections [Ball et al., 2010]. Therefore, the consideration of passenger

itineraries can significantly impact the ATFM outcomes and resulting costs of air traffic congestion.

We propose a joint analytical and computational approach to balance the costs of vehicle delays

(e.g., flight delays) and user delays (e.g., passenger delays) in traffic flow management. First, an

analytical Markov Decision Process model derives structural insights on the drivers of user-centric

operations. Second, a large-scale integer programming optimizes ATFM operations in large-scale

traffic networks, while tracking their impact on passenger accommodations and delays. An original

rolling procedure decomposes the problem over time while ensuring global feasibility. It is shown

to enable the model’s implementation in short computational times. Computational results in the

US National Aviation System suggest that large reductions in passenger delays can be achieved at

comparatively small increases in flight delay costs. Analytical and computational results highlight

two main levers of user-centric operations: (i) delay allocation, which determines which flights to

delay or prioritize to minimize passenger delays, and (ii) delay introduction, which deliberate adds

departure holds to avoid passenger misconnections.

2 Analytical Model of User-centric Operations

We consider a facility with a set of arriving vehicles and a set of departing vehicles. Users fall into

three categories: (i) departing users (i.e., users traveling in a departing vehicle), (ii) arriving users

(i.e., users traveling in an arriving vehicle), and (iii) connecting users (i.e., users transferring from

an arriving vehicle to a departing vehicle). Any time an incoming vehicle arrives at the facility,

all connecting users whose second-leg vehicle has already left are re-accommodated on the next

available vehicle serving the same destination. The decision-making problem determines, at any

point in time, which departing vehicle to operate at the facility, if any.

The problem is formulated as a continuous-time Markov decision process. The model’s pa-

rameters capture the schedule of arriving vehicles, the frequency of re-accommodation options on

each origin-destination market, and the departure capacity of the facility. Decisions are made as

a function of a state variable that captures the sets of incoming vehicles that have arrived already

and the set of departing vehicles that have already left the facility. The formulation minimizes

total discounted user delay, including the delay borne by users waiting for a vehicle to depart, and

the added travel time borne by misconnecting users.

The characterization of the optimal policy outlines the core trade-off in user-centric operations,

between minimizing wait times by operating departing vehicles as soon as possible, on the one hand,



and avoiding misconnections by holding departing vehicles at the facility, on the other. This takes

place through two main mechanisms: (i) delay allocation (i.e., prioritizing some vehicles among

the set of departing vehicles), and delay re-allocation (i.e., updating departing vehicle priorities

upon any vehicle arrival), and (ii) delay introduction (i.e., deliberately holding departing vehicles

to avoid user misconnections). Results also identify the main drivers of the decisions regarding

which vehicle to prioritize and whether to operate any vehicle at all. First, it is more beneficial to

operate departing vehicles with more users ready to depart but fewer incoming connections. More-

over, the faster incoming vehicle arrivals are expected, and the more frequent re-accommodation

opportunities, the stronger the incentives to operate any departing vehicle.

3 Integer Programming Model of Passenger-centric ATFM

We then augment ATFM optimization models by explicitly accounting for the impact of flight

operations on passenger accommodations across air traffic networks.

The model takes as inputs: (i) the schedule of flights across the network of airports, (ii) aircraft

itineraries, (iii) the operating capacity of each airport, and (iv) passenger itineraries. It optimizes

flight operations (i.e., departure and arrival times) in a capacitated network of airports, while

tracking resulting passenger accommodations and passenger delays. In particular, the formulation

identifies disrupted itineraries, and re-allocates passengers to later flights whenever a connection

is missed based on re-accommodation options and aircraft capacities. The objective function

comprises aircraft delay costs and passenger delay, with a weight parameter ρ that trades off the

two objectives. Specifically, the model is formulated as follows:

min Flight delay costs + ρ · Total passenger delay (1)

s.t. Flight operating constraints (2)

Airport capacity constraints (3)

Passenger flow constraints (4)

We develop a rolling algorithm to solve the model. In other words, we optimize traffic flows

for a restricted look-ahead window (set to 4 to 6 hours) iteratively over time (every hour). This

approach is consistent with current practice and with the recent literature [Bertsimas et al., 2011].

The passenger-centric considerations, however, complicate the design of this rolling procedure

because of the need to capture the impact of flight operations on passenger itineraries across the

full day. We therefore propose additional constraints to maintain global feasibility and to ensure

consistency of passenger flows from one time period to another.

We implement the model in the US National Aviation System using real-world data on flight

schedules, passenger itineraries and airport capacities. We create test instances with up to 30



airports subject to ATFM interventions, which captures the largest instances encountered in prac-

tice. At each iteration of the rolling algorithm, the model optimizes the operations of up to 14,000

flights and the accommodation of passengers booked on up to 60,000 itineraries. Extensive compu-

tational experiments show that the model can be solved with a median runtime of 1-3 minutes at

each iteration—a moderate increase from baseline models where passenger flows are omitted. This

computational performance enable the implementation of passenger-centric approaches in practice.

Results suggest that significant ATFM improvements can be achieved by incorporating pas-

senger considerations into flight optimization algorithms. Indeed, the passenger-centric approach

to ATFM developed here permits large reductions in passenger delays at comparatively small in-

creases in flight delay costs, as compared to baseline models that do not consider passenger delays.

These are primarily driven by a sharp reduction in passenger misconnections and, to a lesser ex-

tent, by the reduction of delays borne by non-stop passengers. These improvements are obtained

by prioritizing flights carrying more non-stop passengers, flights with more outgoing connections

(i.e., flights booked by more passengers as the first leg of connecting itineraries) and flights with

fewer incoming connections (i.e., flights booked by fewer passengers as the second leg of connecting

itineraries). Vice versa, the other flights are de-prioritized, or even held deliberately on the ground

if the corresponding benefits of avoiding misconnections outweigh the associated delay increases.

These results confirm the structural insights from our analytical model in large-scale networks.

These results suggest that enhancing ATFM initiatives by explicitly accounting for passenger

itineraries could provide significant benefits to airlines and passengers. The success of Collaborative

Decision Making provides a framework to facilitate the sharing of passenger-level information and

its integration into decision support systems to make ATFM more beneficial to all stakeholders.
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1 Introduction 

To date, most static traffic assignment models remain neither capacity constrained nor storage 

constrained, i.e. they let flow exceed the link capacity and do not consider spillback. In this work we 

consider a recently proposed static assignment model formulation that is both capacity as well as 

storage constrained [1]. The formulation of this model is derived – and consistent with - a state-of-the-

art continuous time, first order, dynamic network loading model proposed in [2].  The importance of 

being able to capture spillback effects in a rigorous way in static assignment cannot be overstated. Not 

doing so typically results in underestimation of path travel times. This is especially true regarding 

paths that are affected by queues that spill back, even though these paths might not traverse the 

bottleneck(s) that caused the intial formation of the queues. As far as the authors are aware, the only 

other static models that attempt to capture spillback are found in [3] and [4]. However, in their work, 

they assume stable queues that are not the result of the adopted (steady-state) flow rates, necessitating  

the assumption that the queue originated from an - unmodelled - preceding period, which is not ideal, 

although mathematically convenient. In our work, the queues are consistent with the steady-state flow 

rates obviating the need to “choose” the queue, instead they follow from the link inflow and outflow 

rates. 

In our companion paper [1], the mathematical problem formulation of this novel static assignment 

model is described. However, similar to [3] and [4], no solution algorithm for general transport 

networks exists. In this paper, we do propose a general solution scheme for this model, capable of 

solving large-scale - real-world - networks despite the challenges introduced when incorporating path 

flow interdependencies due to spillback effects in a static context. As far as the authors are aware, this 

is a first in static assignment. 
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2 Methodology and model formulation 

Let us consider a transport network ( , ),G N A  with links aA  and nodes .nN  The network 

loading consists of a link model and a node model. Unlike most static network loading models, the link 

model is consistent with any two-regime concave fundamental diagram (FD). The FD has an 

uncongested branch (I) where density increases with increasing flow, and a congested branch (II) 

where density increases with decreasing flows. Density [veh/km] is denoted via inverse flux functions   

1 1

, ,( ), ( ),I a a II a aq q    for the uncongested and congested branch respectively, with the flow rate [veh/h] 

denoted by max[0, ],a aq q  see Figure 1.  

 

 
Figure 1: General concave two-regime FD consistent with static network loading model with capacity and storage 

constraints. 

Similar to dynamic models and different to most static models, we differentiate between link inflow 

rate 
au  and link outflow rate .av  When ,a au v  a queue forms explicitly during simulation period T   

[h]. Consequently, the portion 
a  of accepted flow is given by .a

a

v

u
 In traditional static models, 

1,a a   A  and  .a au v  Here, this is no longer the case. 

Further, we only focus on network loading, we assume that for a given path set ,pP  desired path 

flows 
pf  [veh/h] are known and given. Path incidence indicator 

ap  yields zero if link a  is not on 

path p  and one otherwise. Link set 
apA  contains all links preceding link a  on path .p  The link 

model is then formulated as follows: 
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a

ap

v

ap ap p a a u
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The construction of    depends on the node model function, denoted ( ),n   which distributes 

competing sending flows as  [veh/h], from incoming links ,na A based on the available receiving 

flows ar  [veh/h] on outgoing links ,na A for node .n  Splitting rates ab  convert the link sending 

flows to turn sending flows. Hence, the implicit (general) node model function input and outputs are 

defined as follows:    

 
1 , , ,
a

ab bp ap n nu p
u a b n   
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( , ) ( , , ), [ ] , [ ] , [ ] , [ ] , [ ] ,
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The link and node model interact by transforming link inflow rates to (downstream) sending flows  

- restricted by the link’s capacity – and constructing the receiving flows which are conditional on the 

link outflow rates, the available storage capacity, and link capacity via: 

q

0

max

aq

1( )I q
1( )II q

Uncongested

branch

Congested

branch

density

fl
o
w

I II



 
maxmin{ , }, ,a a as u q a  A  (5) 

1 max1
,min{ ( ), }, ,a a II a a aT

r v v q a    A  (6) 

 

with link length  [km] and simulation duration T  scaling the - outflow based - density to the 

appropriate storage capacity. The storage capacity supplemented with the outflow rate dictates the 

possible receiving flow, see [1] for the original derivation of this model. In this work, for the first time, 

we go beyond the mere formulation and provide a general solution scheme, which is discussed 

conceptually in the remainder of this extended abstract.  

 

3 Solution scheme 

While we know a solution exists to this model formulation (see [1]), finding such a solution is far 

from trivial given that the inflows and outflows depend on the sending and receiving flows via the 

node model. At the same time, the sending and receiving flows depend on the inflows and outflows 

creating a circular dependence in which all link flows can depend on all other links in the network. In a 

simplified case, when omitting storage constraints, i.e. fixing max ,a ar q  the point queue model of [5] 

results. In this earlier work, solutions are constructed via a relatively straightforward fixed point 

algorithm that in most cases converges quickly but may struggle to converge in some rare cases where 

multiple solutions exist. Adding storage constraints significantly complicates matters since the 

receiving flow is no longer constant, leading to an increased instability of the algorithm. We address 

these issues by proposing a solution scheme - see Algorithm 1 - that revolves around the three inputs of 

the node model, namely (i) splitting rates, (ii) sending flows, (iii) and receiving flows.  

 

Algorithm 1: Static capacity and storage constrained network loading solution scheme. 

 

Solutions to each of the three components is found separately, while temporarily fixing the other 

two components. This maximises algorithm stability while searching for a solution. Also, we can 

demonstrate that for each of the three sub-problems a solution exists. We then iteratively solve each 

sub-problem until convergence between sub-problems is reached as well. This then constitutes the 

solution to the overall network loading problem. The sending flow and receiving flow sub-problems 

( ) splitting rate updatei

network loading via (1)-(2)
1

aab bp apu p
u 


  P

( ) sending flow updateii

network loading via (1)-(2)

node update: ( , ) ( , , )n n n n n n u v s r φ

maxmin{ , }a a as u q

construct new acceptance factors α

not converged

( ) receiving flow updateiii

1 max1
,min{ ( ), }a a II a a aT

r v v q  

node update: ( , ) ( , , )n n n n n n u v s r φ

construct new acceptance factors α
verify convergence ( , )α α

smooth ( , )φ φ φ smooth ( , )s s s smooth ( , )r r r

i α α
node update: ( , ) ( , , )n n n n n n u v s r φ

construct new acceptance factors i

a
not converged: 1i i 

1, 1,i

ai  

network loading via (1)-(2)

initialise

( ) overall convergenceiv

α α

converged not converged

1 max1
,min{ ( ), }a a II a a aT

r v v q  

1verify convergence ( , )i i
α α

verify convergence ( , )α α

α α

converged



are themselves fixed point algorithms that require an iterative scheme to solve. In [5], steps (i) and (ii) 

are combined while step (iii) does not exist. By separating out steps (i) and (ii) we demonstrate that we 

can solve problems with multiple solutions that up untill now did not converge, an example of which is 

originally described in [5]. Further, the introduction of step (iii) ensures storage constraints and 

spillback effects are properly captured in a static context. In the full paper we demonstrate that 

smoothing between the various sub-problems is still required in general networks to ensure overall 

convergence, hence the verification on the smoothed results via step (iv). 

 

4 Case studies 

We investigated a number of case studies on both hypothetical and real-world networks to illustrate 

the effects and potential benefits of modelling spillback in a static context, conduct parameter 

calibration and investigate/compare computation costs. To illustrate the differences between traditional 

assignment, a point queue model and our newly proposed model, consider a locally oversaturated grid 

network with uni-directional links as depicted in Figure 2 (fixed demand, AON assignment). The 

bottleneck links found in traditional static assignment are depicted in Figure 2(a).  

 

 
Figure 2: (a) Traditional static assignment bottleneck links, (b) point queue results as per [5], no spillback. (c) 

Static LTM with storage constraints causing spillback.. 

Note that this does not yield explicit queues, it only results in flows exceeding capacity on such 

links. Figure 2(b) depicts the point queue model results as per [5], where queues emerge in front of 

bottleneck links. The Point queue model explicitly withholds excess flow resulting in less bottleneck 

links compared to traditional static assignment, however it does not consider spillback. Figure 2(c) 

shows the result of imposing storage constraints via our newly proposed Static Link Transmission 

Model, illustrating how queues spill back across the network. This is especially noticeable in highly 

saturated conditions as is the case in this example. Finally, we point out that queues can potentially 

spill back all the way to their original bottleneck link. This – when needed – is also be captured by our 

approach. In that case circular dependencies cause severe deterioration of the network performance and 

are especially difficult to solve. Details on the algorithm, extensions and further results are discussed in 

the full paper. 
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1 Introduction

Many products that are ordered online, such as groceries, require the customer to be present during

the delivery to home or office. For these attended home deliveries (AHD), retailers offer a selection

of time windows on their website, and customers choose one of these windows during the order

process. A significant challenge when creating time window offer sets lies in presenting suitable

time window options for customers. First, customers want convenient short time windows, but

short time windows can significantly restrict the ability to accept future requests and decrease the

flexibility of the route plan [4]. Second, demand for time windows is usually highly imbalanced and

leads to scarce delivery capacities, especially in after work hours. Third, customers want to pay

as little as possible for their delivery, and profit margins are low. Major online supermarkets like

Tesco (United Kingdom) or Bringmeister (Germany) offer both long and short time windows and

differentiate these options through different delivery fees. Low prices are used to nudge customers

towards accepting longer or less popular time windows. However, online supermarkets usually

set fees that are static over the whole booking process instead of dynamically updating them to



already accepted orders and routing characteristics.

In this work, we introduce the idea of dynamic flexible time window pricing. We consider the

impact of offering time windows of different lengths on the route plan’s flexibility and dynamically

adjust the fees per time window over the booking process. The literature offers various approaches

for pricing time windows of uniform length, e.g., through anticipating expected delivery costs [5].

However, these approaches neither consider the current flexibility of a route plan nor the idea of

including time windows of multiple lengths in the same offer set. In [2], we investigated the idea

of flexible time window management and developed simple ways to preserve flexibility of the route

plan by strategically offering short time windows. However, we did not set prices for time windows

of different lengths.

In this work, we want to develop and analyze rules that optimize delivery prices to maximize

the fee revenue for the retailer. We consider two time window lengths, long and short, and these

time windows are priced differently according to their length and their impact on route flexibility.

From a routing perspective, the largest number of deliveries is possible with long time windows,

but customers prefer the better service of the short windows and do not always accept a long time

window offering, even when it is cheaper. We develop different flexible pricing schemes, which are

easy to adapt by an online retailer. To analyze their effectiveness, based on recent literature, we

incorporate realistic customer behavior and introduce a choice model for time windows of multiple

lengths. We investigate the presented schemes with a case study for an online supermarket showing

the advantages of dynamic flexible pricing compared to static time window pricing.

2 Creating Flexible Time Window Offer Sets

For each request j, we create an offer set Oj based on spatio-temporal customer attributes as well

as route plan information. Oj can include both long and short time windows. We always offer all

feasible time windows, but assign them different fees. We consider two sets of time windows: Set

S contains short time windows with length s, and set L contains long time windows with length

l. Our approach maintains a tentative route plan for each vehicle based on the already accepted

requests. We use an insertion-based heuristic as presented in [1] to evaluate the feasibility of

inserting a new request j within the tentative route plan. We compute time spans that reflect

feasible ranges for start and end of service times for request j at the insertion position between

customer i and i+ 1 on a vehicle. For each feasible insertion position, we create sets that contain

all feasible time windows S′ and L′ and merge them into a single offer set Oj .

While long time windows are less likely to be accepted by a customer but provide greater

flexibility for accommodating future requests, we will offer the long time window options always

for free. To determine a request-dependent delivery price for the short time windows, we adapt



PS d PL d

Ps0 dPsm dPs1 d Pl0 dPln dPl1 d… …

BRANCHES

TWIGS

Figure 1: Nested Logit Model for Customer Choice of Long and Short Time Window

and refine flexibility mechanisms from [2] and combine these with a nested logit (NL) model. In

[2], we saw that it makes sense to maintain a high level of routing flexibility especially in the

beginning of the booking process. To this end, we propose a pricing scheme that offers short time

windows for a higher delivery fee to the early arriving customers to incentivize them to choose a

long time window. With this utitlization-based scheme, late arriving customers receive short time

window offerings at a lower price (but may face fewer available short time window options). We

quantify this by measuring the current utilization of our service capacity and compute how much

of the available service time has already been consumed by the already accepted customers when

creating offer sets for the available delivery vehicles.

To represent the choice behavior of customers selecting a delivery option from an offer set

of long and short time windows given different delivery fees, we incorporate a NL model [3].

Compared to the well-known multinomial logit model (MNL, [5]), the nested variant can consider

different utility expressions across groups of alternatives. In other words, customers compare the

utility of long versus short time windows separately from comparing the utility for time windows

with different delivery fees. Figure 1 presents the probabilities for customer choice of long and

short time windows. Within the first level, each branch describes the customer’s probability for

choosing either a short (PS(~d)) or a long time window (PL(~d)). The second level considers “twigs”,

which model the customer’s probability of choosing a specific alternative from one of the “nests”

(including the no purchase options Ps0(~d) and Pl0(~d)). The twig selection relies on the MNL model

and its parameters as presented by [5].

For the branch selection, we need to assess the offer set in terms of its overall suitability

regarding the short time window offering. We assume that – if offered at same terms – customers

always prefer short over long time windows. We define the probability of choosing a short time

window as shown in Formula 1, which is a function of the price of the short time window ~d. We

consider the customer’s price sensitivity βd as well as his/her sensitivity to the length of the time

window βlength, which defines the price level a customer would prefer long time windows.

Pshort(~d) =

∑
s∈S′ exp(β0 + βs + βlength ∗ βd ∗ ds)∑

s∈S′ exp(β0 + βs)
(1)

The branch probability for a long time window is then Plong = 1 − Pshort(~d).



10e 9e 8e 7e 6e 5e 4e #acc #240 #30 feeRev

Static 100% 63.6 34.7 28.9 289e

Dynamic Flexible 60% 20% 20% 62.2 29.5 32.7 302e

Dynamic Flexible 80% 20% 63.3 32.1 31.2 299e

Dynamic Flexible 40% 40% 20% 62.4 30.2 32.2 296e

Dynamic Flexible 40% 40% 20% 63.9 32.5 31.3 295e

Dynamic Flexible 80% 20% 63.0 30.9 32.1 294e

Table 1: Comparing Static and Dynamic Flexible Time Window Pricing

3 Experiments

We investigate the effectiveness of dynamic flexible time window pricing by simulating the booking

process for an online supermarket in Berlin, Germany. We assume a fixed delivery capacity of

three vehicles. In one set of experiments, we set the lengths of short time windows to 30 minutes

and long windows to 240 minutes and offer up to 16 short and 2 long time windows. We use real

travel times provided by OpenStreetMap and real data from [5] for customer choice calibration.

Table 1 shows an example result based on the average of 1,000 simulations for a dynamic

flexibility pricing as well as a static pricing of short time windows. For the static pricing, we can

see that if short time windows are offered at 10 e to all customers, we accept 63.6 customers in

total with 34.7 in a long and 28.9 in a short time window, creating a fee revenue of 289 e. The

remaining rows show how further variants of the dynamic pricing schemes perform. With this, we

measure the utilization of the service capacity during the booking process and decrease the time

window fees as the number of accepted orders grows. For example, in the second row, we offer

short time windows for 10 e until 60% of the available service capacity has been assigned, then

reduce the fee to 8 e, and finally offer short time windows for only 6 e until the remaining 20%

capacity have been utilized. This increases the fee revenue by 5% compared to static pricing and

allows the firm to accept four additional orders for short time windows while keeping the total

number of accepted orders constant.

4 Outlook

In the conference presentation, we plan to discuss further variants of dynamic pricing schemes,

highlighting the gains from considering the route plan’s flexibility in the dynamic pricing of flexible

time windows. Further pricing schemes are based on customer characteristics (location, time

window preferences, basket value) as well as characteristics of the evolving route plan (e.g., available

capacity). We will analyze the best schemes for setting fees and the range of fee values required to

maximize revenue. We show that the proposed schemes work well and outperform current static

pricing strategies of online retailers.
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1 Introduction 

During daily operations of an airline network, various incidents may cause deviations from the planned 

operations, sometimes making it impossible to operate the schedule as originally planned. In such 

situations airlines need to adjust the schedule for the time period of the incident, and then carry out 

further recovery steps in order to get back to original schedule. Disruptions usually require the airline 

to reschedule some passengers onto alternative itineraries to take them to their destinations as soon as 

possible. In the current airline practice, the recovery problem is often solved sequentially [1]. Once a 

disruption has begun and impacted an airline, one of the main decisions to make is about timetabling, 

i.e., whether to maintain punctuality or to delay or cancel flights. Then, the aircraft recovery problem 

re-assigns individual aircraft to fly the repaired schedule, while matching passengers’ transportation 

needs with available seating on the assigned aircraft demand while satisfying the aircraft maintenance 

requirements. Finally, crews are rescheduled to comply with the government regulations and collective 

bargaining labor agreements. However, this approach has limitations [4]: computing a new timetable 

without accounting for aircraft and passengers considerations may produce a suboptimal timetable or 

even an infeasible one for aircraft assignment and passenger recovery purposes. Moreover, all prior 

studies ignore passengers’ response to disruptions and recovered schedules [3]. Specifically, all 

existing literature assumes that all the rebooked passengers show up [2]. However, due to passenger 

compensation rules established in some regions of the world, this may not be true. Passengers’ 

response may be significantly influenced by the operator's recovery actions and the provided level of 

service. 

In a recovery context, level of service may be measured with the amount of delay that 

passengers suffer when arriving at their destination as compared to their planned arrival time. Existing 

regulations in some countries, which impose monetary compensations to passengers in case of 

disruptions, alter the way they perceive the utility of other alternatives, once the disruption has started, 

and also add new types of costs to airlines. These regulations require compensation which is dependent 

on distance flown, extent of delays, cancellations, or denied boarding. The monetary compensation 
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may enable passengers to use it to book another flight on another airline to reach their destination 

sooner. We define these passengers as phantom passengers. They are the passengers with a confirmed 

reservation, who decide not to show up for their recovered flight schedule in case of a particular 

disruption. Airlines may lose additional passengers if the recovery itineraries are not acceptable to the 

passengers in terms of their level of service. The inability to account for this important phenomenon 

may produce inefficient schedules, for example, by providing more seats than needed on certain 

itineraries. These issues were reported and identified as significant operational concerns by our airline 

partners who include major hub-and-spoke airlines in the world. Ours is the first study to explicitly 

account for these effects. 

This study presents an integrated model for airline recovery which features schedule, aircraft 

and passenger recovery while, for the first time, explicitly accounting for passenger response to 

disruptions as a driver of the costs to an airline. 

 

2 Mathematical model 

The aim of the Integrated Model for Airline Operations Recovery (IMAOR) is to determine the 

optimal set of flights, aircraft and passenger recovery actions that will minimize the total cost which is 

the sum of fuel costs, other operating costs, flight delay costs, passenger re-accommodation costs, and 

passenger compensation costs. We will use a flight-based model that captures aircraft maintenance 

constraints in a novel way using delayed constraints generation. The model takes, as known inputs the 

following: airports and all feasible nonstop flight segments, slot availability, aircraft resource 

availability, disruption information (i.e., nature, place, time, duration, etc.), original scheduled 

passenger flows (by passenger type and itinerary), and passenger compensation rules. Depending on 

the disruption, passenger type, and compensation rules, we estimate the number of phantom passengers 

using a binomial logit model. 

The main decision variables are the following. ,t fx  is 1 if flight f is assigned to tail t, 0 

otherwise. 
f ≥ 0 is the delay absorption (in minutes) due to increased cruise speed. ( )d a

f f  ≥ 0 is the 

departure (arrival) delay of flight 𝑓 in minutes. ',p

ph ≥ 0 is the number of passengers re-assigned from 

itinerary p to itinerary p’ for passenger type 𝜐. fz  is 1 if flight f is canceled, 0 otherwise. ',p

p

 is 1 if 

the arrival delay of itinerary p with respect to the planned arrival time of itinerary p’ is at delay-level 

 , 0 otherwise. , '

t

f f  is 1 if flights f and f’ are assigned to tail t consecutively and there is 

maintenance opportunity which is feasible in time and space. 

The objective function in (1) minimizes the sum of operating costs, extra fuel consumption 

cost due to increased cruise speed, flight delay cost (crew cost, maintenance cost and fuel cost), 

passenger re-accommodation costs (e.g., meal and hotel) and passenger delay related costs (which 

includes passenger compensation costs and the loss of passenger goodwill). In addition, the last term 

speeds up the solution process and penalizes deviations from the undisrupted schedule given by ,
ˆ

t fx . 

Note that the last two terms in the objective function are non-linear. 
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This objective function is minimized subject to many constraints such as itinerary delay and 

compensation constraints, slot availability constraints, flow conservation constraints, fleet size 

constraints and maintenance constraints. Here, we show only some of them, due to the limited space. 
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Constraints (2) require that every flight must be either flown using exactly one aircraft or 

must be canceled. Constraints (3) ensure that tails needing maintenance do not exceed the available 

number of block hours. Constraints (4) are itinerary demand constraints; they determine passenger re-

assignment (including that to the null itinerary). Constraints (5) are flight seating capacity constraints. 

The parentheses on the right-hand side of the constraints have different terms representing recapture 

rates for the different cases of delays: 1 if there is no delay and 
',

,1 p

p



  for each level of delay   

and passenger type  . Note that constraints (5) feature non-linear terms in their right-hand sides. 

 

3 Case study results 

Computational experiments are based on realistic cases drawn from IBERIA's network, which features 

a pure hub-and-spoke network, with 48 airports and 164 OD pairs. The only hub is located in Madrid. 

There are five different fleet types available for these case studies: A-319, A-320, A-321, A-340-200 

and A-340-600 featuring 141, 171, 200, 254 and 342 seats, respectively. A planning period of a little 

over three days is considered. It is divided in 4530 time instances of 1 min each. There are 1074 flights 

in the planning period and no flight bypasses the hub airport. We evaluate our model’s performance 

with case studies focusing on two different disruptions: the first one features a small-scale disruption, a 

delay of a flight from JFK to MAD (based on data from real operations), and the second one a large-

scale disruption, an airport closure of 3 hours. We set up a time limit of 600 seconds for all the 

computational experiments, solving all the models to at most a 2.39% optimality gap.  

Table 1 shows solutions to the aforementioned small-scale disruption case study. The results 

for the large-scale disruption case study are omitted due to space limitations. It has four different 

columns. The first one is the header column. The second column displays the values as provided by the 

optimization model solution for the case study featuring a JFK-MAD flight delay (the small-scale 

disruption) assuming that each flight has the expected number of passenger no-shows. The third 

column lists the values given by a Monte Carlo simulation for the same optimization model solution 

which models each passenger agent’s behavior using a stochastic simulation. The fourth column lists 



the corresponding values obtained for airline actual operational decisions during the delay disruption. 

The optimization model is based on the expected no-show rate as an input to the passenger recovery 

problem, and hence is not able to fully capture all the passenger demand dynamics. Consequently, a 

passenger simulation is performed once the schedule for airline operations has been determined with 

the presented optimization model. 

Table 1: Optimization and simulation solutions 

 Small-Scale Disruption Case Study 

Item          \        Case study Optimization Simulation Real 

Operating costs 1.329950E+7 - 1.352463E+7 

Extra Fuel costs 18523.21 - 6248.144 

Delay costs 25727.0 - 35217.357 

Re-accommodation costs 14100 15800 17800 

Compensation costs 261160 262827 281486 

Rejection costs 0 0 0 

# of changes 13 - 8 

Expected # Phantom Pax 14.15 18.72 48.39 

4 Conclusions 

This study addresses the challenge of optimizing an airline’s schedule, aircraft and 

passenger recovery in an integrated manner while explicitly accounting for cruise speed 

changes and previously unaccounted aspects of passenger compensations and no-shows. We 

develop a flight-based non-linear mixed-integer programming model using novel 

maintenance constraints and solve it in small computational time to reasonable optimality 

gaps. Our research enables incorporating thus far uncaptured but critical passenger dynamics 

to help airlines recover their operations more effectively and efficiently. 
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1 Background 
 

Departure-time choice is one of the most critical factors affecting congestion in transportation 

networks. Many studies on this topic rely on schedule penalties, as introduced by Vickery [1] in his 

seminal paper about the bottleneck model. Small [2] provides a thorough overview of the research that 

stemmed from the bottleneck model. Analytic closed form solutions are possible in many cases, but 

not always, for example if arrivals are stochastic [3]. In the latter case a dual method is used, focusing 

on the generalized cost as the main solution variable. Limitation of dual methods are discussed in 

section 2. 

Some studies argue that there may be connections between the iterative process in 

computational methods and the day-to-day dynamics in practice. Unfortunately, Iryo [5] showed that if 

the bottleneck model is combined with a certain reasonable reaction mechanisms, the resulting 

dynamic system is unstable. Guo et al. [4] proposed bounded rationality as a remedy for the issue of 

stability in the bottleneck model. The potential of this approach is examined in section 3.  

Computational methods examined here solely by their performance in terms of efficiently 

approximating the equilibrium at bottlenecks, ignoring possible connections to behaviors of travelers. 

Such methods can be useful for computational purposes, and for examining mathematical stability of 

the model, which requires (by definition) the existence of at least one converging process. A specific 

method and its numerical evaluation are presented in section 4. 

  

 

2 Dual methods and their limitations 
 

Dual methods focus on the equilibrium generalized-cost. In each iteration, a specific value is presumed 

for the equilibrium generalized cost. Within-day time intervals are examined sequentially. If the 

generalized cost at the end of the interval is higher than the presumed equilibrium value even without 

any departures, then the departure rate will be zero. Otherwise, a departure rate is chosen so that the 

generalized cost at the end of the interval will meet the presumed equilibrium value. At the end of the 

iteration, the total number of departures is identified and compared with the target demand. Based on 

this comparison adjustments are made to the presumed value of the equilibrium cost. In a single class 

model with homogeneous travelers, the total number of departures is a continuous and monotone 



function of the presumed equilibrium cost. An iterative adjustment process can enable convergence 

(e.g. [3]). 

Whether a dual approach can be used for multi-class models with heterogeneous travelers is 

not obvious. Consider the case of two classes of travelers with equal total demand, N, identical in all of 

their parameters except for their desired arrival time. Since their desired arrival time is different, their 

generalized cost at equilibrium will be different.  Let Di(1, 2) represent the total number of 

departures of class i as a function of the presumed generalized cost values of both classes. This 

function may be ill behaved, changing very slowly in certain areas while changing very rapidly in 

others. In particular, if the target arrival times of the two classes are almost the same, there may be a 

small threshold  such that if 1>2+ then D1(1, 2)2∙N and D2(1, 2)=0, but if 1<2- then D1(1, 

2)=0 and D2(1, 2) 2∙N. Such situation of ‘the winner takes it all’ can complicate the adjustment 

process considerably, and make it unstable.  

 

 

3 Bounded rationality and its implications 
 

Guo et al. [4] proposed bounded rationality as a way to address stability in the bottleneck model. 

Figure 1 presents a replication of one of their scenarios, with total demand N=6000; value of time 

=10 $/h; early arrival penalty of =5 $/h; late arrival penalty of =15 $/h; and bounded rationality 

threshold of =2$. The figure includes within-day profiles of departure rates (1a), generalized cost 

(1b), and convergence (1c). The solution satisfies the conditions of bounded rationality, but it is quite 

different from the equilibrium solution under perfect rationality, as the threshold is relatively high, 

~36% of the minimum cost. Changing the bounded-rationality threshold from =2$ to =1$ is not 

helpful, as the process becomes unstable even with step size that is 100-times smaller. As Iryo [5] 

showed, with perfect rationality, even the continuous dynamic system is not sable. Stability in this case 

is not only an issue of step size.  

 

a.  b.   c.  

Fig. 1: Departure rate and generalized cost profiles under bounded rationality – replication of a scenario from Guo et al. 

[4]. Within-day departure rates (a); Within-day generalized costs (b); Convergence of deviation (c) 

 

 

 



4 A primal methods and its performance 
 

We divide the modeling horizon into M time intervals of equal duration, T. We assume that 

the departure rate within each time interval is constant, denoted by r[t, t+T]. However, generalized cost 

is not constant within time intervals. In the bottleneck model, during most time intervals the 

generalized cost is linear. For simplicity, we shall assume that this is the case for all time intervals, 

ignoring the inaccuracy at the switch from earliness to lateness penalty. The discretized generalized 

cost at the beginning of time interval t is denoted by ct.  

Consider two consecutive time intervals within the congested period, and assume that both 

intervals remain congested under any flow shift from one of these time intervals to the other. 

Subsequently we will refer to such pair of intervals as “fully congested”. Figure 2 illustrates several 

options for the generalized cost during the two intervals (there are of course many other options). 

Figures 2a and 2b are symmetric, with equal average generalized cost for both intervals. Thus, high-

cost to low-cost shift policy imply no shift in these cases, even though equilibrium conditions are not 

satisfied. Alternatively, shifts can be based on the cost at the end of each interval. Figures 2c and 2d 

show situations with equal cost at the end of the two intervals, but again these situations do not 

represent equilibrium. Shifts from high-cost to low-cost intervals are therefore not sufficient, and other 

type of shifts, referred to as “smoothing” shifts, are needed. 

 

a.  b. c.  d.  

Fig. 2: Illustrative examples of generalized cost for two consecutive fully congested time intervals 

 

Notice that under the assumption of “fully congested” intervals, a shift of flow between the 

two intervals will not influence the generalized cost at the beginning of the first interval, or at the end 

of the second interval. The only discretized generalized cost that can influenced by this shift is at the 

end of the first interval, which is the beginning of the second interval. The proposed smoothing shift 

between consecutive fully congested intervals is determined by the deviation of the generalized cost in 

the middle from the average of the generalized cost at the edges, that is: 

st = a ∙ [ ct – (ct -T + ct +T) / 2 ] (1) 

where a is the scaling parameter. If full implementation of this shift leads to feasibility violation, the 

maximal possible shift is implemented. The complete method combines smoothing shifts and high-cost 

to low-cost shifts. Smoothing shifts are implemented if the average cost within both intervals is below 

the average cost of all travelers (i.e. over the entire modeling horizon). High-cost to low-cost shifts are 

implemented for intervals where the generalized cost at both edges is above the total average cost. 

Figure 3 shows the results of the proposed method in an equivalent scenario to Figure 1, with extended 



modeling horizon. The figure shows that the proposed method converges to a solution that 

approximates the equilibrium conditions fairly well, both in terms of departure rate (3a) and in terms of 

generalized cost (3b). The convergence of the deviation from equilibrium (3c) is fairly slow, requiring 

about 200,000 iterations. Clearly, there is room for substantial improvement, but at least it shows that 

not all hope is lost, and that there is a chance to find primal methods that can be used to compute 

equilibrium solutions for the bottleneck model. 

a.   b.   c.   
Fig. 3: Departure rate and generalized cost profiles for the proposed method.  

Within-day departure rates (a); Within-day generalized costs (b); Convergence of deviation (c) 
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1 The Transportation Setting

We consider the delivery of goods, purchased through e-commerce websites or in shops, from

stores or warehouses to homes in a few hours, the same day, or the next day within urban areas.

The deliveries may involve in-vehicle consolidation in the form of multiple shipments on the same

route, but not out-of-vehicle consolidation at transfer facilities such as crossdocks or sortation

facilities. This type of service is used for various reasons, including security (e.g., expensive goods),

because goods are fragile or perishable (e.g., groceries), or because goods are physically large (e.g.,

furniture). Such home delivery utilizes couriers who deliver with a variety of vehicles, such as

bicycles, motorcycles, cars, and vans. These deliveries involve short-duration (less than a day)

delivery routes, due to the characteristics of the goods (e.g., perishable goods), customer needs

(e.g., urgent deliveries), and relatively small vehicle capacities.

On-Demand Delivery companies (ODDs) manage a two-sided market for the delivery of goods.

They are intermediaries between consumers, retailers, and independent couriers. We consider an

ODD’s pricing problem in the two-sided market motivated by our collaboration with a last mile

delivery company. The ODD operates a market for the delivery of goods from participating retailers

to destinations specified by customers. For example, consider a customer who purchases a large

item such as a piece of furniture or an appliance from a store. The customer needs the item to be

delivered, and the store refers the customer to the ODD. The ODD quotes a menu of prices to the

customer for delivery of the item. The prices in the menu depend on the origin, the destination,

and the time window within which the customer needs the delivery to take place. The customer

specifies the destination and chooses the time window for the delivery, or chooses not to accept the



delivery offer from the ODD. The customer’s choice of acceptance, and the choice of time window,

may depend on the prices that the ODD quotes.

On the other side of the market, the ODD contracts with independent couriers who provide

the vehicles and drivers for deliveries. The ODD offers different prices in this side of the market

depending on the part of the city in which and the time slot during which the courier will make

deliveries. Different couriers have different preferences for the parts of the city in which to make

deliveries. For example, some couriers are more flexible, possibly because they know the entire city

quite well, and they are willing to make deliveries in all parts of the city, whereas other couriers

have strong preferences regarding the part of the city in which they make deliveries. Different

couriers also have different preferences for the time slot of the day or week in which to make

deliveries. For example, some couriers have other obligations for certain times of the day or week,

and they cannot or do not want to make deliveries during those times, whereas other couriers are

more flexible regarding the time slot in which they make deliveries. Couriers make deliveries with

different vehicle types with different capabilities — not every product can be delivered with every

vehicle type. A vehicle can typically pick up multiple shipments at a store or warehouse, and

deliver these shipments at their respective destinations on a route.

The compensation of each courier consists of two parts: First, the primary compensation for

the time slot that the courier commits to be available to make deliveries, the part of the city in

which the courier is willing to make deliveries, and the vehicle type that the courier will provide.

As mentioned above, different couriers have different preferences regarding work time and part of

the city in which to work, and this part of the compensation reflects these preferences relative to

the customers’ demands. For example, if many customers would like to receive deliveries in the

evenings after work or on Saturday mornings, but few couriers want to work during these times,

then the prices offered to couriers to be available during these times will be higher. Similarly, if

many customers would like to receive deliveries in the core of the city, but few couriers want to

make deliveries in this part of the city, then the prices offered to couriers to be available to make

deliveries in the city core will be higher. Also, different vehicle types have different capabilities,

and the ODD offers a higher price for vehicles with greater capabilities. Once a courier signs up

to make deliveries with a particular vehicle type in a particular part of the city and a particular

time slot, the courier has committed to accept all deliveries assigned to the courier in that part

of the city and in that time slot, subject to the constraints of the vehicle type, and the courier is

entitled to the specified compensation, whether the courier ends up being assigned any deliveries

or not. The second part of the compensation of each courier is the payment for the routes that

end up being assigned to the courier and the deliveries made by the courier. This secondary

part of the compensation is only determined after customers have placed their delivery orders,

and the ODD has assigned these delivery orders, and their associated routes, to the individual



couriers. The primary part of the compensation is intended to compensate the couriers for their

delivery capability (including time) committed, whereas the secondary part of the compensation is

intended to compensate the couriers for their costs incurred in making the deliveries. As mentioned

before, the primary part of the compensation is driven by the couriers’ work preferences relative

to the customers’ demands, whereas the secondary part of the compensation is determined by the

estimated cost of the courier for driving a route and making deliveries. In cities with high labor

cost, the secondary compensation tends to be small, about 25%, relative to the primary one.

We focus on the price planning problem in the two-sided market, that is, the problem of

determining the menu of prices to quote to customers that can depend on the origin, the destination,

and the time window for delivery, as well as the menu of prices to offer to couriers that can depend

on the part of the city that the courier signs up to make deliveries in, the time slot that the

courier commits to be available to make deliveries in, and the vehicle type that the courier will

provide. These prices are selected, and the ODD and the couriers enter into their agreements, in

advance of customer requests. That is, at the time that the ODD and the couriers enter into their

agreements, it is not yet known exactly which deliveries will take place in each part of the city

and in each time period. The ODD enters into these agreements because it needs to know that a

courier will be available to make a delivery at a destination and in a time window before the ODD

commits to a customer to deliver the customer’s goods at that destination in that time window.

Also, the courier would like to plan its own work schedule and its own compensation in advance.

After the ODD has entered into agreements with various couriers, it still has an opportunity to

modify the planned customer prices according to the committed delivery capacity before entering

into delivery agreements with customers. For example, if the ODD failed to obtain an agreement

with any courier to deliver in a particular part of the city or during a particular time window, then

the ODD can exclude this part of the city or this time window from the menu of prices that it

offers to customers, or it could set the price sufficiently high to pay for another delivery service.

2 Models

We use discrete choice models to model the probabilities of customers choosing particular time

windows for their deliveries (or choosing not to use the ODD’s delivery service). These choice

probabilities depend on the menu of delivery prices offered to customers by the ODD. We also use

discrete choice models to model the probabilities of couriers choosing particular parts of the city

and particular time slots to commit to for making deliveries (or choosing not to commit to making

deliveries). These choice probabilities depend on the menu of primary compensation prices offered

to couriers by the ODD.

The detailed delivery orders are not known at the time that the ODD chooses the courier

prices and customer prices. Therefore, in the pricing problem we model the aggregate delivery



capability in each part of the city and in each time window represented by the forecasted courier

commitments, but we do not model the detailed vehicle routes.

We consider two price optimization problems based on multinomial logit discrete choice models.

In one model, the prices are discretized, resulting in a linear optimization problem. In the other

model, the prices are modeled as continuous decision variables. The basic version of this optimiza-

tion problem has a nonconvex objective function. We show how to reformulate the problem as an

equivalent convex optimization problem.

3 Numerical Results

Preliminary numerical results for the linear optimization problem are provided in Table 1. The

instances are generated from data obtained from an ODD company. Seven categories of shipments

are considered. The vehicles differ from each other by their capacity and their cost. Six vehicles are

included in each type. Six time intervals with different widths are considered for couriers and for

customers. In the column Revenue we report the difference between the planned revenue received

from the customers and the planned cost paid to the couriers. Two sets of prices are considered,

given by pi = xi(24 − w) where w is the length of the time window, the idea being that if the

customers offer more flexibility by choosing a larger time window for delivery, then they pay less.

In each line we report the average results over 5 different instances.

The instances are solved with SCIP 6.0.0 on a computer with a processor Inter Core i5, 2.40

GHz × 4 and 8 Go of RAM. The operating system is UBUNTU 18.04.

We observe that as the number of types of vehicles increases, the solution is composed of

more smaller and cheaper vehicles and thus the revenue is increasing. From the two sets of price

values, given by different values of xi, it follows that as xi increases, the revenue decreases and the

customers tend to select larger time windows. Finally, the computation time is increasing in the

number of types of vehicles. Numerical instances with more than 20 types of vehicles are solved

in less than 50 seconds. The results demonstrate the importance of choosing the right price levels

for different time windows.

Price level # deliveries # vehicles CPU Time (seconds) Revenue # Vehicles Sol

P1 151 2 3.68 292 10

151 5 11.16 655.5 20

P2 151 2 3.45 185 11

151 5 9.87 437.7 23

Table 1: Preliminary numerical results for linear optimization model.
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1 Introduction

Assigning aircraft types to the flight legs, a process called fleet assignment, in an airlines schedule

is an important tactical decision which greatly impacts airline’s profit (Barnhart et al., 2002). Such

fleet assignment decisions can often be coupled with schedule design decisions by introducing a

base schedule containing some mandatory and some optional flights (Lohatepanont and Barnhart,

2004). A commonly made assumption regarding customer demand, called the independent demand

assumption, states that each passenger has a unique itinerary product that he/she intends to buy,

and if that product is not available due to capacity constraints or revenue management policies,

then that demand is simply lost. Such an assumption is not valid in practice because there always

exist substitution effects among similar itinerary products. A passenger who is not able to buy

his/her favorite itinerary product might choose an alternative product instead.

Motivated by this fact, in this research, we study an integrated fleet assignment and schedule

design model (SD-FAM) where customer demand interactions are captured using discrete choice

models (CSD-FAM). Discrete choice models are commonly used in marketing literature to model

product substitutions (McFadden, 1980) and in transportation literature to model travel demand

(Ben-Akiva and Lerman, 1985). They have also been widely incorporated in airline revenue man-

agement studies (Talluri and van Ryzin, 2004; Liu and van Ryzin, 2008; Gallego et al., 2014).

However, there is limited research on incorporating choice models into airline planning models.

Wang et al. (2014) was one of the first research studies where multinomial logit (MNL) choice

model was incorporated into the fleet assignment model (FAM). As revealed in the paper, the

downside of a straightforward combination of FAM with MNL choice is loss of tractability because



of the dramatic change to the structure of FAM. This issue is further exacerbated with other ad-

vanced choice models. From our own experience, for a problem instance from a major US airline,

the straightforward model directly combining FAM and MNL choice does not produce even a fea-

sible solution in 30 hours of computational time with a state-of-the-art commercial solver. This

computational burden is the major obstacle preventing CSD-FAM from being applied in the airline

industry. Faced by this difficulty, our research makes the following contributions to CSD-FAM:

1. We provide a tractable reformulation and reliable approximation of the choice-based inte-

grated fleet assignment and schedule design problem that enables it to be solved for full-scale

airline instances, and in doing so, achieves significant profit improvements.

2. Within this reformulation and approximation framework, we develop a novel fare-split linear

program to allocate itinerary fare across corresponding flight legs and achieve significant

profit improvements over commonly used heuristics, such as distance-based proration.

2 Methodology

We start with an existing reformulation called subnetwork-based FAM (SFAM) (Barnhart et al.,

2009) to address CSD-FAM. The subnetwork-based FAM is an approximation scheme originally

developed for efficient solution of itinerary-based FAM (Barnhart et al., 2002) with independent

demand. The key idea of SFAM is to utilize composite variables to model fleet assignment decisions.

In a standard FAM, binary variables xl,f are defined to equal 1 if fleet type f is assigned to flight

l, and 0 otherwise. In SFAM, flights are first partitioned into different subnetworks. For each

subnetwork, we enumerate all possible fleet assignments for all the flights in it. We then use a

binary variable wj which equals 1 if fleet assignment j is chosen for subnetwork k, and 0 otherwise.

The following table shows an example of a subnetwork consisting of two flight legs (l1 and l2) and

all possible fleet assignments with two fleet types (A and B) including the no-assignment option

∅. As can be seen from the table, there are nine possible assignments for this subnetwork, and the

assignment variable wj here indicates whether or not a particular one is selected.

Flight w1 w2 w3 w4 w5 w6 w7 w8 w9

l1 A A B B ∅ ∅ A B ∅

l2 A B A B A B ∅ ∅ ∅

Table 1: Illustration of the possible fleet assignment solutions for a subnetwork

With this new definition of the fleet assignment variables, our proposed reformulation repre-

sents a Dantzig-Wolfe like reformulation compared to the standard CSD-FAM formulation. The

reformulation enjoys better computational efficiency because of the tightened LP relaxation bound.



On the other hand, the key challenge of SFAM is that the required number of assignment variables

grows exponentially with the size of the subnetwork. Thus the size of the subnetwork determines

the key trade-off between computational efficiency and solution quality, where coarser partitions

and larger subnetwork sizes provide greater solution quality but higher computational require-

ments, and vice versa. Adding customer choice and itinerary substitution consideration leads to

stronger network dependencies between flights: flights can be dependent not only because they

might provide capacity for the same itinerary product, but also because the products for which

they provide capacity might be jointly considered as substitutes by passengers from a specific

origin-destination market. In order to extend the subnetwork-based framework to CSD-FAM and

enjoy its computational advantages while still obtaining good solutions, we propose a subnetwork-

based mixed formulation (S-CSD-FAM) where both composite variables and traditional flight-fleet

assignment variables co-exist in the same model. We show that the proposed mixed formulation

represents an upper bound on the original problem and develop an efficient linear program to

optimize fare proration across flight legs to tighten this bound. In existing literature, such fare

proration procedures are usually handled by heuristic approaches, e.g., allocating fare based on

flight distances, etc. These modeling enhancements are shown to greatly improve the performance

of the subnetwork-based formulation.

3 Computational Experiments

We use a full-scale daily instance from a major US airline in May 2014. The instance consists of

815 domestic flights, 4,290 itineraries leading to 47,190 total itinerary products (multiple products

can correspond to the same itinerary), and 819 markets, where each market is characterized as a

specific origin-destination pair. All products corresponding to the same origin and destination are

assumed to be considered by the passengers in that market. So, on average, 47, 190/819 ≈ 57.6

products correspond to each origin-destination market. Attractiveness value of each itinerary prod-

uct and unconstrained demand for each market are estimated using airline booking and product

availability data via methods described in Vulcano et al. (2012) which involve sophisticated de-

mand untruncation and choice model estimation. The average market share of the airline under

consideration across all its markets is roughly 42%. Seven different fleet types and 187 aircraft are

available to operate this network. The aircraft seating capacities range from 48 to 165 passengers.

In order to fully test the power of the proposed methodology, all flights are considered optional.

Table 2 illustrates results of different S-CSD-FAM runs based on different subnetwork partitions

and fare split methods. It reports profit value of the solution, and CPU times if an optimal

solution is found within the 12 hour CPU limit or optimality gaps at the end of solution limit.

The partition is characterized using the maximum number of flights in each subnetwork (second



column) and the percentage of flights represented using the subnetwork-based formulation (third

column) illustrated in Table 1. In general, we find that the solution quality (i.e., profit value)

improves as the partition becomes coarser, although it is accompanied by higher computational

costs. S-CSD-FAM-5 achieves the highest objective function value within the computational time

limit. We also observe that the optimization-based fare proration method brings significant benefits

compared to the distance-based heuristic.

Run
Partition

Fare Split
Profit

($M/day)

Flights

Selected

Solution

Time (sec)max subnetwork size composite variable portion

S-CSD-FAM-0 1 100%
dist 5.160 805 9

opt 5.167 799 9

S-CSD-FAM-1 4 100%
dist 5.413 782 63

opt 5.450 778 40

S-CSD-FAM-2 5 100%
dist 5.517 776 205

opt 5.517 772 226

S-CSD-FAM-3 6 100%
dist 5.578 766 795

opt 5.618 751 1,386

S-CSD-FAM-4 4 66%
dist 5.908 732 (0.63%)

opt 5.941 725 (0.61%)

S-CSD-FAM-5 4 33%
dist 6.119 679 (3.14%)

opt 6.164 681 (2.94%)

Table 2: Results of different S-CSD-FAM runs (with 12 hr CPU time)

We then compare S-CSD-FAM-5, with two baseline approaches: an independent demand fleet

assignment and schedule design model (ISD-FAM) and a plain implementation of CSD-FAM with-

out the proposed reformulation and approximation scheme. Judging from the optimality gap, we

can see that CSD-FAM is much more difficult to solve compared to ISD-FAM, and S-CSD-FAM-5

is more tractable than CSD-FAM, but not as tractable as ISD-FAM. In the 5 hr computational

time limit, CSD-FAM is outperformed by ISD-FAM by an annual profit difference of around $15.3

million. On the other hand, S-CSD-FAM-5 significantly outperforms ISD-FAM annually by $31.4

million. This demonstrates that the tractability issues associated with CSD-FAM deteriorate its

performance so much that even a simplified method (ISD-FAM), without any modeling of customer

choice behaviour, outperforms it. In the 12 hr computational time limit, CSD-FAM outperforms

ISD-FAM annually by $9.1 million, while S-CSD-FAM-5 further improves the annual profit by an

additional $24.5 million.

ISD-FAM CSD-FAM S-CSD-FAM-5, opt

Time Limit
Profit

($M/d)

Profit Change

($M/yr)

Gap

(%)

Profit

($M/d)

Profit Change

($M/yr)

Gap

(%)

Profit

($M/d)

Profit Change

($M/yr)

Gap

(%)

5 hr 6.059 0 0.12 6.017 (15.330) 7.74 6.145 31.390 3.52

12 hr 6.072 0 0.05 6.097 9.125 5.68 6.164 33.580 2.94

Table 3: Comparison to baseline models
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1 Introduction 
 

Dynamic network loading models for simulating traffic on networks are applied both for transport 

planning purposes as well as traffic management purposes. For large scale networks, macroscopic link 

models consistent with first order kinematic wave theory are particularly popular, especially in 

conjunction with first order node models. The link transmission model (LTM) is an efficient algorithm 

with relatively small numerical errors which is used increasingly in dynamic traffic assignment 

procedures. The original algorithm in [1] adopt a triangular fundamental diagram (FD). Recent 

extensions consider more general concave FDs ([2], [3], [4]). 

For transport planning purposes, it is common to keep the FD fixed during the simulation. 

However, for traffic management purposes an FD may change when properties of a road segment vary 

over time. In particular, dynamic speed control may change the maximum speed imposed on a road 

segment, and dynamic lane management may open or close certain lanes. Implementation of changes in 

the FD in a first or order second order cell-based model can be achieved by instantaneously changing 

initial conditions, see e.g. [5]. While this is relatively straightforward, it assumes that all drivers on (part 

of the) link immediately react to the change, which may temporarily result in infeasible traffic states.1 

In LTM only boundary conditions are used and hence accounting for changes in the FD is more 

challenging. Variable speed limits were considered through an extension of LTM in [6] assuming a 

triangular FD. A more general extension to variable fundamental diagrams for LTM is presented in [7]. 

However, this method adds significant complexity to LTM and still suffers from possible infeasible 

                                                 
1 For example, instantaneously reducing a 2-lane road to a 1-lane road may not be feasible (i.e., results in a density 
larger than the jam density) when vehicles are not physically able to merge onto the same lane due to existing traffic 
conditions. 
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traffic states due to the adoption of initial conditions that assume an instantaneous change of the FD 

across the entire link. 

In this paper we therefore propose a new method that obviates the need for the assumption that 

the FD changes instantaneously across the entire link. Instead, we advocate an approach where the FD 

progressively changes in accordance with the information on the variable message sign (VMS), which 

travels with the speed of drivers. In other words, in case the speed limit changes from 120 km/h to 90 

km/h then this will only affect drivers upstream the VMS while drivers downstream the VMS are not yet 

informed of the reduction in maximum speed. This effectively results in a situation where multiple FDs 

are active across a single link akin to multiclass traffic. The result is a behaviourly justifiable method 

revolving around the way information propagates (resulting in time-varying FDs) alongside the regular 

propagation of traffic flow. These two propagation mechanisms fit nicely into the recently proposed 

event-based formulations of LTM ([8] and [9]) which allow for such a separation. 

 

2 Constrained fundamental diagram 
 

Let the following physical parameters be given for each link: length L [km], capacity maxq  [veh/h], jam 

density jamk  [veh/km], critical density critk  [veh/km], maximum wave speed maxγ  [km/h], and minimum 

wave speed minγ  [km/h]. For each link we assume that we consider the following fundamental 

relationship between flow q [veh/h] and density k [veh/km],  

( ),q k= Φ   (1) 

where max max: [0, ] [0, ]k qΦ →  is a continuous concave function with crit max( ) ,k qΦ =  
max(0) ( ) 0,kΦ = Φ =  max crit( ),q k= Φ  max(0) / ,d dk γΦ =  and max min( ) / .d k dk γΦ =  Let I ( )kΦ  and 

II ( )kΦ  denote the hypocritical branch (where flows are increasing with density) and hypercritical branch 

(where flows are decreasing with density) of the FD, i.e.  

crit
I

crit max
II

( ), 0 ;
( )

( ), .
k k k

k
k k k k

Φ ≤ ≤Φ = 
Φ ≤ ≤

  (2) 

Eqn. (2) refers to the physical FD in the absence of any driving constraints. Let 1 2 3( , , )θ θ θ=θ  

denote the vector of parameters that constrain the vehicle speed, flow, and density, respectively, where 

1 2 30 , , 1.θ θ θ≤ ≤  Expanding the idea presented in [10] we denote the constrained FD by ( | ),kΦ θ  which 

can be formulated as 

max
1 2

3

( | ) min , .kk kθ γ θ
θ

   Φ = Φ  
   

θ   (3) 

If (1, 1, 1)=θ  then ( | ) ( )k kΦ = Φθ  and no constraints are imposed. Using θ  several dynamic traffic 

management measures can be simulated. If a maximum speed of maxσ  is imposed on the link, then 

{ }max max
1 min / , 1 ,θ σ γ=  while if one lane of a two-lane road segment is closed then 1

2 3 2θ θ= =  

(assuming that the the lane closure affects flows and densities proportionally). 



Figure 1 illustrates different shapes of the constrained FD. The physical FD (with a quadratic 

hypocritical branch and a linear hypercritical branch for illustration purposes) is the same in all cases, 

while the constrained FD shown at the bottom varies depending on imposed speed, flow, and density 

constraints.  
 

 
                      (a)                                     (b)                                    (c)                                      (d) 

Figure 1  Constrained fundamental diagrams in case of (a) no speed limit, (b) hypocritical speed limit, 
(c) hypercritical speed limit, (d) hypercritical speed limit and lane closure. 
 

3 Transitions between fundamental diagrams 
 

We are interested in determining link outflow rates when there is a change in the FD starting at the 

upstream link boundary. Note that information about the FD (dynamic speed limits, dynamic lane 

management) only propagates downstream (with the driver of the vehicle), never upstream. 

In the case of a fixed FD, an instantaneous flow rate increase at the link entrance may result in 

an acceleration fan in which traffic states at the downstream link boundary follow the shape of the FD 

[4]. Similarlarly, when we allow the FD to change shape, we consider changes in traffic states due to the 

transition from one (constrained) FD to the other. Such transitions between FDs occur conditional on the 

vehicle speed with which this information propagates.  

Consider traffic state D in Figure 2(a). When there is a decrease in the maximum speed and the 

number of lanes available, then the traffic state changes to A (with the same flow rate but at a lower 

speed). This results in a temporary traffic state E with zero flow exiting the link, see Figure 2(b). Now 

consider traffic state A. When there is an increase in the maximum speed and the number of lanes 

available, then the traffic state eventually changes to D (with the same flow rate but at a high speed). 

This change is not instantanous but happens gradually via traffic states B and C and all traffic states in 

between. Practically, this can be simplified by only considering a subset of traffic states (e.g., B and C). 

These (counter) clockwise transitions along the fundamental diagrams can be implemented as 

additional events in the algorithm proposed in [9]. In this solution method, the more traditional ‘flow 

rate change’ events propagate with the wave speed, while ‘route choice’ events propagate with the 
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vehicle speed. We now propose to add ‘fundamental diagram change’ events that also propagate with 

the vehicle speed, albeit with a very different impact. Case studies on networks will be presented in the 

full paper. 

 

 
                        (a)                                              (b)                                                   (c) 

Figure 2  Constrained fundamental diagrams in case of (a) no speed limit, (b) hypocritical speed limit, 
(c) hypercritical speed limit, (d) hypercritical speed limit and lane closure. 
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1 Introduction

Many problems related to transport can be formulated in terms of optimisation: some quantity

is to be maximised or minimised subject to some constraints which are only partially known in

advance. Consider for example stochastic network design, where a transport network must be built

before the demands of goods to be transported are known, or fleet planning, where the number of

vehicles to be used must be chosen under uncertainty.

In stochastic programming scenarios are used to approximate the distributions of the unknown

parameters and formulate and solve multi-stage stochastic optimization models [1]. A general two-

stage optimisation problem can be formulated as follows. Let S be a finite subset of a configuration

space of parameters. These possible configurations s ∈ S, as well as the probabilities ps assigned

to them, can either be inferred from past data that is used to derive probabilistic information, or

generated by subjective analysis. We refer to elements of S as scenarios: each scenario corresponds

to a possible configuration of parameters that might occur. In this terminology, the stochastic

optimisation problem can be stated as

inf
y∈Y

∑
s∈S

psg(y, s), (1)



where Y is a given set of decision variables (corresponding to the first-stage variables) and

g(y, s) = inf
x∈X

h(x, y, s) (2)

for X another given set of decision variables (corresponding to the second-stage variables).

In order to illustrate the general problem formulation, we give two examples:

Example 1.1 (Stochastic network design). When designing a transport network, two types of

decisions must be taken [2]: first, one chooses the structure of the network (design decisions) and

secondly how to use this network to perform the operational activities considered (flow decisions).

In our context, the design decisions must be taken before these stochastic parameters are known,

while the flow decisions are taken once the realisations of the parameters have been revealed.

More precisely, consider a directed graph G = (N,A) and a set of commodities K. For each

scenario s ∈ S, the stochastic parameters are given by the number of units of commodity k ∈ K

to be transported to vertex i ∈ N , and the capacity of each edge.

For each edge e ∈ A, the design decision corresponds to choosing whether to open e (at a fixed

cost) or not. This choice is represented by the decision variable yij ∈ {0, 1}, and Y is the set of all

decision variables ye.

After the scenario s that actually occurs is revealed, the quantity xkse of commodity k ∈ K to

be transported across edge e is chosen (at a variable cost per unit transported), and X is the set

of all flow decision variables xkse .

The optimisation problem corresponding to (1) now lies in choosing variables in X and Y such

that the demands and edge capacities are satisfied, while minimising the total (fixed and per-unit)

cost.

Example 1.2 (Biweekly fleet planning). Our second test problem concerns the fleet-sizing problem

faced by a freight carrier over a two-week horizon where the loads for the first week are known.

The decisions are for the first week are the number of vehicles available at each terminal and the

number of vehicles moving between each origin and destination. The decisions for the second week

are similar, but the vehicle supply at each terminal is determined by the decisions of the first week.

If the vehicle supply of a location at the end of the second week is different than what it was at

the beginning of the first week, then a penalty is incurred. Here the set Y of first-stage variables is

given by the vehicle movements in the first week, while the second stage variables in X correspond

to vehicle movements in the second week.

In order to accurately model the underlying sources of uncertainty, a large number of scenarios

may need to be generated, which leads to high computational complexity and may even render

the problem numerically intractable to solve. In this situation, it may be tempting to replace the

stochastic parameters with point estimates, such as their expected value. However, this approach



leads to errors which are difficult to estimate, and the optimal solution to (1) may have charac-

teristics that neither any of the deterministic solutions nor the expected value solution exhibit

[1].

In the proposed talk we will introduce a general methodology that permits control over both

computational complexity and the error incurred and show how this methodology is applied to

the two example transport problems described above. We introduce a decision-based distance on

the set of scenarios, according to which scenarios s1 and s2 are close if and only if the optimal

solution associated to scenario s1 is close to optimal for scenario s2. This distance induces a natural

weighted graph structure on the scenarios and we can use graph clustering methods to identify

structure in the scenario space associated with decision-making contexts under uncertainty. By

identifying clusters of scenarios with mutually acceptable decisions, this leads to new bounds and

solution heuristics in transport applications such as stochastic network design and fleet planning

problems.

2 Methodology

Suppose that we had an oracle that predicts with certainty which scenario s will occur. Then we

could always choose the best decision

y∗s = arg min
y

g(y; s) (3)

under this scenario. In reality, a perfect oracle does not exist, and this process will lead to incorrect

predictions and therefore non-optimal decision being taken from time to time. In order to quantify

this error, we introduce the opportunity cost of taking the decision associated to scenario s1 when

another scenario s2 actually occurs. Denote this cost by δ (s1 |s2 ). Since δ (s1 |s2 ) 6= δ (s2 |s1 ) in

general, we will symmetrise and define the opportunity cost distance function on S by

d (s1, s2) = δ (s1 |s2 ) + δ (s2 |s1 ) , s1, s2 ∈ S. (4)

This function introduces a notion of distance on the set S of scenarios, which enables us to

compare scenarios on a decisional basis. It is natural to now identify groups of scenarios which

are close to each other with respect to this distance, since the decision associated to one scenario

in this group will still be close to optimal for the others. Such groups also yield another way of

estimating the risk associated to the predictions made by the oracle.

Mathematically, our technique of finding such clusters consists of defining a graph (called affinity

graph)with vertex set S, based on the notion of distance induced by d: the smaller the opportunity

cost between two scenarios s1, s2, the shorter the length of the edge between s1 and s2. We then

apply graph clustering techniques such as Ncut [4] or its relaxation, spectral clustering [4, 3, 5] in



order to identify groups of scenarios which are close to each other with respect to the opportunity

cost distance, that is scenarios with a jointly acceptable solution to the optimisation problem (1).

3 Applications

We will also outline how the methodology described above can be applied to the two stochastic

optimisation problems from Examples 1.1 and 1.2. The grouping of scenarios in the decision space

leads to a better understanding of potential compromise solutions, which in itself leads to a better

grasp of the problem and potential solution approaches. Moreover, we obtain new upper and lower

bounds and an analysis of the parameters in terms of the decision-based clusters.

By re-defining the expected value of perfect information (EVPI) bound [1] to the clusters,

we obtain new lower bounds. By solving reduced-sized stochastic models based on aggregating

the scenarios in a cluster, or choosing a representative scenario from each cluster, we can obtain

efficient heuristic approximations to the full problem, as well as natural upper bounds. We can

also apply the meta-heuristic explained in [2] to our clustering.

Finally, the grouping permit a decision-based analysis of the input parameters to the problem.

By analysing the distribution of the parameters across the clusters, we can determine how strongly

and in which way each parameter influences the optimal solution to the problem. We can also

identify edge cases at which the optimal decision changes.
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1 Introduction 
 

Air traffic demand has grown to exceed available capacity at many airports worldwide, 

resulting in the routine occurrence of flight delays and high costs to airports, airlines and 

passengers. For instance, the nationwide impact of air traffic congestion in the United States 

was estimated at over $30 billion in 2007 [1]. Absent opportunities to expand airport capacity, 

it is necessary to resort to demand management to prevent over-capacity scheduling. Demand 

management involves administrative rules or economic incentives to limit the number of flights 

scheduled at busy airports and at busy times by rescheduling flights over the day and, in some 

cases, by reducing the total number of flights. The vast majority of busy airports outside the 

United States are subject to schedule coordination, operated under the aegis of the International 

Air Transport Association (IATA). In 2017, schedule coordination was applied at 177 airports, 

serving a total of 3.15 billion passengers annually. Under this process, the airports provide a 

value of declared capacity, which determines the number of slots available to allocate to the 

airlines per hour. For each season, the airlines submit their slot requests to a slot coordinator, 

which performs slot allocation according to the Worldwide Slot Guidelines (WSG) set forth by 

IATA [2]. These guidelines specify rules and priorities that create coupling constraints across 

the allocation of slots at multiple times of day and on multiple days of year. As a result, slot 

allocation is a highly complex combinatorial problem, which carries enormous weight for 

airlines, airports, and passengers. Optimization models have been proposed to support slot 

allocation decisions at schedule-coordinated airports. These models primarily aim to minimize 

the deviations of the schedule of flights from the airlines’ requests. They have shown 

considerable promise to improve slot allocation outcomes. However, existing optimization 

approaches remain limited to small- and medium-size airports due to the combinatorial 



complexity of slot allocation. In contrast, the implementation of slot allocation optimization 

models at large-size airports remains intractable. 

We address this issue by developing an original optimization approach to solve the slot 

allocation problem at the largest schedule-coordinated airports. We formulate an integer 

programming model that captures all the rules and priorities from IATA’s Worldwide Slot 

Guidelines, and we develop a new algorithm based on large-scale neighborhood search to solve 

it efficiently at the busiest airports. The proposed algorithm starts by generating a feasible slot 

allocation solution, and then improves it iteratively by re-optimizing slot allocation decisions 

for a subset of slot requests. The algorithm is implemented at the Lisbon Portela Airport (LIS), 

one of the top-20 busiest airports in Europe. Results show that it provides optimal or near-

optimal solutions in 6-10 hours of computation in settings where commercial solvers fail to 

identify the optimal solution after 7 days of computation. Thus, this work considerably 

enhances the capabilities of slot allocation models and algorithms. 

 

2 The Priority-based Slot Allocation Model (PSAM) 
 

The slot allocation problem can be viewed as an optimization problem that can be 

stated, in general terms, as follows: “given a set of airline requests for slots during a season of 

operations and a set of constraints resulting from the airport’s declared capacities and the IATA 

guidelines, propose a combination of slot assignments (i.e., a “slot allocation”) that minimizes 

the difference between the proposed schedule of flights and the schedule that would have 

resulted from the airlines’ requests in the absence of capacity constraints”. This problem is 

formulated in Ribeiro et. al. 2018 [3] as an integer programming model, named Priority-based 

Slot Allocation Model (PSAM). In this work we extend PSAM to consider additional 

requirements of the slot allocation process, such apron and terminal capacity constraints. 

Qualitatively, PSAM can be formulated as follows: 

Minimize Schedule displacement    (1) 

subject to Capacity constraints    (2) 

    Flight connection constraints   (3) 

Schedule regularity constraints   (4) 

IATA priority constraints    (5) 

The objective is to minimize an aggregate measure of schedule displacement, typically 

measured by the total displacement. To ensure the solution feasibility, a set of constraints need 

to be considered: (i) capacity constraints, which ensure that the declared capacities of the 

airport are never exceeded. (ii) connectivity constraints, which ensure the minimum turnaround 

times between consecutive flights operated by the same aircraft. (iii), schedule regularity 

constraints, which state that flights belonging to the same slot request must be allocated to the 

same time of the day on each day of the season. For instance, if a slot is requested on Mondays 



and Wednesdays for 15 weeks, the flights need to be scheduled at the same time of the day on 

the corresponding 30 days. Note that this requirement creates coupling constraints across all 

days in the season, thereby considerably increasing the complexity of the slot allocation 

problem. (iv) IATA priority constraints, which ensure that the allocation of slots is performed 

sequentially given the four priority classes specified into the IATA’s Worldwide Slot 

Guidelines, specifically: (i) “historic slots” (i.e., slots owned by the same airline in the previous 

equivalent season that were used at least 80% of the time); (ii) “change-to-historic slots” (i.e., 

historic slots for which the airline requests a change such as re-timing or the use of another 

aircraft); (iii) “new-entrant slots” (i.e., slots requested by airlines owning less than five slots a 

day); and (iv) “other slots” (i.e., slot requests that do not belong to any of the three other priority 

classes).  

 

3 Heuristic Approach to Slot Allocation 
 

We propose a scalable algorithm based on large-scale neighborhood search to solve 

the slot allocation problem. The goal of our algorithm is to derive optimal, or near-optimal, 

where direct implementation using commercial solvers of optimization remains intractable. 

The proposed algorithm relies on the following logic. In general terms, there exists a “limit” 

for solving the slot allocation problem with commercial solvers. One of the main determinants 

of this limit is, of course, the number of slot requests. However, there is no one-to-one 

relationship between size and computational performance; for instance, all else being equal, 

the more significant the imbalances between slot demand and airport capacity, the more 

computation effort is required to solve PSAM. Therefore, we subdivide the full set of slots into 

smaller subsets based on the size of the problem and other factors (e.g., demand-capacity 

imbalances). 

Our algorithm involves a constructive heuristic and an improvement heuristic (shown 

in Figure 1). The constructive heuristic aims to find an initial feasible solution to the slot 

allocation problem by dividing the set of slot requests into smaller groups by decreasing order 

of priority (i.e. change-to-historic, new-entrants, and other slots) and frequency. Thus, for each 

priority class, the constructive heuristic allocates, first, the slots requested for the full season, 

then those requested on most weeks of the season, etc. Then, the improvement heuristic 

iteratively improves this solution using a “destroy and repair” approach. At each iteration, it 

removes a subset of slot requests from the assignment determined by the latest solution and 

solves the PSAM for the remaining slot requests. The full set of slot requests is still included 

in the model to ensure global feasibility, rather than local feasibility. However, only a subset 

of all slot requests are re-allocated. In other words, the improvement heuristic explores the full 

solution space iteratively by decomposing the slot allocation problem into smaller sub-



problems, fixing many decision variables to their previous values, and performing local 

optimization at each iteration.  

 

 

Figure 1 – Schematic representation of the heuristic proposed 

Computational results using real-world data from the Lisbon Airport suggest that 

optimal or near-optimal solutions to PSAM can be obtained in reasonable runtimes. 

Specifically, while direct implementation of PSAM with commercial solvers yields a solution 

within 5-10% of the optimum after 2 days and within 0.5-2% of the optimum after 7 days, the 

proposed algorithm provides a solution within 2-5% of the optimum after 30 minutes and 

within 0-0.03% of the optimum after 10 hours. Extensive sensitivity analyses also showed that 

the algorithm performs better than more straightforward implementations of large-scale 

neighborhood search methods in this context, and that results are robust to a number of 

calibration parameters. Ultimately, this work augments the capabilities of slot allocation 

models and algorithms. Its application in support of slot allocation at major schedule-

coordinated airports worldwide can result in flight schedules that match airlines’ slot requests 

and passenger demand more effectively than existing approaches based on specialized software 

and ad hoc allocation decisions. 
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1 Introduction

Exploiting the full capacity of pedestrian infrastructures is vital to ensure a satisfactory level-

of-service and limit costs. This aspect is true for many different infrastructure types such as

transportation hubs, metro stations, conference centers or even open streets. As pedestrian dy-

namics contain high spatial and temporal variability, dimensioning structures for the peak demand

can be very costly and require significant space, whilst the structure is only used to capacity for

very short periods of time. Therefore, to prevent congestion and its negative effects we propose a

traffic control strategy for pedestrian traffic which is integrated in a dynamic traffic management

system.

Multiple control strategies exist for road traffic, such as signalized intersections [1], ramp metering

[2] or variable message signs [3]. Their effectiveness has be proven in real world applications and

simulation laboratories [4, 5]. We think that similar control strategies could improve the pedes-

trian flows. This requires the inclusion of the pedestrian traffic specificities and tailored control

strategies.

As experienced by many individuals and shown in studies [6], counter flow in pedestrian traffic

is responsible for a significant increase in travel time. This happens as people have to ”slalom”

between the people coming in the opposite direction. In order to prevent this, we propose a control

strategy for preventing counter flow in corridors: flow separators. Counter flow can be prevented

by splitting the corridors dynamically based on the pedestrian flows coming in each direction. This

strategy is included in a Dynamic Traffic Management System (DTMS) framework designed for

pedestrians.

1



2 Methodology

The current approach divides the corridor dynamically based on the measured flows. Figure 1a

presents a schematic setup where a flow separator is installed. The flows are measured at the

entrance of each dedicated side and the width allowed per direction is then proportional to these

flows using the following equation:

wAB(t) =



wmin
AB , if w · qAB

qAB + qBA
≤ wmin

AB

wmax
AB , if w · qAB

qAB + qBA
≥ wmax

AB

w · qAB

qAB + qBA
, otherwise

(1)

where w is the total width of the corridor, wAB is the width of the corridor from A to B, qAB the

pedestrian flow entering at A, wmin
AB and wmax

AB the minimum (resp. maximum) width dedicated to

the direction AB. The width of the corridor from B to A is naturally the remainder of the corridor

width.

This approach has the advantage of requiring no calibration. The only parameters which must be

fixed are the minimal and maximal widths. These should correspond to the width required by one

person to walk freely, without being hindered by the walls [7].

This strategy is integrated in a DTMS specifically designed for pedestrians (Figure 1b). The DTMS

is composed of the pedestrian traffic module, the traffic controller which acts as a brain and the

control devices which apply the decisions taken be the controller.

A

B

qAB

qBA

qABqBA

wAB wBA

flow
separator

possible
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of node

walls

q
pedestrian

flow

(a) Flow separator setup.

Traffic controller

State
evaluation

Decision
taking Flow separators

Control devices

Pedestrian traffic

Pedestrian
motion

Activity scheduling
- activity location
- route choice

POLICY
APPLICATION

DATA
IMPLEMENTATION

LOADING
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(b) DTMS framework for pedestrian traffic, from [8].

Figure 1: Schematic setup for the flow separator which is included inside the dynamic traffic

management system for pedestrians.

2



3 Results

The flow separator is tested in a simulation laboratory [4] which reproduces the effect of a DTMS.

The pedestrian traffic is simulated using the NOMAD microscopic simulator [9] and the route

choice is modeled as the shortest path algorithm. For details about this DTMS for pedestrians, we

refer to [8]. A straight corridor with variable demand is considered. The demand pattern follows

two sine-functions with a shift in phase between them.

As seen in Figure 2, separating flows by direction is very efficient for preventing increase in travel

time. The mean travel time of all pedestrians decreases from 38.02[s] to 30.19[s], alongside the

travel time variance which goes from 10.22[s] to 3.29[s].

Figure 2: Distribution of the pedestrian’s travel times for two scenarios: without (left) and with

(right) flow separators. The flow separators significantly decrease the travel time.

4 Conclusion & future work

The proposed flow separator control strategy is very effective at preventing the increase in travel

time due to counter flow. Not only is the mean travel decreased, but the variance also significantly

decreases as well. Although only a single corridor has been used, the benefits of separating pedes-

trian flows by direction is not limited to simple infrastructure. This approach can be used in many

different category of infrastructure to improve the pedestrian dynamics.

The next steps involve two major aspects. Firstly, an extension of the case study to cover part of a

real train station (Lausanne, Switzerland). In this way, multiple flow separators can be considered.

This can also allow for coordination between the different elements. Secondly, transforming the

control strategy to become anticipative and not only reactive. By integrating a model-predictive-

control component into the strategy, the width dedicated to each direction can be allocated based

on the expected flows, not only the current flows. This is particularly important for train stations,

where the flows can be accurately predicted based on the train timetable.

3
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1 Introduction

Accessibility (A), the ease of reaching destinations has numerous dimensions. The key dimensions

are listed below.

• Where (i)

• When (h)

• Why (z)

• Mode (m)

• Who (p)

• Cost (c)

• Measurement (t,θ,N ,R)

This paper develops a consistent formulation of access that accounts for accessibility’s multiple

dimensions. By doing so, it reveals unexplored territory in accessibility space that should be valu-

able to those using accessibility as a performance measure, including transport engineers, planners,

geographers, and policy-makers. Measures of accessibility, and comparisons across measurements

are presented in the full paper.

2 Where

We start with where, (i). Where is the accessibility being measured? We divide space into smaller

units of geography (at the limit, every point; more practically, every parcel or street block or Census

block group, or transport analysis zone), which we denote as (i). We them measure Ai. But we

might also be interested in a more aggregate measure, we can average all of the accessibilities



measured at all of the i’s, and develop a system-wide average. But how you average matters, so we

often person-weight the average, so the access at i is weighted by (multiplied by) the population

in i (Si), and the whole thing is divided by the total population in the area of interest (S.), to give

the population-weighted average, which we denote as A..

3 When

Next we can consider when, (h). For instance the accessibility in the peak hour may differ from

that at 4:00 am. There are two reasons.

First, the network differs at 4:00 am from that at 8:00 am, for roads there is less traffic, but

for transit, there is less service and so more waiting or access/egress time.

Second, the opportunities (Oi,h) differ by time of day, stores are open or closed, jobs are

available or unavailable depending on time of day.

But accessibility at 8:00 am differs from 8:01 as well. Traffic differs somewhat due to the ebb

and flow of congestion and shockwaves. Transit varies more systematically: at 8:01, the scheduled

8:00 am bus or train may have just left, increasing the waiting time at the stop or station, which

implies the transit travel time differs greatly. Averaging transit travel times across a peak hour can

provide a more realistic measure than just a sample at a single point in time.We may do a simple

average, or something more complicated.

4 Why

Examining why we travel (or what is being accessed) (z) brings to the fore the question of what

kind of opportunities are of interest. They may be jobs, or houses, or the number of jobs available

after controlling for workers, or stores, and so on.

Historically, when measuring access to jobs, analysts have considered the existence of jobs, and

measured them as if they are interchangeable (though noting they of course are not). Some have

stratified jobs by income or by type to examine the number of jobs available to individuals with

specific skills. This analysis is very dependent upon data availability. Also not all jobs are available

at the same time, cleaning crews tend to operate outside of regular business hours, so this relates

back to the question of when.

Perceived opportunities differs from objectively measured opportunities.

5 Mode

The dimension of how we travel (or by what mode) (m) indexes accessibility by whether the trip

is made on foot, by bike, by public transport, or by automobile (or by any number of numerous



other modes we might consider). Clearly speeds vary by mode. The perceived speed differs from

the objectively measured speed.

6 For Whom

The question of accessibility for whom (p) relates to where. At the limit, looking at individual

persons and highly localized places (i) will be identical, at least at the points in time where the

individual occupies that place. Keep in mind aggregating spatially (where the subgroup is people

who are adjacent to each other at a point in time, e.g. residents of a block) is a very special case

of aggregating by groups generally. In the case of equity, we might be interested in places, but

we have interest in other kinds of groups. We are interested not in individuals as such, but in

subgroups, for instance minorities, and ask how their accessibility compares with other subgroups,

or the population at large.

7 Incidence: Who Bears Which Cost

Initially the question of how much (c) was the cost between i and j was taken to be a distance,

modeled on Newton’s Laws of Gravity. Later travel time was used. But in social analyses, private

individuals travel time is only part of the cost for making a trip, the monetary costs paid by the

traveler, and the subsidy of those costs paid by society also occur. But even more, there are

externalities, like pollution, crashes, and congestion imposed on others which might be considered.

7.1 Perceived Time

The time that is used in accessibility is often assumed to be objectively measured time, but we

may want to think about it as user perceived time. Time perception varies with conditions under

which time is experienced, and while it varies from person to person, there are conditions which

most people will perceive to be longer (waiting, stop and go traffic) and conditions which will be

perceived to be shorter (moving unimpeded) than actual.

While getting the perceived time for every origin-destination pair for every individual is likely

to be impossible, models of perceived time can be estimated and used as part of the cost matrix

(Cij).

7.2 Quality of Time

Related to perceived time is the idea of the quality of time. People may accurately perceive time,

but wish it were different. Handling this is more difficult. Modes vary in the quality of time.

People are happier walking or riding a bike than riding a bus or crowded train. Within mode



choices models, for transit, for instance, the weighting on out-of-vehicle time is much greater than

on in-vehicle time, and while some of this accounts for time perception, some also accounts for

time quality.

By using satisfaction as a modifier to the travel cost, jobs could be discounted according to the

degree of dissatisfaction associated to the trip by a given mode. For example, two jobs reachable

with a trip satisfaction rating of 50% may be worth one job reachable with a satisfaction rating

of 100%. This would enable the use of satisfaction-based accessibility in an easily-understood

cumulative opportunities framework. Combining perceived (or reported) travel time (as distinct

from objectively measured travel time using GPS) with satisfaction in accessibility measures is

another direction for future research. The issue, which cannot be addressed with current data sets,

is the extent that dissatisfaction already embeds higher perceived travel times, or the degree to

which they are two distinct phenomena.

8 Formalization

In our formal definitions, the question of how accessibility is assessed (t,θ,N ,U ,R) is presented in

separate sections, which define each measure mathematically. In this abstract, we present the first,

a series of measures based on the initial, or primal, formulation. There are levels of distinctions

within that. So for instance, in what we refer to as primal accessibility, we might use a travel time

threshold (t) or an impedance function (f) with specific parameters (θ), all of which give different,

though systematically related, numeric answers. But other families of methods (the Dual, Place

Rank, Utility, etc.) provide far more differentiated results.

8.1 Hansen’s Accessibility

Primal accessibility as presented here is a generalization of the first accessibility formuation by

Hansen.1 In the primal accessibility (A) problem, we solve for how many destinations (O) can be

reached in t minutes from origin i? For completeness, here we note the subscript for time-of-day

(h), for activity type or purpose (z), and for mode (m), considering particular set of costs (c) and

population subgroup (p) (income category, racial group, modal availability, etc.), and recognize

that we could add any other sub-categorization we may wish to impose. While this may seem

pedantic, it also reveals the richness of the problem, which is multi-dimensional. We present a

reduced version as well.

This primal measure of accessibility is foremost positive, measuring how many activities can

be reached. One could, however, impose a normative standard, and insist that it should be above

some number (N). It implies the question of whether providing such levels of accessibility is an
1(Hansen, 1959).



appropriate use of government. For some activities, most people probably agree that it is (a fire

station should be within X minutes of anyone who lives in a city, or X+Y minutes in a rural area),

and for others it is not. There is no standard for the number of jobs reachable within 30 minutes,

but all else equal, more is better than fewer. Discussions of the ‘30-minute city’,2 for instance,

suggest that 75% of the people should be able to reach jobs within 30 minutes using transit. We

develop the Primal in the most detail, showing how the different dimensions play out.

This definition bears on the distribution of jobs and housing as much as on transit service.

Ai,h,z,m,c,t,p =

J∑
j=1

Oj,h,zf(Cij,h,m,c) (1)

We might abbreviate this, dropping subscripts.

Ai =

J∑
j=1

Ojf(Cij) (2)

8.2 Cumulative opportunities, Isochronic

To apply this in practice, the function of costs needs to be specified. First we present the cumulative

opportunities formulation.

f(Cij,h,m,c) =

1 if Cij,h,m,c < t

0 if Cij,h,m,c ≥ t
(3)

Or in abbreviated form

f(Cij) =

1 if Cij < t

0 if Cij ≥ t
(4)

8.3 Gravity, ‘Potential,’ Distance Decay, Time-weighting

Alternatively, one could easily use a time-weighted cumulative opportunities (gravity) formulation.

One commonly used function is negative exponential. In this case we might write the accessibility

as: Ai,h,z,m,c,θ,p to account for the use of the impedance factor (θ) rather than a time threshold

(t). This is sometimes referred to as ‘distance decay’, though in practice it is really ‘time decay’.

It is also referred to ‘Potential’, though this term is used for many different definitions.

f(Cij,h,m,c) = eθe,mCij,h,m,c (5)

The impedance factor (θe,m < 0) is measured empirically and varies with mode (m). Previous

studies have found values on the order of -0.08.

There are numerous other commonly used impedance functions, with empirically estimated

parameters, as shown in Table 1.
2(Greater Sydney Commission, 2018).



Table 1: Illustrative Distance Decay Functions, Applicable to any mode (m)

Decay Function fCij

Exponential exp(θe ∗ Cij )

Gaussian exp(θg ∗ Cij2)

Log-normal exp(θl ∗ ln2Cij)

Exponential-square-root exp(θ√e ∗ Cij0.5)

Gravity Cij
−2

Potential Cij
−1 ??

Scaling Cij
θs

No Distance Decay 1

While Cij is often taken to be the time-cost, it could be the distance cost, or any other cost.

8.4 Person-weighting

To get a system average, we might sum the accessibility in each origin, weighted by the number of

people who live in that zone (Si,.).

First we note the population in a zone is the sum of all the subgroups in the zone.

Si,. =

P∑
p=1

Si,p (6)

A.,h,z,m,c,t,. =

I∑
i=1

Ai,h,z,m,c,t,pSi,.

I∑
i=1

Si,.

(7)

8.5 Active and Passive

We might think of Equation 2 as active accessibility.

Alternatively, considering how easy it is to be reached, rather than to reach, we have passive

accessibility3:

A	
i =

J∑
j=1

Ojf(Cji) (8)

Passive accessibility has applications for retailers who want to know how easily customers can

reach them, or employers seeking to fill jobs.

8.6 Relative

Relative accessibility measures how accessible a particular zone is compared to the region at large.
3The terms ‘active’ and ‘passive’ were used in: (Papa and Coppola, 2012; Cascetta, 2009).



For instance, it might be the fraction of person-weighted regional accessibility that is attained

in a given zone (i).

A	
i,h,z,m,c,t,. =

Ai,h,z,m,c,t,.
A.,h,z,m,c,t,.

(9)

This averages 1.0, but can be higher are lower depending on whether the zone in question is

higher or lower than the regional average.

Alternatively, it could be the fraction of the regions total jobs reachable in a time threshold (t)

from zone (i).

A�
i,h,z,m,c,t,. =

Ai,h,z,m,c,t,.
J∑
j=1

Oj,h,z

(10)

One could construct a person-weighted average relative accessibility.

A⊕
.,h,z,m,c,t,. =

I∑
i=1

A�
i,h,z,m,c,t,.Si,.

I∑
i=1

Si,.

(11)

8.7 Multiple Time Slices

The problems above are laid out as if all opportunities are available 24 hours a day. But stores and

restaurants open and close. Jobs have hours when they are available. Transport services vary by

time-of-day (from minute-to-minute and hour-to-hour). Congestion ebbs and flows. But the value

of an opportunity, and thus overall access, depends on when it is experienced. We need to consider

the cost of travel (including the travel time) at a given time-of-day (h) by mode (m) considering

costs (c) (Cij,h,m,c). We may sum over opportunities available at a given time-of-day (Oj,h,z) if

we appropriately weight them. Solving separately for a given trip purpose (z) and mode (m) at a

given time-of-day (h) we have:

Summarizing across the whole day gives:

Ai,.,z,m,c,t,p =

J∑
j=1

H∑
h=1

Oj,h,zUhf(Cij,h,m,c) (12)

where h indexes activity time-of-day, and Uh weights the value of each time slice.

We normalize activities so that:
H∑
h=1

Uh = 1 (13)

We might choose Uh to be the fraction of the time-of-day represented by a time slice (h). So if

h were hours, Uh = 1
24 and if h were minutes, Uh = 1

1440 . We could of course alternatively rank

peak or waking hours higher.



Because transit accessibility is so potentially variable depending on schedules, we might choose

Uh to the be the fraction of the (say, two-hour) peak period represented by time slice (h), which if

h is small (e.g. one-minute, so Uh = 1
120 ) would give us an approximately continuous accessibility

measure.4

8.8 Multiple Activities

The problems above are laid out as if there were only one opportunity or activity type or purpose of

interest, e.g. jobs. But the value of a location, and thus overall access, depends on many different

types of opportunities. We may sum over opportunities if we appropriately weight them:

Ai,h,.,m,c,t,p =
J∑
j=1

Z∑
z=1

Oj,h,zWzf(Cij,m,c) (14)

where z indexes activity types, and Wz weights the value of each activity type.

We normalize activities so that:
Z∑
z=1

Wz = 1 (15)

We might choose Wz to be the average share of time per day spent at each activity, or some

other indicator of its importance. This could of course be defined uniquely for each individual if

the data were available.

8.9 Multiple Time Slices and Multiple Activities

We can combine the notion of multiple time slices and multiple activities, for each given mode (m)

considering cost components (c).

Ai,.,.,m,c,t,p =

J∑
j=1

Z∑
z=1

H∑
h=1

Oj,z,hWzUhf(Cij,h,m,c) (16)

8.10 Multiple Time Slices, Multiple Activities, Multiple Modes

Thus far, we have explicitly solved this problem for each given mode (m).

Combining the modes is trickier. While activity and time-of-day affect opportunities available,

and time-of-day also affects travel cost, mode only affects travel cost and not opportunities. The

modes cannot simply be summed, otherwise introducing a new mode would increase accessibility,

even if it did not improve service. (See Red Bus, Blue Bus Paradox).

We could weight modes by shares, employing Xij,m which equalled the share of a given mode

in a given market.
4(Owen and Levinson, 2015; Owen and Jiang, 2015).



Transit Access Auto Access Transit Share Multimodal Access

Before 10,000 100,000 9.1% 91,818

After 20,000 100,000 16.7% 86,667

Table 2: Illustration of Multimodal Accessibility Paradox

M∑
m=1

Xij,m = 1 (17)

Ai,.,.,.,c,t,p =

J∑
j=1

Z∑
z=1

H∑
h=1

M∑
m=1

Oj,z,hWzUhXij,mf(Cij,h,m,c) (18)

The risk with Equation 18 is that the modeshare for a slower mode might rise, lowering the

value of accessibility. In the example in Table 2, there are two modes, and the transit improvement,

which doesn’t affect auto accessibility, by attracting additional users would reduce multimodal

accessibility from 91,818 to 86,667. This is a version of Simpson’s Paradox.

The Utility model, where the logsum of the utility expression in a travel mode choice model is

considered the accessibility is another option. So the log of the sum of the utilities represents the

value of the modes together. If a new mode were introduced that did not improve utility it would

not be considered. This still has issues depending on formulation, and is impossible to measure

directly, but can only be computed with a model.

Full cost accessibility (subsection 8.12) offers another way through. Once we consider the full

cost of travel, (Cij,h,m) considering both short run and long run private and social costs, modes

other than the automobile begin to be competitive. Accessibility here (A∗
i,.,.,.,c,t,p) is simply the

accessibility of the best mode in a particular market.

A∗
i,.,.,.,c,t,p = max

m
Ai,.,.,m,c,t,p (19)

This assumes all modes are available. People without automobiles have a reduced choice set

compared to those with automobiles. People who cannot ride bikes similarly have fewer options.

At the individual level, this is straight-forward to handle. Otherwise, we need to develop a matrix

of modal availability (Vi,m) to weight this appropriately. The value for each i,m element takes a

value between 0 and 1 indicating the share of people who have access to mode m for origin i.

Vi,m ∈ (0, 1) (20)

This availability matrix is employed in a variation of the availability weighted mode-optimal

accessibility computation (A∗
i,.,.,.,c,t,p):



Transit Access Auto Access Transit Share Multimodal Access

Before 10,000 100,000 9.1% 91,818

After 20,000 100,000 16.7% 86,667

Table 3: Illustration of Multimodal Accessibility Paradox

A∗∗
i,.,.,.,c,t,p = max

m

J∑
j=1

Z∑
z=1

H∑
h=1

Oj,z,hWzUhVi,mf(Cij,h,m,c) (21)

8.11 Multiple Time Slices, Multiple Activities, Multiple Modes, Multi-

ple Groups

We have multiple subgroups, the overall for a given zone is

A∗∗
i,.,.,.,c,t,. = max

m

J∑
j=1

Z∑
z=1

H∑
h=1

P∑
p=1

Oj,z,hWzUhVi,mSi,pf(Cij,h,m,c)

P∑
p=1

Si,p

(22)

That of itself is not especially interesting. However, if the subgroups vary in proportion by area

(groups cluster spatially), then the person-weighted average for each subgroup will vary.

8.12 Full Cost

Thus far we have abstracted cost (Cij). In most applications cost has been taken as individual

travel time, so the primal accessibility asks, for instance, how many jobs a traveler can reach in

30 minutes of travel. While this is useful for many applications, it neglects many other costs of

transport. From the user perspective, costs include monetary expenditures on travel, for instance

tolls, transit fares, parking, fuel, costs of vehicle ownership, and so on. The cost of travel can be

monetized (by converting time to money) or temporalized (by translating money costs to time),

for instance by considering the amount of time required to work to earn enough to pay transit

fares.

But from society’s perspective, the aim is not to minimize user cost but society’s full cost. If

accessibility is to be used in evaluation, it must consider these factors. In this case, we need to

consider congestion imposed on others, pollution emitted from the vehicle, danger from crash risk,

noise, and infrastructure and other subsidies provided to travelers.

Cij,h,m,. =

C∑
c=1

Cij,h,m,c (23)

Thus we can think about the full internal and full external and combined costs of travel.



Our hypothesis is that while automobile is often faster than other modes (and so has the highest

time-based accessibility measure), it is unlikely to have the lowest full cost of travel.

8.13 Full Access

Ai =

J∑
j=1

Ojf(Cij) (24)

In one sense, all we have done is repeated Equation 2, just making everything bold. But what

is implied by that is that we are dealing with the matrix of weighted opportunities (Oj) considering

the different activity types (z) by times-of-day (h) and the matrix of full costs (Cij) considering

modes (m) and various cost components (c).
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1. Introduction 

Airport slot scheduling provides the basis for allocating airport capacity at congested airports [1]. In 

practice, the IATA World Scheduling Guidelines (WSG) are used as a framework for airport slot 

scheduling [2]. WSG recognizes four distinct slot priorities which are based on historical usage rights 

(historic, changes to historic, new entrant and other requests). Single [3], bi-objective [4, 5] and multi-

objective [6] models have been proposed for optimizing slot-scheduling decisions. However, existing 

multi-objective models do not capture simultaneously the interactions of the decisions between the 

different levels of the slot priorities and the objectives. This approach does not allow the investigation 

of the potential system-wide benefits resulting from the sacrifices made at the different levels of the slot 

hierarchy. By addressing this issue, we introduce a new model and a solution approach, which is able to 

capture multi-level interaction between slot priorities. 

The contribution of this paper is twofold. Firstly, it proposes a new tri-objective slot-scheduling 

model that considers simultaneously, total displacement, maximum displacement and demand-based 

fairness as described in [4]. Secondly, it introduces a multi-level programming approach, which is able 

to capture interactions between the slot priorities. The notion of inter-level tolerance is introduced by 

allowing interactions among the different types of slots. By tolerating weakly dominated or even 

dominated solutions at the upper levels (e.g. historic), our model yields better results at the lower levels 

(new entrants, others), thus resulting in improved system-wide results. Such systematic compromises in 

the values of the objectives of the upper decision levels satisfy the properties of Stackelberg games [7].  

  

  



2. Model formulation 

The notation of the tri-objective airport slot-scheduling model is presented in Table 1. The proposed 

model [expressions (i)-(iv)] considers the IATA’s WSG and produces slot allocation solutions for the 

whole scheduling period.  

Se
ts

 

 ܽ Set of airlines denoted by ܣ
 Set of request series denoted by ݉ (of airline ܽ) (ܯ)ܯ

:()ܯ ܯ ∪ ܯ =  ௧ Set of arrival (departure) series்ܯ

ܲ ⊆ ܯ × ,Set of paired requests ൫݉ ܯ ݉൯ indexed by p 

 (ܦ) ܦ
Set of days in scheduling season (that movement ݉ is to 

operate) denoted by ݀ 
,5} :ܥ 15, 60} Set of capacity time intervals indexed by ܿ 

ܶ: {1,2, … , ݊} Set of time intervals per day based on scale c indexed by ݏ,ݐ 
,ݎݎܣ} :ܭ ,݁ܦ  ݇ Set of movement types denoted by {݈ܽݐܶ

P
ar

am
et
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 ݉  Requested time for slot seriesݐ

௧,ݒ
ௗ  

Indicates whether request ݉ belongs to a peak time period ݐ 
on day ݀ 

ܶ௫,, ܶ, Maximum and minimum turnaround times of paired request  

ௗ,௦,ݑ
  

Capacity for movements ݇ for a period [ݏ, ݏ + ܿ] on day ݀ 
based on time interval ܿ 

ܽௗ, Indicates whether series ݉ is requested on day ݀ or not 
ఈߩ = ൫∑ ∑ ௧ݒ

ௗ
ௗ∈∈ெೌ ൯ (∑ ∑ ௧ݒ

ௗ
ௗ∈∈ெ )⁄   The proportion of peak requests of airline ܽ 
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n 
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 or not ݐ ௧, Indicates whether series m is allocated to timeݔ
ܼଵ = ∑ ∑ ݐ| − ܯ∋݉ܶ∋ݐ|݉ݐ  Total displacement  ݉,ݐݔ

ܼଶ = max
ܯ∋݉∀

ݐ| −  Maximum displacement |݉ݐ

ఈߤ =

∑ ∑ |௧ି௧|∈∈ಾഀ ௫,
∑ ∑ |௧ି௧|∈∈ಾ ௫,

ఘഀ
 

 

Fairness index expressing the displacement that airline ܽ 
experiences in relation to the proportion of the peak requests 

that it submits  

ܼଷ = max
ܣ∋ܽ∀

หߙߤ − 1ห  
 

Maximum deviation from absolute fairness 

Table 1: Notation 

min(ܼଵ, ܼଶ, ܼଷ)  

Subject to constraints: 

 ∑ ்∋,௧௧ݔ = 1, ∀ ݉ ∈  ܯ

 ∑ ∑ ܽௗ,ݔ௧, ≤ ௧∈[௦,௦ାିଵ]∈ெೖ ௗ,௦,ݑ
  , ∀ ݇ ∈ ,ܭ ݀ ∈ ,ܦ ݏ ∈ ܶ  

ವݐ  − ಲೝೝݐ ≤  ∑ ்∋ವ௧ݔ ݐ − ∑ ்∋ಲೝೝ௧ݔ ݐ ≤ ܶ௫, ,  ∀ ∈ ܲ  

Expression (i) minimizes the total displacement (ܼଵ), maximum displacement (ܼଶ) and 

maximum deviation from the absolute value of fairness (ܼଷ) objectives. When the fairness index (ߤఈ) is 

less than one, then airline 𝑎 is experiencing less displacement in relation to the peak requests that it has 

submitted. On the other hand, for values of ߤఈ above one, the displacement that the airline will 

experience is greater than the proportion of its requests at peak times. Therefore, objective function ܼଷ 

is minimised, since we would like ߤఈ to take values close to one (value of absolute fairness).  Constraints 

(ii) ensure that each of the slots will be allocated to a time interval. Moreover, constraints (iii) are rolling 

capacity constraints for each type of movement (arrival, departures, or total movements) meaning that 

the total number of movements scheduled within various time intervals (5, 15 or 60 minutes), must not 

exceed the capacity of the airport for this movement and interval. Constraints (iv) are turnaround time 

constraints which define that the time difference between two paired requests, should not be less than 

the initially requested difference between them ( ܶ,) either larger than a specified limit ( ܶ௫,). The 

(i) 

(ii) 

(iii) 
 
(iv) 
 



representation of turnaround times in (iv) renders the utilization of precedence constraints expressed in 

[3] redundant. 

3. Solution approach 

The proposed multi-objective solution approach, transforms the tri-objective formulation of Section 2 to 

a single-objective optimisation problem [expressions (ii)-(vii)] by expressing objectives ܼଶ and ܼଷ in the 

form of linear constraints. 

 min ܼଵ  

Subject to constraints (ii) – (iv) and: 

ݐ)± − ௧,ݔ(ݐ ≤ మߝ , ݐ ∀ ∈ ܶ, ݉ ∈    ܯ

±ൣ൫∑ ∑ ݐ| − |௧∈்∈ெഀݐ ௧,൯ݔ − ∑ఈ൫ߩ ∑ ݐ| − |௧∈்∈ெݐ ௧,൯൫1ݔ + య൯൧ߝ ≤ 0, ∀ ܽ ∈   ܣ

Expression (v) minimizes the total displacement objective. Constraints (vi) and (vii) aid in the 

linearization of objectives ܼଶ and ܼଷ and set upper bounds to their values (ߝమ ,  య) facilitating theߝ

construction of the solution approach presented below.  

For each slot priority and level of fairness, our algorithm calculates the range of efficient values 

of the total and maximum displacement (ܼଶ) objectives while using constraints (vii) to maintain the 

value of ܼଷ below the current upper bound (ߝయ). Then, for each of the efficient maximum displacement 

values, it minimizes schedule displacement by maintaining objectives ܼଶ and ܼଷ under the current upper 

bounds (ߝమ ,   .య) using constraints (vi) and (vii)ߝ

The described approach borrows from the concept of the Quadrant Shrinking Method (QSM) 

of [8], which is based on a two-dimensional, non-dominated point search (2D-NDP-Search). By 

applying the principle of inter-level tolerance, we solve only the first stage of the 2D-NDP-Search and 

filter out dominated solutions by considering schedule-wide rather than level-based Pareto optimality. 

To reduce computational times, we calculate the efficient bounds of maximum displacement without 

fairness considerations. Then, for each level of fairness, we check if the current maximum displacement 

value is attainable. Moreover, we impose a uniform fairness threshold among all priority levels and 

ensure that all requests are treated in a non-discriminatory manner. 

4. Concluding remarks 

To facilitate comparisons with existing solution approaches, we solve our model with and 

without multi-level considerations. Preliminary results suggest that the proposed solution approach 

generates a richer Pareto frontier of greater cardinality (12%), which gives a wider spectrum of better 

quality, system-wide solutions. In general, our findings suggest that by accepting systematic sacrifices 

at the schedules of the upper levels of the slot hierarchy, we get improved airport slot schedules and 

system-wide efficiency. Specifically, at the expense of imperceptible deterioration for the fairness 

objective, we obtain airport slot schedules with lower values for both total and maximum displacement 

objectives. Our analysis highlights strong trade-offs among the objectives of the proposed model, which 

are demonstrated with the use of appropriate graphs.  

(v) 

(vi) 
 
(vii) 
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1 Introduction 
 

Pedestrian modelling has attracted researchers’ interest from different fields such as emergency 

evacuation [1], surveillance systems [2], transit infrastructure design [3], panic analysis [4] and 

pedestrian facilities [5]. A large part of the literature has focused on capturing pedestrian dynamic 

behaviour to develop more realistic pedestrian models that include lane formation [6, 7], account for 

counter flow, leader and follower behaviour [8], and reproduce bottleneck effects using experimental 

data [9]. Microscopic pedestrian models consider individuality of each walking agent and give detailed 

trajectory of all agents. This, however, requires high computational cost. More recently, Tordeux [10] 

proposed a mesoscopic stochastic pedestrian model based on hexagonal lattice containing multiple 

pedestrians with multi-directional fundamental diagram to regulate flow. Since mesoscopic models 

generally have lower computational cost, it is more suitable for large-scale pedestrian network problems. 

On the other hand, macroscopic pedestrian models consider agents flow without any individuality using 

the fundamental relationship between flow and density. Example of such macroscopic approach is Link 

Transmission Model (LTM) has opened up a new research approach that requires less computational 

effort while maintaining reasonable accuracy, mostly applied to model car traffic networks [11]. The 

main objective of this paper is to explore application of LTM in modelling pedestrian networks. We 

modify the existing macroscopic LTM framework of [11] for pedestrian modelling with the ultimate 

goal of real-time and large-scale simulation of walking networks. 

 

  



2 Pedestrian Fundamental Diagram 
 

Similarity between pedestrian and vehicle traffic flow fundamental diagrams can be found after scaling 

velocity and object size [12].  Aforementioned studies point out the importance of the self-organization 

phenomena that occur only in pedestrian traffic such as formation of self-organized lanes [6, 7], herding 

behaviour [8], cooperative behaviour to survive and symmetry breaking effect during emergency [13], 

and avoidance behaviour [14]. Pedestrian tends to explore space freely and not confined in designated 

lane, unlike car traffic [10]. Due to the difference in nature of vehicle traffic and pedestrian traffic, 

fundamental diagram based on vehicle traffic may (and should) not be directly applied to model 

pedestrians. Pedestrian fundamental diagram has been developed based on empirical data for uni-

direction [15] and bi-direction [16] streams. Flotterod and Lammel [17] proposed a mathematical 

explanation to bi-directional fundamental diagram.  

 

3 Link Transmission Model for Pedestrians 
 

We build upon recent efforts by Himpe et al. [18] in development of an open source Link Transmission 

Model [19] with a first order node model for dynamic traffic assignment (DTA). The model initially 

determines shortest path, and assign flows into paths using all-or-nothing assignment. After all time steps 

have been calculated, a gap function is then calculated to find iterative flow adjustments to new paths 

until model fulfils dynamic user equilibrium (UE). To apply the existing LTM framework for pedestrian 

networks, we apply the following modifications as an initial effort: 

1. Links must be able to traverse reversibly, accounting for bi-directional walking streams.  

2. A bi-directional fundamental diagram needs to be used to accommodate for counter walking 

flows 

3. Incorporate pedestrian crossings at intersections. 

The first modification would adjust the structure of the node model and how it assigns flows into links. 

Here, only replicating links with reverse direction may not be suitable because pedestrians from both 

directions need to share the same infrastructure. Also, additional travel cost to traverse between two 

nodes from opposite side of the road should be added to imitate crossing the road with traffic light. 

 

3 Data 
 

We have obtained detailed walking network data from City of Melbourne [20] which comprises of 

building entrances (19,251 nodes), building centroids (14,217 nodes), walking paths (94,813 links), and 

land-use data (14,268 polygons). See Fig 2(a). In a preliminary study, we investigate a neighbourhood 

near Kensington Primary school in Melbourne. Footpaths in the area need to accommodate for both 

directions of pedestrian flow with bi-directional fundamental diagram. Fig 2(b) shows a model set up for 

the study area with four origin nodes and one destination node. Implication of turning fraction adjustment 

during the iterative process of the modified LTM is illustrated in Fig 3. After 10 iterations, turning 

fractions are adjusted to utilise a walking path that was previously ignored and overall pedestrian flow 



volume seems to be more uniform. Modelling counter flow with a bi-directional fundamental diagram 

and additional travel cost for crossing the street are currently being studied as ongoing research. 

 

 

 

Fig. 2 (a) Top row: Melbourne Pedestrian Network Map. This map consists of 4 elements: Building 

entrance (orange nodes), building centroids (green nodes), land-use type (polygons), walk path (brown 

links); (b) Bottom row: Map of Kensington Primary school. Satellite image from Google Maps on the 

left showing neighbourhood around school. Model network on the right consists of nodes in green circles 

and links in orange lines. Blue rectangles are origin nodes and the red triangle is the destination node 

 

 



 

Fig. 3. Pedestrian traffic volume in each link after 1 and 10 iterations (left and right). Line thickness 
and colour represent volume that flow through each link where red is high volume and blue is low 

volume. Green arrows show direction of walking movement. 
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1 Introduction 
 

In public transport system, the equipped automated fare collection (AFC) system records travellers’ 

spatial and temporal information and generates a mass of data daily with more than ever attraction of 

interest and attention from both academics and practitioners. Advances in data availability and data 

mining techniques provide great opportunity to investigate various researches in an efficient and 

effective manner. A comprehensive literature review on the application of public transport smart card 

data before 2011 can be referred to [1]. As some relevant studies in recent years, [2] proposed a data 

fusion method to infer passengers’ behavioral attributes of the trips based on the naive Bayes classifier 

model. The proposed method was applied to a single railway station in Osaka, with boarding/alighting 

information recorded by smart card and validation using trip survey data. [3] applied a unsupervised 

machine learning method, continuous hidden Markov model, to imputing the missing activities for 

each trip chain with integration of both clustering and transition models. [4] conducted a comparison 

on OD matrices between survey data and smart card data, and showed that both trip demands showed 

high correlation, which implied that the latter might provide a more efficient while less expensive way 

to construct the OD matrices. 

As is well known, traditional survey serves as the major method to gather useful trip 

information for a long time, but it often takes high expense of manpower, time and monetary 

resources. Moreover, the gap between real trips and survey results can never be ignored. This study 

aims to investigate various travel purposes of the public transit passengers and develop a data analysis 

framework to estimate the trip purposes, which can be considered as an alternative or a 

complementarity to the traditional survey method. 

 

2 Data Description 
 

Singapore has a population of 5,399,000 and the major public transport forms consist of mass rapid 

transit (MRT), light rail transit and bus. Since the ez-link card launching in 2008, it remains the 

number one choice to pay transprot fare. To better illustrate passengers’ travel purposes and departure 

features, the timeline of a single day is divided into six ranges according to the average daily ridership 

using public transport: early morning [4:00-7:00], morning peak [7:00-9:00], inter peak [9:00-17:00], 

evening peak [17:00-20:45], early night [20:45-23:00] and late night [23:00-4:00(+1day)].  

To estimate trip purpose, the land use information of catchment areas of MRT stations plays 

an important role. In this study, five aggregated land use types are selected: commercial, residential, 



business, education and others. In this study, commercial type represents locations open for customers 

like shopping mall and cinema; while business type represents the workplace, office, industrial factory, 

and so on. The proportion of each land use type at the catchment areas (circular coverage with station 

as center, 500m as radius) of the station is estimated based on “Singapore Master Plan 2014”. With the 

proportion estimation of various land use features, they can be applied to replacing the alighting 

stations to reflect the characteristics of trip purpose. The illustration of the replacement procedure is 

shown in Table 1 as follows. 

  Table 1. Replacement of alighting station with its surrounding land use features 
Trip Date Borarding Time Alighting Time Alighting Station 

2013-08-12 7:40:42 7:57:27 HarbourFront 

↓
Trip Date Borarding Time Alighting Time Commercial Residential Business Education Others 

2013-08-12 7:40:42 7:57:27 65% 30% 5% 0% 0% 

For illustration purpose, two weeks’ smart card data of MRT North-East line (NEL) is 

adopted in this study. To avoid fluctuation, only data between Monday and Thursday is extracted, thus 

eight working days’ data is adopted for analysis. Besides the five land use attributes illustrated in Table 

1, the other three temporal attributes derived from smart card data include: average duration between 

trips, first trip start time range and last trip start time range. These five attributes are used to derive 

passengers’ trip purposes based on a clustering method, which is introduced in the subsequent section. 

3 K-prototypes Algorithm 

The K-means algorithm is well known for its efficiency and simplicity, however, working only on 

numeric values prohibits it from being used to cluster real world data containing categorical. Since our 

sample data has six numeric attributes (average duration between trips, commercial, residential, 

business, education and others) and two categorical attributes (first trip start time range and last trip 

start time range), the K-prototypes algorithm is employed to handle data with mixed numeric and 

categorical characteristics. More details regarding the formulation can be referred to [5]. The procedure 

of K-prototypes algorithm is illustrated as follows: 

[Step 1] Pre-given or randomly choose centroids; 

[Step 2] Put each data point to its nearest centroid as a cluster based on the mixed measurement; 

[Step 3] Re-calculate the centroid of each cluster based on its current data points; 

[Step 4] Repeat 2 and 3 until the centroids no longer move or the iteration limitation is reached. 

4 Experimental Results 

With 16 stations spanning 20km, the NEL in Singapore plays an important role in weaving through the 

heart of the city, HarbourFront and heritage areas, such as Chinatown and Clarke Quay, through to the 

residential estates like Sengkang and Punggol. It is a typical MRT line with the coverage of 

miscellaneous trip purposes, like education, residential, work, entertainment and tourism. The goal of 

this study is to generate clusters with similar trip purposes. The clustering results in Table 2 shows that 

no extreme clusters exist, and most of the clusters are in similar size except Cluster 1’s size is 



relatively bigger. The columns of the result table refer to the clusters, and the first three rows indicate 

temporal features while the next five rows represent land use features.  

 Table 2. Clustering results of trip purposes 
Cluster 1 
(N= 686) 

Cluster 2 
(N= 299) 

Cluster 3 
(N= 320) 

Cluster 4 
(N= 339) 

Cluster 5 
(N= 356) 

First trip start time range 
(average start time) 

Early morning 
(5:30am) 

Morning peak 
(8:00am) 

Inter peak 
(1:00pm) 

Inter Peak 
(1:00pm) 

Inter peak 
(1:00pm) 

Last trip start time range 
(average start time) 

Evening peak 
(6:52pm) 

Evening peak 
(6:52pm) 

Inter peak 
(1:00pm) 

Evening peak 
(6:52pm) 

Early night 
(9:52pm) 

Average duration (hr) 10.7 10.4 3.2 7.9 11.2 

Commercial 32.5% 10% 30% 34.7% 24.5% 

Residential 47.5% 52.5% 46.3% 45% 52.5% 

Business 0% 17.5% 0% 0% 0% 

Education 10% 12.5% 11.2% 10% 10% 

Others 10% 7.5% 12.5% 10% 12.5% 

Major purposes Commercial, 
Residential 

Residential, 
Business, 
Education 

Commercial, 
Residential, 
Education, 
Others 

Commercial, 
Residential 

Commercial, 
Residential, 
Others 

Cluster 1 shows the temporal features with first trip starting at early morning (average start 

time at 5:30am), last trip staring at evening peak (average start time at 6:52pm) and average duration of 

10.7hr between trips, as well as land use features of residential and commercial mainly. Therefore we 

can infer that passengers in Cluster 1 usually travel between their residential locations and commercial 

areas. Similarly, Cluster 2 represents trip purposes mainly on residential, business and education. The 

trips of Cluster 3 are all within inter peak with short duration between trips, which indicates that 

the travelers in this cluster might be flexible travelers with mixed-type trip purposes and flexible 

schedules rather than regular commuters, and they often travel within short distance and short 

duration between trips. Cluster 4 represents similar trip purposes as Cluster 1, however the first 

trip usually happens during inter peak with shorter duration between first and last trips. Specially, 

tourism forms a large part of the economy (over 15 million tourists in 2014) in Singapore, 

therefore passengers in this cluster may include tourists. The main trip purposes in Cluster 5 include 

residential, commercial and others, and the trips generate later than those in the other four groups. 

To validate the proposed clustering method, Household Interview Travel Survey (HITS) data 

with trips along NEL is used as reference. The comparison results are shown in Fig. 1. In Fig. 1(a), the 

HITS data was aggregated in line with the five categories in this research. However, it is worth 

mentioning that it is difficult to figure out the definitions of all the trip purposes in HITS data and to 

aggregate the trip purposes following exactly the same way in this research, hence we could notice 

significant difference on certain land use types, like commercial and business. In this study, 

commercial type represents locations open for all customers, like shopping mall. In this case, people 

travel to such places can either be customers or workers in those places. However, workers may belong 

to business type in HITS data, thus it is difficult to give a clear border between commercial 

and business types. In this case, commercial and business types were merged in Fig. 1(b), and we 

can observe similar proportions of the land use features. In general, the NEL mainly serves as a 

connection between residential areas and areas with business and commercial activities, which 

include the most famous sightseeing places in Singapore, like Sentosa, Chinatown, and so on. 

Similarly, many schools can be identified along this line, which explains a certain proportion 



of education. All other trip purposes have been included in others type, which can be different 

from the definition in HITS data, as shown in the figure. 

(a) Comparison based on five category (b) Comparison based on four category

Fig.1. Comparison between HITS results and clustering results 

5 Conclusions 

With the aid of land use information, the smart card data was analyzed to estimate passengers’ trip 

purposes. Three temporal attributes (average duration between trips, first trip start time range and last 

trip start time range) and five land use attributes (commercial, residential, business, education and 

others) were adopted. A K-prototypes algorithm for mixed-type data was applied to obtaining the 

clustering results. With a MRT line in Singapore as case study, five clusters were identified to 

represent heterogeneous trip patterns and purposes. The proposed data analysis framework is expected 

to be regarded as a useful tool to impute passengers’ purposes, as an alternative or a complementarity 

to the traditional survey approach. As a future work, numerical experiments on a large-scale public 

transport network will be conducted, and land use features will be adjusted to keep in line with various 

trip purposes in HITS data for more comprehensive and reasonable comparison. 
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Extended Abstract

In the recent past, the Macroscopic Fundamental Diagram (MFD) proved to be an attractive

alternative to describe the traffic states at the network level. Several works [1, 2, 3] employed MFD-

based approaches in variety of applications like perimeter control, modeling large-scale cities, etc.

Even though [4] verified the existence of the MFD, the stability of its shape faces certain challenges

like hysteresis phenomenon, heterogeneity of the traffic in urban networks. It was shown in the

work of [5] that partitioning of heterogeneous networks into homogeneous regions can be a solution

to obtain a well-defined MFD.

Most of the previous works on MFD approach employ the so-called accumulation-based MFD

model to predict the traffic state dynamics. The hypothesis of average trip length per region is

employed in the computation of system dynamics for their proposed perimeter control [3]. Re-

cently, [6, 7] refined the idea introduced in [8] and proposed the so-called event-based approach

in the framework of trip-based MFD simulation for a single reservoir system. This approach con-

siders that all users travel at the same speed at a given time and exit the zone once they have

completed their individually assigned trip length. Even though the accumulation-based approach

is relatively simple and computationally less demanding, it has few shortcomings in fast-varying

conditions [6] and inclusion of individual trip lengths in this approach is not trivial. On the other

hand, accounting for different trip lengths is relatively straightforward in the trip-based model.

However, this approach is computationally more demanding and modeling of congestion propaga-

tion in this framework is still an ongoing research question. The trip-based approach is extended

to multi-reservoir systems with multiple trip lengths in each reservoir in [9].

There have been complex formulations proposed for MFD-based simulation in the literature, but

very few detailed validations on real networks. Hence, this work focuses on a thorough validation



of the MFD simulators on real networks. In particular, we aim at (i) investigating the accuracy of

the MFD multi-reservoir trip-based and accumulation-based models for a real large-scale network

by comparing the simulation results with real traffic data; and (ii) going a step further in defining

proper calibration methods for the key parameters of MFD models. The network studied is the city

of Lyon, which has the second greatest urban area of France, with more than 2 million inhabitants.

The perimeter studied corresponds to the urban area inside the first ring road of Lyon (also

including the city of Villeurbanne). This area is manually split into 5 reservoirs exhibiting a

well-defined MFD (R1 to R5), as presented in Figure 1(a). This area exchanges traffic with

its surroundings via mainly 4 freeways related to 4 origin/destination cities, represented by four

additional reservoirs: Paris (R6), Geneva (R7), Grenoble (R8) and Marseille (R9), see Figure 1(b).

The demand scenario was estimated for a typical weekday in a preliminary study with a four-step

model based on household trip surveys and socio-demographic data. The traffic data consists of

GPS trajectories of taxi fleets in Lyon, and all the loop detectors available in the area. The data

was recorded over several days, three of them were selected for this study. The large amount

of taxi trips allows to determine the mean speed of each reservoir with an aggregation period of

18 min. The loop data provides a measure of the mean flow of each equipped link with the same

aggregation period, which is then scaled up to each reservoir level by assuming that the measured

mean flow is also representative of the non-observed links (homogeneity assumption). The average

distances traveled are estimated by using both shortest path calculations and the taxi trajectories.
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Figure 1: Network studied. (a) Road network of Lyon-Villeurbanne clustered in 5 reservoirs and

(b) the reservoir configuration with external origins/destinations

A first comparison between accumulation-based MFD simulation and real data is presented

in Figure 2, where the evolution of accumulation is plotted for each reservoir. While providing a

reliable estimation of the accumulation level in reservoir R1, the MFD simulation under-estimates

the number of circulating vehicles in other reservoirs R2, R3 and R4, with a relative error of 20-

30%, see Figures 2(a)-(d). In reservoir R1 the morning peak is better reproduced, compared to the

2



evening peak. Because of the scatter in reservoir R5 between the different day datasets, it is hard

to evaluate the accuracy of the simulation results in this reservoir, see Figure 2(e). Nevertheless,

the overall accumulation trend and mean value are consistent with the data.
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Figure 2: Comparison between real data and MFD 5-reservoir simulation. (a) Evolution of accu-

mulation in reservoir R1, (b) R2, (c) R3, (d) R4 and (e) R5

In this simulation test, the causes of the discrepancies between simulation and real data are

likely to be multiple. The general under-estimation of accumulation levels may be due to either

an under-estimation of the trip lengths in reservoirs R2, R3 and R4, or an under-estimation of

the demand crossing these reservoirs. Both reasons are possible, because both the estimation of

the trip lengths and the demand may contain some bias. The trip lengths come from shortest

path calculations on an empty network that are then adjusted based on taxi trip data. This

calculation method is not necessarily representative of the real distances traveled by all vehicles.

In the demand profiles, the part of traffic corresponding to trips crossing the area has been removed

from our study. This was justified because we assume that these trips are mostly located on the

ring road, and are thus not captured by both sources of data (the loop data and the taxi data).

Actually, a small portion of them could take the city streets, which would correspond to the fraction

of the accumulation we are missing. This study is still an ongoing work and up-to-date results will

be presented during the conference in June.
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1 Introduction

Accessibility, measuring the ability to reach valued destinations, is a reliable tool to evaluate the

performance of transport systems. However, traditional accessibility measures use travel time to

represent the cost of travel, which neglects the rest of the internal travel cost factors as well as the

external costs of urban travel.

Cui and Levinson [1] developed a full cost accessibility (FCA) framework, which provides a

theoretical basis to fill up the gap, that incorporates both internal and external costs of time,

safety, emission, and money into accessibility analysis. It has the potential to change the rankings

of transport investments and land developments, compared to the time-based (or time-and-money-

based) accessibility evaluations, by incorporating additional cost factors, especially the cost of

externalities. Many projects may be beneficial for individual travelers but present society with the

expense of greater externalities.

The FCA framework has been implemented in a toy network built by Cui and Levinson [1] as

a proof-of-concept. This paper, focusing on auto mobiles, extends and applies the FCA framework

to the Minneapolis - St. Paul (Twin Cities) metropolitan area, which aims to, first, further demon-

strate the practicality of the FCA framework for real-world applications, and, second, identify the

differences and correlations between the full cost and the time-based accessibility.

2 FCA Framework

The FCA framework comprises three stages: analyzing the component costs of travel, evaluating

new path types, and measuring FCA, shown in Figure 1.

The cost analysis, at first, aims to estimates the internal and external costs for each cost

component, and combines them into total internal, external and full cost of travel. Cares need

to be taken for the cost transfers during the combination to avoid the double counting problem.



Figure 1: Full Cost Accessibility (FCA) Framework

Note that each solid blue box in the dashed box of single cost component defines the corresponding

internal or external cost factor.

The lowest internal cost path and the lowest full cost path are then proposed as the optimal

routes with the minimum combined internal and full costs. The cumulative internal and full costs

along the lowest internal cost path and the lowest full cost path are the inputs for the accessibility

calculations.

Cumulative opportunity measure, which counts the number of reachable opportunities within

a given threshold [3, 4], is used for FCA measurements, written as,

Ai,c =
∑
j

Ojf(Cij,c) (1)

f(Cij,c) =

 1 if Cij,c ≤ Tc

0 if Cij,c > Tc

(2)

Where:

Ai,c stands for the accessibility of origin i for cost category c ;

Oj stands for the number of opportunities at destination j;

Cij,c stands for the costs between origin i and destination j;

Tc stands for the corresponding cost threshold for cost component c.



3 Internal and Full Cost Accessibility

Cost estimates for each cost component as well as the total internal and full cost have been

conducted by Cui and Levinson [2] for the Twin Cities metro area. The data are displayed in a

shapefile on the basis of the TomTom road network, giving the travel cost of each link segment for

all single cost components and the combined internal and full costs. Using this data, we measured

the internal and full cost accessibility to jobs, see Figure 2.
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cost	path	by	auto	in	$9.15	full	cost
threshold

(a) Full Cost Accessibility

Accessibility	based	on	the	lowest
internal	cost	path	by	auto	in	$9.15
internal	cost	threshold

(b) Internal Cost Accessibility
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Figure 2: Accessibility Measurements Based on Different Path Types in a Same Value ($9.15) of

Cost Threshold

The internal and full cost accessibility show the same spatial distribution patterns as the tradi-

tional time-based accessibility that job accessibility is higher in the downtown area and decreases

gradually with the increase of distance to the downtown. Comparing these three accessibility ma-

trices, it has a clear order that time-based accessibility > internal cost accessibility > full cost

accessibility with the same values of cost thresholds 1 since time cost < internal cost < full cost.

Figure 3 summarizes the correlations among the three accessibility matrices in different cost

thresholds. Obviously, internal cost and full cost accessibility are highly correlated, while time-

based accessibility show lower correlations with the other two, which is mainly because the time-

based accessibility neglects the other 40% of the internal cost.

Figure 3: Correlations among Time-based, Internal Cost, and Full Cost Accessibility

1The value of time used in the full cost analysis is $18.3/hr



Figure 4 measures the changes of job accessibility by using the other path types rather than

the lowest full cost path in the full cost thresholds. The changes are all negative since the lowest

full cost path are the optimal solution with the restrictions of the full cost and using other types of

path costs more from the aspect of the full cost. This implies the penalties of a travel time based

route choice in terms of accessibility reductions.

Accessibility	Differences
Lowest	Internal	Cost	Path	-	Lowest	Full
Cost	Path
in	$9.15	Full	Cost	Thresholds

(a) Lowest Internal Cost Path
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Figure 4: Accessibility Changes in Full Cost Threshold: Other Path Types - Lowest Full Cost Path

4 Conclusion

This paper measures the full cost accessibility by auto for the Minneapolis - St. Paul metropolitan

area following the steps of the full cost accessibility (FCA) framework proposed by Cui and Levinson

[1]. On the basis of the previous research, this study further demonstrates the practicality of the

FCA framework on real networks and identifies the correlations between the traditional time-based

accessibility and the full cost accessibility. Future studies should extend the framework to other

traffic modes, e.g. transit, bicycle.
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1 Introduction

Retail supply chains are changing rapidly due to the growth of e-commerce. Although

online sales continue to grow, it also becomes increasingly clear that online stores will not

replace the traditional brick-and-mortar stores [1]. Over the past few years, several major

online retailers have extended their physical footprint, as in the case of Amazon’s purchase

of Whole Foods and the roll out of Amazon Go stores [2]. Thus, retailers are pursuing an

omni-channel model, combining store and online channels to enhance service.

Omni-channel retail gives rise to different operational challenges. The physical stores

will play a significant role in the omni-channel retail ecosystem as they form the connect-

ing link between the online and offline channels. An increasingly popular omni-channel

fulfillment model is one in which customers can pick up goods ordered online at an in-store

pick-up point (PUP). The PUPs are typically not supplied from the store inventory but

by a dedicated e-fulfillment warehouse. This often means that the stores are visited by

multiple vehicles to replenish the store inventory and to supply the PUPs. Motivated by

the fulfillment challenges at the leading omni-channel grocery retailer in the Netherlands,

we develop a strategy to consolidate product flows to the stores by sharing the capacity of

vehicles across different channels using the stores as potential transfer points.

This works as follows. Consider an omni-channel retailer that plans one fixed schedule

for store replenishment and a flexible schedule for the supply of the PUPs. The sequence of

stops (i.e., the stores visited) in the fixed schedule are determined far in advance, whereas

the flexible schedule is determined daily based on the actual demand. If there is capacity

available on the vehicles executing the fixed schedule, the online demand of the shared store

locations may be transferred from the vehicles executing the flexible routes to the vehicles

executing the fixed routes. This can reduce the system-wide travel costs and the number

of store visits.
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Our research builds on the work of Paul et al. [3], which considers a simpler setting

in which a transfer can only take place at the starting location of the fixed schedule (i.e.,

the warehouse) by using dedicated transfer trips. In this paper, we allow every store

location to be a possible transfer point. This involves deciding the transfer points as

well as synchronizing the two schedules. Allowing transfer of demand at different stores

increases the potential for capacity sharing as more capacity becomes available for transfers

later in the fixed schedule, after delivering to some store locations. Another advantage is

that the use of transfers may result in a shorter flexible schedule.

We introduce the Shared Capacity Routing Problem with Transfers (SCRPT) in which

the goal is to design a flexible schedule that delivers to all required store locations, either

directly or by transferring to the fixed schedule, and that minimizes costs.

2 Problem Definition

We consider a stylized abstraction of our real-life case with a single vehicle for both the fixed

and the flexible schedule. We model the SCRPT on a complete graph G = (V,A). Here,

V = N
⋃
{o}

⋃
{d}, where o and d are the warehouses of the fixed and flexible schedule

respectively and N is the set of store locations visited in the fixed route. Let S ⊆ N be the

set of store locations that need to be served in the flexible route, where i ∈ S has a demand

qi ≥ 0 (which needs to be fulfilled from the warehouse d). Demand of each store i ∈ S can

be fulfilled by direct delivery or by transferring to the fixed route if feasible. The costs of

traversing arcs, cij∀(i, j) ∈ A, satisfy the triangle inequality.

The demands of stores can be transferred at a location i ∈ N
⋃
{o}, which we refer to

as a transfer-point. Only stores j ∈ S which are visited after i in the fixed route can be

transferred at i. The demand of a store j can be transferred in parts at multiple stores

i < j. For example, half of the demand of store 4 can be transferred at store 1 and another

half at store 2. Let Ti be the set of the stores whose demand (full or partial) can be

transferred at i. For a time-feasible transfer at location i, the time of arrival, ti, at location

i ∈ N
⋃
{o} in the flexible route cannot be later than the time of arrival, ai, at location i

in the fixed route. Note that a transfer can take place at a location i that does not need

to be served in the flexible route, i.e., i ∈ N
⋃
{o}, i /∈ S can be a possible transfer-point.

At every store location i ∈ N , more capacity becomes available in the vehicle associated

with the fixed route as it drops off the demand di associated with the store of the fixed

route, which can be used to receive transfers from the flexible route. However, there should

be enough space available at the store location i ∈ N to handle the transfers. Let evi and esi

denote the vehicle spare capacity in the fixed route and store handling capacity at location

i ∈ N
⋃
{o}, respectively. The net transfer capacity, ei, at any location i that can be used

for handling the transfers, is the minimum of these two capacities, i.e., ei = min(evi , e
s
i ).

Note that when the store handling capacity is never limiting, then the transfer capacity ei

is always increasing along the fixed route.

The demands of stores in Ti ⊆ S can be transferred at i (full or partial) as long as the

total demand does not exceed the transfer capacity ei. We refer to a set of stores whose



demand is capacity feasible to be transferred at location i as an i-transfer.

The cost of the fixed route is exogenous to the model, so it suffices to minimize the

transport costs of the flexible route. The goal of the SCRPT is to determine the set

of transfer-points with their corresponding i -transfer sets and the route sequence for the

non-transferred stores and the transfer-points so that total costs are minimized.

3 Solution Approaches

We develop a mixed integer linear programming (MILP) model which can solve instances

of small size. As the SCRPT with one flexible route reduces to the travelling salesman

problem when there is no spare capacity in the fixed route, the SCRPT is NP-hard. Hence,

we focus on developing heuristics to solve the problem for large instances.

We present optimal solution approaches for a special case of the SCRPT in which the

the stores are located on a circle and the warehouses of two schedules are co-located. In that

case, we can build an auxiliary graph with store locations as nodes and feasible “transfer

short-cuts” as arcs. We use several dominance rules to reduce the number of arcs that can

possibly be part of an optimal solution. A shortest path in the auxiliary graph gives an

optimal flexible route. We use the insights from this special case to develop a heuristic for

the general case when store locations need not be on a circle and the warehouses are not co-

located. When the warehouses are not co-located, we first find the location(s) l ∈ N
⋃
{o}

where the flexible route can catch-up with the fixed route, then find the shortest path

between l and n = |N | using the auxiliary graph and finally, build a Hamiltonian path for

the stores (i ∈ S, 0 < i < l1) that are not visited before the catch-up location. In the next

section, we benchmark our heuristic against the optimal solutions and also, present the

potential savings that can be obtained by capacity sharing.

4 Results & Discussion

We generate instances with store locations randomly distributed on an euclidean plane.

The stores are categorized into small, medium and large, based on their capacity to handle

transfers. We solve a TSP to get the fixed route visiting all store locations. We assume

that the vehicle associated with the fixed route is full when it starts the route. The spare

capacity in the vehicle of the fixed route becomes available when the demand from the

fixed schedule is dropped off at a location. The ratio of the average demand of stores in

the flexible schedule and in the fixed schedule impacts the potential benefit of exploiting

transfers and capacity sharing. We use different values of the ratio to generate the instances.

In Table 1, we report the performance of the heuristic in terms of the gap from the

optimal solution (obtained by solving the MILP). The average optimality gap is 2.4%,

while the heuristic finds the optimal solution 24 out of the 45 instances.

In Table 2, we first show the number of stores whose demands are transferred to the

fixed schedule and the associated savings in transport cost using stores as transfer points.

1stores are indexed in order of their visit in the fixed route



We see that the average savings in transport costs across all instances are around 61.1%.

Table 1: Performance of heuristic

Instance

Size

Optimality

Gap* (%)

30 2.0

35 0.9

40 4.4

Average 2.4

# of times optimal found 24 / 45

* average of 15 replications

We also compare these savings with the savings

obtained using the warehouse of the fixed schedule

as the single transfer point. For this experiment, we

assume there is spare capacity in the vehicle of the

fixed route at the starting location to accommodate

20% of the total demand of the stores on the flexible

route. With the stores as potential transfer points,

the savings in transport cost increase on average to

61.1% from 4.6%. When we use the stores as trans-

fer points, the transfer options increase as can be

observed in the increase in the number of stores whose demands are transferred.

Table 2: Savings due to capacity sharing via transfer points

Instance

Size

Multiple Transfer Single Transfer

# of stores

transferred

Savings

(%)

# of stores

transferred

Savings

(%)

30 17 59.3 4 0.6

40 20 62.3 5 2.8

50 27 59.8 7 4.1

60 26 59.5 8 7.0

70 28 61.5 9 7.2

80 34 64.5 11 6.1

Average 61.1 4.6

The initial results of our

experiments show potential

savings due to transferring of

store demands by sharing ca-

pacity across channels. We

plan to improve the heuristic

to further reduce the aver-

age optimality gap. We will

conduct an extensive compu-

tational study to understand

the effect of capacity sharing

under different settings.
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1 Introduction

To improve traffic operation efficiency in large-scale urban networks, numerous traffic signal control

policies were developed and implemented in the past few decades. However, these signal control

policies are nominally designed for isolated intersection control or coordinated control in arterials.

A very recent approach to extend the spatial extent of traffic signal control to the network level

is perimeter flow control based on the Macroscopic Fundamental Diagram (MFD) model. MFD

describes a well-defined, low-scattered, and non-linear relationship between mean weighted flow and

vehicle accumulation of a network where the spatial distribution of congestion is homogeneous.

Perimeter flow control is an effective traffic control method that monitors vehicle density in a

protected region (PR) and manipulates the traffic inflow to the PR to regulate vehicle accumu-

lation under a certain value. Previous studies demonstrated that perimeter control can minimize

the network total delay, e.g. [1]. The existing perimeter flow control methods are based on static,

time-invariant cordon (see [2], [3]), i.e. the region boundaries are fixed, which leads to limited con-

sideration of convoluted temporal changes in vehicle accumulation distribution. In this study, we

propose a perimeter flow control with time-varying cordon to reduce the total delay in a two-region

network by adjusting the PR boundaries over time. The cordon selection algorithm associates an

index to each subregion quantifying the extent that the subregion needs protection from hypercon-

gestion. Consequently, the algorithm clusters all the subregions either to the PR and a peripheral

region such that the protection index of subregions inside the PR has the maximum difference from



the protection index of subregions in the peripheral region. Ultimately, a Proportional-Integral

(PI) regulator is employed to acquire the optimal control values.

2 Methodology

In this study, we consider an urban network that is partitioned into a number of subregions each

with a well-defined MFD, as shown in Figure 1. Region 1 is the peripheral region and Region 2

is the protected region. The perimeter controllers are implemented at the boundaries between the

two regions that are denoted by U12 and U21.

(a) (b) (c)

Figure 1: The perimeter control with time-invariant boundaries between the two regions, Region 1

includes subregion 1 to 12 and Region 2 includes subregion 13 to 19, (b) one possible new cordon

between the two regions where subregion 17 is included in Region 1 instead of Region 2, and (c)

one possible new cordon between the two regions where subregion 8 is included in Region 2 instead

of Region 1.

2.1 Traffic flow model based on MFD dynamics

The traffic flow model is developed based on the MFD to describe traffic propagation dynam-

ics among the subregions. The internal trip completion flow of subregion i at time t that does

not leave subregion i is denoted by mi
ii(t) (veh/s) that is defined as mi

ii(t) = θiii(t) · nii(t)/ni(t) ·

pi(ni(t))/lii(t). ni(t) is the accumulation of subregion i at time t and pi(ni(t)) is the MFD produc-

tion (weighted flow) of subregion i at time t. Let φi denote the set of subregions directly reachable

from subregion i. Thus, the transfer flow from subregion i with destination subregion i through

subregion h is denoted by mh
ii(t) (veh/s), where mh

ii(t) = θhii(t) · nii(t)/ni(t) · pi(ni(t))/lih(t); h

∈ φi. Similarly the transfer flow from subregion i to the next immediate subregion h with final

destination subregion j is mh
ij(t) = θhij(t) · nij(t)/ni(t) · pi(ni(t))/lih(t); h ∈ φi; i 6= j. θhij(t)

denotes the percentage of total transfer flow from subregion i with final destination subregion j

through subregion h such that h ∈ φi. Accordingly, θiii(t) + θhii(t) = 1 for h ∈ φi , and
∑
h∈φi

θhij(t)

2



= 1 for ∀i, j. nij(t) denotes the accumulation in subregion i with final destination in subregion j.

Evidently, ni(t) =
∑
j∈R nij(t) where R denotes the set of all subregions.

lij(t) represents the average trip length from subregion i to subregion j. We assume the trip

lengths inside subregions are constant, that is lii(t)= lih(t) = li. Furthermore, we assume θiii(t)

= 1 and θhii(t) = 0 that is the internal trips at the final subregion do not leave the destination

subregion. The proposed model accommodates the subregion receiving capacity according to [2]

(similar to Cell Transmission Model), which limits the transfer flows accordingly (mh
ii(t) and mh

ij(t)

to m̂h
ii(t) and m̂h

ij(t)). The perimeter controllers are applied on the border between the two regions

controlling the transfer flow between associated subregions. For instance uih(t) control the transfer

flow between subregion i and subregion h. Note that 0 ≤ umin ≤ uih(t) ≤ umax ≤ 1 to reflect

the physical constraints on the minimum and maximum possible values of the perimeter control.

Consequently, the subregional vehicle conservation equations are as follows,

dnii(t)

dt
= qii(t)−mi

ii(t)−
∑
h∈φi

uih(t) · m̂h
ii(t) +

∑
h∈φi

uhi(t) · m̂i
hi(t) (1)

dnij(t)

dt
= qij(t)−

∑
h∈φi

uih(t) · m̂h
ij(t) +

∑
h∈φi

uhi(t) · m̂i
hj(t), i 6= j. (2)

where qij(t) are demands from subregion i to subregion j.

2.2 Cordon selection algorithm

In this study, we propose a perimeter control strategy with time-varying cordon to reduce the total

delay in a two-region network by adjusting the protected region boundaries every ∆T minutes.

The details of the cordon selection algorithm is as follows. We define the subregion weight, wi as

wi(t) = (
ni(t)

ncri
)2 (3)

where ncri is the subregion i critical accumulation based on MFD. Let |φj | denote the number of

subregions adjacent to subregion j ; sj(t) is an estimation of sending flow from subregion j towards

subregion i

sj(t) =
pj(nj(t))

pmax
j · (|φj |+ 1)

, ∀j ∈ φi. (4)

where pmax
j is the maximum production of subregion j based on the MFD of subregion j. Therefore,

the protection index of subregion i is defined as ci(t) = wi(t) · (Σj∈φi sj(t)), ∀i∈R. The protec-

tion index, ci(t), considers two factors, (i) subregion accumulation, ni(t), to reflect the subregion

congestion level and (ii) neighbor subregions outflow towards the subregion.

The regional protection index is determined by simply counting all related subregion protection

indexes. The average protection index of Region 1 and Region 2 can be acquired through C1(t)

=
∑
i∈R1

ci(t) / |R1(t)| and C2(t) =
∑
i∈R2

ci(t) / |R2(t)|. The number of subregions in Region

1 and Region 2 at time t are |R1(t)| and |R2(t)|, respectively. Note that R1(t) ∪ R2(t) = R.

3



The algorithm clusters all the subregions into a PR and a peripheral region such that the average

protection index of Region 2 has the maximum difference from the average protection index of

Region 1, which is represented by DCI(t) = max|C2(t) - C1(t)|. We assume at most only one

subregion can be switched between the regions at each time step. Subregions cannot switch to a

new region that are not directly connected to the previous region boundaries (e.g. subregion 19 in

original Region 2 as shown in Figure 1(a)). The regions with the maximum DCI(t) is the new

region configuration for the perimeter control.

3 Preliminary Results

In order to highlight the effectiveness of time-varying cordon, we compare three scenarios, (i)

no control, (ii) perimeter control with static cordon, and (iii) perimeter control with dynamic

time-varying cordon. The two latter control approaches are based on a Proportional-Integral (PI)

regulator, which is presented in (5). KP andKI are gain values, e(t) is the error between the current

measurement of Region 2 accumulation and the desired value, i.e. e(t)=N2(t) −N cr
2 (t). N cr

2 (t) is

the critical accumulation of Region 2 that is time-varying because the number of subregions in this

region changes as cordon changes. U12(t) is the perimeter control manipulating the transfer flow

between Region 1 to Region 2 to maintain the accumulation of Region 2 close to its critical value,

while Umin ≤ U12(t) ≤ Umax.

U12(t) = U12(t− 1)−KP · (e(t)− e(t− 1))−KI · e(t) (5)

Results of the three scenarios pinpoint the importance of applying time-varying cordon in a

multi-region traffic network. The evolution of subregion accumulations over the studied period

represent that the time-varying cordon reduces the subregion accumulation heterogeneity signifi-

cantly, as shown in Figure 2. The total network delay is summarized in Table 1. It is obvious that

the total network delay is decreased while implementing either control strategies, while dynamic

cordon perimeter control performs superior to the static one, with 14% reduction in total delay.

Hence, time-varying cordon achieves the goal to distribute the accumulations more homogeneous

than static cordon and improves the traffic network efficiency.

Table 1: Total network delay for different control strategies (106 (veh·s)). Values in parentheses

show the improvement over the No Control case.

No Control Perimeter Control with Static Cordon Perimeter Control with Dynamic Cordon

1024.70 783.93 (22.03%) 674.01 (34.22%)
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(a) (b) (c)

Figure 2: Subregion accumulations over time: (a) no control, (b) perimeter control with static

cordon, and (c) perimeter control with dynamic cordon.
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The objective of this study is to develop a deep learning algorithm for estimating a real-time 

possibility of lane-changing (LC) behaviour in a continuous stochastic car-following model. The 

proposed modelling framework aims to cope with probabilistic characteristics of lane-changing 

manoeuvres in a freeway. There are five distinctive contributions of this study; 1) a stochastic volatility 

derived from LC manoeuvres is integrated into a multi-lane stochastic car-following model, 2) the CNN 

(Convolutional Neural Network) is used to estimate a probability of LC manoeuvres in the integrated 

multi-dimensional car-following model, 3) imaged second-based trajectories of the lane-changer and 

surrounding vehicles are used to identify whether LC manoeuvres occurred by using the CNN, 4) the 

proposed method paves the way for an applicability of the integrated multi-lane car-following model for 

multi-lane Cooperative Adaptive Cruise Control (CACC) as well as connected traffic systems, and 5) 

the proposed method is validated using a real world high-resolution vehicle trajectory dataset. 

Our previous study [1] and [2] provides its firm foundation of applicability of Langevin 

equations into a stochastic continuous car-following model, which is a key element to construct multi-

dimensional interactions between vehicles on a road in this study. An integrated form of stochastic 

differential equations (SDEs) for the acceleration of the nth vehicle in the kth lane, including a 

longitudinal and a lateral interaction between vehicles on the road, is defined as below:  

 

Long Lat Lat Lat

, , , 1, 1, 1

, 1, 1, 1

n k n k n k n k n k

n k n k n k

dv dv dv dv dv

dt dt dt dt dt

− − +

− − +

      
= +  +  −            

       

  (1) 

 

where 
Long

,n kv  and 
Lat

,n kv  are the longitudinal and lateral speed of the nth vehicle in the kth lane, 

respectively. Furthermore, the lateral acceleration of the leading (n–1)th vehicles, 
Lat

1,n kdv dt−  and 

Lat

1, 1n kdv dt− − , on both the initial and the target lanes are created to reflect the preceding lane-changer’s 

impacts on the subject vehicle on the propose framework. The lateral acceleration of the vehicles are 

multiplied by the corresponding probability of LC manoeuvres, Λn,k, which is used as a sensitivity 

variable in the SDEs. These corresponding probabilities are calculated by the data-driven deep learning 
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method, the CNN, using space-headway, velocity and acceleration differences between lane-changer and 

surrounding vehicles. The sensitivity of LC manoeuvres to the multi-dimensional stochastic car-

following model is determined according to the corresponding value of LC probabilities. In addition, vn,k 

is the actual velocity of the nth vehicle in the kth lane, which depends on both longitudinal and lateral 

interactions between vehicles. The detailed explanations are provided in [1] and [2]. 

The main elements of the input layer are differences of positions, velocities, and accelerations 

between the lane-changer and the surrounding vehicles, including preceding vehicles and following 

vehicles in the initial and the target lane, for 20 frames in a single frame as 0.1s. The difference of 

positions between the subject vehicle and the surrounding vehicles is shown as the space-headway of the 

lane-changer to the surrounding vehicles. In the meantime, a gap of velocity and acceleration of the lane-

changer with these trajectory quantities of vehicles in the neighbourhood is calculated as these traffic 

quantities of the neighbourhood subtracted from that of the lane-changer. The three kinds of traffic 

quantities are combined into one input layer for the CNN. Due to the flexibility of the CNN algorithm 

against the size of the input layer, we will utilize the varying size of the input layer, which depends on 

the number of traffic quantities. These include the space-headway, velocity, and acceleration in this 

study, the number of surrounding vehicles, which are the front and the rear vehicles, the number of time 

frame, and the number of considering adjacent lanes, which are the initial and the target lanes in this 

study, for each trajectory of the target vehicle in a time slot. Accordingly, the size of the input layer is 

determined as 3 × 2 × T × K. We define the input layer as the following equations. 
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( )cnn,1 Z , Yn l l
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In Equation (2), each cell of imaged data set, zktc, is illustrated as a series of 3 channels, including 

space-headway, speed gaps, and acceleration gaps between the target vehicle and the surrounding 

vehicles. The value of the initial input layer is identical to the value of the inputs to the first layer 

illustrated in Equation (3), in which the size of one channel in the initial input layer is the number of 

surrounding vehicles at the target and the initial lanes times the length of the time frame in milliseconds 

(2 × T × K). The input value to the lth layer, yl
ijc, is explained in the section of a convolutional layer in 

the ensuing paper. Moreover, yl
ijc, the value of input in column i in row j in channel c in the vector Yl, to 

the lth layer is illustrated in the convolutional procedure as below: 

1

, , , Cl l l l

ijc uv i u j v c

u v

y w y b c−

+ +=  +    with ( )1

, ,

l l

ijc i u j v cy f y −

+ += ,    (4) 

where 
l

uvw  represents a kernel matrix (i.e., weight matrix) of dimension U × V at the lth layer connecting 

neurons of the lth layer with them in the (l – 1) th layer. A bias matrix of the layer l, is defined as 
lb . 

The output vector at the lth layer, l

ijcy , is defined by ( )1

, ,

l

i u j v cf y −

+ + , where f (∙) represents an elementwise 

activation function. In general, either the logistic sigmoid function, ( )
1

( ) 1 xf x e 
−

−= − , or the hyperbolic 



tangent function, ( )( ) tanhf x a bx= , or the rectified linear unit (ReLU) function, ( )( ) max 0,f x x= , 

can be used as the activation function,  f (∙). 

To verify the effectiveness of the proposed methods, we apply a stochastic car-following model 

with stochastic volatility derived from LC to real traffic trajectory data set collected from U.S. 101 

freeway from 7:50 a.m. to 8:35 a.m. on June 15, 2006. The dataset and detailed information were 

provided by the Federal Highway Administration’s Next Generation Simulation (NGSIM). We select 

cases of LC manoeuvres without LC manoeuvres of the leading and the following vehicle of a lane 

changer for 100 time-frames (10s) before and after the LC manoeuvre (i.e. total 00 time-frames) in all 

lanes of the target section. 

We construct the architecture of the CNN for a classification of scales for LC probabilities 

modified from LeNet-5 in [3] using Python with Keras library. Here it is emphasized that multilayer 

networks can be capable of learning complex, high-dimensional, nonlinear mappings from large coupled 

image recognition tasks with gradient descent. The trained LeNet showed the excellent performance to 

categorize hand-written features into designated classes, while it required less computational burdens 

than fully-connected single network problems. The primary elements of the LeNet are local receptive 

fields, shared weights, and spatial subsampling. LeNet includes two convolutional layers connected with 

subsampling layers and the final double fully-connected layers linked to the Gaussian-connected layer. 

The first layer is the 2-dimentional convolutional layer with ReLU activation function connected with 

the 2-dimentional max-pooling layer as the second layer. And then, we design five fully connected layers 

with 30% as the rate of dropout. We set a ReLU function to an activation function in four layers except 

the final layer with a Sigmoid function. 195 cases of LC manoeuvres from 7:50 a.m. to 8:05 a.m. are 

used for training the CNN model, whereas 100 cases of LC manoeuvres from 8:20 a.m. to 8:35 a.m. are 

used for the validation process. The total loss of the validation set derived from binary cross-entropy 

method in Keras is 0.345, whereas the accuracy of the validation set is 0.7959.  

To compare the estimates and the observed in both train and test sets, the detailed statistics are 

provided in the following contingency table. We exclude the period, when the LC probability lasted as 

zero for a while, for all cases from the contingency table. 

 

Table 1. A contingency table of the proposed CNN method. 

 
,

ˆ
n kp  

Total % Prob = 

0 

Anticipation step Execution step Relaxation step 

1 2 3 1 2 1 2 

,n kp  

Prob = 0 7897 299 317 137 140 145 106 104 9145 86.4% 

Anticipation 

step 

1 614 1753 249 100 93 74 33 34 2950 

71.2% 2 452 144 1779 249 192 60 40 34 2950 

3 265 67 154 1805 419 113 62 65 2950 

Execution 

step 

1 200 41 96 103 1984 338 111 77 2950 
79.2% 

2 145 17 34 39 338 2010 265 102 2950 

Relaxation 

step 

1 96 24 23 20 78 421 2076 212 2950 
81.9% 

2 104 12 7 11 50 220 397 2149 2950 

Total 9773 2357 2659 2464 3294 3381 3090 2777 29795 100% 

Percentage 80.8% 84.2% 70.0% 82.4% 100% 72% 

 

In Table 1, the accuracy of the proposed model is 72% for the transition period and the adjacent 

period before and after the transition process. The bold and underlined values define the number of time-



frames, in which the estimate is exactly same with the observed scale in each transition step at a level of 

a grade. In the meantime, the highlighted cells illustrate the number of time-frames, in which the estimate 

is identical to the observed scale in each transition step at a level of a transition step. In the case, in which 

the LC probability is zero for the transition period, 7897 time-frames are well estimated by the CNN 

among 9145 time-frames. In this step, 86.4% of time-frames are identical to the observed. For the 

anticipation step, 71.2% of time-frames are not only rightly categorized by the CNN, but also 79.2% of 

time-frames are well classified for the execution step. In relaxation step, the CNN rightly estimates 

81.9% of time-frames. According to the results, the CNN model can guarantee the high level of accuracy 

and the low level of computational burden to estimate LC probabilities in a scale of 1 millisecond. 

In the case study, the performance of the integrated stochastic car-following model were 

examined on a variety of trajectory data of lane-changer and its surrounding vehicles, including the lead 

vehicles and the rear vehicles in the original and the target lane. The results of the case study show that 

the prediction of the integrated model with deviations is almost identical to the observed trajectories of 

the lane-changers and the following vehicles in the initial and the target lane. In future research, we will 

introduce the deep learning method to select the most appropriate parameters for the specific categorized 

LC manoeuvres. With this method, we can develop an adaptive multi-lane stochastic car-following 

model with respect to the kind of LC manoeuvres. This model can be used to establish multi-lane 

Cooperative Adaptive Cruise Control (CACC) as well as to model the stochastic characteristics of 

heterogeneous vehicular platoons in multi-lane traffic environments. Full details of the model 

development and simulation resulst will be presented at the conference if accepted. 
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1 Introduction 
In the small parcel delivery industry, the “last mile cost” accounts for a significant share of the total 

costs. The idea of saving on this cost by handing the parcels to their recipients through automated service 

points (SPs) is a common practice [3]. We introduce a logistic model for the delivery of parcels to SPs 

that are used as drop off, pickup and intermediate storage locations. A parcel may be carried from its 

origin to its destination in several legs via several possible intermediate SPs. Such a system constitutes 

a physical internet (PI) service network [4]. The PI network is a generalization of the current practice of 

using a hierarchical network where the parcel can switch vehicles only in a large sorting facility (hub), 

and an SP is served by a single route. For the design of hierarchical service networks see [1], [2]. The PI 

service network topology presents an opportunity to improve metropolitan service networks by reducing 

the total distance that the parcels are carried, while still exploiting the possibility of shipment 

consolidation. In addition, such a system may save a significant amount of resources that are associated 

(and tied for an extended period) with the construction and operation of a large sorting facility. A related 

idea that is based on crowd-sourcing, i.e., with delivery of parcels by random vehicles, rather than on a 

planned and fixed service network, was recently introduced in [5]. 

In this abstract, we focus on one important operational aspect of a PI delivery network, namely, 

the routing of the parcels. Our model considers a service network with given locations and capacities of 

the SPs as well as (fixed) routes and schedules of the couriers. Our goal is to optimize the routes of the 

parcels within the network. As a benchmark, we consider a traditional hierarchical service network with 

the same set of SPs, the same amount of transportation resources and an uncapacitated centrally located 

hub. We are interested in the online version of the problem where parcels with different origins and 

destinations arrive at the system following some stochastic process. A solution to this problem is a policy 

by which parcels are picked up and dropped off by the couriers at the SPs. We present a policy that 

makes use of central information and routes each parcel through the network, so as to minimize its 

shipping time. The route of each parcel is obtained by a solution of the shortest path problem on a time-

expanded graph that describes the current and future states of the system. A special trait of this policy is 

that all the resources that are needed to accomplish the delivery of each parcel are reserved upon its 

arrival, and thus, the system may provide reliable information on the delivery time of each parcel in 

advance. Such information is valuable for the shippers and the recipients. This policy is implemented 

for both the PI and the hierarchical systems, and a simulation is used to evaluate its performances under 

the two topologies. 

2 Problem Definition 
The problem is defined by the following input: a set of capacitated SPs, a distance matrix between the 

SPs, and a set of fixed tours (circular routes) that constitute the service network. Identical capacitated 



2 
 

couriers travel along the tours. The tour of each courier and his location along it at the beginning of the 

planning horizon are given. The travel time and stopping time at each SP are assumed deterministic, and 

thus, the arrival times of the couriers at each SP during the planning horizon can be deduced from this 

information. Parcels of identical dimensions arrive at the system according to a known stochastic 

process. Each parcel is characterized by an origin and a destination that are drawn from some known 

joint distribution and by its priority class. When a parcel arrives at the system, it can be admitted to its 

origin SP, if it has some available capacity, or rejected. Parcel rejection is at the discretion of the operator 

and may occur even if the SP is not at full capacity at the parcel arrival moment. After the parcel reaches 

its destination SP, it is collected by the recipient and the capacity it occupies in this SP is released. The 

time between the arrival of the parcel and its pickup is random but bounded from above. The parcel 

routing problem is to find a policy for pickup and drop off with the following two objectives: minimizing 

the expected delivery time and the expected number of rejected parcels at each class. This is a multi-

objective optimization problem with two objectives for each priority class.  

Two of the hardest assumptions of the model described above are as follows: (1) the deterministic 

travel times (2) and the deterministic and fixed service times at the SPs. To somewhat soften these 

assumptions, we introduce the notion of buffer time, which represents a specified period after the arrival 

of each parcel to an intermediate SP during which the parcel cannot be scheduled to be picked up by 

another courier. 

We define a routing policy to be reliable if, under the deterministic travel and service time 

assumptions, the exact delivery time of each admitted parcel can be determined upon its admission. In 

this study, we focus on reliable policies only, although it is clear that the reliability requirement may 

come at the cost of higher rejection rate and longer delivery times. 

3 Methodology 
In this section, we define a myopic routing policy that is not necessarily efficient. However, it satisfies 

the reliability requirement. Moreover, the proposed policy is locally optimal from the perspective of each 

parcel and is based on the information that is available to the operator at its arrival time. This policy is 

applicable also to the hierarchical network, and thus, we can use it to compare the two topologies. 

The current and future states of the system are represented (and maintained) by time expanded 

directed graphs, one for each priority class of the parcels. Each planned arrival of a courier at an SP is 

referred to as an event. For each event, we define a pair of nodes in the graph, referred to as a route-node 

and a storage-node. The arcs in the graph are as follows: loading arcs, which connect each storage-node 

to the route-node of the same event; storage arcs, which connect each storage-node to the storage-node 

of the next event in the same SP; route arcs, which connect the route nodes and represent the tours of 

the vehicles and their schedule; and finally, the buffer-arcs, which connect each route-node to the 

storage-node of the earliest event at the SP that occurs at least a buffer-time later. Each arc in the graph 

is associated with two properties, i.e., length and remaining capacity. The length of each arc is the time 

difference between its start and end nodes. The remaining capacity property represents the maximum 

number of additional parcels of the corresponding priority class that can be assigned to the respective 

resource. In the case of route-arcs, this represents the available capacity of the vehicle, and in the case 

of the storage-arcs, this is the available (and reservable) capacity at the SP during the epoch between the 

two events. The buffer-arcs are not associated directly with capacity, but their utilization is accounted 
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for by their parallel storage-arc(s). The capacities of the route-arcs (resp., storage-arcs) of the highest 

priority class network are initiated with the capacity of the corresponding vehicle (resp., corresponding 

SPs). The remaining arc capacities of the lower priority graphs are initiated with smaller values, where 

the difference represents the extra capacity that is reserved for the use of the higher priority classes only. 

The initial capacity for each priority class should be determined by the planner according to the 

importance attributed to the priority classes. However, in this work, we assume that these capacities are 

given. 

Whenever a parcel arrives at the system, a shortest path from the previous storage node in its 

origin to the earliest possible storage-node in its destination on the time-expanded graph of its priority 

class is calculated. Only arcs with positive remaining capacity are considered and only destination nodes 

with positive remaining storage capacity for the period allowed for pickup are considered. If no such 

path exists, or if its length is deemed unacceptable by the planner, the parcel is rejected. Otherwise, the 

path represents the set of resources (capacity of the vehicles and SPs along the route and until the latest 

allowed pickup time) that are needed to transfer the parcel. These resources are reserved for the parcel, 

and the recipient is notified about the planned arrival time. The remaining capacity of the arcs along the 

path and during the allowed pickup period in all the priority class graphs are decremented by one. Note 

that this may lead to negative capacity values at some arcs in the lower priority class graphs but not in 

the highest one. When a parcel is picked up by the recipient before its latest allowed pickup time, the 

storage capacity for the remaining time that was reserved for it is released and the remaining capacity 

on the storage arcs is incremented accordingly. 

While the myopic parcel routing policy described above is optimal when the capacity constraints 

of the vehicle and the SP are unbinding, the policy is too short sighted if this is not the case.  Indeed, 

parcels that arrive earlier may congest resources that may be more beneficial later. For example, if the 

shortest path of a parcel on the time expended graph utilized the last capacity unit of an arc (vehicle or 

storage) but the second best path is only slightly longer and require only arcs with a lot of spare capacity, 

it may be reasonable to route the parcel via the second best route. By doing so, we leave the nearly 

congested resource available to other parcels that will arrive later and may save much more from using 

it in terms of delivery time.  We propose a heuristic method that will divert parcels from congested 

resources, if this can be done without causing long delays, by imposing a “congestion fee” on arcs that 

are utilized nearly at their capacity. The fee is determined by the following piecewise linear function of 

the resource remained capacity ratio 𝑢 (i.e., current remained resource capacity / original capacity). 

𝑓(𝑢) = ൝
0, 𝑢 ≥ 1 − 𝛼

ቀ1 −
𝑢

1 − 𝛼
ቁ (𝛽 − 1)𝑙, 𝑢 < 1 − 𝛼

 

With 0 < 𝛼 < 1 but typically close to 1 and 𝛽 ≥ 1. The shortest path is calculated on a graph where the 

length of each arc along the path is considered as the sum of the initial length 𝑙 of the arc (the time 

difference between nodes) and its 𝑓(𝑢) value.  The routing policy with fee is clearly an extension of the 

myopic one. The latter is a special case with 𝛽 = 1.   

  

4 Numerical experiment  
In this section, we present a sample of the results obtained in our numerical study. We created a 

simulation environment where parcels arrive at the SPs according to a Poisson arrival process and are 
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routed using our algorithm by two sets of scheduled tours of vehicles. One represents a hierarchical 

service network in a favorable setting, and one represents a simple PI service network. The two networks 

consist of a 20×20 grid with SPs that are located at equal distances of a five-minute drive from each 

other. This geography is equivalent in size to a relatively large metropolitan area with a dense coverage 

of service points. For the hierarchical service network, the location of the depot coincides with the 

location of one of the SPs in the center of the grid. The hierarchical network is served by 40 tours that 

start and end at the hub and visit 10 SPs each. The tours are served in a round robin fashion by 40 

couriers, and each SP is visited by a courier exactly every 3.5 hours. The PI service network consists of 

40 tours each served by a single vehicle. Twenty tours run back and forth along the south-north lines of 

the grid and twenty along the east-west lines. The location of each vehicle at the beginning of the 

planning horizon was selected randomly. The total cycle time of each tour in the PI is 6.5 hours. The 

service time at each SP was assumed five minutes for the PI network and four minutes for the hierarchical 

network. We set the service time to be shorter for the hierarchical network since the amount and 

complexity of the work in this setting is slightly lower. The service time of the vehicle in the hub is 25 

minutes, since the task of fully unloading, loading and sorting the parcels is more time-consuming. The 

buffer time was set to 5 minutes in both systems, i.e., a parcel can be sent on a different vehicle five 

minutes after the vehicle that dropped it off left the SP or the hub. The parcels arrived at a rate of 50 

parcels/day to each SP, and their destinations were selected randomly. In total, this represents a rate of 

20,000 parcels/day. The parcel pickup time by the recipient was drawn from U(0,12) hours. We 

considered only a single priority class. The capacity of the SPs was set to 100 parcels which was found 

to be sufficient, and the hub was uncapacitated. 

We tested two levels for the capacity of the vehicles, namely, 100 and 130 parcels. Under these 

conditions, both systems exhibited stable behavior and reached a steady state after a few days of 

simulation, as opposed to cases with lower capacity. The simulation was run for 40 days (excluding 

warmup times), and no parcel rejection was observed. In addition, we ran the simulation without capacity 

constraints on the vehicles and SPs to explore the potential of both topologies when resources are 

abundant.  

Both service network topologies were tested under the myopic policy and the myopic policy with 

congestion fee with various values of 𝛼 and 𝛽. In the table we present the case of 𝛼 = 0.9 and 𝛽 = 4 but 

very similar results were obtained for other values of 𝛼 ∈ [0.7,0.95] and 𝛽 = [2,5] which demonstrate 

the robustness of the congestion fee idea. 

Vehicle 

Capacity 

SP 

Capacity 

Hierarchical 

Myopic   

Hierarchical 

congestion fee 

PI  

Myopic policy 

PI  

congestion fee 

100 100 7:29 7:27 7:27 6:54 

130 100 7:25 7:25 6:36 6:31 

Unbinding unbinding 7:25 7:25 6:28 6:28 

 

In the table, we present the average parcel delivery time in hours and minutes for both 

topologies under some capacity conditions and routing policies. It is apparent from the table that when 

using a sufficient amount of transportation and storage resources, the PI service network allows shorter 

delivery times than the traditional hierarchical one even under the myopic policy. However, when the 
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transportation resources are scarce, the advantage of the PI topology diminishes. The extended myopic 

policy with congestion fees can be used to mitigate the effect of resources scarcity in the PI network. 

The Hierarchical network gains nothing in terms of delivery time from the extended policy. This can be 

explained by the fact that in such a network each parcel has only one possible path on the physical 

network. Thus, any path diversion on the time-expended graph requires causing significant delays in the 

delivery. 

5 Conclusions 
We presented a routing policy for the delivery of parcels in a metropolitan area that can provide reliable 

information on the delivery time in advance. We demonstrated that this policy performs better in a PI 

service network topology than in the traditional hierarchical one. We note that the PI topology does not 

require the expensive construction and operation of urban sorting facilities and may offer a robust and 

economical method to deliver parcels. The method should be tested and tuned with different service 

networks, and resource capacities. A method to design an effective service network that operates under 

such a parcel routing policy is an interesting topic for future research. 
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Introduction   
 

Traffic congestion has been increasing due to population growth and rapid development of urban areas. 

Thus, proper traffic models and monitoring plans are essential, especially for populated cities. The 

Macroscopic Fundamental Diagram (MFD) has been recently described by Geroliminis and Daganzo 

(2008) and offers promising results for traffic monitoring and control purposes. Essentially, the MFD 

studies the relationship between average flow and average density across relatively homogeneous 

urban areas.  

The primary idea of the Macroscopic Fundamental Diagram was presented by Godfrey 

(1969), and later investigated by Herman and Prigogine (1979) and Mahmassani et al. (1984). Using 

real data collected from Yokohama, Geroliminis and Daganzo (2008) experimentally showed that the 

MFD exists at an urban scale. This study showed that a homogeneous urban region (with limited 

variance of link density) can be modelled with the MFD, which provides a unimodal, low-scatter and 

demand insensitive relationship between average density and average flow.  

In addition to studies considering the effective factors on MFD shape, many studies have been 

trying to estimate the MFD either with real data or simulation data. In a recent study, Ambuhl and 

Menendez (2016) proposed a fusion algorithm, using both the loop detector and floating car data, to 

estimate the MFD. Ortigosa et al. (2014) proposed a quasi-optimal search algorithm in order to find the 

best set of links in order to estimate the most accurate MFD, but using only a limited number of links. 

Zockaie et al. (2018) recently developed a mathematical model to find the optimal location of 

measurement points to estimate the MFD in a large and heterogeneous network. A limitation of this 

model is that it incorporates the ground-truth MFD in the modelling framework, which is rarely 

available in real networks.    

Given that the monitoring resources (e.g. loop detectors, probe vehicle data, etc.) are limited 

in real-world networks, acquiring adequate data to estimate the MFD is very important. Therefore, this 
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study aims to identify the critical links where loop detectors should be installed to estimate the MFD 

and minimize the estimation error between the MFD that is estimated by limited measurement points 

(i.e., critical links) and the “true” MFD. [In this abstract, we refer to the MFD which is estimated from 

all the links as the true MFD.]  

 

Methodology and Results  

In this research, we assume a network with no loop detectors in any of its links, and we aim to identify 

the critical links where mid-block loop detectors should be installed to estimate an accurate MFD. We 

also assume probe vehicle data (position and speed) with a given penetration rate and measurement 

frequency is available (further details are given below). While we use a true MFD (estimated using 

loop detector data from all the links) for evaluation purposes, we target a final solution method that 

only relies on the probe vehicle data as the ground truth. 

               The network that we use for this study is the network of Barcelona, which is modelled in 

Aimsun, a microscopic simulation package. Employing the Aimsun API, therefore, we collect probe 

vehicle data within a 1.5-hour simulation. In order to get a better representative average speed, we 

collect probe vehicle data every 5 seconds. Randomly selecting 10 percent of vehicles, we aggregate 

the data in every minute and calculate link average speeds. Figure 1 shows the distribution of link 

average speeds at several time periods throughout the simulation. We clearly see that, as time 

progresses, the average speed distribution shifts to the left, the number of links with low speed 

increases, and the network gets more congested. 

               Let 𝑄(𝑡) and 𝐾(𝑡) denote the average flow and average density weighted by the link lengths 

where the detectors are located, respectively. To derive MFDs (both the true MFD and the estimated 

MFDs), we apply Eqs. (1) and (2) and calculate 𝑄(𝑡) and 𝐾(𝑡).  

𝑄(𝑡) =
∑ 𝑞𝑖(𝑡) ∙ 𝑙𝑖

𝐼
𝑖=1

∑ 𝑙𝑖
𝐼
𝑖=1

       (1)                       𝐾(𝑡) =
∑ 𝑘𝑖(𝑡) ∙ 𝑙𝑖

𝐼
𝑖=1

∑ 𝑙𝑖
𝐼
𝑖=1

          (2) 

where 𝐼 is the set of links where detectors are installed, 𝑙𝑖 is the length of link 𝑖, and 𝑞𝑖(𝑡) and 𝑘𝑖(𝑡) are 

the flow and density on link 𝑖 at time step 𝑡, respectively. Note that the true MFD uses all the links in 

the network, while the estimated MFD results from a subset of the links. 

We assume “critical” links are the links that represent average traffic conditions in the 

network. Instead of collecting data from the entire network in order to capture the average traffic 

conditions, one can choose to collect data from a limited number of links yet capture a fair amount of 

variability. To this end, we apply Principle Component Analysis (PCA) in order to reduce the 

dimension of the data as well as to detect the critical links. PCA is considered to be one of the most 

common unsupervised learning algorithms and the most popular dimensionality reduction algorithm. 

The goal of PCA is to transform the original variables into a few interpretable linear combinations of 

them, which are in turn called principle components (PCs). Thus, it reduces the dimensions of a d-

dimensional dataset by projecting it onto a k-dimensional subspace while maintaining the most 

variance in the original data (where k < d). In order to interpret the contribution of the original 

variables into each PC, we need to calculate the loading matrix. Basically, loadings estimate the 

correlation between an original variable and a PC, which is a proxy for the information they share. We, 

therefore, use the links with the highest loading values to identify the critical links in our framework. 



As a result of our analysis, we see that 30 PCs explain 85 percent of the variance in the 

original dataset (see Figure 2). The first and the second PCs explain 29 percent and 8 percent of the 

variance, respectively.  

  

Figure 1: Distribution of average speed throughout the network in 

four different simulation periods 

Figure 2: Cumulative explained variance by PCs 

 

               As a significant part of the variance is explained by the first PC, we first attempt to identify 

critical links using only the features resulting from this first PC. We find the first 10, 20, 30 and 40 

links that are most correlated with the first PC and calculate the weighted average flow and density 

using only the loop detector data from them. As shown in Figure 3, selecting more links leads to a 

more accurate and less scattered MFD. Yet, none of the configurations produces flow values as high as 

the true MFD. 

To explore the effects of multiple PCs, we choose the 20 highest-contributing links from PC1 

and PC2. Figure 4 depicts the MFDs derived from these 20 most contributing links to PC1 and PC2, 

separately. Clearly, the contributing links to PC2 are less congested and carry less flow; therefore, they 

do not provide a good approximation to the true MFD. Taking into account both PC1 and PC2, as 

represented in Figure 5, we can observe that the estimated MFD from PC1 is a better estimation than 

the MFD from the mixed PCs (consisting of 30 links from PC1 and 20 links from PC2). Figure 6 

shows the location of selected links from PC1 in the network. We can see that the critical links are not 

selected only from one particular part of the network; that is, they capture the traffic state from several 

different parts of the network.  

  

Figure 3: Comparison of the true MFD and MFDs estimated with 

the selecting links from the first PC 

Figure 4: Comparison of the estimated MFDs using PC1 and PC2 

 

 

 



 

 

Figure 5: Comparison of the estimated MFDs using PC1 and mixed PCs 

(PC1 and PC2) 

Figure 6: Selected links from PC1 

               While it is still not clear how one can design a proper combination of PCs and associated 

links, the results demonstrate that the proposed method has the potential to develop an unsupervised 

framework to identify the critical links for the estimation of the MFD. Selecting the highest-

contributing links to PC1 shows a more accurate MFD since the first PC explains a greater variance 

(i.e., more congested links and more flow) in comparison to other PCs. Here, we only use PC1 and 

PC2 for our estimations; however, due to PCs being statistically uncorrelated, each of them represents 

different states of the network. For the future investigations, we will consider a higher number of PCs, 

thereby taking into account more variability in the network.  
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1 Introduction 
 

1.1 The difference in driving behavior between real space and virtual space  
Driving simulators are used for research purposes in the area of human factors to monitor driver behavior, 
performance and attention and in the car industry to design and evaluate new vehicles or new advanced 
driver assistance systems. However previous studies (Blaauw, 1982; Godley et al., 2002) have suggested 
that there is a difference in driving behavior between virtual space and real space, and this difference 

includes individual differences. It is necessary to clarify the cause of individual difference on driving 
behavior measured by a driving simulator.  
 
1.2 Acquired behavior and generalization 
Most of behavior in daily life is acquired behavior that is something persons discover through trial, error 

and observation. Previous study (Flora, 2004) has suggested that acquired behavior is triggered by 
positive reinforcement that is stimulus encourages a certain acquired behavior. Once persons have been 
trained to respond to a certain positive reinforcement, the positive reinforcement may produce the same 
acquired behavior in any situation. This phenomenon is called generalization (Paivio, 1971).  

 
 



1.3 Acquired driving behavior and generalization 
It has been suggested that hierarchical model explained driving behavior (Keiskinen, 1996). This model 
described the driving behavior into four stages that are a basic skill stage, a stage of operation in a certain 
traffic condition, a motivational aspect stage and an attitudinal aspect stage, and drivers get driving 

behavior of upper stage by accumulating driving experience. Driving behavior is a type of acquired 
behaviors, and therefore focusing on lower two hierarchies, it is possible that drivers with shorter driving 
experience drive based on the cue of first stage that is considering only the own vehicle as positive 
reinforcement, and drivers with longer experience drive based on the cue of second stage that is 

considering following vehicles and fellow passengers as positive reinforcement. Furthermore it is 
possible that a procedure in driving is generalized by accumulating driving experience. This study aims 
to relate the generalization of driver’s stopping behavior to the driver's driving experience by comparing 
the stopping behavior in real space and virtual space presented by a driving simulator. 
 

2 Method 
 
2.1 Definition of positive reinforcement for driver’s stopping behavior 
Two types of positive reinforcement for driver’s stopping behavior are defined. One is duration time 
required to stop. It is formulated as presented in equation (1). It is assume that this positive reinforcement 
is processed for drivers with shorter driving experience, because this stopping behavior is an action that 

takes into consideration driving only own vehicle. 
 

																																																																																	𝑡 = 𝑑/𝑣                                                                           (1) 

where 

𝑡 : duration time from driver puts on the brakes to vehicle stops [s], 

𝑑: distance from the point driver puts on the brakes to the point vehicle stops [m], and 

𝑣: velocity that driver puts on the brakes [m/s]. 

 

Another is deceleration required to stop. It is formulated as presented in equation (2). It is assume that 
this deceleration is processed for drivers with longer driving experience, because this stop behavior is 
an action that takes into consideration comfortable for following vehicles and passengers. 
 

																																																																																	𝑎 = 𝑣(/𝑑                                                                         (2) 

where 

𝑎: deceleration required to stop [𝑚/𝑠(], 

𝑣: velocity that driver puts on the brakes [m/s], and  

𝑑: distance from the point driver puts on the brakes to the point vehicle stops [m]. 

 
Therefore the relationship between velocity that driver puts on the brakes and distance from the point 

driver puts on the brakes to the point vehicle stops is formulated as presented in equation (3). It is possible 

to consider positive reinforcement for each driver by estimating the value of the parameter 𝛽, and it is 

also possible to consider the generalization of driving behavior by comparing the difference in the value 

of the parameter 𝛽  between real space and virtual space. If drivers with longer driving experiment 



perform stopping behavior based on deceleration required to stop as positive reinforcement, it is expected 

that the value of parameter 𝛽 of driving data in the real space close to 2, and if their stopping behavior 

is generalized, it is expected that the value of parameter 𝛽 is the same value regardless of the situation: 

real space or virtual space. On the other hand, drivers with shorter driving experiment perform stopping 
behavior based on duration time to stop as positive reinforcement, it is expected that the value of the 

parameter 𝛽 in the real space close to 1, and if their stopping behavior is not generalized, it is expected 

that the value of parameter 𝛽 is different from real space and virtual space. 

 

																																																																																	𝑑 = 𝛼𝑣-	                                                                          (3) 

where 

𝑑: distance from the point driver puts on the brakes to the point vehicle stops [m], 

𝑣: velocity that driver puts on the brakes [m/s], and 

𝛼, 𝛽: unknown parameter. 

 
2.2 Participants and driving conditions 
Four drivers gave their informed consent to participate in the experiment. One driver has been passed 12 
years (Driver-12), two drivers have been passed three years (Driver-3a, 3b) and one driver has been 

passed one year (Driver-1) since they got their driver’s licenses. Participants were instructed to drive and 
stop following the instruction of experimenter in both real space and virtual space presented by a driving 
simulator. 
 

3 Results and Discussions 
 

 
Figure1: The relationship between velocity that driver puts on the brakes and distance from the point 
driver puts on the brakes to the point vehicle stops. 
 
Table1: The values of parameter in the real space and virtual space. 
 

 
 
 
 

 
 
 
Figure 1 shows the relationship between velocity that driver puts on the brakes and distance from the 
point driver puts on the brakes to the point vehicle stops for each participant. The values of parameter 
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are summarized in Table1. The result shows that the value of the parameter 𝛽 of driver-12 and driver-3a 

estimated from the data driving in real space is not significantly different from 2. This suggests that 
drivers perform stopping behavior based on deceleration required to stop as positive reinforcement. The 

value of the parameter 𝛽 estimated from the data driving in virtual space is not significantly different 

from 2. This suggests that they performed stopping behavior based on the same positive reinforcement 
regardless of the situations: real space or virtual space, which suggests that their stopping behaviors are 

generalized. On the other hand, the result of driver-1 shows that the value of the parameter 𝛽 estimated 

from the data driving in real space not significantly different from 1. This suggests that driver performs 
stopping behavior based on duration time required to stop as positive reinforcement. The value of the 

parameter 𝛽 estimated from the data driving in virtual space is significantly different from 1 and 2. This 

suggests that stopping behaviors is not generalized, because the driver doesn’t have enough driving 

experience. The result of driver-3b shows that the value of the parameter 𝛽 estimated from the data 

driving in real space is not significantly different from 2 and the value of the parameter 𝛽 estimated from 

driving in virtual space is significantly different from 1 and 2. It is possible that 3 years of driving 
experience is a transition period of generalized stopping behavior, although it is necessary to consider 
the validity of the interpretation, because there are a few participants in this study. 

 

4 Conclusion 
 

This study investigates the relationship between driving experience and generalization of driver’s 
stopping behavior. The results showed that drivers with longer driving experience performed stopping 
behavior based on the same positive reinforcement regardless of the situations: real space or virtual space, 
which suggests that their stopping behavior is generalized. On the other hand, drivers with shorter driving 
experience did not exhibit the generalization in their behavior. 
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1 Problem Setting

We consider an operations network design problem for package courier systems operating high-

velocity services within large urban areas. High-velocity services include standard next-day services

where packages collected today are delivered tomorrow and also same-day service where pickup

and delivery occur on the same day. Demand for high-velocity services is growing. In this work, we

collaborate closely with one of the largest package couriers in China; their business model includes

a plan to grow high-velocity services within Chinese megacities with a new operating model. We

build novel optimization technology to configure vehicle operations using new and novel rate-based

routing and network design models that use parcel demand rates per time as inputs, and that

determine both route capacity and service-level feasibility with vehicle flow rates per time between

locations induced by repeated execution of vehicle routes during an operating day.

Consider a system with a number of small hub terminals throughout an urban area. These

locations, denoted local hubs, are used for consolidation of packages into and out of a set of small

geographic service regions into which the urban area has been partitioned. Due to the congested

urban environment, the couriers who pick up and delivery goods directly from and to customers

do not operate large vehicles; instead, they walk or use small delivery bikes with limited package

capacity. Many couriers operate within each local hub service region, but they do not visit the local



hub and instead spend the day working within their assigned unit zone. Packages are transferred

to and from couriers within their unit zones via a fleet of small-capacity transfer vehicles known

as riders. Riders transfer packages with a courier at a designated access hub location either

synchronously via timed meet-ups, or asynchronously through the use of parcel lockers.

Packages are transported between service regions of different local hubs via second set of ve-

hicles, known as shuttles. Shuttle vehicles are larger than rider vehicles, since they only need to

stop at local hub locations. In a large urban area characterized by many service regions and local

hubs, it is likely not economical to schedule direct shuttle movements between all pairs of local

hubs. Packages can be cross-docked between shuttles at local hubs to enable non-direct service.

Overnight storage of parcels is not allowed at local hubs, and instead only at a small set of larger

facilities denoted gateway hubs that also provide intercity service for packages moving into or out

of the urban area. Shuttle services thus also transfer outbound intercity packages from local hubs

to gateway hubs, and inbound packages from gateway hubs to local hubs.

In this research, we consider approaches to design rider and shuttle vehicle operations, and

associated cross-dock transfers, to enable effective intra-city transfer of packages. The objective is

to create a design that moves packages between origins and destinations meeting timing require-

ments, while minimizing the cost of providing the services. Unlike traditional approaches for city

logistics design (see excellent examples in [1] and [2], and the review in [3]), we seek to construct

repeatable service cycles for both shuttles and riders that can be executed during (a portion of)

the operating day to provide continuous transfer service.

2 Service Network Design Problems

Consider a multigraph G = (UG ∪ UL ∪ UA,A) with the node set representing the union of gate-

way hubs (GH), local hubs (LH), and access hubs (AH) respectively and arc set A representing

(directed) transportation connections between nodes. Every package origin or destination in the

service region is uniquely served by a courier who meets a rider at a single AH, thus we map

demand to access hubs. In this work, each AH is served by a unique LH, and each LH is served by

a unique GH. A heterogeneous fleet of vehicles provides transport service, where Qv is the capacity

of vehicle type v. The company provides a number of different service classes to customers, includ-

ing same-day (SD), next-morning (NM), and next-evening (ND), and each leads to corresponding

deadlines. Only SD packages are transferred directly from an origin LH to a destination LH on the

same day. The next-day intracity classes travel to a gateway hub on the pickup day and then from

a (possibly different) gateway hub on the delivery day. We do not consider the simple operations

required to transfer packages overnight between the small set of gateway hubs. Intercity classes

always originate from or are destined to a gateway hub.



2.1 Rider scheduling

We will illustrate the primary ideas of rate-based models using rider scheduling pickup-and-delivery

routing models. First assume that rider and shuttle operations are operated by separate vehicles,

and that each local hub operates an independent rider fleet serving its access hubs. Each access

hub is served by a single rider route, perhaps with multiple vehicles assigned. Our goal is to design

repeatable routes for riders, each beginning at the LH and visiting some subset of its access hubs,

that meet service requirements with low cost. In this talk, assume that inbound packages arrive

at the LH for delivery to AH i at a constant flow rate of qIi parcels per time. Similarly, outbound

packages collected by the courier at AH i are generated at flow rate qOi .

Travel along arc a ∈ A requires `a time, and a stop time of tA is required at each AH to deliver

and pickup packages and a stop time of tD is required at the LH. Then, a rider visiting access hubs

R = {1, 2, ..., |R|} in sequence from LH would require time duration of `R =
∑

a∈a(R) `a+|R|tA+tD

for each circuit, where a(R) includes the arcs (LH, 1) and (|R|, LH) plus the consecutive AH

connections. The headway between visits to an AH is given by HR = `R
mR

if mR riders execute

route R with equal headways. The average waiting time for a package served by route R is HR

2 .

Suppose that the allowable rider transfer time for an inbound or outbound package is T . Then

route R with mR assigned riders is service feasible on average if the inbound packages on average

arrive on time at the (most constrained) AH |R|,

HR

2
+

∑
a∈a(R)\(|R|,LH)

`a + (|R| − 1)tA ≤ T ,

and the outbound packages arrive on time at the LH from the (most constrained) AH 1,∑
a∈a(R)\(LH,1)

`a + (|R| − 1)tA +
HR

2
≤ T .

Note a more conservative model can increase the waiting time from the average; note that the

maximum waiting time is simply HR.

Routes must also provide enough parcel transfer capacity. Given a rider vehicle size of QR, route

R withmR riders assigned providesmRQR parcels per time on each route leg (LH, 1), (1, 2), ..., (|R|, LH).

The following route leg constraints then ensure that the route provides enough physical capacity:

|R|∑
j=i+1

qIj +

i∑
j=1

qOj ≤ mRQR ∀ i ∈ {0, 1, ..., |R|}

Let m be the smallest number of riders that can feasible execute route R, and let m be the cost

of selecting route R. We build a set partitioning (covering) model with binary decision variables

xR to minimize the total number of riders, subject to constraints that ensure that each AH is

included on exactly (at least) one route. Note that as a route R contains larger numbers of

access hubs, it becomes less likely to be service-time feasible. For example, consider a subset S



of access hubs and let t(S) and h(S) be the duration of the minimum time traveling salesperson

route on S ∪ {LH} and the duration of the minimum time Hamiltonian path on S ∪ {LH} rooted

at LH respectively, or good lower bounds for these durations. Then, no rider route R ⊇ S is

feasible if h(S) + (|S| − 1)tA > T , and no execution of R with m or fewer drivers is feasible if

t(S)
2m + h(S) + (|S| − 1)tA > T . Leveraging ideas like these, it is possible to build practical solution

approaches for this set partitioning model via smart complete enumeration for all AH subsets up

to a maximum cardinality. We have solved models for the dozens of local hubs in a large test urban

area in China, and will report computational results in the talk, including the sensitivity of costs

to conservatism in estimated waiting time. We also solve a different variant of the problem that

seeks to maximize a flow-weighted measure of service quality (total parcel transfer time) given a

fixed rider fleet size, and will present those results as well.

2.2 Shuttle network design

The design of shuttle vehicle operations is significantly more complex than that for rider operations

due to the many-to-many nature of demand and the premise that cross-dock transfers of parcels

between vehicles are allowed at LH locations. We develop novel service network design optimization

approaches where both the capacity and time feasibility of the design are determined by vehicle

flow rates along repeatable cycles of hubs (LH and GH). Related recent work includes [4] which

uses a detailed time-space network to model both consolidation timing and commodity service

constraints; this paper also presents a good literature review of earlier models. Our goal in this

work is to investigate a simpler mechanism for enforcing service time feasibility using flat networks

that may scale better with large numbers of commodities.

In this talk, we describe the two most important phases in a sequential shuttle design problem:

path selection and cycle selection. The path selection phase determines an origin-to-destination

cross-dock transfer path for each commodity. The cycle selection phase creates repeatable shuttle

cycles and assigns vehicles to these cycles to meet capacity and service requirements. Let commod-

ity k be the parcels sharing the same origin, destination, and service requirement: (ok, dk, δk, qk),

where δk is the available time to transfer parcels from hub ok to dk, and qk is the demand rate in

packages per time.

For the path selection phase, a mixed-integer program with binary decisions xpk that select a

single path p for each commodity k and continuous dispatch frequencies zva for vehicles of size Qv

on directed arc a is developed. Path p is feasible for k if the total path travel and transfer time,

plus any waiting time for dispatches, does not exceed δk. Waiting time along a path decreases

with increasing vehicle dispatch frequencies for arcs a ∈ p. By assuming that maximum total

waiting time for a path is distributed equally at each hub visited by a path, we create a set of

linear constraints that ensure that dispatch frequencies on arcs a allow service requirements to be



met. Similar to the rider model, we also ensure that dispatch frequencies of different truck types

provide sufficient parcel transfer capacity for all paths using arc a.

In the cycle selection phase, we again use an integer program where yvc is the number of

vehicles of type v assigned to a cycle c that visits some local hubs and at most one gateway hub.

Given the total duration (travel plus package transfer time) of cycle c operated by vehicle v, each

arc a ∈ c the inverse in dispatch frequency for each vehicle. Therefore, a linear constraint can

be used to determine if a selected set of cycles and vehicle assignments given by yvc meets the

dispatch requirement of each arc zva from the path selection model; this is the primary feasibility

consideration, and the objective is to minimize the vehicle costs.

Similar to the rider problem, we have solved shuttle network design problems using this method-

ology for a large test urban area with dozens of local hubs and a handful of gateway hubs. Again,

the talk will present results that demonstrate the sensitivity of costs to conservatism in estimated

waiting time, but also to the average available slack between δk and the minimum travel time

between ok and dk. The utility of the proposed models will be demonstrated via this study.
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1 Introduction

We build our transportation infrastructure for carrying people and goods. However, too many

vehicles on the road at the same time leads to congestion, making journey speeds unsatisfactory

and increase negative external costs. At the same time, replacing cars with buses can benefit the

overall flow of passengers. Therefore, how much traffic and which combination of buses and cars

is optimal for a city and how should it be priced? This question is key to transport planning and

has been raised since the second half of the 20th century [1]. The question has been addressed

in many facets, but, so far, simple and (closed) macroscopic models coupling human preferences

(demand) and infrastructure investment choices (supply) in multi-modal networks have rarely

been attempted, other than running many large scale simulation scenarios. However, the recently

introduced macroscopic fundamental diagram (MFD) and in particular its bi-modal extension to

the 3D-MFD [2, 3, 4] allows us to present a novel approach to address this gap and to improve our

understanding of optimal traffic for cities.

This novel approach builds upon the network design problem [5], bus network design problem [6]

and travelers choices for transportation modes [7], and we therefore speak of the 3D-MFD-Network

Design Problem (3D-MFD-NDP). The idea is a bi-level optimization problem where at the upper

level infrastructure choices are made to minimize the total travel time in the network and at the



lower level traffic distributes across routes following Wardrop’s equilibrium principle. We account

for human preferences in the equilibrium with commuters valuation of time and perception of route

costs. We focus on the long-term aspects and thus do not account for network dynamics. In the

following, we discuss the 3D-MFD-NDP model.

2 The Model

We consider a city consisting of K sub-regions or single MFD reservoirs. We partition networks into

several sub-regions based on road network topology to obtain well-defined MFDs [8]. Each region

has an infrastructure length Lk, a road network length Lk,car, an average intersection spacing lk, a

bus network length Lk,bus of which Φk is dedicated, an average bus stop spacing bk, a bus network

design αk [9], and a headway τk. In this study, the core design variables are limited to these

variables listed, because they factor into the parametrization of the recently introduced functional

form for the 3D-MFD [10]. From the 3D-MFD we then derive the travel times and speeds for the

lower level user equilibrium.

We aggregate demand into macro-nodes, where commuters live at i and work at j. As common

in the NDP, total demand nij between i and j is known. Commuters chose for their journey from i

to j their transportation mode m ∈ {car, bus} along a macro-route r through (several) sub-regions

k. In this bathtub model [11], the macro-routes are not explicitly mapped to roads as only the

macroscopic trip distance dijmr is important to obtain travel times Tijmr. Using macro-routes does

not require us to define a node-link model, but instead requires enumerating all macro-routes. Bus

services on a macro-route operate with an average passenger route capacity of sijr.

Commuters choose mode and route based on the generalized cost of travel C that combine the

monetary expenditures priced at rate pm per unit trip distance and the time costs at rate πm per

unit of travel time and waiting time. We adopt a logit-based stochastic user equilibrium with scale

parameter µ following the second Wardrop principle. Here, we assume that commuters choose

mode and route with the lowest perceived costs resulting in passenger flows Nijmr. The perceived

costs are calculated with C̃ijmr = Cijmr + 1/µ log (Nijmr).

The objective in the 3D-MFD-NDP as defined in Eqn. 1 is to minimize total travel time subject

to constraints 2 and 3 for the network design variables and constraints 4-11 for the network flows

and the user equilibrium. In general, all variables of the system must be non-negative. In Eqn.

2 we constrain the feasible set for the bus network following the bus network design approach by

[9]. We further constrain the feasible set of network design parameters to the requirement that the

entire multi-modal infrastructure must be self-funded, i.e. the monetary income must be equal to

the infrastructure spending using Eqn. 3. For this, ωm is the average price per lane-kilometer of

infrastructure and σ are the average operational costs for a bus.



The set of possible speeds Vmk is constrained by the 3D-MFD. In particular, speeds depend on

the accumulation of vehicles Amk and network topology as indicated by Eqn. 4. The accumulation

of cars is determined by Eqn. 5 with the share of macro-routes through a sub-region θijkmr. With

trip distance and speed, travel times Tijmr are determined by Eqn. 6. The route costs Cijmr

combine time and monetary expenditures as given by Eqn. 7. Last, the sorting among routes and

modes follows a logit based assignment as summarized in Eqn. 8.

Last, we define the user equilibrium as a mixed complementary problem (MCP) [12]. Route r

is only chosen, i.e. Nijmr > 0, if its costs are equal to the minimum cost C̃ij = minmr

(
C̃ijmr

)
between i and j. If costs exceed C̃ij , r is not used, i.e. Nijmr = 0, as given by Eqn. 9. C̃ij

is complementary to the node balance in Eqn. 10. We further define that in equilibrium, the

flow of bus passengers is not exceeding the passenger capacity and if buses are used to capacity,

passengers experience additional waiting time ρijr as given by Eqn. 11. Therefore, we formulate

the 3D-MFD-NDP as a mathematical program with equilibrium constraints (MPEC) [13].

minimize
∑
ijmr

NijmrTijmr (1)

subject to Lk,bus = (Lk/8− lk)
2 (

1 + α2
k

)
/lk 0 < αk ≤ 1 (2)∑

km

ωmLkm + σAk,bus =
∑
ijmr

pmdijmrNijmr (3)

and Vkm = 3D-MFDk (Akm;Lkm; lk; bk; Φk; τk;αk) (4)

Ak,car =
∑
ijr

θijk,car,rNij,car,r (5)

Tijmr =
∑
k

θijkmr
dijmr

Vkm
(6)

Cijmr = pmdijmr + πm (Tijmr + ρijr) (7)

Nijmr = nij
exp (−µCijmr)∑

m′r′ exp (−µCijm′r′)
µ ≥ 0 (8)

C̃ijmr − C̃ij ≥ 0 ⊥ Nijmr ≥ 0 (9)∑
mr

Nijmr − nij = 0 ⊥ C̃ij ≥ 0 (10)

sijr −Nij,bus,r ≥ 0 ⊥ ρijr ≥ 0 (11)

3 Discussion

The presented 3D-MFD-NPD is a novel approach to a widely discussed question of how to de-

sign cities for better or optimal transportation of passengers. Model extensions include reservoir

dynamics and analyzing optimal pricing.
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1 Introduction

Traditionally, traffic data are collected from fixed inductive loop detectors (LD), which are costly

to be installed and maintained with high coverage in a large traffic network. Recently, thanks

to the rapid growth in information technology, various technologies and systems can be used as

additional sources of data, such as Bluetooth (BT) sensors, cellphone and GPS probes. These new

data offer a potential opportunity to increase the penetration of detection and also extend the de-

tection areas where installation is not economically feasible. Since each source of data carries only

partial information about the traffic state and the measurements are often corrupted by noise, it

is tempting to combine the information from different sources to increase accuracy, robustness and

confidence in the estimation. However it is not an easy task due to three main issues: (i) hetero-

geneity in measurements from different sources; (ii) different spatio-temporal resolutions; and (iii)

inconsistency in the multi-source measurements. Besides a large number of data-driven methods



in the literature, only a few model-based methods have been recently investigated to fuse data

from heterogeneous sources. A modified version of the standard extended Kalman Filter (EKF),

called the Incremental EKF, has been used to integrate observations from loop detectors with

partial observations from Bluetooth and GPS devices [1]. A Progressive Extended Kalman Filter

(PEKF) method has also been used to combine measurements from the wireless communication

records and microwave sensors [2]. However, both of these methods were developed based on the

EKF, which may suffer from two important drawbacks when applied in real-world problems: the

performance is poor when the system is severely nonlinear and/or multi-modal, dynamic model

and measurement model functions must be differentiable, and Jacobian matrices can be difficult

to calculate and prone to errors. To address these issues the Unscented Kalman Filter (UKF), a

superior alternative to the EKF in many applications, is used in this research.

In addition to UKF, the Unscented Information Filter (UIF) is also considered in this work

due to the simplicity of the update step, which makes it suitable for multiple sensor estimation. In

general, the UIF and UKF are algebraically equivalent and can produce the same estimates and the

same estimation error covariances. The only difference is the UIF works with information matrices

and information vectors instead of the predicted covariance matrices and predicted states. The

fusion procedure in the UIF is remarkably simpler than in the UKF, especially when the number

of measurement is significantly larger than the size of the state space. This is because the UIF

update equations are additive, which is capable of integrating measurements by simply adding their

information to the information vector and information state. To the best of our knowledge, the UIF

has not been used with data fusion problems in traffic. Therefore, the work here considers applying

the UIF in the context of traffic state estimation from multiple data sources and a comparison with

the widely known UKF is made.

In order to achieve good performance, both the UKF and the UIF require an appropriate

selection of measurement noise covariances. In many works, these covariances are chosen based on

experience or trial and error, and they remain unchanged during the filer process. This practice

could be problematic especially when the covariances suddenly change or when the measurement

noise is greatly influenced by the working environment of the sensors. One of the efficient ways

to overcome this problem is to use an adaptive algorithm. In this paper we consider the adaptive

UKF, which adaptively update the measurement noise covariances with the information obtained

during the filter process.

2 Methodology

Recently [1] and [2] proposed methods to fuse data from multiple heterogeneous sources based

on the extended Kalman Filter (EKF). Unfortunately, the EKF has two major drawbacks. First,



the first-order expansion used by the EKF algorithm is a poor approximation for most non-linear

functions. This can lead to large errors in the estimates and sometimes divergence of the filter,

especially when the time step is not sufficiently small. Second, the EKF requires the calculation

of the Jacobian matrices, which can be troublesome as the model function and the sensor function

might not be continuous across the range in which the linearization is used. To address these

limitations, the UKF can be used in the place of the EKF [3], [4]. In the UKF, the mean and

variance of the true state are represented by a set of sample points known as sigma points, which are

selected deterministically through a process named the Unscented Transform. When these points

propagate through the non-linear functions, they can capture the posterior mean and covariance

without linearizing using Jacobian matrices. Hence, the UKF is is a powerful alternative to the EKF

in traffic data fusion problems. In this work, we combine the UKF with the incremental algorithm

in [1] to integrate different data sources incrementally with no state transition in between. This

method is named as the incremental UKF.

The Unscented Information Filter is derived from the Unscented Kalman Filter, in which the

information state and information matrix are used instead of the state and covariance. They are

defined as

Y = P−1, ŷ = P−1x̂ (1)

where x̂ and P are the estimated state and its covariance, ŷ and Y are the information state and

the information matrix. Using this approach, the update equations are:

Yt|t = Yt|t−1 +
∑
o

It,o, ŷt|t = ŷt|t−1 +
∑
o

it,o (2)

where it,o and It,o are the information state contribution and the associated information matrix

from each measurement. As can be seen from (2), the measurement update equations are additive,

which makes the UIF suitable for data fusion by nature. The fusion process in the UIF is therefore

much simpler than that in the UKF, especially when the number of measurements is relatively

large.

In this paper, the adaptive algorithm for the UKF is adopted from [6]. However, we only

consider the adaptation of measurement noise instead of both measurement noise and system noise

because of the inaccuracy and inconsistency of system noise information estimated after each data

souce is fused. At each time step, a faulty detection mechanism is used to assess the accuracy

of the current measurement noise covariances. If the fault is detected, these covariances will be

adjusted based on the weighted sum of the previous estimation and the current theoretical one as

follows:

Rt = (1 − σ)Rt−1 + σ[εtε
T
t + Szz

t|t ] (3)



where Rt is the measurement noise covariance at time t, σ is a weighting factor to be chosen, εt is

the residual vector, and Szz
t|t is the estimated innovation covariance matrix.

Figure 1: A toy traffic network

A toy traffic network to test the methods has the structure similar to the one shown in the

Fig. 1. Using this layout the synthetic data were obtained from a microscopic simulator, namely

AIMSUN. While the inductive loop traffic detectors in the network were set up to detect all the

passing vehicles, the GPS probes and Bluetooth scanners were configured in the way that only a

fraction of traffic can be detected. This is to replicate practical situations where not every vehicle

carries a GPS or Bluetooth device. The penetration rates for GPS and Bluetooth are 2% and 20%

respectively. Due to the low penetration rates, GPS or Bluetooth observations could be missing if

there is no GPS or Bluetooth vehicle detected during the sample times. Here we assume that the

internal traffic information is provided by only GPS and Bluetooth sensors with low penetration

rates, and the external traffic information is solely obtained by loop detectors. For all the reasons

above, recovering the true states in this case could be challenging and may be less accurate than

using loop detectors alone for the whole network.

3 Results and Conclusions

The experimental results show that both the UKF and the UIF are capable of fusing data from

multiple sources with comparable accuracy, even if the penetration rates are low. The UKF appears

to perform better than the UIF when the noise covariance matrices are selected appropriately. In

contrast, the UIF has better performance when those noise covariances are chosen incorrectly. The

results also show that the Bluetooth data contribute insignificant part in improving the accuracy

of the estimations.

In the case of incorrect noise covariances, by applying the adaptive algorithm, the UKF outper-

forms the UIF alone, and provides significantly better results than the standard UKF. However,

when the noise covariances have been chosen properly, the adaptive UKF may be slightly less

accurate than the standard UKF in estimation.
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Extended Abstract 
 

Ever more of the world population of people, businesses and institutions is inhabiting urban 

agglomerations. Fulfilling demand for products and services has become a critical challenge in most 

cities, metropolises and megacities across the world. From a business perspective, this reflects in the 

emergence of fast, precise, seamless, reliable, efficient and sustainable omnichannel supply chains, of 

last-mile delivery and reverse logistics as top competitiveness challenges. From an urban authority 

perspective, this reflects in smart city logistics initiatives and policies aiming for this urban demand 

fulfillment to be done in harmony with the goals toward socioeconomical development, quality of citizen 

life and overall sustainability, notably trying to minimize traffic and congestion, exploiting smartly and 

harmonizing beautifully with existing urban infrastructures and assets [1], [2]. 

It is thus not surprising that parcel logistics, driven by both business-to-consumer and business-

to-business demand for fast pickup and delivery of small orders, is undergoing huge transformation all 

around the world, and especially in megacities. In the past, parcel logistic systems were designed for 

insuring delivery of picked up parcels within a few days, at the fastest during the next day. Currently, 

same-day and next-day delivery is the typical norm. Already the future trend is clearly emerging: the 

competitive edge is toward efficiently achieving on a large scale the delivery within a few hours, even a 

few minutes, depending on the time of day and location of the pickup and delivery locations, or yet 

reliably within a short time window specified by the client. 

This paper addresses the design foundations of hyperconnected urban parcel logistic systems 

capable of meeting the challenges expressed above. It builds on generic Physical Internet foundations, 

as introduced by [3] and [4]. The Physical Internet is a hyperconnected global logistic system enabling 

seamless open asset sharing and flow consolidation through standardized encapsulation, modularization, 

protocols and interfaces to improve the capability, the efficiency and the sustainability of fulfilling 

humanity’s demand for the services of physical objects. It is said to be hyperconnected as its components 

and actors are intensely interconnected on multiple layers, ultimately anytime, anywhere. 

Interconnectivity layers notably include digital, physical, operational, business, legal and personal 



interconnectivity. Key building blocks of the Physical Internet include a unified set of standard modular 

logistic containers [5]; modular-container centric logistics equipment and technology; standard logistics 

protocols; certified open logistic facilities and ways; global logistic monitoring system; open logistic 

decision and transaction platforms; smart data-driven analytics, optimization and simulation tools; and 

certified open logistic service providers.  

The paper more specifically builds upon two threads of research and innovation: 

hyperconnected city logistics [2] and hyperconnected omnichannel supply chains and logistic systems 

[6].  

As introduced in [2], hyperconnected City Logistics fuses the foundations of City Logistics and 

the Physical Internet. It has been introduced through nine key concepts: (1) Interconnect cities as nodes 

of the world’s logistic web; (2) Interconnect cities by systems standardization; (3) Interconnect the multi-

faceted activities of city logistics (including multimodal transportation, crossdocking, transshipment and 

handling activities, as well as supply, value-adding, storage and deployment activities); (4) Interconnect 

city logistics networks in an urban web architecture; (5) Interconnect the multiplicity of urban logistic 

centers; (6) Interconnect city logistics stakeholders into an open system; (7) Interconnect goods through 

modular logistic containers; (8) Interconnect People Mobility and Freight Logistics in the city; and (9) 

Interconnect city logistics with urban planning. As described in [6], hyperconnected omnichannel supply 

chains and logistic systems exploit Physical Internet foundations for efficiently and sustainably enabling 

at large scale customers to purchase their goods using any channel (e-commerce site, mobile app, retail 

store, etc.) and to get them according to their choice such as ship-to-home, ship-to-me, pick-at-locker, 

pick-at-drive and pick-at-store. To achieve this without excessive waste of resources and duplication of 

assets while being highly responsive, they are based on the seamless interconnection of omnichannel 

product transportation; goods deployment, pickup and delivery; and goods production. 

Beyond the direct application of concepts from the above threads (such as using standard 

modular containers for example), this paper exposes the foundations for designing and operating 

hyperconnected urban parcel logistic systems according to four key characteristics. 

First, hyperconnected urban parcel logistic systems exploit a multi-tier space pixelization, as 

illustrated in Figure 1. At lowest tier lies unit zones corresponding to blocks, large buildings, campuses, 

etc. At the second tier, local cells cluster contiguous unit zones. At the third tier, urban areas cluster 

contiguous local cells. At the fourth, fifth and sixth tiers respectively , regions cluster urban and non-

urban areas, blocks cluster regions, and the world clusters blocks. 

 

 
Figure 1. Multi-Tier Pixelization of Urban Space 
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Second, hyperconnected urban parcel logistic systems are based on the exploitation and 

interconnection of multi-party open logistic hubs, adapted to each spatial tier of pixelization. For 

example, as depicted in Figure 2, access hubs are located at the intersection of access zones, local hubs 

at the intersections of local cells, and gateway hubs at the intersections of urban areas. 

 

 
Figure 2. Access, Local and Gateway Hubs Interconnecting the Urban Space   

 

Third, they are interconnecting these logistic hubs, creating an urban logistic web composed of 

interconnected multi-plane meshed networks, as illustrated in Figure 3. This allows, as exemplified in 

Figure 2, to have a parcel picked up in a zone, brought to one of its access hubs, then to a nearby local 

hub to be then moved to a gateway hub to be directed to a gateway hub from another part of the city, 

then be moved to a local hub and then the access hub most convenient for delivering to the customer 

place or a nearby smart locker, as selected by the client. Contrary to a typical hub-and-spoke network, 

here at each plane there is a meshed network, and parcels are not forced extensive extra travel when 

moving from any part or any other part of a city. Intercity parcels get into the city and out of the city 

through gateway hubs, interconnected through regional and global hubs as pertinent (see Figure 4). 

  

 
Figure 3. Urban Logistic Web Composed of Interconnected Multi-Plane Meshed Networks 
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Figure 4. Interconnecting the Inter-Area Network with Inter-Region and Inter-Block Networks 

 

Fourth, hyperconnected urban parcel logistic systems rely on data-centric, distributed yet 

interconnected decision making for dynamic and concurrent (1) parcel routing, (2) parcel consolidation, 

(3) vehicle routing, (4) service offer design, so as to serve as best as possible each client’s demand for 

parcel pickup and delivery, achieving high service levels and high multi-party asset utilization. Such 

decision making is based on the smart application of optimization models and heuristics, and of machine 

learning algorithms. The paper describes in further detail a potential decision architecture. 

Finally, the paper presents results from a simulation-based experiment assessing the 

implementation of a hyperconnected urban parcel logistic system in Shenzhen, China, a megacity with 

frequently a million pickup/delivery transaction a day into, out of and within its boundaries. Figure 5 

displays a simulation screen in action. Key performance indicators are provided to contrast expected 

performance versus baseline contemporary hub-and-spoke parcel logistic systems. 

 

 
Figure 5. Experimenting in Shenzhen: a Million+ Parcels a Day Into, Within and Out of the Megacity 
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Air traffic management systems have been facing strong demand growth, while available infras-

tructure has remained limited. The resulting imbalances between demand and capacity can lead to

severe congestion and/or unmet demand at busy airports and at busy times. In the United States,

the costs induced by air traffic congestion were estimated at $31.2 billion in 2007, borne by air-

lines, air travelers and society [Ball et al., 2010]. Absent capacity expansion opportunities, the two

major congestion mitigation levers are scheduling interventions and air traffic flow management.

Scheduling interventions refer to demand management rules governing flight scheduling. These

are strategic measures, implemented months in advance of operations. Outside the U.S., busy air-

ports are subject to “schedule coordination”: they declare a value of capacity (usually set close to

the airport’s capacity under poor weather conditions), and allocate slots accordingly to the airlines.

Demand management is much more limited at U.S. airports. By and large, flight schedules are not

constrained by any declared capacity. Only a few of the busiest airports are subject to “flight caps”,

which are much less stringent than declared capacities in place at comparable schedule-coordinated

airports. These variations highlight a trade-off between schedule coordination focused on conges-

tion mitigation and laissez-faire focused on high scheduling levels [de Neufville and Odoni, 2013].

Air traffic flow management (ATFM) refers to operating procedures aimed to optimize aircraft

flows across networks of airports and air traffic control sectors. It is a tactical measure, implemented

during each day of operations. Overall, ATFM aims to control the departure and arrival times of

the flights and the speed, routing and altitude of en-route aircraft in order to absorb flight delays

at departure airports or in the en-route airspace rather than in the terminal airspace, where their

costs are higher. These initiatives have been successfully implemented in the US and in Europe.

The strategic SI problem and the tactical ATFM problem are interdependent. Indeed, the

optimal aircraft flows depend on the schedule of flights. Vice versa, the optimal schedule of flights

depends on the tactical capabilities of ATFM. All else equal, the more effectively ATFM can miti-



gate delay costs, the less aggressive SI needs to be to guarantee any targeted level of service. These

interdependencies have been addressed at a single airport [Jacquillat and Odoni, 2015]; however,

the joint network-wide dynamics of SI and ATFM remain unexplored. These interdependencies are

complicated by the uncertainty at the time of scheduling regarding the operating conditions that

will prevail at the time of operations. Thus, one cannot simply set a schedule that will match ca-

pacity with certainty across spatial-temporal networks. This creates a trade-off between absorbing

the costs of demand-capacity imbalances through demand management vs. flight delays.

We propose an original integrated approach to air traffic management that jointly optimizes

strategic SI decisions and tactical ATFM decisions in capacity-constrained networks, under operat-

ing uncertainty. Specifically, it optimizes flight schedules in a network of airports, while capturing

how ATFM systems will respond to any schedule of flights in various operating scenarios. This

contrasts with the SI literature, which does not consider the effect of flight schedules on operations,

and with the ATFM literature, which considers a fixed schedule of flights as an input. Method-

ologically, this is formulated as a two-stage stochastic integer program, and relies on a new solution

method with provable quality guarantees to address this class of problems.

Integrated Network-wide Scheduling and Flow Management Model

We formulate a novel Integrated Network-wide Scheduling and Flow Management Model (INSFMM)

as a two-stage stochastic integer program. The model takes as inputs the airlines’ preferred sched-

ule of flights and the operating capacity of each airport and air traffic controls sector in the network.

The first stage corresponds to scheduling interventions (SI). It determines flight schedules to min-

imize the schedule displacement (i.e., the deviations from airlines’ requests), subject to scheduling

and network connectivity constraints. These scheduling decisions are made before operating un-

certainty is resolved, thus relying on probabilistic characterizations of air traffic operations. The

second stage corresponds to ATFM. It optimizes flight operations to minimize delays from flights’

scheduled times, subject to flight operating and capacity constraints at each airport and air traffic

control sector. These operating decisions are made as information on weather and other operating

conditions becomes available. The model is formulated as a bi-objective problem that trades off

schedule displacement and expected flight delays.

Specifically, the (INSFMM) is formulated as follows, where ε is a weight parameter:

(INSFMM) min ε · Schedule displacement + (1 − ε) · E(Ψ)

s.t. Flight scheduling constraints

Network connectivity constraints,

where the second-stage objective Ψ is given by:

Ψ = min Flight delay

s.t. Flight operating constraints



Network connectivity constraints

Airport/sector capacity constraints

We propose valid constraints that tighten the linear programming relaxation of (INSFMM).

Nonetheless, both SI and ATFM involve large-scale and complex integer optimization problems,

so the (INSFMM) is highly intractable in realistic test instances using commercial solvers.

Two-stage Stochastic Integer Programming Solution Approach

Much progress has been made to solve stochastic continuous programs by means of Benders decom-

position [Birge and Louveaux, 2011]. Benders decomposition iterates between a master problem,

which provides a feasible first-stage solution, and sub-problems, which use the recourse function to

generate valid cuts into the master problem. However, this is not directly applicable in stochastic

integer programming because the recourse function is non-convex. A standard stochastic integer

programming approach is the integer L-shaped method, which also decomposes the problem into

a master problem and sub-problems and uses valid cuts based on the second-stage objective func-

tion value [Laporte and Louveaux, 1993]. This method has been applied in various domains, but

(INSFMM) remains orders of magnitude larger than what has been solved thus far.

To address this challenge, we propose a new solution approach with provable quality guarantees

for two-stage stochastic integer programming—illustrated in Figure 1. Like Benders decomposition,

the approach decomposes (INSFMM) into a master problem and scenario-specific sub-problems.

However, instead of solving the second-stage problem as an integer program, we derive new cuts

based on its dual linear programming (LP) relaxation. These cuts stem from a new theoretical

result that provides a lower bound of the second-stage objective function, expressed as a function

of the first-stage decision variables and the reduced cost of the dual LP sub-problem relaxation.

Figure 1: Overview of proposed two-stage stochastic integer programming solution approach

We use this approach to develop a solution algorithm that incorporates original neighborhood

constraints and applies acceleration techniques based on local branching and Pareto-optimality

cuts. We also propose a novel scenario reduction method to generate representative scenarios in

stochastic programs. Results show that this algorithm yields near-optimal solutions to (INSFMM)

for networks of the size of the US National Airspace System in reasonable computational times.



In summary, the proposed method provides (i) a new solution approach for two-stage stochastic

integer programming that leverages the dual LP relaxation of the second-stage problem, (ii) new

optimality cuts in Benders decomposition algorithms, and (iii) high-quality solutions to the largest

stochastic integer programs implemented thus far in the literature.

Computational Results and Implications

From a practical standpoint, (INSFMM) provides decision-making support to optimize scheduling

interventions across a network of airports, while accounting for ATFM dynamics. This contributes

to the literature on demand management by optimizing scheduling interventions across multiple

airports in a network. More importantly, it provides a novel conceptual approach that balances

the strategic costs of scheduling interventions and the tactical costs of flight delays. At schedule-

coordinated airports outside the U.S., this can support the setting of declared capacities and slot

allocation at multiple airports simultaneously. This would augment existing decentralized practices

where (i) capacity declaration is left up to each airport, leading to a lack of standardization, and

(ii) slot allocation is performed at each airport independently and network-wide conflicts are then

resolved in an ad hoc manner at bi-annual slot conferences, leading to potentially sub-optimal

decisions at the network level. At U.S. airports, the proposed approach provides objective and

transparent decision-making support to inform the appropriate extent of scheduling interventions.

Moreover, computational results inform where (i.e., at which airport) and when (i.e., at which times

of the day) scheduling adjustments can be most effective. This contrasts with existing approaches

where “flight caps” are applied at a few airports and does not vary by time of day. Ultimately, the

approach developed here can support network-wide scheduling practices to maximize scheduling

benefits and minimize congestion costs for airlines, passengers and other stakeholders.
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1 Introduction

Accurate occurrence time and location of a reported crash are critical to effective crash analysis. However, it has

been widely recognized in the literature that the occurrence times and locations recorded in crash reports are often

biased [1, 2], that is, they are often different from the actual occurrence time and location of the crash. The time bias

is primarily caused by the fact that many crash reporting systems automatically log the time the crash is reported

to authorities, for example, the time the phone call is received, and store this automatically logged time as the

occurrence time. The location bias is often caused by the lack of standards in the textual description of the crash

location [3].

Although there has been a proliferation of studies that attempt to correct the bias associated with a reported

crash, most, if not all, of them focus exclusively on correcting the bias in location. Early studies rely on the distances

between the reported crash location and adjacent roads to correct the location bias. For example, a buffer zone

is created with a predefined radius to identify the matching link in [4], while the crash location is adjusted to the

closest junction in [5]. Later, road name filtering is incorporated in this process in [6]. When the driving directions of

the vehicles are available, more sophisticated approaches are developed. For example, a weighted score scheme that

combines the perpendicular distance of the reported crash location to each candidate link and the angular difference

between the driving directions and the link directions to correct the location bias is used in [1]. Recently, artificial

neural network that considers road name, road type, direction of travel, and recorded crash location to determine

the link on which the crash occurred is used in [7]. This approach is later extended by [8], in which fuzzy logic is

applied to identify candidate links, and by [9], in which the multilevel logistic regression model is adopted with the

distance and direction differences as explanatory variables.

In this research, we propose to simultaneously correct the time and location bias associated with a reported

crash, which is new to the literature. For a given crash, we first follow the procedure detailed in [8] to identify the

set of candidate links in the vicinity of the reported crash site. We then examine the spatiotemporal evolution of

travel speed on these candidate links and select the one that is most congruent with the occurrence of a crash. We

formulate the candidate selection process as an integer programming model and develop a set of novel constraints to

estimate the spatiotemporal impact regions, which characterize the evolution of speed in the speed contour plots of

the candidate links. We finally use the time and location when travel speed begins to drop to correct the time and

location bias associated with the crash. We validate our model using real crash data in Beijing and find that our

model can reduce the average bias in time from 7.8 minutes to 1.7 minutes, or a 78.21% reduction; and reduce the

average bias in location from 0.140 kilometer to 0.025 kilometer, or a 82.14% reduction.



2 The Modeling Framework

For a given crash, we first get its coordinates, that is, its longitude and latitude, by the textual description of its

location using geocoding functions provided by Google Map [10, 11]. We then identify candidate links following the

method detailed in [8]: An error circle is drawn around the reported crash location and road links that fall within

or intersect with the error circle are considered to be candidate links. We then construct the speed contour plot, by

which the evolution of travel speed on a link can be conveniently visualized. To construct the speed contour plot of

a link, we first discretize time into equal intervals indexed by m. We choose the analysis period so that it starts at

an interval prior to the reported occurrence time and ends at an interval when the impact of the crash completely

dissipates. We number the intervals in the analysis period from 1 to M and let m∗ be the interval that corresponds

to the reported occurrence time of the crash. Assuming there are altogether N candidate links indexed by n, we

discretize these links into sections of equal lengths. For link n, let Jn be the total number of sections and these

sections are numbered from 1 to Jn from the upstream to the downstream.

For link n, let sj,m,n be the travel speed on section j in time interval m. Suppose that a crash took place on link n

in a given day. We can get the crash-induced values of sj,m,n, denoted as ŝj,m,n, and we can produce the crash-induced

speed matrix. Using historical observations of sj,m,n during days when there were no crashes, we can obtain the

crash-free mean and standard deviation of sj,m,n, denoted as (s̄j,m,n, σj,m,n). If ŝj,m,n is significantly smaller than

s̄j,m,n, for example, if ŝj,m,n ≤ s̄j,m,n−ασj,m,n, where α is a positive threshold parameter trained using existing data

[12, 13], we say that cell 〈j,m〉 is impacted by the crash on that given day. Let us use discriminant binary indicator

Pj,m,n to indicate whether ŝj,m,n is significantly lower than s̄j,m,n, that is, if ŝj,m,n ≤ s̄j,m,n − ασj,m,n, Pj,m,n = 1;

otherwise Pj,m,n = 0.

T
im

e

Tra/c .ow direction
1" " "Jn ! 9Jn ! 8Jn ! 7Jn ! 6Jn ! 5Jn ! 4Jn ! 3Jn ! 2Jn ! 1Jn

1

2

3

4

5

6

7

8

9

10

11

12

13

...

M

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 0

0 0 1 1 1 0 0 1 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 1 0 0 1 0

0 0 1 0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

Figure 1: Illustration of binary indicators Pj,m,n,

which depends on s̄j,m,n and ŝj,m,n.
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Figure 1.

In Figure 1, we give an example for the values of Pj,m,n and color cells with Pj,m,n = 1 in dark gray. According

to [13] and [14], the shape of the impact region formed by cells in dark gray should conform to the propagation of

shockwaves, while the impact region in this figure does not. This is not unusual due to the presence of noise and

stochasticity in the speed data reported by probe vehicles [13, 14]. In Figure 2, we show the desired shape of the

impact region and the desired values of Pj,m,n. It is not difficult to verify that its shape conforms to the propagation

of shockwaves. To recover the desired shape of the impact region, we introduce binary decision variables for each

cell: (1) If cell 〈j,m〉 on link n is indeed impacted by the crash, δj,m,n = 1; otherwise δj,m,n = 0; (2) If the crash

originates from cell 〈j,m〉 on link n, γj,m,n = 1; otherwise γj,m,n = 0; and (3) If the crash terminates at cell 〈j,m〉
on link n, ζj,m,n = 1; otherwise ζj,m,n = 0.

Once we know the values of γj,m,n, we can get the estimated occurrence time (denoted as m̂), link ID (denoted

as n̂), and section (denoted as ĵ): m̂ =
∑Jn
j=1

∑M
m=1m · γj,m,n, n̂ =

∑N
n=1 n ·

(∑Jn
j=1

∑M
m=1 γj,m,n

)
and ĵ =



∑Jn
j=1

∑M
m=1 j · γj,m,n.

We develop the following optimization model to find the values of δj,m,n, γj,m,n, and ζj,m,n, so that they not only

conform to the propagation of shockwaves, but also have minimal deviation from Pj,m,n:

minimize

N∑
n=1

Jn∑
j=1

M∑
m=1

[Pj,m,n · (1− δj,m,n) + (1− Pj,m,n) · δj,m,n] .

subject to

N∑
n=1

Jn∑
j=1

M∑
m=1

γj,m,n = 1; (1)

N∑
n=1

Jn∑
j=1

M∑
m=1

ζj,m,n = 1; (2)

γj,m,n ≤ δj,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (3)

1− γj,m,n ≥ δj+1,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (4)

1− γj,m,n ≥ δj,m−1,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (5)

δj,m−1,n + δj+1,m,n ≥ δj,m,n − γj,m,n, ∀1 ≤ n ≤ N, 1 ≤ j ≤ Jn, 1 ≤ m ≤M ; (6)∑
1≤j≤Jn

∑
1≤m≤M

δj,m,n ≤MJn
∑

1≤j≤Jn

∑
1≤m≤M

γj,m,n, ∀1 ≤ n ≤ N ; (7)

ζj,m,n ≤ δj,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (8)

1− ζj,m,n ≥ δj−1,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (9)

1− ζj,m,n ≥ δj,m+1,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (10)

δj,m+1,n + δj−1,m,n ≥ δj,m,n − ζj,m,n, ∀1 ≤ n ≤ N, 1 ≤ j ≤ Jn, 1 ≤ m ≤M ; (11)∑
1≤j≤Jn

∑
1≤m≤M

δj,m,n ≤MJn
∑

1≤j≤Jn

∑
1≤m≤M

ζj,m,n, ∀1 ≤ n ≤ N ; (12)

N∑
n=1

Jn∑
j=1

(
M∑
m=1

m · ζj,m,n −
M∑
m=1

m · γj,m,n

)
≥ Θ; (13)

N∑
n=1

M∑
m=1

 Jn∑
j=1

j · γj,m,n −
Jn∑
j=1

j · ζj,m,n

 ≥ Φ; (14)

N∑
n=1

j∗n+∆
+
n∑

j=j∗n−∆
−
n

m∗+Λ+∑
m=m∗−Λ−

γj,m,n = 1; (15)

δj+1,m,n + δj,m−1,n − 1 ≤ δj,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (16)

δj+1,m,n + δj,m−1,n ≥ δj,m,n − γj,m,n, ∀1 ≤ j ≤ Jn, 1 ≤ m ≤M, 1 ≤ n ≤ N ; (17)

δj,m,n, γj,m,n, ζj,m,n ∈ {0, 1}, ∀j ∈ {1, 2, · · · , Jn} and m ∈ {1, 2, · · · ,M} ; (18)

δj,m,n = 0, γj,m,n = 0, ζj,m,n = 0, ∀j /∈ {1, 2, · · · , Jn} or m /∈ {1, 2, · · · ,M} . (19)

The objective is to minimize the discrepancy between binary indicators Pj,m,n and binary decision variables δj,m,n.

Constraints (1) and (2) indicate that the crash took place on one of the N candidate links. Constraints (3) through

(7) describe the constraints on the originating cell of the crash. Constraints (8) through (12) describe the constraints

on the terminating cell of the crash. Constraints (13) and (14) restrict the minimum requirements on the maximum

temporal and spatial extent of the crash, respectively. Constraints (15) restrict the maximum amount of allowable

correction in the vicinity of the reported occurrence time and location. Constraints (16) through (17) restrict the

propagation of shockwaves. Note that Constraints (17) are identical to Constraints (6). Therefore, Constraints

(6) are excluded from our final optimization model. Constraints (18) restrict the decision variables to be binary.

Constraints (19) define the boundary conditions when subscripts j and m may exceed their respective ranges. The

optimization model can be efficiently solved by the standard branch-and-bound algorithm.



We prove that the model has the following properties: (1) The solution to our optimization model produces the

impact region for exactly one of the candidate links; (2) Let us assume that the impact region is produced for link

n′ and in the optimal solution there exists 1 ≤ j′ ≤ Jn and 1 ≤ m′ ≤M such that γj′,m′,n′ = 1. We then have that

the impact region produced in the speed contour plot of link n′ originates from cell 〈j′,m′〉 and its shape conforms

to the propagation of shockwaves; and (3) Let us assume that the impact region is produced for link n′ and in the

optimal solution there exists 1 ≤ j′′ ≤ Jn and 1 ≤ m′′ ≤ M such that ζj′′,m′′,n′ = 1. We then have that the impact

region produced in the speed contour plot of link n′ terminates at cell 〈j′′,m′′〉.

3 Numerical Experiments

In this section, we validate the performance of our model using real crash data in Beijing. We obtain the crash

report for crashes occurred on North 3rd Ring Road in Beijing in the month of April 2016. This road is 10 kilometers

in length and altogether there are 19 crashes in this month. The major issues with the crash report are: (1) The

direction of travel is missing in all location descriptions . As a result, we are not able to know whether it occurred on

the westbound link or the eastbound link; (2) The location description can be rather imprecise; and (3) The recorded

reported time is actually the time when the call was received by the traffic police, which is certainly later than the

actual occurrence time of the crash.

For each reported crash, we first obtain the coordinates, that is, the longitude and latitude, of the location that

corresponds to its textual description by calling the geocoding function of Google Map [11]. We then draw an error

circle with a radius of 100 meters to identify the candidate links. For each of the links, say link n, we construct its

speed contour plot as follows: (1) We discretize time into 5-minute intervals and distance into 100-meter sections.

This implies that the resolution of the speed contour plot is 100 meters × 5 minutes; (2) The analysis period is 2.5

hours long, which starts 0.5 hours prior to and ends 2 hours after the reported crash time; and (3) We obtain the

mean and standard deviation of the crash-free speed (s̄j,m,n and σj,m,n), the crash-induced speed matrix (ŝj,m,n),

and Pj,m,n according to the steps detailed in [13]. The minimum temporal and spatial extents of a crash are set to

30 minutes and 1 kilometer, respectively, which means Θ = 30/5 = 6 and Φ = 1/0.1 = 10. The maximum amount of

allowable corrections to the reported occurrence time (m∗) and the reported crash location (j∗n) are set to 30 minutes

and 0.5 kilometers, respectively, which means Λ− = Λ+ = 30/5 = 6 and ∆−n = ∆+
n = 0.5/0.1 = 5.

The average performance across all 19 crashes shows that: (1) Our model can reduce the average bias in time

from 7.8 minutes to 1.7 minutes, which is a 78.21% reduction; (2) Our model can reduce the average bias in location

from 0.140 kilometers to 0.025 kilometers, which is a 82.14% reduction; and (3) The distance-based technique can

get the correct direction of travel 10/19 = 52.63%, which is improved to 19/19=100% by our model.

4 Conclusions

In this research, we propose to simultaneously correct the time and location bias associated with a reported crash,

which is new to the literature. For a given crash, we first follow the procedure detailed in [8] to identify the set

of candidate links in the vicinity of the reported crash site. We then examine the spatiotemporal evolution of

travel speed on these candidate links and select the one that is most congruent with the occurrence of a crash. We

formulate the candidate selection process as an integer programming model and develop a set of novel constraints to

estimate the spatiotemporal impact regions, which characterize the evolution of speed in the speed contour plots of

the candidate links. We finally use the time and location when travel speed begins to drop to correct the time and

location bias associated with the crash. We validate our model using real crash data in Beijing and find that our

model can reduce the average bias in time from 7.8 minutes to 1.7 minutes, or a 78.21% reduction; and reduce the

average bias in location from 0.140 kilometer to 0.025 kilometer, or a 82.14% reduction.
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1 Problem description

In this presentation, we address a fleet composition problem (FCP) faced by last-mile delivery ser-

vice companies (LMDSC), such as Colisweb, that are middlemen between e-commerce companies

and carriers. LMDSCs organize transportation services for e-commerce companies and take advan-

tage of higher volumes to mutualize more efficiently the transportation part. LMDCs, as Colisweb,

do not manage their fleet but have contracts with local carriers. Carriers propose different types

of vehicles (bicycles, motorcycles, cars, and vans) with different transportation costs per km. One

day in advance, LMDSCs have to decide how many vehicles of each type will be needed to cover

the transportation demand.

One of the main characteristics of the problem addressed is that the demand is not known a

priori, due to the inherent uncertainty of this type of activity. However, the demand is approx-

imated as follows. The distribution area is divided into a limited number of delivery zones and

the time horizon into time slots. Demand is characterized by a forecast number of packages to be

transported from pickup zones to delivery zones within a delivery time slot.

Additional constraints such as vehicle capacities, the maximum working time have to be taken

into account. The FCP, we tackle, consists in determining the minimum cost vehicle fleet to cover

the demand while satisfying such side-constraints. The total cost is computed as the sum of han-



dling costs and of traveling costs. Several variants of the FCP have been studied in the literature.

In [1], authors present an interesting survey on this family of problems and distinguish between

the strategic and the tactical/operational FCPs. In tactical/operational FCPs, the decisions are

related to an assignment of vehicles to routes or to transportation operations. A well-known tac-

tical/operational FCP is the fleet size and mix vehicle routing problem (FSMVRP). The variant

of the FCP, we deal with, also belongs to this subfamily, but differs from the FSMVRP since the

locations of the pickup and delivery points remain unknown.

We now provide a precise description of the FCP tackled and some notation. An LMDSC

subcontracts the transportation of packages to a set of carriers. Each carrier owns different types

of vehicles with characteristics such as capacities, speed and traveling cost. Let V be the set of

types of vehicles and R be the set of resources (volume capacity, carrying capacity, maximum

number of packages). Let biv be the capacity of vehicle type v ∈ V associated with resource i ∈ R.

A courier, associated with each vehicle, works at most Ω minutes per day.

The delivery area is divided into zones which do not intersect. Zones correspond typically to

subsets of adjacent postal codes. The speed of each vehicle varies according to the zones. Let ϑvz

be the traveling speed of a vehicle of type v in zone z. For two different zones z, z′, fzz′ is the

distance between the zone z and z′.

The packages have to be delivered over a horizon time T , which is divided into time slots. All

time slots have the same duration δt, and do not intersect. For a time slot t, st and et are the

starting and ending times. For two time slots t, t′, we denote by t < t′ if et ≤ st′ . In the following,

we assume that each vehicle visits at most one zone during one time slot. ckmvzt is the cost per km

associated with a vehicle of type v when it is in zone z during time slot t.

We suppose that the transportation demand is unknown and is approximated as follows. Let

D be the set of transportation requests. For each zone z, let Dz (resp. Dz) ⊆ D be the set of

requests with the pickup (resp. delivery) locations in zone z. For each request d, let rid be the

consumption of resource i ∈ R, and [sd, ed] be the delivery time window. There is no time-window

for the pickup, which has only to be performed before the delivery. From the delivery time-window,

we determine Td (resp. T d) the set of possible time slots to perform the pickup (resp. the delivery)

of request d. Let zd (resp. zd) be the pickup (resp. delivery) zone of request d, and t+d , t
−
d be the

pickup and delivery durations. Last, we denote by Let cpickupvtd , cdeliveryvtd the costs for the pickup

and delivery operations of request d using a vehicle of type v during time slot t.

The FCP, we deal with, consists in assigning each request to a vehicle and to pickup and delivery

time slots such that: i) the pickup is done before the delivery; ii) the capacities of each vehicle are

respected; iii) each vehicle can visit at most one zone per time slot; iv) the total time of operations

in a time slot does not exceed its duration; v) the total working time per vehicle does not exceed

Ω, and the total cost is minimized.



2 Extended formulation and solution methods

First, we developed a compact integer linear formulation for the FCP described above. By lack

of space, this model is not provided here. We then derived from it, the extended formulation, we

present here, by applying a Dantzig-Wolfe decomposition. The master problem can be expressed

as follows. Given a set of requests D ⊆ D, let AD (resp. AD) be an assignment of each request

in D to a time slot in T for the pickup (resp. delivery) operation. Let cADAD
v be the total cost

when the requests in D are allocated to a vehicle of type v and executed according to the time-slot

assignments AD, AD, and aADt
d equals to 1 if d belongs to D and the delivery is performed during

the time slot t according to the assignment AD, 0 otherwise. We define binary variables λADAD
v be

equal to 1 if a vehicle of type v covers the requests in D with assignments AD and AD, 0 otherwise.

The FCP is formulated as:
min

∑
D⊆D

∑
AD

∑
AD

cADAD
v λADAD

v∑
D⊆D|d∈D

∑
AD

∑
AD

∑
t∈Td

aADt
d λADAD

v = 1, ∀d ∈ D, (βd) (1)

λADAD
v ∈ {0, 1}.

In this model, each request has to be assigned to a vehicle while minimizing the total cost. βd

represents the dual variable associated with constraint (1). The pricing problem per type of vehicle

is modeled as a binary linear program using the following variables. Let x1td (resp. x2td ) be equal

to 1 if d is picked-up (resp. delivered) during time slot t, and 0 otherwise, and let yzz′k be equal

to 1 if the vehicle is in zone z during time slot t and in z′ during time slot t+ 1, 0 otherwise. ukz is

equal to 1 if the vehicle is in zone z during time slot t, 0 otherwise. L and U represent the starting

and ending times for the operations performed with the vehicle. The pricing problem associated

with a vehicle of type v is formulated as:

min
∑
d∈D

(
∑
t∈Td

(
ckmvzdtlzd

6
+ cpickupvtd )x1td +

∑
t∈Td

(
ckmvzdt

lzd

6
+ cdeliveryvtd − βd)x2td+

∑
t∈T

∑
z∈Z

(ckmvzt(2lz)ytzz + ckmvztfzz′
∑
z′∈Z

ytzz′ ))∑
t∈Td

x2td ≤ 1, ∀d ∈ D, (2)

x2td ≤
∑

t′∈Td|t′≤t

x1t
′
d , ∀d ∈ D, t ∈ T d, (3)

∑
d∈D

(
∑

t′∈Td|t′≤t

ridx1t
′
d −

∑
t′∈Td|t′≤t

ridx2t
′
d ) ≤ biv , ∀i ∈ R, t ∈ T, (4)∑

d∈Dz |t∈Td

(t+d +
lz

6ϑ
)x1td +

∑
d∈Dz |t∈Td

(t−d +
lz

6ϑ
)x2td +

2lz

ϑ
(1− ytzz) +

∑
z′∈Z\{z}

(
fzz′

2ϑ
ytzz′ +

fz′z
2ϑ

yt−1
z′z )

≤ δt, ∀t ∈ T, z ∈ Z, (5)∑
z∈Z

utz ≤ 1, ∀t ∈ T, (6)

utz − ut+1
z ≤ ytzz , ∀t ∈ T, z ∈ Z (7)

utz + ut
′
z′ −

∑
z′′∈Z

∑
t<t′′<t′

ut
′′
z′′ ≤ ytzz′ + 1, ∀t, t′ ∈ T, t < t′, z 6= z′ ∈ Z, (8)

∑
d∈Dz |t∈Td

x1td +
∑

d∈Dz |t∈Td

x2td ≤ Mutz , ∀t ∈ T, z ∈ Z, (9)



U − L ≤ Ω, (10)

U ≥ et
∑
z∈Z

utz , ∀t ∈ T, (11)

L ≤ st
∑
z∈Z

utz +M(1−
∑
z∈Z

utz), ∀t ∈ T, (12)

x1td, x2td, y
t
zz′ , u

t
z ∈ {0, 1} U,L ∈ R+. (13)

where M is a large number. Note that the index v was omitted to lighten the mathematical

expressions. Constraints (2) and (3) guarantee that each request is assigned at most once, and

that the delivery can be performed if and only if the pickup took place before. Inequalities (4)

represent the capacity constraints. Constraints (5) ensure that total time spent for pickup and

delivery operations and traveling not exceed the duration of a time slot. Since we do not know

the pickup and delivery locations within a zone, we approximate the traveling distance using the

formula proposed by [2] and extended by [3] for city logistics. We assume that each zone z is a

square with a side length equal to lz. Constraints (6) guarantee that at most one zone is visited

per time slot. Inequalities (7), (8) and (9) link variables y, x and u. Constraints (10), (11) and

(12) ensure that the courier works at most Ω minutes. Last, the objective function corresponds to

the reduced cost where the traveling cost is computed as in constraint (5).

We developed a branch-and-price algorithm as well as a diving heuristic to solve this model.

The branch-and-price method includes several features such as: 1) preprocessing techniques to

set some variables in the subproblem; 2) heuristics to solve the subproblem; 3) specific rules to

generate several columns for a given type of vehicle at each iteration; 4) an adapted branching

scheme. Last, we implemented a diving heuristic based on the branch-and-price algorithm. At each

iteration, we set one variable of the restricted master problem to 1 and solve again the restricted

master problem adding some columns. We reiterate until we obtain an integer solution.

To assess the efficiency of the proposed approaches, we solved real-life instances provided by

our industrial partner. Here, we report a summary of average computational results when |D|

varies from 99 to 179, the number of zones is twenty, δt = 120 minutes, and |V | =1, 2, 3. When the

CPU is limited to 1 hour, none instance can be solved to optimality with the compact formulation

or using the branch-and-price algorithm. Depending on the number of vehicle types, the gaps

between the best-known solutions and the best lower bounds vary between 8.41% and 9.55% for

the compact formulation and between 2.87% and 2.91% for the branch-and-price algorithm. The

diving heuristic performs quite well since the gaps are between 1.87% and 2.25% while the CPU

times are between 342 and 603 seconds.
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1 The problem 
 

The crew pairing problem is generally modelled as a set partitioning problem, the flights have to be 

partitioned in pairings. A pairing is a crew path starting at a base covering many flights during few days 

of works and finishing at the same base. This problem becomes difficult to solve when the number of 

flights increases because the number of feasible pairings grows exponentially (number of variables). This 

paper introduces a new paradigm for solving this large combinatorial problem: “Machine Learning ® 

Mathematical Programming”. This paradigm use Machine Learning to learn from solutions of similar 

instances to produce predictions on some parts of the solution of the new instance. This information 

feeds the Mathematical Programming optimizer to finish the work taking account of the exact cost 

function and the complex constraints. This approach reduces significantly the solution time without 

losing on the quality of the solution. 

 

2 State of the art 
 

The most prevalent method since the 1990s to solve this large set covering problem is the column 

generation inserted in branch-&-bound, see [1], [2]. This method is described with others in a recent 

survey [3] concluding than column generation is the most frequently used approach. The column 

generation method iterates between pairing generation (sub problem (SP)) and pairing selection (master 

problem (MP)). For the SP many authors have used shortest-path in a network with resource constraints 

[4], [5]. The MP is a set partitioning problem [6] and the access to all legal pairings reduces deeply the 
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integrity gap and permits to obtain very good integer solutions with a partial exploration of the branching 

tree for problems with few thousand flights. 

 When the number of flights increases in a crew pairing problem, the time to solve it by column 

generation becomes large. The number of iterations of the column generation, the time per iteration for 

solving the master problem and the number of branching nodes increase. The Dynamic Constraints 

Aggregation method (DCA) developed by [7] speed-up the master problem by reducing the number of 

constraints and the degeneracy. The DCA method start with an aggregation, in clusters, of flights having 

a good probability to be done consecutively by the same crew, in an optimal solution. It corresponds to 

temporarily fix to one some flight connection variables. This permit to replace all the flight covering 

constrains of the flights in a cluster by a single constrain. DCA use reduces costs to identify flight 

connection variables that can be unfixed to improve the solution by breaking clusters. At the opposite, it 

aggregate clusters connected by connection variables equal to one. This dynamic management of the 

clusters aggregating the constraints permit to reach an optimal solution with a smaller and less 

degenerated master problem. This method produces better dual variables and reduces the number of 

column generation iterations. Furthermore, the LP solution is less fractional and it reduces the number 

of nodes to explore in the branch and bound. 

 Application on 10 000 flights weekly problems was presented at TRISTAN 2016 [8]. DCA was 

used to improve solutions produced by GENCOL a column generation solver embedded in a rolling 

horizon approach that was used by 20 airlines at this time. With windows of two days and one day 

overlaps, 6 problems of 3000 flights need to be solved and it took 40 hours. Starting with a partition 

defined by this initial solution DCA improves the solution of 1.21% in 5 hours.  

 

3 The new solution method 
 

To produce initial clusters, we use machine learning to determine some flight connection variables that 

will probably be equal to one. These clusters are not a feasible solution, but DCA will repair it with 

phase 1 and phase 2 of the simplex to reach a good feasible solution. 

Using several months of historical crew pairing data covering tens of thousands of flights per 

month, we build a flight-connection prediction sub-problem in which the goal is to predict the next flight 

that an airline crew should follow in their schedule. To avoid error propagation through the entire 

sequence of flights, we only use information about the incoming flight of the crew to predict the next 

flight. Each flight is described by the city of origin and destination, the aircraft type and tail number, the 

flight duration, and the time of departure and arrival. 

The multiclass classification problem is thus framed as follows: given the information about an 

incoming flight for a crew in a specific connecting city, choose the flight that the crew should follow 

among all of the possible departing flights from that city. We do not use the flight code since it is not 

stable information from month to month. Some flight codes appear or disappear each month. The 

schedule of a flight code can be changed, permuting the departure order of the flights. We find the next 

connecting flight based on the flight parameters instead of flight codes. 

Due to the constraints-based nature of the learning problem, we can use a priori knowledge to 

define which flights are feasible [12]. For example, for an incoming flight, it is not possible to make a 

flight that starts ten minutes after the arrival, nor it is possible five days later. It is also rare that the type 
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of aircraft changes between flights, since each aircrew is formed to use one or two types of aircraft at 

most (see [9]). Therefore, for each incoming flight, we consider the feasible departing flights to be in the 

next 48 hours, according to inclusive constraints. We sort the flights based on the time of departure, and 

limit the maximal number of possible flights to 20, as this is sufficient in the airline industry. Thus, we 

predict the rank of the true flight among that set of flights. 

 In about 90% of the cases in our dataset, the aircrew arrives at an airport on an incoming flight 

and follows the aircraft, taking the next departing flight by the same aircraft. To consider more difficult 

next-flight prediction instances, we report not only the overall accuracy, but also the accuracy for only 

the instances in which the crew changes aircraft; we call this the “Different aircraft accuracy” (D_acc). 

We use convolutional neural networks where different hyperparameters (optimizer, learning rate, 

number of layers, etc.) [10] are optimized using Bayesian optimization, which comprises a few random 

searches followed by the standard Gaussian process optimization [11]. To explore the hyperparameters 

space, we utilize k-fold cross-validation, using separate months as different folds to simulate a realistic 

scenario in which we make a prediction on a new time period. We maintain one weekly problem (10,000 

flights) for testing. 

 

4 Computational experimentation 
 

The experiments are executed on a 40-core machine with 384 GB of memory. Each model is executed 

in an asynchronously parallel setup of 2-4 GPUs. That is, it can evaluate multiple hyperparameter 

configurations in parallel, with each one on a single GPU. For a given hyperparameter configuration, the 

learning phase takes approximately ten minutes, and predicting the most probable next flights for a 

weekly problem only takes a few seconds. After a few iterations, we are able to obtain an accuracy of 

99.35% (71.79% D_acc). Then, a random search raises the accuracy to 99.62%. Using a Gaussian 

process, we show that we continuously improve our process of searching for the best architecture to 

maximize the overall accuracy. In our case, we stop at iteration 500 with the best architecture providing 

an accuracy of 99.68% (82.53% D_acc), but it should be noted that there is no limitation to prevent our 

algorithmic procedure from further exploring. 

 Upon the finalization of the flights-connection prediction model, we use the best identified 

architecture to solve two other prediction problems: (i) predict if each of the scheduled flights is the 

beginning of a pairing or not; and (ii) predict whether each flight is performed after a layover or not. 

Using these predictors on a weekly problem, we construct some crew pairings and use them as initial 

clusters for the GENCOL-DCA solver. Unfortunately, if a flight in the pairing is poorly predicted, it can 

become impossible to construct a legal pairing finishing at the base. Therefore, we propose several 

heuristics to build pairings in such a manner that they always finish at the base. 

To compare the results, we consider a benchmark obtained with the GENCOL solver by rolling 

horizons with two-days windows (GENCOL init.) and a solution obtained by using the GENCOL 

solution as an initial cluster for the constraint aggregation (GENCOL-DCA). Two of the three heuristics 

that we propose outperform the benchmark as well as the solution from GENCOL-DCA with GENCOL 

initialization, and we can conclude that for the pairings that finish away from the base, it is better to 

allow the solver to cover the flights than to propose smaller pairings. Therefore, instead of performing 

the optimization process for 40 hours to obtain GENCOL init. and then for another 5 hours to obtain 
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GENCOL-DCA, our proposed method gives better costs after a few seconds to predict the flight 

connections, and optimized results after five to six hours. 

 

Approach Savings 

(%) 

Time of 

execution 

Number of 

deadheads 

Number of fract. 

variables at N0 

Number of 

nodes 

Number of 

GENCOL iter. 

GENCOL init. 0 40:00 45    

GENCOL-DCA from GENCOL init. 1.21 05:00 27 1603 59 1196 

GENCOL-DCA from heuristic 1 init. 1.45 06:30 22 1548 46 1191 

GENCOL-DCA from heuristic 2 init. 1.38 05:00 24 1755 54 1395 

GENCOL-DCA from heuristic 3 init. 0.97 06:30 28 1508 45 1196 

 

Table 1: Final crew pairing costs after running GENCOL-DCA with different initialization clusters. 

 

 Furthermore, the number of deadheads is deeply reduced with DCA reoptimizing a full week 

simultaneously. It permits to remove some flights from a base and construct pairings from another base 

to satisfy base constraints. GENCOL-DCA from heuristic 1 and 2 does the best on this point and produce 

the best savings. Note than a saving of 1% on a crew cost of 2–3 billions per year is very significant. 

Observe also the very good performance of the optimizer using the initial clusters provided by Machine 

Learning for this problem of more than 10 000 constraints: there are only 1600-1700 fractional variables 

at node zero, 50 nodes in the branch and bound tree and 1200 to 1400 GENCOL iterations including re-

optimizations in the branching tree. The performance does not suffer from the fact that the initial clusters 

are not a feasible solution. 

 We will present at the conference results on monthly problems solved by rolling horizon with 

one-week windows. The fast Machine Learning predictor will permit to construct in few seconds clusters 

for each window of a week, customized according to the flight schedule of this week. We expect 

improvements in particular when the monthly schedule is irregular from week to week. It is the case near 

every month: Christmas, Easter, Thanksgiving, National Holiday, Mother and Father days, big sport 

events (Superball, ….), … It was out of question to use five times 40 hours to produce customized 

clusters for each window with GENCOL init. 

 
5 Conclusion 
 
It is rather difficult to assign the crew workers to a range of tasks while taking into account all the 

variables and constraints associated with the process. We focus on the problem of predicting the next 

flight of a crew, framed as a multiclass classification problem trained from historical data, and adapt a 

neural network solution by reducing the number of classes to predict using domain-appropriate 

constraints, achieving a high accuracy (99.7% overall or 82.5% on harder instances). 

 This paper introduces a new paradigm for solving a large combinatorial problem: “Machine 

Learning ® Mathematical Programming”. This paradigm, first, use Machine Learning to learn from 

solutions of similar instances to produce predictions on some parts of the solution of the new instance. 

This information feeds the Mathematical Programming optimizer to finish the work taking account of 

the exact cost function and the complex constraints. This approach reduces significantly the solution 

time without losing on the quality of the solution. This new paradigm can be applied on many types of 

problems solved recursively. 
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1 Introduction 
 

Various indicators and methodologies for measuring road network connectivity have been developed in 

past research (e.g., [1], [2]).  However, almost all approaches require estimates of link traffic volumes 

and/or OD travel time obtained by a time-consuming traffic assignment work. Traffic assignmemt is 

difficult to apply to large road networks because of its heavy computational load, and OD travel time in 

real traffic cnditions is occasionally inaccurate.  

This paper applies a capacity weighted eigenvector centrality method to identify the strongly 

and weakly connected parts of the network without referring to demand information or traffic assignment. 

This paper compares the results of unweighted and capacity weighted network to verify the advantages 

of the evaluation by capacity weighted eigenvector centrality.   

In previous works [3], [4], the spectral partitioning method was applied to large road networks 

to identify the cut set with minimum capacity. Also, [4] applied various weight settings to see the 

difference depend on them. However, the spectral partitioning method is only applicable to undirected 

network. One attraction of the eigenvector centrality measure is for a directed network that can consider 

bidirectional movement.  

 

 

2 Eigenvector centrality 
 

The eigenvector centrality was defined in 1972 [5]. The eigenvector centrality is the value of the 

eigenvector corresponding to the largest eigen value of an adjacency matrix of the network. The concept 



of this method is that node importance is increased by having connections to other nodes that are 

themselves important. 

Let  

 𝐀𝐱 = 𝜆𝐱 (1) 

where 𝐱 is an eigenvector, 𝜆 an eigenvalue and 𝐀 is a capacity-weighted adjacency matrix with 

element 

𝑎𝑖𝑗 = {
capacity of the link from node 𝑖 to node 𝑗

0 otherwise
 

The Rayleigh quotient is 

 𝜆 =
𝐱𝑇𝐀𝐱

𝐱𝑇𝐱
=

∑ 𝑥𝑖𝑎𝑖𝑗𝑥𝑗𝑖,𝑗

∑ 𝑥𝑖
2

𝑖

 (2) 

We are interested in the largest eigenvalue (denoted by *) 

 𝜆∗ = max
𝐱

𝐱𝑇𝐀𝐱

𝐱𝑇𝐱
=

𝐱∗𝑇𝐀𝐱∗

𝐱∗𝑇𝐱∗
=

∑ 𝑥𝑖
∗𝑎𝑖𝑗𝑥𝑗

∗
𝑖,𝑗

∑ 𝑥𝑖
∗2

𝑖

=
⋯ + 𝑥𝑖

∗𝑎𝑖𝑗𝑥𝑗
∗ + ⋯

⋯ + 𝑥𝑖
∗2 + 𝑥𝑗

∗2 + ⋯
 (3) 

 

where 𝐱∗ represents for the eigenvector corresponding to λ∗. 

In this study, the connectivity of road network is evaluated by using the value of  𝐱∗. Proofs are omited 

in exetnded abstract, if every node can be reached from any other node in the nework,  then 𝐱∗ > 𝟎 (or 

alternatively  𝐱∗ < 𝟎). Besides, the value of the eigenvector corresponding to the largest eigen value 

does not require 𝐀 to be symmetry. 

 

3 Comparison of weight settings 

 

The eigenvector centrality measure with small calculation load is tested to be applicable to several real 

road networks. To compare the results between unweighted and capacity weighted network, this study 

  
Fig.1 Eigenvector centrality (Unweighted)  Fig.2 Eigenvector centrality (Capacity weighted) 



uses Gifu Prefecture road network in Japan as an example. The Gifu Prefecture road network includes 

intercity expressways, national highways and the prefectural roads, contains 3,183 nodes and 9,482 links. 

Also, the elements of the adjacency matrix are directional capacities as mentioned earlier. In this network, 

the minimum and maximum link capacities are 1,000 and 80,000 vehicles per day, respectively.  

Fig.1 and Fig.2 show the values of eigenvector centrality in unweighted and capacity weighted 

network, and the black dot line shows expressways. The values in the figure are shown on a log scale. 

Also, it is classified into 5 levels by dividing the range of eigenvalue centrality score after logarithm 

transformation into five equal intervals.  

In the unweighted network which evaluates only by the topology of the road network, Level 1 

nodes are located in the western part of Gifu Prefecture. From there, the connectivity is gradually 

becoming weaker towards the east. On the other hand, the result of the capacity weighted network shows 

that Level 1 nodes are located in a little eastern side, and the nodes with better connectivity spread along 

the expressways, that has larger link capacities. This difference is the impact of considering road capacity 

on eigenvector centrality. 

The number of nodes in each level is similar in both networks. The level with the greatest 

number of nodes is Level 2, the lowest number of nodes is Level 5. However, Fig.3 shows the existence 

of nodes with different levels in both networks. There are several nodes with a high level in unweighted 

network and low level in capacity weighted network, and vice versa. Where are the nodes with the large 

level difference located? Fig.4 shows the nodes with large level difference between two networks. At 

first, nodes with lower levels in unweighted network than in capacity weighted network are obviously 

located along the expressway. This means that the capacity weighted eigenvector centrality clearly shows 

the influence of the large capacity road like expressways. Moreover, that nodes which have large level 

difference are not only lying on the expressways but also spread to several adjacent nodes. From this 

result, the capacity weighted network can take into account the ripple effect of roads with larger 

capacities (expressways). On the other hand, nodes with higher level in unweighted network than level 

in capacity weighted network, especially nodes with a difference of 2 levels or more are located mainly 

in the mountaineous area. Gifu Prefecture, however, also have large mountain areas in the northern part. 

Therfore, the reasons why these areas are picked up is not only because this. It can be said that although 

  
Fig.3 Eigenvector centrality on both networks               Fig.4 The difference of level between both networks 



these areas have high conectivity from the topological point of view, but they are insufficient from the 

viewpoint of capacity. 

Based on these results shown in this chapter, the level difference between unweighted and 

capacity weighted network mainly occurs along the expressway in the case study of Gifu Prefecture. 

Since these results make sense for the real road situation, the capacity weighted eigenvector centrality 

can evaluate effect of connectivity considering traffic capacity.  

 

 

4 Conclustions 

 

This paper applied the eigenvector centrality method to Gifu Prefecture road network to identify the 

strongly and weakly connected parts. Two settings of the weight are tested, unweighted network and 

capacity weighted network. From the comparison result of the two networks, the capacity weighted 

eigenvector centrality is found to be a useful measure for evaluating the connectivity considering traffic 

capacity.  

For future tasks, it would be interesting to study the impact of link or node failures on road 

network as this may help to identify the large impact part. These results will be more persuasive by 

comparing to existing road network evaluation methods. Moreover, new expressways constructions are 

planned with red line shown in Fig.4. The areas where are insufficient from the viewpoint of capacity is 

near the planned expressways. Therfore, the connectivity of these areas may be improve, future works 

will focus on changes associated with new expressways constructions. 
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In the past two decades, the world has witnessed fast pace of urbanization and rapid growth of e-

commerce, which jointly post significant challenges in urban delivery. In China, more than 3 million express

delivery personnel or couriers delivered over 40 billion packages in 2017. 61.7% of the couriers worked 8-12

hours per day and 24.7% worked over 12 hours per day, with their daily delivery ranging from 10 to 150

packages (Beijing Jiaotong University et al., 2016).

A courier’s income consists of low (or no) basic wage plus piece work, which is highly (or solely) dependent

on the number of packages delivered, which we refer to as incentive workload. Intuitively, couriers want to

deliver as many packages as possible. On the other hand, the effort (e.g., travel distance, delivery time,

etc.) to deliver the packages, which we refer to as effort workload, may vary significantly, depending on the

proximity among the delivery addresses, restrictions in accesses to certain delivery addresses, etc. Naturally,

for the same amount of delivery packages, a courier may want to spend as little effort as possible. Recognizing

and balancing these two types of workload is critical in maintaining the morale of couriers to ensure high-

quality and sustainable last-mile delivery services to customers. In practice, while courier dispatching (i.e.,

delivery package assignment) decisions are made daily, couriers may pay more attention to their overall

workload balance over a period of time (e.g., a month), rather than the (im)balance on a daily base.

In the literature of (single-period) vehicle routing problems considering workload balance, many re-

searchers choose the multi-objective approach (see Matl et al., 2017 for an excellent review). In Matl et al.

(2017), the authors distinguish between equity metrics, equity functions, and equity objectives. With equity



metrics, workload measured by route length/duration/cost correspond to effort workload and workload mea-

sured by route load corresponds to incentive workload. A few researchers study vehicle routing problems with

load balance (e.g., Bowerman et al., 1995; Kritikos and Ioannou, 2010), while most focus on vehicle routing

problems with route length balance. The objectives include minimizing the total route length/duration/-

cost and minimizing load or route length imbalance. Route length (im)balance criteria include maximum

length/duration/cost among routes (Corberán et al., 2002), range of lengths/durations/costs among the

routes (Jozefowiez et al., 2009), and other criteria (Halvorsen-Wearea and Savelsbergh, 2016). Baņos et al.

(2013a,b) study vehicle routing problems with either load or route balance.

There have been very few study on multi-period workload balance. Mourgaya and Vanderbeck (2007)

study a tactical “regionalization” problem to divide customers into clusters, each served by one vehicle.

The objective is to minimize the total distance between customer points belonging to the same cluster

while enforcing a restriction on the maximum demand assigned to a vehicle (within a cluster). Gulczynski

et al. (2011) study a periodic vehicle routing problem (PVRP) that minimizes the weighted sum of the

total distance and the range of load among all the routes of all the vehicles within a planning horizon. Liu

et al. (2013) study a periodic vehicle routing problem with time windows (PVRPTW) that minimizes the

maximum route cost over the entire horizon. These three papers are all under the setting of deterministic

demand.

In this paper, we study the multi-period dynamic courier dispatching problem in last mile urban delivery

under stochastic demand over a planning horizon (e.g., a month) and model the problem as a Markov decision

process. We use the number of delivery packages as the measure of incentive workload and delivery time as

the measure of effort workload. We study two imbalance criteria, namely, maximum workload and range of

the workload (MaxI and RangeI for incentive workload and MaxF and RangeF for effort workload). An

optimal courier dispatching policy minimizes the expected total cost composed of operational cost (measured

by the total delivery time) and penalty cost on the two types of workload imbalance over the planning horizon.

We employ the policy function approximation (PFA) approach of approximate dynamic programming

(ADP). We study three sets of courier dispatching policies. Under policy πMax, we rebalance the cumulative

workload in each period using maximum workload as imbalance measure. Similarly, we reblance the cumu-

lative workload in each period using range as the imbalance measure under policy πRange. We also study a

policy that assigns packages to couriers according to a pre-determined delivery territory based on average

workload, denoted as πFixed.

In our numerical experiments, we generate test instances based on the real delivery network of an e-

commerce company. Some customers have low demand distribution while others have high demand distri-

bution because of their geographical and demographical characteristics. We also capture the weekly demand

pattern with higher demand on weekends than on weekdays. We focus on the workload balance among



three couriers over a 30-days planing horizon. Besides the three policies we described above (i.e., πMax,

πRange, and πFixed), we also benchmark with a policy πCV RP that solve a capaciated vehicle routing prob-

lem (CVRP) without imbalance penalty and tries to rebalance the (cumulative) workload when assigning

the resulting routes to the couriers.

Tab. 1 shows the preliminary results on policy comparison. We highlight the best results in each evaluation

metric in bold. As expected, πCV RP results in the minimum total and average delivery time (or effort).

Among all policies, the differences in the total (or average) delivery effort are within about 0.22%, indicating

that the manager can improve workload balance without increasing the overall (or average) workload of

the couriers. Note that the total (or average) incentive (number of packages) are the same for all policies.

Overall, πRange results in the best results in most workload balance metrics (except maximum effort). We

observe that πFixed results in the worst workload balance, which is intuitive, because a slight difference in

the average demand between delivery territories can be cumulatively enlarged over the planning horizon. We

also observe that the rebalancing in πCV RP does achieve improved workload balance, compared to πFixed.

(This research is working in progress.)

Table 1: Policy comparison

Evaluation metric πMax πRange πFixed πCV RP

Total delivery effort (min) 60,600.4 60,779.7 60,651.0 60,051.2

Average effort (min) 20,200.1 20,259.9 20,217.0 20,017.1

Range of effort (min) 254.3 115.1 1,981.6 245.2

Maximum effort (min) 20,318.1 20,319.6 21,347.1 20,143.9

Minimum effort (min) 20,063.8 20,204.5 19,365.5 19,898.7

Average incentive 5404.8 5404.8 5404.8 5404.8

Range of incentive 71.9 31.2 341.9 64.8

Maximum incentive 5,437.2 5,422.1 5,616.0 5,436.1

Minimum incentive 5,365.3 5,390.9 5,274.1 5,371.3

Keywords: Last-mile urban delivery; workload balance; multi-period; policy function ap-

proximation; approximate dynamic programming
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1 Introduction

In this paper we present a mixed integer programming approach to aid the rostering pro-

cess of the ground staff (hereinafter called employees) in Santiago de Chiles international

airport. This formulation was later wrapped in a decision support system to be used by

the most important ground handling company in the airport. Rostering and scheduling

problems have generated much interest as shown in the surveys done by [1] and [2].

This study focuses on finding an optimal assignment of shifts for the operators of the

ground handling services of one of the airport main providers. These services include

among others: baggage handling, tugs, tractors and loaders operation, aircraft cleaning

and refueling. In this problem we need to build a monthly schedule for all 850 employees

of the company, distributed in 22 different positions.

Besides complying with all legal regulations, the roster must satisfy operational and

union constraints. For example, the roster is required to schedule a minimum number

of employees in each position. Another constraint states that some skills are needed in

each shift. Also, some employees may have special schedule requests: such as planned

vacations, trainings, or may be part time students. Furthermore, there are several union

agreements that can either ban or enforce certain shifts combinations.

Each day is divided in three shifts: Opening (O), from 4 a.m. to 12 noon; Afternoon

(A), from 12 noon to 8 p.m.; and Night (N), from 8 p.m. to 4 a.m. A feature of this

case is that personnel required among shifts differ significantly (both in total number and

needed skills). Therefore, using regular shift sequences (like in [3]) may lead to serious

over/understaffing during critical days. It is also possible that, in some positions the



number of available employees is not enough to fully cover all the shifts. To address these

problems, the developed model needs to generate flexible rosters while trying to balance

the understaffed shifts, so that no one is much worst that the others. Finally, there are

some “quality of life constraints that go beyond the required by law: first, the rostering

must produce an equitable workload to all employees in a position. Specifically, every

month each employee should have approximately the same number of opening, afternoon

and night shifts. Second, all employees must have at least two consecutive free days twice

each month1.

2 Rostering Model

In this section we present the main features of the MIP based approach. Due to the size

of the problem we split its solution into two models that are solved in sequence: a shift

assignment model and an hour assignment model. The first model assigns a shift to each

employee for each day of the month. The second model assigns to each employee the exact

hour of entry to the shift. The latter is a much simpler model and would not be discussed

in this abstract. Also, we will not discuss all the constraints of the model, as many of

them are common in MIP rostering and scheduling formulations.

Let d, e, t and s be indices representing the days in the month, employees, working

shifts to be assigned (O, A, N and F for an off day), and skills, respectively. The ob-

jective function minimizes the weighted sum of five terms: the first term is the relative

understaffing of the worst shift in the month, r; the second term is the summation of the

understaffing in each day and shift, ldt; the third term is the sum of all assigned employees,

yedt; the fourth is the sum of all deviations with respect to the expected number of shifts

for an employee in his position, qlet, quet
2. The last term sums the difference between the

required number of employees with a certain skill and the number of employees that are

actually assigned, lssdt.

minαr + β
∑
d

∑
t

+γ
∑
e

∑
d

∑
t

yedt + δ
∑
e

∑
t

(qlet + quet ) + ε
∑
s

∑
d

∑
t

lssdt (1)

Most of the constraints regarding the compatibility between shifts that can be assigned

to an employee can be modeled as either a positive or negative pair of shift sequences.

We say that two shift sequences have a positive relation if every time the first sequence

of the pair appears, it must be followed by the second sequence in the pair. For example,

whenever an employee were assigned four night shifts in a row he would have the next

1Chilean law requires only a free weekend
2For instance, if the expected number of night shifts for his position is 6 and he has 4 assigned then

qlet = 2.



three days off, so the pair of sequences (NNNN, FFF) has a positive relation. On the other

hand, a pair of sequences has a negative relation if the first sequence cannot be followed

by the second one. For instance, an employee that is assigned to an afternoon shift cannot

work at an opening shift the following day because he would not have enough rest time.

This means that the pair (A, O) has a negative relation.

Let (S1, S2) be a pair of shift sequences and Sk[i] be the shift in the i-th position of

the sequence k. For a given employee e and day d, we define the positive pairs constraints

in (2) and the negative pair constraints in (3):

|S1|−1∑
i=0

yed+i,S1[i]
≤ |S1| − 1 + yed+|S1|+j,S2[j]

∀j ∈ {0, . . . , |S2| − 1} (2)

|S1|−1∑
i=0

yed+i,S1[i]
+

|S2|−1∑
j=0

yed+|S1|+j,S2[j]
≤ |S1|+ |S2| − 1 (3)

Using these types of constraints, the planner can easily include additional conditions

in the model, without changing the general formulation. Even more, these pairs can be

general to all employees or specific to a group of them. This idea was inspired be the work

presented in [4]

3 Implementation and results

The model was implemented into a decision support system to be used by the company.

This implementation was performed as a standalone program using Java and the Gurobi

Solver. They were several challenges that had to be addressed in the deployment. First

the required data needed was scattered though different departments of the company

(human resources, operations, maintenance, etc.), so a new data transfer protocol had to

be developed. Secondly, often the model would not be able to find feasible solutions, as

there are many hard constraints. To solve this, a feasibility check model was developed,

that identified and reported all infeasibilities, thus allowing the planners to decide how to

proceed with them.

The rosters generated by the model greatly improve the manual solution build by

the company planner; the following results are a comparison between our solution and a

manual roster used by the company. This cases consists in 850 employees distributed in

22 positions.

First, we can ensure that no labor or union agreement is violated, in contrast with the

manual roster that has 3% of employees with an illegal schedule. The overall understaffing

in critical positions was reduced form an average of 6% to a 2%, while also reducing the

number of employees that performed an extra shift from 62% to 54%. The total average



number of days off per employee was reduced from 9.8 to 9.6 (this means approximately

170 less free days in total).

However, this model also improved the quality of life of the employees, as in the

proposed solution all of them have two consecutive days off at least twice a month. Using

the model more special request from employees can be satisfied, increasing from 84% in

the manual roster to 99%. Finally, the number of employees with balanced schedules was

increased from 45% to 71% 3.

A second, very important result, is that the time required to build the whole roster

was reduced from 2 weeks to less than 3 days, leaving the planner more time to finely tune

the solution and review the more complex situations.
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1 Introduction

We consider an emerging strategy for offering and managing time slots for attended home grocery
delivery: a set of routes is generated a priori and customers are assigned a time slot based on their
home location and these routes. In such an environment, customers are offered only a few time
slot choices per week, but it greatly simplifies operations for the retailer. We develop a 2-stage
stochastic programming approach for designing a set of a priori routes and time slot assignments
to be used in such an environment.

More specifically, we consider a retailer that offers its online customers a small number of time
slots during which a delivery can take place. The retailer has a fleet of identical vehicles to make
deliveries. Each vehicle starts and ends its delivery route at the retailer’s fulfillment center. For
each of its customers, the retailer knows the delivery location, the order size, the service time,
the revenue, and the order placement probability. Observe that the only stochastic feature in this
setting is whether or not a customer places an order. In practice, a customer’s order size and
revenue are likely to be stochastic as well. Customers can place an order up to a cut-off time, some
hours before delivery will take place. We assume that the likelihood that a customer places an
order is independent of the delivery time slots offered and is not correlated to the order placement
of other customers. When placing an order, a customer must select a delivery time slot during
which delivery will take place at his delivery location. A vehicle that arrives early at a delivery
location must wait. The retailer seeks to design a set of delivery routes, such that each customer,
i.e., its delivery location, is visited on at least one of the routes, and associated time slots, one for
each location visited, so as to maximize the expected revenue. We assume that the set of possible
time slots that can be assigned to a customer location has already been decided. The time slots
may overlap, but they all have the same width, and they cover the entire planning horizon. The
subset of possible time slots for a delivery location contains those time slots that are feasible for
that location, i.e., that overlap with the time period defined by the earliest time a vehicle can reach
the location and the latest time a vehicle can depart the location to return to the fulfillment center
before the end of the planning horizon.

As will become evident soon, even solving the special case in which the retailer has only a
single vehicle with infinite capacity and assigns only a single time slot to each delivery location is
surprisingly challenging and gives rise to insightful observations. For the remainder, therefore, we
focus on this special case, leaving the general case for future research.



2 The single-vehicle case

The problem is defined on a directed graph G = (V,A), with V = Vc ∪ {o, d} the set of vertices,
where Vc = {1, 2, . . . , n} is the set of customer delivery locations and where, for convenience, we
represent the fulfillment center with a start and an end node, o and d, respectively, to be able to
distinguish the departure and return of the vehicle, and with A the set of (directed) arcs connecting
the nodes. We let tij ≥ 0 denote the travel time associated with arc (i, j) ∈ A. We assume that
service times are included in the travel times, and that travel times satisfy the triangle inequality.
The retailer has a single vehicle with unlimited capacity to make deliveries, which reflects that it is
time rather than capacity that restricts the delivery route. When a time slot s = [as, bs] is assigned
to a location in the delivery route, the earliest time a delivery can be made at that location is as
and the latest time a delivery can be made at that location is bs. A vehicle arriving early must wait
at the location. A set T of possible time slots to be assigned to delivery locations is given. The
time slots in T may overlap, but we assume their width is equal, and they cover the entire planning
horizon [0, T ], with T the planning horizon. The set of possible time slots Ti ⊂ T for location i
contains the time slots which overlap with the period defined by the earliest time a vehicle reach
that location, i.e., to,i, and the latest time a vehicle has to depart from that location (to return to
the fulfillment center before the end of the planning horizon), i.e., T − ti,d. The fulfillment center
has time window [ao, bo] = [ad, bd] = [0, T ]. We identify the set of customers C with their delivery
locations, i.e., Vc (and use these interchangeably from now on). Each customer c ∈ C has an order
placement probability pc ∈ (0, 1], and, when served, results in a revenue rc for the retailer. We
assume that order placement probabilities are iid and independent of the time slot assigned to the
delivery location.

The retailer seeks to design an a priori delivery route, visiting all delivery locations, and asso-
ciated time slots, one for each location, so as to maximize the expected revenue. Let Ω be the set of
all possible scenarios of order placements. A single scenario ω ∈ Ω can be described by a sequence
of delivery locations, representing which customers have placed an order and in what sequence –
the exact times of the order placements are not important. (Note that when the order placement
probabilities are equal, i.e., pc = p for c ∈ C, the possible scenarios are equally likely – given the
iid assumption.) The revenue for a scenario ω ∈ Ω is determined as follows. During the order
placement phase, an arriving order is inserted in the actual delivery route, i.e., the delivery route
to be executed after the cut-off time, based on the delivery location’s position in the a priori route.
That is, the delivery location is inserted in the actual delivery route after the delivery locations of
orders placed earlier and that precede it in the a priori route, and before the delivery locations of
orders placed earlier and that succeed it in the a priori route. After the insertion of an order, any
delivery location that has become time infeasible, i.e., for which it is no longer possible to make
a delivery during its assigned time slot, is removed, and orders for these locations will be skipped
from that point on. After all orders in ω have been processed, i.e., have either been inserted or
skipped, the revenue of the scenario is simply the sum of the revenues of the orders that have been
inserted in the actual delivery route. The expected revenue for an a priori route is the sum of the
revenues of all possible scenarios for that a priori route weighted by the probability of occurrence of
the scenarios. Observe that (to keep operations simple) the delivery locations in the actual delivery
route are visited in the same order as in the a priori route.

The basic problem can be stated formally as a stochastic optimization problem as follows:

max
ρ,y

Eω(r(ρ, y, ω)),



with r(ρ, y, ω) denoting the revenue of having a priori route ρ and time slot assignment y and
customer order realization ω ∈ Ω. Note a customer order realization has two components: (1) the
set of customers that want to place an order, and (2) the sequence in which these customers will
place their order. Note too that some customer that want to place an order might be unable to
do so because of time slots and planning horizon constraints given the set of customers that have
already been accepted earlier.

Given our assumptions on the customer probabilities, we can write

Eω(r(ρ, y, ω)) =
∑
S⊂Vc

pS
∑

ω̄∈Perm(S)

pω̄r(ρ, y, ω̄)

=
∑
S⊂Vc

∏
i∈S

pi
∏

j∈Vc\S

(1− pj)
∑

ω̄∈Perm (S)

1

|S|!
r(ρ, y, ω̄),

with Vc the set of customer locations, S the set of customers willing to placing an order, and
Perm (S) denoting the set of all permutations of set S, indicating all possible sequences in which
the customers in set S place their order.

This can be viewed as a 2-stage stochastic program, where the a priori route ρ and time slot
assignment y are first stage decision, and the evaluation is the second stage “decision”. In the
second stage, there are no recourse options, so it is purely an evaluation stage. By viewing the
problem as a 2-stage stochastic program, it is natural to consider solution approaches for 2-stage
stochastic programs. We have chosen to pursue a sample average approximation algorithm.

3 Sample Average Approximation

As observed earlier, we can view the problem as a 2-stage stochastic program without recourse
decisions in the second stage, only first stage decision evaluation in the second stage. We have
implemented two variants of a sample average approximation (SAA) algorithm, one in which the
evaluation of first stage decision is sampling-based (as in the standard version of SAA), and one in
which the evaluation of first stage decision is done exactly, using a specialized dynamic programming
algorithm. The latter can be used for instances with up to 10 customer locations.

Even though we have shown above that it is not necessarily optimal for the a priori route to be
an optimal TSP tour through the customer locations, fixing the a priori route (to the optimal TSP
tour) simplifies the problem significantly as it reduce the problem to finding an optimal time slot
assignment. Therefore, in the preliminary computational results presented next, we consider both
the general and the restricted problem (with a priori route set to the TSP tour).

4 Computational Experiments

Instances with the following characteristics have been generated: depot location in centered or
corner of the region, a few large, many small, non-overlapping, or overlapping time slots, a small,
medium, and large planning horizon, sparse or dense sets of customer locations, and uniform or
clustered customer locations. Results for some of these instances can be found in Tables 1 and
2. Here, n denotes the number of customers, w the time slot width and T the planning horizon
length, the latter two both as fraction of the optimal TSP tour duration (i.e., with value 1.0 the TSP
tour duration). As expected, we see that using larger sample sizes results in better solutions, i.e.,
with higher expected revenues, but also in higher computation times. Interestingly, high-quality
solutions can already be achieved with relatively small sample sizes, e.g., N = 8.



Table 1: Some results for the SAA method with runs of M = 20 samples. Each row shows averages over 10 instances with n = 4
customers and centralized depot.

Exact Average Revenue Estimated Gap Gap Std Dev (α = 0.05) Running CPU (s)

n w T N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

c60 4 0.25 0.90 1.71 1.76 1.79 1.79 1.79 1.79 0.14 0.05 -0.04 -0.02 -0.01 -0.00 0.26 0.18 0.14 0.09 0.07 0.05 4.04 1.30 2.48 6.28 22.54 83.51

0.25 0.75 1.54 1.56 1.56 1.56 1.56 1.56 0.07 0.05 -0.00 0.03 0.03 0.01 0.23 0.16 0.11 0.08 0.05 0.04 10.87 0.93 1.87 4.77 16.28 55.99

0.25 0.60 1.30 1.30 1.31 1.31 1.31 1.31 -0.01 -0.03 0.00 0.01 0.01 -0.00 0.19 0.12 0.09 0.07 0.05 0.03 0.42 0.64 1.19 2.63 6.31 15.63

c60 4 0.125 0.90 1.71 1.72 1.73 1.73 1.73 1.73 0.07 0.09 0.05 0.02 0.03 0.02 0.27 0.18 0.12 0.09 0.06 0.05 17.80 1.67 2.95 9.56 45.33 290.87

0.125 0.75 1.51 1.54 1.55 1.55 1.55 1.55 0.14 0.08 0.05 -0.01 0.01 0.02 0.23 0.15 0.11 0.08 0.06 0.04 0.56 0.87 1.78 4.35 13.75 85.83

0.125 0.60 1.26 1.30 1.30 1.30 1.30 1.30 0.06 -0.00 0.01 0.00 -0.00 0.00 0.18 0.14 0.10 0.06 0.05 0.03 0.55 0.74 1.11 2.05 4.84 18.50

Table 2: Some results of the SAA method on the restricted problem of a fixed TSP route and with runs of M = 20 samples. Each
row shows averages over 10 instances with n customers and centralized depot.

Exact Average Revenue Estimated Gap Gap Std Dev (α = 0.05) Running CPU (s)

n w T N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

c60 4 0.25 0.90 1.74 1.75 1.75 1.75 1.75 1.75 0.10 0.05 -0.02 -0.00 0.00 0.00 0.26 0.18 0.14 0.09 0.07 0.04 0.51 0.51 0.88 1.53 2.87 5.78

0.25 0.75 1.54 1.54 1.54 1.54 1.54 1.54 0.07 0.05 -0.00 0.02 0.03 0.00 0.23 0.16 0.11 0.08 0.05 0.04 0.58 0.49 0.84 1.52 2.83 5.55

0.25 0.60 1.28 1.28 1.28 1.28 1.28 1.28 0.01 -0.01 0.02 0.02 0.02 0.00 0.18 0.12 0.08 0.07 0.05 0.03 0.30 0.44 0.78 1.39 2.55 5.07

c60 4 0.125 0.90 1.70 1.70 1.70 1.70 1.70 1.70 0.07 0.08 0.04 0.02 0.03 0.01 0.26 0.17 0.12 0.09 0.06 0.04 1.51 0.62 1.11 1.97 4.51 15.85

0.125 0.75 1.51 1.53 1.53 1.53 1.53 1.53 0.13 0.06 0.03 -0.03 0.00 0.00 0.22 0.15 0.11 0.09 0.06 0.04 0.33 0.56 0.99 1.73 3.30 12.00

0.125 0.60 1.27 1.27 1.27 1.27 1.27 1.27 0.05 0.02 0.02 0.01 0.01 0.01 0.18 0.14 0.10 0.06 0.04 0.03 0.31 0.49 0.85 1.46 2.79 5.96

c60 8 0.25 0.90 3.57 3.70 3.70 3.70 3.70 3.70 0.27 0.07 0.03 0.01 0.01 0.02 0.42 0.27 0.19 0.13 0.09 0.07 2.41 3.10 5.05 10.44 28.87 142.09

0.25 0.75 3.19 3.20 3.22 3.22 3.22 3.22 0.21 0.12 0.06 0.04 0.04 0.02 0.36 0.23 0.17 0.11 0.07 0.06 2.59 3.64 6.06 14.20 43.30 232.32

0.25 0.60 2.57 2.60 2.61 2.61 2.61 2.61 0.19 0.15 0.08 0.06 0.03 0.01 0.30 0.19 0.15 0.10 0.07 0.05 2.82 3.54 5.20 8.64 16.44 40.02

c60 8 0.125 0.90 3.59 3.62 3.63 3.63 3.63 3.63 0.20 0.12 0.16 0.03 0.03 0.03 0.39 0.28 0.18 0.14 0.09 0.06 2.43 3.42 6.75 14.94 64.80 667.15

0.125 0.75 3.06 3.16 3.18 3.18 3.18 3.18 0.32 0.19 0.12 0.06 0.04 0.03 0.32 0.23 0.18 0.11 0.08 0.06 2.69 3.87 7.10 17.29 59.38 650.39

0.125 0.60 2.53 2.55 2.59 2.59 2.59 2.59 0.29 0.20 0.09 0.03 0.04 0.02 0.28 0.21 0.12 0.10 0.07 0.05 2.83 3.76 5.88 11.25 31.05 197.40
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1 Introduction

In search of economies of scale container shipping lines are building bigger and bigger vessels.

Over the last decade the average capacity of container ships has doubled, and as of May 2017,

OOCL Hong Kong holds the world record for the largest containership, with a carrying capacity

at 21,413 TEU. That is a factor 2.6 increase compared with the ∼8,200 TEU record set in 2003. It

is expected that both the average and maximum size of containerships will grow over the coming

years.

For the carriers, these new mega-vessels provide large unit cost savings compared to older and

smaller vessels. However, a significant amount of the costs savings is attributed to the emergence

of slow steaming. Comparing modern mega-vessels with modern smaller vessels the cost savings

are significantly lower, and the benefits of the mega-vessels are thus set to diminish when older

medium-sized vessels are decommissioned. [3]

On the container terminal side, bigger vessels require more crane moves, and terminals are

under pressure to minimise turnaround times. Minimizing the turnaround time makes it possible

for the carriers to realise more of the savings potential that comes with the bigger vessels, as they

will not have to speed up to stay on schedule due to port delays. For the terminal, improving

productivity and minimising turnaround times helps to free up berth space, and clears up capacity

for other vessels. [2]



While mega-vessels may cut unit costs for carriers, the total system costs are not reduced.

Additional costs for ports, insurance companies and transport providers lead to higher total system

costs as vessel sizes grow. Also, the general network structure leads to more transhipments and

fewer direct services. Building even bigger vessels is therefore not a viable solution to deal with the

diminishing benefits of the mega-vessels. Instead, the industry must improve operational efficiency.

[4]

Acknowledging that improving terminal productivity is a shared goal between the carrier and

the terminal, the Flexible Ship Loading Problem (FSLP) investigates a collaboration between the

terminal and liner shipping companies. The liner provides the terminal with a stowage plan based

on container classes. The terminal then has the flexibility of determining the position of the specific

containers, as long as it adheres to the provided stowage plan. The terminal will assign containers

to specific slots on the vessel, while also scheduling transfer vehicles to retrieve the container from

the yard and deliver it in front of the crane. Doing so the terminal can better plan what container

to be loaded at which time, thus giving the terminal better conditions to minimise the turnaround

time for the vessel. The terminal also benefits from this collaboration as they can plan the use of

their container-handling equipment better.

The FSLP was first introduced in [1]. We extend this work and formulate a generalised set

cover model for the FSLP. The pricing problem is solved using multiple heuristics, if they all fail,

an exact MIP model is used. The new mathematical formulation is shown to provide substantially

better lower bounds.

2 The Flexible Ship Loading Problem

In the FSLP a liner vessel docked at a port is considered. The containers destined for the port

have been unloaded, and a set of containers are to be loaded on the ship. The liner provides the

terminal with a class-based stowage plan. A class-based stowage plan specifies that a container of a

specific class is to be loaded at a given position of the vessel. Here, a container class corresponds to

the dimensions of the container, properties (reefer or dry cargo container), destination and weight

of the container (e.g. light, medium or heavy). The exact weight of the container might not have

an impact on the feasibility of the stowage plan, and thus it is sufficient to consider weight classes.

The terminal is responsible for loading the vessel, following the stowage plan. The class-based

stowage plan leaves much freedom for the terminal which they wish to exploit, to optimise their

operations. The terminal might have multiple containers of the same type, and thus they want to

determine which container goes where on the vessel, to optimise their workload while ensuring the

vessel leaves as planned.

Consider a set of containers (C) to be loaded in positions on the ship (P) by a set of Quay Cranes



(QCs) (the set Q). The FSLP covers the assignment and scheduling of Transfer Vehicles (TVs)

(set S) to retrieve the containers from the yard and deliver in front of the Quay Crane (QC). We

assume that the loading order for each QC is determined beforehand, and is known. The crane

loading time is β, and thus there must be at least β time units between the loading of two successive

positions.

The contract between the terminal and the liner specifies that with the amount of containers

to be unloaded, the terminal is expected to finish loading the vessel at a given time - the Expected

Finishing Time (EFT). If this is not ensured the terminal must pay a penalty of γ for every time

unit the vessel is delayed. The terminal must pay the operators operating the TVs, for the time

they work. The time unit cost of this is α, and we assume this cost also includes equipment wear

and tear and maintenance. The terminal aims to minimise the sum of these two costs.

Let Ωq be the set of all possible assignments for QC q ∈ Q. With this, let the variable

yqa ∈ {0, 1} be a binary variable denoting if the QC q ∈ Q uses assignment a ∈ Qq. For the

assignments, we define bac as 1 if assignment a assigns container c to a position, and 0 otherwise.

Moreover, we define wa as the service length for assignment a, and z̄a as the finish time for

assignment a. Lastly, let the variable ∆EFT be the maximum tardiness of the operations. With

this, we can model the Flexible ship loading problem as seen below.

Min Z = α
∑
q∈Q

∑
a∈Ωq

wayqa + γ∆EFT (1)

Subject to:

∑
a∈Ωq

yqa = 1 ∀q ∈ Q (2)

∑
q∈Q

∑
a∈Ωq

bacyqa = 1 ∀c ∈ C (3)

∆EFT ≥
∑
a∈Ωq

z̄ayqa − EFT ∀q ∈ Q (4)

yqa ∈ {0, 1} ∀q ∈ Q, a ∈ Ωq (5)

∆EFT ≥ 0 (6)

The objective (1) function minimises the previous described cost. Constraint (2) ensure that

every crane is assigned exactly one assignment, and constraint (3) make sure that every container

is assigned to a position. The value of the variable ∆EFT is set in constraint (4), and (5) and (6)

defines the variables. We denote this model (constraint (1)-(6)) as the Master Problem (MP)

3 Solution Method & Preliminary Results

The model MP contains an exponential number of variables, and generating all the feasible assign-

ments is only possible for the smallest toy instances. Instead we will consider only a small subset of



all assignments, Ω̂q, and generate more assignments as they are needed. Using column generation

we can then prove LP-Optimality of the Master Problem.

Finding the variables to add to the RMP, entails solving a pricing problem. Here we aim to

find the variable with the most negative reduced cost, while ensuring the assignment is feasible for

the set Ω̂q. When there doesn’t exists any more negative reduced cost columns we have proved

that the current RMP solution is an LP-optimal solution for the MP.

Two pricing problem heuristics are used to find new variables to add. If both of these fail to

find any negative reduced cost variables, an exact MIP model is used. Also, a primal heuristic is

used to get feasible solutions.

Table 1 shows preliminary results for the column generation method and compares with a

compact formulation of the problem. Without branching, the column generation finds and proves

Integer optimality of 4 out of 6 instances. This is attributed to the primal heuristic. The exact

pricing method is by far the most time-consuming part of the column generation method.

Compact-FSLP CG-FSLP

|C| |CT | |Q| D xRoot xLB xUB t(s) xLB xUB tPrimal
Heu tPricing

Heu tMaster tPricing
Exact t(s)

60 10 2 LD 1530 1544 1665 10800† 1665 1665 0.5 76.7 3.5 17528.3 17609.0

60 10 2 S 1020 1020 1020 116 1020 1020 0.8 34.5 1.4 0.1 36.8

60 10 2 U 1657 1670 1790 10800† 1696.7 1710 5.7 948.2 22.9 17029.7 18006.6†

60 25 2 LD 2060 2234 2275 10800† 2250 2250 0.2 92.5 0.1 194.6 287.5

60 25 2 S 1360 1360 1430 10800† 1365 1370 1.7 565.6 7.5 15638.9 16213.6

60 25 2 U 1490 1490 1490 721 1490 1490 0.6 74.6 0.3 0.1 75.6

Table 1: Preliminary Computational Results. † means the computation was terminated due

to a timelimit
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1 Introduction

Hubs are employed in several network design contexts that involve flow interchange between nodes

and are often used in the design of, for example, airline networks, parcel delivery networks, and

telecommunication networks. Flow between nodes (referred to as access nodes) is routed via

hubs, each of which acts as a consolidator and forwarder. Hub location problems (HLP) are

very important class of problems in transportation and communication networks. Despite all

the attention in the literature on the study of HLPs, there has not been a significant amount of

attention paid to hub network survivability. This requirement is particularly relevant in electrical

and telecommunication networks that have a hub topology.

In this paper, we introduce a new problem, namely the uncapacitated 2-allocation p-hub median

problem (U2ApHMP) which is a modification well-known hub median problem which enables us

to generate a hub network that is able to survive access link failures. Survivability is a feature

of the U2ApHMP design and is an attempt to avoid severe costs of network disruptions. Then,

we develop an improved Benders decomposition method for the U2ApHMP. In our approach, we

address slow convergence of the method by some ‘core point’. We take advantage of these improved

cuts and enhance this approach by choosing better core points and generating stronger cuts. We

also come up with a more efficient approach for solving subproblems to generate cuts.



2 Problem Statement

We consider a complete digraph (N,A), where A is the set of all arcs, N = {1, 2, . . . , n} is the set

of nodes. Hubs are connected through a complete graph on the set of hubs, and non-hub nodes

are only connected to hubs. We suppose the triangular inequality holds. So, all flow must be

routed through at most two hubs. Thus, any path between i and j must contain three links, (i, k),

(k, l), and (l, j), where i and j are connected to hubs k and l respectively. In practice, the cost

of flow between different types of nodes has different cost coefficients: the collection coefficient χ

corresponds to flow from a non-hub to a hub, the distribution coefficient α corresponds to flow

from a hub to a non-hub, and the transfer coefficient δ corresponds to flow between hubs. Usually

α ≤ 1, χ ≥ α and δ ≥ α. The U2ApHMP is the problem of locating p hubs in N and allocating

each non-hub to exactly 2 hubs with minimum total cost of fulfilling flow demands.

Theorem 2.1. U2ApHMP is NP-hard, even when the location of hubs are fixed.

3 Benders Decomposition

Benders decomposition method is a partitioning algorithm applied to mixed integer programming

and nonlinear integer programming problems [1]. As an advantage, larger instances of problems

can be solved since master problem (MP) and subproblem (SP) are often more tractable than

the original problem. In each iteration of this method for U2ApHMP, the variables corresponding

to the set of hubs and connection of non-hubs to hubs are fixed. The SP problem is a routing

problem for n2 pairs of nodes, where the underlying network is defined by the fixed variables in

the MP. There are two issues with this decomposition: (i) slow convergence and a large number of

iterations, and (ii) the computational effort to solve n2 subproblems is very expensive. To tackle

these issues, we first develop a modification of Benders decomposition. For the second issue, we

model subproblems as minimum cost network flow problems to solve them more efficiently.

3.1 Accelerating the Benders Decomposition Approach

The optimal solution of SPs is not unique since the SP is degenerate. As a result, Benders cuts exist

for the MP, with different strengths. The strength of Benders cuts is dependent on the choice of

optimal solutions of SPs. Magnanti and Wong [4] proposed an acceleration of the Benders method,

in which a second LP is constructed from the dual of the subproblem to maximise a weighted

summation of the dual variables among optimal solutions. Let mik,mjl for k, l ∈ N be non-negative

real parameters and m0 be a real parameter. For (m0,mij) = (m0,mi1, . . . ,min,mj1, . . . ,mjn),

we consider the following function as the objective function of SPs to generate cuts:

m0 fij −
∑
k∈N

mikuijk −
∑
l∈N

mjlvijl (1)



In experiments, we find an appropriate (m0,m) for stronger cuts and fewer required iterations [5].

3.2 Solving Subproblems BDSij Efficiently

Instead of using the simplex method to solve n2 SPs in each iterations, we convert the SPs into a

network routing problem and use the minimum cost network flow problem to obtain Benders cuts

more efficiently. In our approach, we (i) avoid numerical instability, and (ii) solve the subproblems

much more efficiently, so that generating n2 cuts is not a hindrance to obtaining tight cuts for the

MP formulation, as already observed in [2].

4 Computational Results

Our computational experiments were carried out on three well-known datasets in the HLP: the

Civil Aeronautics Board (CAB) dataset [6], the Australia Post dataset (AP) [3], and Turkish Cargo

Delivery dataset [7]. We observe that the modified Benders decomposition method is very efficient

for solving U2ApHMP, and that our choice of core points significantly improves the convergence

rate. Additionally, it also reduces the number of iterations required.

(a) Bns-SPX

(b) Bns-MCNF (c) m-Bns-MCNF

Figure 1: The portion of computational efforts for solving SPs and MP for 20 ≤ n ≤ 50 by methods

We perform experiments with three methods: (i) Bns-SPX which is the modified Benders decom-

position, where n2 SPs are solved using the simplex method, (ii) Bns-MCNF which is the modified

Benders decomposition, where SPs are solved using improved solution approach, and (iii) m-Bns-

MCNF which is Bns-MCNF where the objection function is defined by (1). As Figure 1 shows, our



approach, not only reduced the computational burden of solving SPs, but also required less com-

putational efforts for MPs on average, due to generation of stronger cuts. The modified Benders

decomposition together with efficient method of solving subproblems significantly improves our

ability to tackle large instances of U2ApHMP. Note that m-Bns-MCNF outperforms Bns-MCNF in

average computational effort or in the best solution gap for large instances. Also, as Figure 2

shows, our approach outperforms any other approach, including branch and bound (B&B) and the

built-in Benders method in Cplex (Bns-Auto).
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Figure 2: Comparison of average solution times on U2ApHMP with respect to the number of nodes
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1 Introduction

We introduce and study a new variant of the vehicle routing problem, which we call the pickup and

delivery problem with online transfers (PDPOT), motivated by an innovative passenger transporta-

tion concept involving self-driving vehicles (see e.g. http://www.next-future-mobility.com/ ).

These vehicles are designed in a way that they can couple/decouple while en-route and transfer

passengers seamlessly towards more efficient capacity utilization and traffic management. Due

to the potential reduction in fuel/energy consumption and travel costs, there are studies in the

vehicle routing literature taking transfer opportunities into account within their framework. The

most closely related vehicle routing problem to the one we consider in this study is the pick-up and

delivery problem with transfers (see e.g. [1]). However, the main difference and perhaps the most

challenging aspect of the PDPOT is that when two or more vehicles couple, the passengers may

transfer from one vehicle to another during the time the vehicles are traveling together as a single

http://www.next-future-mobility.com/


vehicle. Among the major contributions of our study are: (1) the development of an optimization

based approach to solve a complex vehicle routing problem arising in an on-demand transporta-

tion system involving autonomous shared vehicles, and (2) we aim to analyze the benefits of online

transfers in such an environment.

2 Problem Definition

Now we formally introduce the pickup and delivery problem with online transfers (PDPOT).

Consider a road network defined by the following sets of types of locations: P : locations with

a parking lot (i.e. where vehicles are allowed to wait), S: location with a short stop possibility

(locations where the vehicles are allowed to stop shortly, and possibly pick up/drop-off passengers),

and I: all other road junctions (locations where stops are not allowed). This means that the total

set of locations is R = P ∪S∪I. Each location has at least one link (i.e. road) to another location.

And each location is reachable from another location by a number of consecutive links. The set of

links is denoted by E ⊆ R×R and for each link (i, j) ∈ E we have a fixed travel time τi,j .

Let K and V denote a set of passengers and the set of vehicles, respectively. Each passenger

k ∈ K is associated with an origin ok ∈ OK at which he wants to be picked up after ek, and a

destination dk ∈ DK which he wants to reach before lk. Similarly, each vehicle v ∈ V has an origin

ov ∈ OV where it starts service at ev and a destination dv ∈ DV where the vehicle should end its

route at lv. We assume that the fleet consists of identical vehicles, each having a capacity for Q

passengers. All origins and destinations of passengers and vehicles are among the locations in R

(i.e., OK ⊆ R, DK ⊆ R, OV ⊆ R and DV ⊆ R). To formulate this problem, we discretize time

into a set T of time points and define a time-expanded version of the original road network.

The aim is to find a set of routes for the homogeneous fleet of vehicles that will transport all

passengers from their origins to their destinations within their respective time windows at minimum

total cost, which is determined mainly by two components: (1) total energy consumption of the

vehicles, (2) total convenience for the passengers. We assume that when two or more vehicles

couple and travel together as a single vehicle, the energy consumption is reduced compared to the

case where they travel separately. Besides saving energy, this coupling and decoupling mechanism

allows for online passenger transfers, which may also lead to additional savings due to the potential

decrease in the overall travel distance.

We consider two types of transfers: online and offline, the former corresponding to the transfers

that take place while the vehicles are coupled, whereas the latter refers to the transfers in which

a passenger is dropped off by a vehicle and later picked up by another one (possibly after waiting

for a while). We assume that the vehicles are not allowed to (1) stop at road intersections, and (2)

wait longer than one unit of time at stops.



As mentioned earlier, the objective function includes routing cost and passenger (in)convenience.

Routing cost: For traversing an arc a the travel cost for a vehicle is cda. However, if multiple

vehicles traverse the arc a in a platoon, only the first vehicle has travel cost cda, and all other

connected vehicles have travel cost (1− η)cda. This means that if n > 0 vehicles traverse the arc a,

the total travel cost is ncda − η(n− 1)cda.

Passenger (in)convenience: We assume that each passenger wants to reach his destination as

soon as possible with as few outside transfers as possible. Therefore we introduce a reward cearly

for each minute a passenger arrives earlier than planned, and a fixed penalty cout per outside

transfer a passenger has to make (i.e. inside transfers are not penalized). Note that it may not

be possible to serve all passenger requests. Therefore, we also introduce a fixed penalty creject for

each rejected passenger.

3 Methodology

Our initial goal is to develop an efficient solution methodology for the PDPOT and test it on

instances of reasonable size. Later, we may also work on different but related problems (like the

dynamic variant). First we proposed an arc-based and a path-based formulation for the problem

which is an extension of a multi-commodity network flow model. For the path-based formulation,

we developed a branch-price-and-cut methodology. At each pricing iteration, vehicle and/or pas-

senger paths are generated, and in the restricted master problem (RMP), the paths are linked

such that passengers can only follow a path if there are vehicles traversing each arc on this path

and if the transfer restrictions are met. Some important issues in tuning the methodology are the

following: (i) High symmetry in the vehicle paths. (ii) The large number of pricing problems. It

is not trivial how many and of which type (vehicle or passenger pricing problems) to solve before

updating the duals by solving the linear relaxation of the RMP again. For example, if the duals

are not updated in between generating vehicle paths, a lot of similar columns will be generated for

different vehicles. (iii) Developing a warm start feasible solution. To find a starting solution, we

may make use of an existing methodology for the Pickup and Delivery Problem with Transfers like

[1]. However, this requires some transformation processes as we are making use of a road network

based time expanded graph.

4 Illustrative Example

To give an idea about the potential benefit that can be achieved using en-route transfer, we provide

a small illustrative example in Figure 1. In this example we have two vehicles with at least two

seats. The first vehicle departs from location v1 and must end its operations at location v5. The

second vehicle departs from location v2 and ends its operations at location v6. We have four



v1 v2

v3

v4

v5 v6

a b

c

d e

(a) Example Network

Time step

O. 1 2 3 D.

Veh. 1 v1 a c d v5

Veh. 2 v2 b c e v6

Pass. 1 v1 a c d v5

Pass. 2 v1 a c e v6

Pass. 3 v2 b c d v6

Pass. 4 v2 b c e v6

(b) En-route transfers on c

Time step

O. 1 2 3 4 D.

Veh. 1 v1 a v3 c d v5

Veh. 2 v2 b v3 c e v6

Pass. 1 v1 a v3 c d v5

Pass. 2 v1 a v3 c e v6

Pass. 3 v2 b v3 c d v6

Pass. 4 v2 b v3 c e v6

(c) External transfers at v3

Figure 1: Illustrative example network with two example schedules where the schedule with an

en-route transfer at arc c is shorter than the schedule with an external transfer at location v3.

passengers: two with location v1 as their origin, and two with location v2 as their origin. At

both origins, one of the passengers has location v5 as the destination while the other has v6 as

the destination. When en-route transfers are allowed, the two vehicles can couple at arc c and

the passengers can make their transfer while the vehicle is moving. In the case where no en-route

transfers are allowed, the two vehicle must make a stop at location v3 (or v4) so that the passengers

can transfer. As the vehicles have to make an extra stop compared to the first case, it is clear that

this solution takes more time than the solution with en-route transfers.

5 Final remarks

We address a new vehicle routing problem variant within the context of an on-demand public

transportation system involving self-driving pods that can couple/decouple to facilitate online

passenger transfers. The main motivation behind this work is to study a complex vehicle routing

problem which is not only interesting from a theoretical (and a methodological) point of view, but

can also provide useful insights into the next generation of public transport. To solve the PDPOT

and to analyze the benefits of online transfers in a pickup and delivery setting, we propose and

implement a branch-cut-and-price algorithm.
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1 Introduction 

In Japanese steel industry, almost all raw materials such as coal and iron ore are imported via maritime 

transportation. As we spend huge costs on the maritime transportation, it is highly required to reduce 

the maritime transportation costs by solving ship routing problems.  

While the mathematical structure of the ship routing problem is similar to that of a vehicle routing 

problem (VRP), there are some differences between the both problems. For example, in a VRP, 

vehicles such as trucks can be mass-produced. Thus, we can ignore the differences by individual 

vehicles. On the other hand, in a ship routing problem, we have to consider the different characteristics 

of individual vessels. Moreover, while vehicles in a VRP can park near the destinations almost anytime, 

vessels in a ship routing problem are impossible to berth while other vessels occupy the berth.  

The first difference of the ship routing problems has been studied widely for recent two decades. 

Christiansen et al. [1] have provided a comprehensive survey on the topic. However, there is little 

published information on the second difference. Pang et al. [2] introduced a set partitioning modeling 

and a column generation approach to avoid berthing time clash in the ship routing problem. They 

defined the master problem that prohibits berthing time clash. Then, by heuristically solving the 

constraint shortest path problem (CSPP) constructed on the time-space network, they found a shipping 

plan considering berthing time clash avoidance. 

In this paper, we consider a ship routing problem for the raw materials such as coal and iron ore. 

Comparing our model with the model of Pang et al. [2], we consider not only berthing time clash 

avoidance but also minimizing the demurrage. The demurrage means the detention of a vessel during 

loading or unloading beyond the schedule time of departure. When the demurrage occurs, we have to 

pay the extra fee in proportion to the time. Since the model of Pang et al. [2] targeted for small-size 

feeder vessels whose demurrage penalty is cheap, they did not have to consider the cost of demurrage. 

However, since we target for huge vessels with the weight of a load more than 200 kilotons whose 
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demurrage penalty is extremely high, we must take into account of minimizing the cost of demurrage. 

A key concept of this paper is that we contrive a new structure of the time-space network which 

naturally minimizes the demurrage by solving a constrained shortest path problem.  

As another difference, because we target transport problems of raw materials such as ore and coal 

which are imported from distant loading ports, we assume that every vessel leaving the loading ports 

unloads all raw materials at the unloading ports.  

Table 1: An example of order requests with multiple ports unloading 

 

Table 1 shows a simple example of the order requests considering with multiple ports unloading. As 

shown in the Table 1, the order request 𝑏1 is a simple request which loads 90 kilotons of raw materials 

at the port 𝑘1 and unloads 90 kilotons at the port 𝑘3, whereas the order request 𝑏2 is a more complex 

request, because it includes multiple ports unloading, which loads 210 kilotons and unloads 90 kilotons 

at the port 𝑘3, 120 kilotons at the port 𝑘4. In the Japanese steel industry, since the raw materials are 

transported from abroad, the distance between loading ports and unloading ports is far enough. For this 

reason, we assume that the vessels which depart from the loading port must unload all the raw 

materials at the unloading port before the next cruise which goes to a new loading port. Even if such 

the assumptions are imposed, it does not affect the optimality of the problems. 

The problem described above can be modeled as a set partitioning problem having constraints on 

berthing clash avoidance and order requests. In the following sections, we describe the master problem 

and the pricing problem for the set partitioning problem. 

2 Master problem 
As described in Pang et al. [2], we divide the planning horizon [0, 𝑇max] into discrete time intervals and 

assume that a vessel can only at any location at the beginning of the interval. On the set partitioning 

formulation for the scheduling problem, the master problem is described as follows: 

minimize ∑ ∑ 𝑐𝑅
𝑣𝑋𝑅

𝑣

𝑅∈Ω𝑣𝑣∈𝑉

  

(1)   

subject to ∑ ∑ 𝛿𝑏𝑅
𝑣 𝑋𝑅

𝑣

𝑅∈Ω𝑣𝑣∈𝑉

= 1 (∀𝑏 ∈ 𝐵),  
(2)   

 ∑ 𝑋𝑅
𝑣 = 1  (∀𝑣 ∈ 𝑉)

𝑅∈Ω𝑣

,  
(3)   

 ∑ ∑ 𝜎𝜌𝑔𝑅
𝑣 𝑋𝑅

𝑣 ≤ 1 

𝑅∈Ω𝑣

 

𝑣∈𝑉

(∀𝜌 ∈ 𝐿, ∀𝑔 ∈ 𝑈),  
(4)   

 𝑋𝑅
𝑣 ∈ {0,1} (∀𝑣 ∈ 𝑉, 𝑅 ∈ Ω𝑣),  (5)   

where 𝑉 is the set of vessels, 𝛺𝑣  is the set of feasible routes for a vessel 𝑣 ∈ 𝑉, 𝑐𝑅
𝑣  is the cost of a 

vessel 𝑣 on the route 𝑅 ∈ 𝛺𝑣 , 𝑋𝑅
𝑣  is a binary variable and equal to 1 if a vessel 𝑣 selects the route 

𝑅 ∈ 𝛺𝑣 otherwise 0, 𝐵 is the set of orders, 𝛿𝑏𝑅
𝑣  is 1 if order 𝑏 ∈ 𝐵 is served on route 𝑅 by a vessel 𝑣, 

and 𝛿𝑏𝑅
𝑣  is 0 otherwise, 𝐿  is the set of ports, 𝑈  is the set of discrete time intervals obtained by 

discretizing [0, 𝑇max], and 𝜎𝜌𝑔𝑅
𝑣  is 1 if  a vessel 𝑣 ∈ 𝑉 on route 𝑅 occupies the port 𝜌 ∈ 𝐿 at time period 

𝑔 ∈ 𝑈. Objective function (1) denotes the total travel cost of the vessels. Constraint (2) ensures that 

each order is handled only once. Constraint (3) ensures that each vessel must take exactly one route. 

Order name Loading port Unloading port Unload amount at each port



Constraint (4) states that each loading or unloading port is occupied by less than one vessel during any 

time interval. Constraint (5) defines the binary variables. 

Since the master problem (1)–(5) has an exponential number of route columns, we use a column 

generation approach that is commonly used to solve the linear relaxation problem. As described in [2], 

the expression of the reduced cost 𝑐�̅�
𝑣 is as 

 
𝑐�̅�

𝑣 = 𝑐𝑅
𝑣 − ∑ 𝜋𝑏

′ 𝛿𝑏𝑅
𝑣

𝑏∈𝐵

− 𝜋𝑣
′′ + ∑ ∑ 𝜋𝜌𝑔

′′′ 𝜎𝜌𝑔𝑅
𝑣 ,

𝑔∈𝑈

 

𝜌∈𝐿

  

(6)  

where 𝜋𝑏
′ (𝑏 ∈ 𝐵), 𝜋𝑣

′′(𝑣 ∈ 𝑉), and  𝜋𝜌𝑡
′′′ ≥ 0 (𝜌 ∈ 𝐿, 𝑔 ∈ 𝑈) are the dual variables associated with the 

constraints (2)–(4). Then, we can generate a new route for the master problem (1)–(5) by determining 

that the value min𝑣∈𝑉 {𝑐�̅�
𝑣: 𝑣 ∈ 𝑉, 𝑅 ∈ 𝛺𝑣}  is negative. This problem can be decomposed into the 

constrained shortest path problems (CSPP) for individual vessels. In the following section, we discuss 

about a new structure of the CSPP. 

3 Pricing problem 

Let �̅�𝑣 = (𝑁𝑣 , �̅�𝑣) be a directed network modeling a shortest path problem for each vessel 𝑣 ∈ 𝑉. In 

order to represent the demurrage in the network, we define two types of node for each port indexed by 

ℎ ∈ {−, +}. Nodes indexed by “−” represents the arrival time and the demurrage of the vessel and 

ones indexed by “ + ” represents the departure time of the vessel. Moreover, to express the multiple 

ports unloading, we define the index 𝑘 ∈ 𝐿 which represents the current unloading port, and the set  

𝐾 ⊂ 𝐿 which represents the set of unloading ports that can be called. The set of nodes 𝑁𝑣 is described 

as 

𝑁𝑣 = {𝑠𝑣 , 𝑡𝑣} ∪ (⋃ {𝐿𝑏,ℎ
𝑔

: 𝑏 ∈ 𝐵, ℎ ∈ {−, +}} ∪ {𝐷𝑏,ℎ
𝑔,𝑘,𝐾

: 𝑏 ∈ 𝐵, ℎ ∈ {−, +}, 𝑘 ∈ 𝐿, 𝐾 ⊂ 𝐿}

𝑔∈𝑈

), 

where 𝑠𝑣  is the source node, 𝑡𝑣 is the sink node for each vessel 𝑣 ∈ 𝑉, 𝐿𝑏,ℎ
𝑔

 is the node corresponding to 

arrival or departure of the loading port of order 𝑏  at time period 𝑔 , and 𝐷𝑏,ℎ
𝑔,𝑘,𝐾

 is the node 

corresponding to arrival or departure of the unloading port 𝑘 of the callable port sets 𝐾 of order 𝑏 at 

time period 𝑔. Note that since the loading port and unloading port are completely separated in the steel 

industry, we represented them as the different nodes. Next, we define arcs on the nodes considering the 

constraints for the order requests, and port constraints. The set of arcs �̅�𝑣 is described as follows: 

�̅�𝑣
1 = {(𝑠𝑣 , 𝐿𝑏,−

𝑔
) ∶ 𝑏 ∈ 𝐵;  𝑔 = 𝑇𝑠𝑣,𝐿𝑝,−

𝑔  } , 

�̅�𝑣
2 = {(𝐿𝑏,−

𝑔
, 𝐿𝑏,−

𝑔+1
) ∶ 𝑏 ∈ 𝐵; 𝑔 ∈ 𝑈 }, 

�̅�𝑣
3 = {(𝐿𝑏,−

𝑓
, 𝐿𝑏,+

𝑔
) ∶ 𝑏 ∈ 𝐵; 𝑓 ∈ 𝑈 ;  𝑔 = 𝑓 + 𝜏

𝐿𝑏,−
𝑓

,𝐿𝑏,+
𝑔 } , 

�̅�𝑣
4 = {(𝐿𝑏,+

𝑓
, 𝐷𝑏,−

𝑔,𝑘,𝐾
) ∶ 𝑏 ∈ 𝐵; 𝑓 ∈ 𝑈 ;  𝑔 = 𝑓 + 𝑇

𝐿𝑏,+
𝑓

,𝐷𝑏,−
𝑔,𝑘,𝐾} , 

�̅�𝑣
5 = {(𝐷𝑏,−

𝑔,𝑘,𝐾
, 𝐷𝑏,−

𝑔+1,𝑘,𝐾
) ∶ 𝑏 ∈ 𝐵; 𝑔 ∈ 𝑈}, 

�̅�𝑣
6 = {(𝐷𝑏,−

𝑓,𝑘,𝐾
, 𝐷𝑏,+

𝑔,𝑘,𝐾
) ∶ 𝑏 ∈ 𝐵; 𝑓 ∈ 𝑈;  𝑔 = 𝑓 + 𝜏

𝐷𝑏,−
𝑓,𝑘,𝐾

,𝐷𝑏,+
𝑔,𝑘,𝐾} , 

�̅�𝑣
7 = {(𝐷𝑏,+

𝑓,𝑘,𝐾
, 𝐷𝑏,−

𝑔,𝑚,𝑀
) ∶ 𝑏 ∈ 𝐵; 𝑓 ∈ 𝑈;  𝑔 = 𝑓 + 𝑇

𝐷𝑏,+
𝑓,𝑘,𝐾

,𝐷𝑏,−
𝑔,𝑚,𝑀; 𝑚 ∈ 𝐿;  𝑀 ⊂ 𝐿} , 

�̅�𝑣
8 = {(𝐷𝑏,+

𝑓,𝑘,𝐾
, 𝐿𝑞,−

𝑔
) ∶ 𝑏 ∈ 𝐵; 𝑓 ∈ 𝑈;  𝑔 = 𝑓 + 𝑇

𝐷𝑏,+
𝑓,𝑘,𝐾

,𝐿𝑞,−
𝑔 ;  𝑞 ∈ 𝐵\{𝑏}  } , 

�̅�𝑣
9 = {(𝐷𝑏,+

𝑔,𝑘,𝐾
, 𝑡𝑣) ∶ 𝑏 ∈ 𝐵; 𝑔 ∈ 𝑈 }, 

�̅�𝑣 = �̅�𝑣
1 ∪ �̅�𝑣

2 ∪ �̅�𝑣
3 ∪ �̅�𝑣

4 ∪ �̅�𝑣
5 ∪ �̅�𝑣

6 ∪ �̅�𝑣
7 ∪ �̅�𝑣

8 ∪ �̅�𝑣
9 , 



where 𝑇𝑖𝑗 represents the discrete cruise time from a departure node 𝑖 to an arrival node 𝑗, and 𝜏𝑖𝑗  means 

the discrete loading or unloading time from an arrival node 𝑖 to a departure node 𝑗. For 𝑖, 𝑗 ∈ 𝑁𝑣 , arc 

(𝑖, 𝑗) ∈ �̅�𝑣 means that a vessel can be moved from the node 𝑖 to the node 𝑗. In order to match the 

objective value between the optimal solution of the CSPP and the shortest 𝑠𝑣-𝑡𝑣 path on the time-space 

network, we set 𝑓(∙) as the cost function for each arcs of the time-space network defined as follows: 

𝑓(�̅�𝑣
1), 𝑓(�̅�𝑣

8) = 𝐶𝑖𝑗𝑣 − 𝜋𝑏
′ , 

𝑓(�̅�𝑣
2), 𝑓(�̅�𝑣

5) = 𝑑𝜌𝑣
𝑔

 

𝑓(�̅�𝑣
3), 𝑓(�̅�𝑣

6) = ∑
�̃�=𝑔

𝑔+𝜏𝑖𝑗
𝜋𝜌�̃�

′′′ ,  

𝑓(�̅�𝑣
4), 𝑓(�̅�𝑣

7), 𝑓(�̅�𝑣
9) = 𝐶𝑖𝑗𝑣 , 

where 𝐶𝑖𝑗𝑣 represents the transport cost from node 𝑖 to 𝑗 and 𝑑𝜌𝑣
𝑔

 represents the demurrage cost for a 

vessel 𝑣 ∈ 𝑉 at a port 𝜌 ∈ 𝐿 at time period 𝑔. 

   

Figure 1: Time-space network with consideration of demurrage 

Figure 1 shows an example of the time-space network with a consideration of berthing clash 

avoidance constraints and minimizing demurrage. On Figure 1, the thick red lines show a feasible 𝑠𝑣-𝑡𝑣 

path for a vessel. In the path, an arc at the node for arrival loading port from time period 𝑔1 to 𝑔2  

represents the demurrage. The key point is that we design the arcs between two arrival nodes in order 

to consider the demurrage. By designing arcs described above, we can naturally obtain and clearly 

recognize the optimal solution of the shortest path problem including the demurrage. This shortest path 

problem becomes a CSPP because a route on the time-space network has a possibility that the route 

may take the same order twice or more depending on the problems. The solution framework of the 

dynamic programming for this CPSS and numerical results will be reported at the conference. 
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1 Introduction

A transport network with many sources and sinks can be very expensive to operate if all shipments

are transported directly from the source locations to the destination locations. To benefit from

economies of scale, a number of hubs are often established to act as transshipment nodes that can

handle the passing flow at a reduced cost. Hub nodes are used to sort, consolidate, and redistribute

flows and their main purpose is to achieve economies of scale. While the construction and operation

of hubs and the resulting detours lead to extra costs, the bundling of flows decreases the overall

cost of operation. The hub location problem optimizes the location of hubs and the allocation

of origin and destination nodes to the selected hubs in order to route the flow from the origin

nodes to the corresponding destinations while minimizing the total cost of the network. The hub

location problem arises in several important applications including telecommunication systems,

airline services, postal delivery services, and public transportation, among several others.

Hub location problems are part of the strategic planning decisions and thus the exact oper-

ational data of the network is usually unknown and can only be approximated at the time the

network is planned. One main source of uncertainty are the stochastic shipping volumes. As hub

locations are planned well in advance of the actual operation of the network, only statistical data

about shipment sizes are typically available. The usual approach of using average values makes it



difficult to give a correct estimate of the necessary hub sizes and the optimal allocation and flow

routing. Thus it is often necessary to include uncertainty when deciding the location of hubs and

the allocation of nodes to the hubs.

This extended abstract considers the single allocation hub location problem (SAHLP) with

demand uncertainty. The single allocation problem denotes the case where each node is assigned

to a single hub. We also distinguish between fixed and variable allocations. For fixed allocation, the

assignments of the spokes (i.e. non-hub nodes) to the hubs are considered as part of the strategic

decisions and therefore are first-stage decisions and remain fixed when uncertainty is realized.

This problem variant was already introduced by Alumur et al. [1]. Alternatively, for variable

allocation, the assignments of the spokes to the hubs are more flexible and can be adjusted when

the uncertainty is realized and thus the allocation decisions are considered as second-stage decisions

which is in line with real-world practices where the hubs are chosen before knowing the demand

while the allocations are determined/altered when the actual demand is realized. Prior work

has addressed the fixed allocation case, while we introduce the variable allocation stochastic hub

location problem and propose a computationally efficient solution approach based on exploiting

the problem formulation using cutting planes.

In Section 2, we propose a model for hub location problems with variable allocation. Further,

we show how to reformulate the problem in order to solve it computationally faster. For a more

detailed description of our work, please confer our preprint [2].

2 Variable Allocation in Hub Location

Models with fixed allocation assume that the allocation of the spokes to the hubs cannot be changed

when the demand is realized. Alternatively, this section considers the variable allocation problem

where the hubs are chosen before knowing the actual demand while the allocation is determined

when the actual demand is realized. The advantage of taking variable allocations into account is

illustrated in two examples shown in Figures 1. Each subfigure shows the choice of the hubs and

the allocation from the spokes to the hubs for an example of the capacitated hub location problem.

Figures 1a show the solution of the fixed allocation for a case with 5 scenarios. For each of these

scenarios the individual spoke allocations are displayed in Figures 1b–1f resulting in an overall

decrease of 2.0% in the objective function value. We observe in this examples that different hubs

are chosen when variable allocation is used compared to fixed allocation.

The stochastic SAHLP with variable allocation is formulated as a two-stage stochastic program

with recourse. The first-stage decisions are the location of the hubs to be opened while the second-

stage decisions are the optimal allocation of the spoke nodes to the hub nodes as well as the routing

of the flows. To formulate the deterministic equivalent formulation of this two-stage stochastic
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(f) Variable Allocations for Sce-

nario 5.

Figure 1: Fixed and Variable Allocations for a 40 node instance. The area of each node is propor-

tional to its outgoing flow.

program with recourse, we distinguish the hub selection variables from the allocation variables.

Let N be set of nodes. The selection variables are defined as the binary variables zk, to indicate

whether a hub is located at node k ∈ N or not. The allocation variables are defined as the binary

variables xsik, to indicate whether node i ∈ N is allocated to a hub located at node k ∈ N under

scenario s of a finite set S of scenarios occurring with probability ps. The deterministic equivalent

problem is then formulated as

DEF : min
∑
k∈N

fkzk +
∑
s∈S

ps
∑

i,k∈N
i 6=k

dik (
∑
j∈N

ws
ij +

∑
i∈N

ws
ij)x

s
ik+

∑
s∈S

ps
∑
i,j∈N

αws
ij

(
dijzizj +

∑
`∈N
j 6=`

di`zix
s
j` +

∑
k∈N
i 6=k

dkjx
s
ikzj +

∑
k,`∈N
i6=k,j 6=`

dk`x
s
ikx

s
j`

)
(1)

s.t.
∑
k∈N
i 6=k

xsik = 1− zi i ∈ N, s ∈ S (2)

xsik ≤ zk i, k ∈ N, i 6= k, s ∈ S (3)

zi ∈ {0, 1} ∀i ∈ N (4)

xsik ∈ {0, 1} ∀i, k ∈ N, s ∈ S. (5)

where dij are the distances between nodes i and j and ws
ij is the amount of flow to be transported

from node i to node j in scenario s ∈ S.

Due to the quadratic structure of DEF, a natural way to tackle this problem is to linearized it



and solving the resulting MILPs using a commercial solver. However, it is practically impossible

to solve these MILPs for large-size instances in reasonable computational times.

Thus, we propose a MINLP reformulation of problem DEF as follows

REF : min
∑
k∈N

fkzk +
∑
s∈S

ps
∑

i,k∈N
i 6=k

dik (
∑
j∈N

ws
ij +

∑
i∈N

ws
ij)x

s
ik+

∑
s∈S

ps
∑
i,j∈N

αws
ij

(
usiizi +

∑
k∈N
k 6=i

usikx
s
ik + vsijzj +

∑
`∈N
` 6=j

vsi`x
s
j`

)
(6)

s.t. (2)− (5)

usik + vsi` ≥ dk` i, k, ` ∈ N, s ∈ S (7)

u, v unrestricted, (8)

where the quadratic part of the objective function has been replaced by (6), (7), and (8).

By projecting out the variables u and v, REF can be decomposed as

MP : min
∑
k∈N

fkzk +
∑
s∈S

∑
i,k∈N
i 6=k

ps dik (
∑
j∈N

ws
ij +

∑
i∈N

ws
ij)x

s
ik +

∑
s∈S

∑
i∈N

psαη
s
i (9)

s.t. (2)− (5)

ηsi ≥ ψs
i (z, x) i ∈ N, s ∈ S, (10)

where for each i ∈ N , and s ∈ S

PSω
i (z̄, x̄) : ψs

i (z̄, x̄) = max
∑
j∈N

ws
ij

(
usiiz̄i +

∑
k∈N
k 6=i

usikx̄
s
ik + vsij z̄j +

∑
`∈N
` 6=j

vsi`x̄
s
j`

)
(11)

s.t. usik + vsi` ≤ dk` k, ` ∈ N (12)

u, v unrestricted. (13)

Since MPv is convex, and due to the fact that its objective function is linear, then the optimal

solution of MP always lies on the boundary of the convex hull of the feasible set and therefore

a cutting-plane approach can be used to solve the problem to optimality. More precisely, for

a feasible solution (z̄, x̄) of MP the optimal solutions of each subproblem PSω
i (z̄, x̄) provides an

subgradient cut for MP. We prove that the subproblems PSω
i (z̄, x̄) can be solved efficiently. Thus,

a fast cut-generating procedure is integrated in the branch-and-cut framework for solving MP.

Extensive computational results on the single allocation hub location problem and two of its

variants, the capacitated case and the single allocation p-median problem are conducted on AP

instances with up to 200 nodes. The proposed cutting plane approach outperforms the direct

solution of the problem using the state-of-the-art solver GUROBI. A detailed discussion on the

computational results can be found in our preprint [2].
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Introduction and Problem Formulation

E-retail continues to grow apace in the US and around the world. According to a recent report from

eMarketer, e-retail makes up roughly 10% of all US retail sales, with Amazon alone accounting for

almost half of this number. Within this sector, competition is fierce and companies continuously

search for ways to deliver goods to customers faster and more economically. A popular emerging

service is same-day delivery (SDD), where customers receive their orders the same day the orders

are placed; in a 2017 survey of 500 North American retailers by BRP consulting, 51% claimed to

offer some form of SDD, up from 16% reported in 2016.

Over the past few years, the transportation and logistics research community has proposed and

studied operational policies for SDD distribution systems under a variety of models and assump-

tions, e.g. [3, 4, 5, 7]. The models considered therein typically assume a fixed SDD system design,

including service area, delivery vehicle fleet size, time the service is offered, etc., and perform a

detailed analysis, optimization and/or simulation of operating policies. In contrast, the research

community has to our knowledge not focused on the SDD distribution system’s tactical design

variables: How large should the SDD vehicle fleet be? How late in the day should SDD be offered

to customers? How big should the service area be? We are not aware of any research tackling these

and other important tactical-level questions; this paper’s goal is to begin addressing this gap.

Our model captures the “average” behavior of a single SDD dispatch facility over an operating

day, where orders are packed for final delivery and dispatched on delivery vehicles. As in most

e-retail settings, we assume orders are customer-specific and can only be dispatched after they

appear; we also assume a common delivery deadline, e.g. the end of the business day, rather

than the order-specific deadlines more common in restaurant delivery. As SDD has tight delivery

deadlines and comparatively low order volume, time (not vehicle capacity) is the constraining

∗corresponding author, atoriello@isye.gatech.edu



resource, so we focus more on timing and route duration and less on package size, weight and

capacity.

The model has the following components. A single depot with m vehicles provides SDD service

to a service region with area A. SDD orders appear at a constant rate of λ per unit of area and

time in random locations throughout the service region, starting at time 0 and ending at time N ,

the latest time an SDD order can be placed. The deliveries can start any time after 0 and must

finish (with all orders delivered and vehicles back at the depot) by an operating deadline T > N .

Without loss of generality, we take A = λ = 1, so that N is the total number of SDD orders to

deliver. We also assume here for simplicity of exposition that the service region is not subdivided

and dispatches serve the entire region. Our model can have many reasonable objectives; we mostly

focus here on minimizing the total vehicle dispatching time.

We model dispatch times with a generic continuous approximation, where delivering n ∈ R+

orders to the service region takes f(n) units of time and f is concave, increasing, and satisfies simple

technical conditions. Our motivation is functions of the form f(n) = an + b
√
n, where the linear

term models service time per order and the root term is a BHH approximation [1]. Continuous

approximations are used widely in logistics [2] and have recently been successfully applied in a

last-mile operational context [6].

Optimal System Behavior

We focus our analysis on two important fleet size cases: when the fleet is large enough to require

at most one dispatch per vehicle (m large); and when a single vehicle makes all deliveries (m = 1).

In the large fleet case, the following dispatch policy is optimal: Send the first dispatch at time

t satisfying t+ f(t) = T , i.e. when it has exactly enough time to take all accumulated orders and

return at T . For the second dispatch, repeat the process with all orders accumulating after the

first dispatch; continue until a dispatch can take all remaining orders and depart after time N .

The optimal dispatch times for each vehicle can be computed by solving equations of the form

t+ f(t) = T ′ for some T ′ ≤ T .

In the single-vehicle case, under an additional technical assumption, there is an optimal policy

with the following structural properties: (1) each dispatch takes all available orders at the depot

at the time of dispatch, and (2) after the first dispatch, the vehicle never waits at the depot again,

finishing precisely at time T . This structure implies that the dispatch times can be computed via

an optimization model over a single variable, t, defined as the time of first dispatch. One can

solve for the optimal t via an iterative root-finding algorithm, and then the second dispatch time

is t+ f(t), the third is t+ f(t) + f(f(t)), and so on.

The proofs in both cases use the concave and increasing structure of f , which intuitively imply

that we minimize routing time by dividing orders into dispatches as unevenly as possible, i.e. so that



the first dispatch takes as many orders as possible, the second as many as possible of the remainder,

and so forth. The additional assumption for the single-vehicle case states that all dispatches except

possibly the last one must deliver a sufficiently large number of orders (that is, early dispatches

do not deliver small order numbers), and that there must be a sufficient gap between the order

deadline N and the service deadline T ; both assumptions are justifiable as common sense business

rules.

Example A retailer provides SDD service over an 8 mile by 8 mile service region, with an average

of 75 orders arriving from uniformly random delivery locations over a 10-hour SDD service window.

Retailer operations begin with the service window and last 12 hours; this translates to N = 75,

T = 90. Take the routing time function f(n) = 0.13n + 2.15
√
n, which is roughly equivalent to a

BHH approximation with rectilinear (Manhattan) distances and average vehicle speed of 25 mph,

plus a service time of 1 minute per order.

If the fleet has multiple vehicles, only two vehicles are required in this setting. The first dispatch

occurs after approximately 64 orders accumulate, with the second covering the remaining 11, with

total dispatching time of 272 minutes. If one vehicle must make all the deliveries, the first dispatch

would carry 55 orders, and the second the remaining 20, with a total dispatching time of 283

minutes. A manager evaluating this system should expect a daily dispatch time increase of only

11 minutes (about 4%) if they decrease the SDD fleet size from two to one vehicle.

Conversely, a manager evaluating the two-vehicle setting could instead notice that the second

dispatch has a slack of 52 minutes. This could motivate an increase in the service window length

to 79 orders, or roughly 10.53 hours, which could still be served by two vehicles over the same

12-hour operating day, with total dispatch time of 286 minutes.

The example motivates a profit maximization version of our model, which we have also analyzed.

Instead of holding N fixed, we include it in the objective with a linear term representing revenue

gained by SDD orders served, and optimize the profit given by this revenue minus the SDD cost,

represented by the system’s total dispatch time. In the large fleet case, the general result is

analogous to our example: As a function of N , the profit is piecewise convex, with breakpoints

where the number of vehicles required to serve all orders increases; one such breakpoint is always

the optimal choice. In the single-vehicle case, the corresponding breakpoints are the order numbers

at which the total number of dispatches required to serve the orders increases; our analysis so far

has verified similar results when the number of dispatches is one or two, but we expect the result

to hold in general, as in the many vehicle case.

In conclusion, we propose a tactical-level model for SDD systems. Our model predicts the

average behavior of the system under various settings, and allows managers to evaluate the impact

of system design variables such as fleet size and service window length. Our ongoing work includes



validating our analytical results by testing them in an operational context. Using a model similar

to [3], we can construct operational instances that inherit the parameters of our tactical model.

We will then simulate operations over many days, to test the predictions our tactical model makes

with respect to dispatch time, number of dispatches, etc.
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1 Introduction

Hubs, arising in several network design contexts which involve commodity flow interchange be-

tween nodes and transfer modes, are centralised facilities for aggregation and dis-aggregation of

flow between nodes, and/or handling goods for change of transfer mode. In such network design

problems, the transfer modes may represent different transport vehicle types that carry goods be-

tween nodes and hubs and between hubs. A hub location problem determines a set of hubs and

designs a set of routes through hubs to fulfil the origin-destination flow demands at least cost.

In many cases, these problems arise when, in contrast to common assumptions, hubs are not

fully connected, an access node is not necessarily directly connected to a hub, or any route can

interchange flow between multiple transfer modes. Here, we present a dataset for the intermodal

hub location problem, drawn from a real-world case study, which involves a sparse network, three

different transport modes, and two types of hubs. We introduce and study an intermodal hub



location problem, with the archipelago of Indonesia as the context. Our study provides a strategic

solution for flow through the integrated use of two or more modes of transportations.

2 The ICD Dataset

We develop the Indonesia Container Distribution (ICD) dataset, based on real data from the

Indonesian container transportation network. The potential hubs include five inland terminals,

which are hubs that enable transfers between road and rail modes of transport. Compared to the

benchmark datasets in the hub location problem literature, the ICD dataset offers various and

different features which can be used while testing new models and algorithms for HLP. The main

differences are the consideration of intermodal transportation and the sparsity of network in the

instances. Moreover, the sparsity of network in the ICD dataset reflects the presence of a complex

transportation network in real world problems.

3 The Intermodal Hub Location Problem (IHLP)

We are given a direct network (N,A), where A is the set of arcs and N = {1, 2, . . . , n} is the set of

nodes. Arcs can be partitioned into subsets A1, A2, and A3, respectively for arcs with sea, road,

and rail transfer modes. We are also given flow demands Wij from i to j, and the length de of

arc e ∈ A. In this network, any two adjacent arcs in a path must be either in the same mode,

or be incident to a hub node. A hub is a node which facilitates a transfer mode interchange at

some cost. A hub can be selected from a given subset H ⊆ N of nodes. The problem of locating a

set of hubs among n nodes, and routing each flow demand with minimum total cost is called the

intermodal hub location problem (IHLP). We may include potential inland terminals and rail links

in our dataset to study the impact of network expansions. In the IHLP, the number of located

hubs, including seaports and inland terminals is to be decided in such a way that the total cost is

minimised. For a given pair of integers (q, p), where q ≤ p, the intermodal multiple allocation hub

location problem is one in which the total number of hubs is fixed to p and the minimum number

of inland terminals is set to q, denoted as the (q, p)-intermodal hub median problem ((q, p)-IHMP).

Theorem 3.1. (q, p)-IHMP is NP-hard.

4 Analysis of Network Design

In on our extensive computational results on the ICD dataset [1], we consider and analyse different

scenarios (for instances with 66 and 73 nodes). The scenarios we considered are: (i) the origi-

nal dataset (ICD), (ii,iii) ICD-66%-discnt and ICD-99%-discnt, respectively, the pricing of train



transportation is discounted by 66% and 99%, and (iv,v) networks with more rail links incident to

the 10%, and 25% highest demand nodes (ICD+10% and ICD+25%). Our experiments with the var-

ious scenarios provide us insights into pricing options on different transfer modes and investments

on network infrastructure. For instance, it is inferred from our experiments that seaports are less

congested when either more inland terminals (and associated rail links) are installed, or when a

discount factor is applied for rail transportation. It is what we would expect, intuitively. However,

the model and the results demonstrate that this is indeed the case.

As shown in Figure 1, when p is fixed, the traffic congestion on seaport roads decreases as q

grows in all scenarios for q ≤ 5. When train costs are well-discounted or new rail links are added

to the network, simultaneously the number of containers shipped through seaports declines and

the usage of trains becomes more attractive. So the flow on road links in the network is deviated

towards inland terminals. In scenarios ICD-66%-discnt and ICD-99%-discnt, the road congestion

on seaport roads decrease as q grows. However, once q becomes too large so that the number of

seaports drops to 5, the usage of trains is not cost effective, even if more rail links for high demand

nodes are added in the network.
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Figure 1: Road and rail usage at seaports as q increases for n = 66 and p = 15
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Figure 2: Road and rail usage at seaports as q increases for n = 66 and p− q = 9

Now we analyse the impact of adding an inland terminal to the set of hubs. By Figure 2, the



proportion of road congestion at seaport links is considerably decreased and the total operational

and fixed costs decreases by at most 5%. There is an increase in road transfer to seaports in most

scenarios when the number of inland terminals reaches to 2 because there is a better opportunity to

substitute road transfer by rail transfer in a few islands, but the proportion of road usage remains

declining as q grows. Besides installing more inland terminals, the facilities of rail usage (by new

rail links, or discounted rails) promotes the ratio of the rail usage to the road usage. By Figure 3,

there is a shift in the number of containers shipped to seaports by road to rail as q grows.
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Figure 3: Road and rail usage at seaports as q increases for n = 66 and p− q = 8

In Figure 4, we compare the fixed costs and congestion costs (using an economic model for

congested roads) in seaports. The congestion cost is associated with the opportunity cost of delays

on roads. It is proportional to the number of road users and reciprocal of the average speed on

roads when the capacity of roads is fixed.
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