
Learning to solve a stochastic orienteering problem with time
windows

A. Hottunga,∗, K. Tierneya

a Bielefeld University, Bielefeld, Germany
andre.hottung@uni-bielefeld.de kevin.tierney@uni-bielefeld.de

∗ Corresponding author

Extended abstract submitted for presentation at the 11th Triennial Symposium on
Transportation Analysis conference (TRISTAN XI)

June 19-25, 2022, Mauritius Island

January 14, 2022

Keywords: stochastic optimization, learning to optimize, orienteering problem

1 INTRODUCTION

Recently, there has been increasing attention on learning based approaches for routing problems.
Most of these approaches use deep reinforcement learning (DRL) to learn heuristics for standard
routing problems (e.g., the traveling salesperson problem (TSP) and the capacitated vehicle
routing problem (CVRP)). However, real-world routing problems are usually more heavily con-
strained and significantly more complex than these standard problems. Furthermore, existing
DRL approaches ignore the inherent stochastic nature of (real-world) routing problems and only
focus on solving the deterministic routing problems. We propose an DRL approach for a heavily
constrained, stochastic routing problem. More precisely, we consider the time-dependent orien-
teering problem with stochastic weights and time windows (TD-OPSWTW) and demonstrate
that our DRL approach is well suited to solve this problem.

Numerous machine learning based approaches for routing problems have been proposed since
Vinyals et al. (2015) used their newly introduced pointer network architecture to solve the TSP
via supervised learning. Most approaches use reinforcement learning for model training because it
does not require a training set that includes optimal or high-quality solutions. These approaches
construct solutions autoregressively, meaning for each new decision to make, the network accepts
its previous decision as input, and usually do not allow for extensive search (Nazari et al. (2018),
Kool et al. (2019), Kwon et al. (2020)). Recently, there has also been an increasing focus on
methods that combine learned heuristics with problem-independent, high-level metaheuristics
that provide search guidance (Hottung & Tierney (2020), Hottung et al. (2021b). These methods
are able to find solutions of higher quality but are also much slower. In contrast to deterministic
routing problems, stochastic routing problems have seen only little attention in the ML literature.
However, a few approaches do exist to try to solve routing problems with dynamic customer
requests with DRL (Bono (2020), Sultana et al. (2021), Basso et al. (2022)).

We propose a new DRL approach for the TD-OPSWTW that learns a policy that can be
used to construct tours dynamically. At each decision point, the policy takes into account the
current time and location of the vehicle, which depends on past, realized travel times, to decide
which customer should be visited next. This allows the policy to dynamically react towards the
current situation. Our approach was developed as part of the IJCAI AI for TSP competition1

where it won first place in the reinforcement learning track.
1https://github.com/paulorocosta/ai-for-tsp-competition

TRISTAN XI Symposium Original abstract submittal

https://github.com/paulorocosta/ai-for-tsp-competition


A. Hottung, K. Tierney 2

Figure 1 – A TD-OPSWTW instance with solution (solid, black line). Time windows are shown
in square brackets. Alternative solutions are shown by the red, dotted line and blue, dashed line.

Our approach consists of three components. First, we use the POMO reinforcement learning
approach of Kwon et al. (2020) to learn one policy per problem size. Next, we use efficient
active search (Hottung et al., 2021a) to fine-tune the learned policies for each instance being
solved, thus creating an individualized policy for each instance of the test set. Finally, we use
Monte-Carlo rollouts to construct the final solutions.

2 TD-OPSWTW

The TD-OPSWTW considers a given a graph, G = (V,E), with nodes V representing customers
and a single depot, and edges E between all nodes. Each node i is assigned a location (xi, yi)
in a Euclidean plane, a time window (wi, w̄i), and a prize pi. The goal is to construct a tour
starting and ending at the depot that maximizes the collected prizes by visiting nodes. If a node
is visited, it must be visited during its time window. If a node is visited too early, the node is
not considered visited until the beginning of the time window. If a node is visited too late, a
penalty e is incurred. The travel time between nodes, t̂ij , is stochastic, but the visit duration
at each node is instantaneous. The maximum travel time is given by T , and the penalty p is
incurred if it is exceeded. Note that in this version of the orienteering problem, no costs are
incurred traveling between nodes.

The AI for TSP competition proposes two versions of the TD-OPSWTW. The first, which
does not allow recourse, requires the route to be fixed in advance of realizing the travel times.
This is called the supervised track. The second problem allows recourse, thus the route may
be adjusted at each node according to the realized travel times seen so far. This is called the
reinforcement learning track. We focus only on the second version of the problem, although we
note that our approach actually would have also won the supervised track had it been entered
there.

Figure 1 shows an instance and a corresponding solution for the TD-OPSWTW. The time
windows for each node are shown in square brackets. Assuming pi = 1 for all nodes, a possible
solution is given by the black, solid line. The blue, dashed line shows an alternative end of the
tour that would allow earning an extra reward by visiting node 5. If the vehicle arrives at node
4 early enough, visiting node 5 may still be viable within its time window. This decision would
be made on the fly as the tour is carried out.

3 SOLUTION APPROACH

Our approach to tackle the TD-OPSWTW consists of three components. We use the POMO
reinforcement learning approach proposed by Kwon et al. (2020) to learn an initial policy per
problem size. We then use efficient active search (Hottung et al., 2021a) to fine-tune the policy
to a single instance. Finally, we use Monte-Carlo rollouts for the final solution construction.

TRISTAN XI Symposium Original abstract submittal



A. Hottung, K. Tierney 3

POMO We use the POMO approach to learn a policy for each problem instance size. The
POMO approach is an end-to-end DRL approach that exploits symmetries in combinatorial
optimization problems to encourage exploration during learning. The network architecture of
the employed model is based on the transformer architecture and consists of an encoder and
a decoder neural network. The encoder is used to construct embeddings that represent the
problem instance. The decoder is used to construct a solution based on these embeddings.
It is important to note that the embedding generation takes significantly more time than the
solution construction from the decoder. However, once the embeddings for one instance have
been generated, multiple corresponding solutions can be generated by the decoder.

We slightly adjust the POMO implementation to support the TD-OPSWTW. Each node i of
the network is given to POMO as a vector (xi, yi, pi, wi, w̄i). Additionally, we change the decoder
context to include the current time t, the embedding of the current node, and the embedding of
the depot. Finally, we forbid actions that correspond to traveling to a node i where wi > T or
where w̄i < t as well as previously visited nodes.

Efficient active search Efficient active search (EAS) (Hottung et al., 2021a) is a method that
uses reinforcement learning to fine tune a learned policy for solving a combinatorial optimization
problem to a single test instance. EAS iteratively adjusts carefully selected model parameters
at test time based on the solutions generated by the learned model. In our approach, the
parameters we adjust are the ones in the instance embeddings generated by the decoder as part
of the policy. More precisely, we use the trained POMO encoder to generate embeddings for all
considered instances. Next, we use reinforcement learning to modify these instance embeddings
with the objective to increase solution quality when sampling solutions with the POMO decoder.
Note that the travel times between nodes are not fixed during the training process. Instead, the
travel times are sampled for each solution construction process. This allows EAS to learn a
robust policy that can create high-quality solutions for a wide range of scenarios.

Monte-Carlo rollouts The final solution for an instance is generated using Monte-Carlo (MC)
rollouts. At each decision step, we first use the decoder and the fine-tuned embeddings to generate
a probability distribution over all possible actions (i.e., all possible nodes that can be visited
next). For the five with the highest associated probability values, we then perform Monte-Carlo
rollouts each. Each Monte-Carlo rollout starts with the corresponding actions selected in the
previous step, and then the solution is completed by sampling the following actions according
to the decoder. Once all Monte-Carlo rollouts are complete, the action with the highest average
reward is selected. After the action has been chosen, the actual travel times between the nodes
is revealed and the process continues with the next decision.

4 RESULTS

We evaluate our approach on the test set of the IJCAI AI for TSP competition competition.
The test set consists of 1,000 instances partitioned into equal subsets of 20, 50, 100, and 200
customers. First, we train one separate policy model using POMO for each of the four problem
sizes. This takes up to several days for full convergence. Note that we use instances generated
on the fly for the training. Subsequently, we use EAS to fine tune the learned policies for each
test instance separately, which takes up to 30 minutes per instance on an Nvidia V100 GPU.
Finally, we use Monte-Carlo rollouts for the final solution construction, performing 600 rollouts
for each possible action.

We compare the performance of our final approach (consisting of POMO & EAS & MC) to
the performance of only POMO and POMO and & EAS. The results are shown in Table 1. For
POMO and POMO & EAS we construct solutions greedily by always choosing the action that
was assigned the highest probability value by the network. EAS is able to significantly improve

TRISTAN XI Symposium Original abstract submittal



A. Hottung, K. Tierney 4

Table 1 – Performance on the test set.

Method Average reward
POMO 10.43
POMO & EAS 10.67
POMO & EAS & MC 10.77

the performance of POMO by 2.3%. Monte-Carlo rollouts can further improve the performance
by an additional 0.9%. These results show that fine tuning a policy via EAS can improve the
performance in this stochastic problem setting.

Our proposed approach won the first place of the reinforcement learning track of the IJCAI
AI for TSP competition. Table 2 shows the performance of the best three approaches of the
competition. Our approach (team RISE up) outperforms the second-best approach by 1.8%. We
note that our approach without Monte-Carlo rollouts would have also won the competition. A
further interesting note, is that our approach would have also tied for first place in the supervised
learning track had we submitted it there, despite not using any supervised learning.

Table 2 – Final leaderboard of the competition (top 3)

Team Average Reward
RISE up (ours) 10.77341
Ratel 10.58859
ML for TSP 10.39341

References
Basso, Rafael, Kulcsár, Balázs, Sanchez-Diaz, Ivan, & Qu, Xiaobo. 2022. Dynamic stochastic electric

vehicle routing with safe reinforcement learning. Transportation Research Part E: Logistics and Trans-
portation Review, 157, 102496.

Bono, Guillaume. 2020. Deep multi-agent reinforcement learning for dynamic and stochastic vehicle
routing problems. Ph.D. thesis, Université de Lyon.

Hottung, André, & Tierney, Kevin. 2020. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. European Conference on Artificial Intelligence, 443–450.

Hottung, André, Kwon, Yeong-Dae, & Tierney, Kevin. 2021a. Efficient Active Search for Combinatorial
Optimization Problems. arXiv preprint arXiv:2106.05126.

Hottung, André, Bhandari, Bhanu, & Tierney, Kevin. 2021b. Learning a Latent Search Space for Routing
Problems using Variational Autoencoders. International Conference on Learning Representations.

Kool, Wouter, van Hoof, Herke, & Welling, Max. 2019. Attention, Learn to Solve Routing Problems! In:
International Conference on Learning Representations.

Kwon, Yeong-Dae, Choo, Jinho, Kim, Byoungjip, Yoon, Iljoo, Gwon, Youngjune, & Min, Seungjai. 2020.
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. Pages 21188–21198
of: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., & Lin, H. (eds), Advances in Neural
Information Processing Systems, vol. 33. Curran Associates, Inc.

Nazari, Mohammadreza, Oroojlooy, Afshin, Snyder, Lawrence, & Takác, Martin. 2018. Reinforcement
learning for solving the vehicle routing problem. Pages 9839–9849 of: Advances in Neural Information
Processing Systems.

Sultana, Nazneen N, Baniwal, Vinita, Basumatary, Ansuma, Mittal, Piyush, Ghosh, Supratim, &
Khadilkar, Harshad. 2021. Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows. arXiv preprint arXiv:2102.12088.

Vinyals, Oriol, Fortunato, Meire, & Jaitly, Navdeep. 2015. Pointer Networks. Pages 2692–2700 of: Cortes,
C, Lawrence, N D, Lee, D D, Sugiyama, M, & Garnett, R (eds), Advances in Neural Information
Processing Systems 28. Curran Associates, Inc.

TRISTAN XI Symposium Original abstract submittal


	INTRODUCTION
	TD-OPSWTW
	SOLUTION APPROACH
	RESULTS

