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1 INTRODUCTION

This paper continues the work carried out in “Fundamental diagrams and emergent dynamics
of mainline rail operations” (Morey et al., 2021) and explores modelling improvements in ca-
pacity that could be available from the digitalisation of rail operations by increasing levels of
the European Train Control System (ETCS) (Stanley et al., 2011). Technological advances in
communications and receiving data (e.g., via 5G radio-based systems) may enable real-time mon-
itoring and analysis (Theeg & Vlasenko, 2020), which could help increase line capacity, via use
of moving-block signalling. In particular, trains might share position and speed directly with
their immediate neighbours, which might achieve better line capacity by implementing what we
call train-following models (TFMs) —– analogous to the car-following models (CFMs) that are
used to describe highway traffic.

2 SUMMARY OF LEGACY FIXED-BLOCK THEORY

In Morey et al. (2021), we investigated the line capacity of mainline rail operations that use legacy
fixed-blocked signalling rules, summarised by Pachl (2020) and the multi-author volume Theeg
& Vlasenko (2020). In summary, the safety-critical principles are that (i) track is partitioned
into blocks; (ii) each block should only be occupied by at most one train at any time; (iii) each
train must be able to come to a stop safely within the blocks ahead (known as the ‘aspects’)
that its driver knows to be clear, see Figure 1(a); and (iv) each train must be able to come to a
stop safely ahead of any block ahead that its driver knows to be occupied by another train, see
Figure 1(b).

Constant acceleration rules were then applied to Figure 1(a) to derive a maximum safe speed

v2max := 2b(αLB − LM), (1)

where b is the braking rate, α is an integer-valued aspect parameter, LB is block length (which
for simplicity is assumed the same for all blocks), and LM � LB is a safety margin.
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Figure 1 – Safety limit cases: represents α = 3 (four aspect) fixed block signalling, where (a) the
follower train must be able to stop safely within the blocks it knows are free, also (b) net spacing,
s, must be sufficient for the follower to come to a stop before the leader’s block.

In contrast, constant acceleration formulae applied to Figure 1(b) yield a bound for speed

v2 ≤ 2b(s− LB − LM), (2)

which involves the net-spacing s. Relation (2) is analogous to the equilibrium (uniform-flow)
speed-spacing relationship in a CFM (Wilson, 2001). It thus forms the basis for deriving a
set of fundamental diagrams (FDs) that describe smooth running scenarios via relations between
speed, density, and flow (corresponding to timetabled frequency). Trade-offs between the various
parameters were examined in some detail by Morey et al. (2021). The starting point for this
analysis is to write ρ := 1/(s+ LT) (where LT is the train length) and to employ a jam density
ρJ:= 1/(LT+LB+LM) to find the speed-density relationship

v = V (ρ) := min

[
v†

(
1− ρ̃
ρ̃

)1/2

, vmax

]
, (3)

where v† := (2b/ρJ)
1/2 and ρ̃ := ρ/ρJ, with 0 ≤ ρ̃ ≤ 1, defines a re-scaled density.

The resulting FDs are summarised in Figure 2 (black lines), with parameter choices LT =
400m < LB = 1600m, LM = 100m, α = 2, b = 0.65ms−2 and a = 0.4ms−2, justified in Morey
et al. (2021).

3 CONNECTED AND/OR AUTONOMOUS TRAINS

Our new work is to consider potential capacity improvements achievable by the introduction of
connected and/or autonomous trains (CATs). We assume that these CATs share each others’
positions and speeds directly and do not have to obey fixed-block rules. Moreover, they are
considered to be omniscient, rendering the limit described in Figure 1(a) and (1) redundant.
In contrast, the effect of continuous position knowledge is to set the block length LB to zero.
Thus (3) is modified by setting vmax =∞ (although other practical physical limits might apply
instead) and by using an increased jam density ρJ := 1/(LT+LM). This gives rise to a new set of
FDs indicated by the blue lines in Figure 2, quantifying the capacity gains. In summary, at any
given spacing (alternatively, density), the CATs will be faster than legacy trains. In consequence,
flow is increased — the parameters we have chosen suggest that a doubling of capacity is possible.

4 CONNECTION TO GIPPS’S CAR-FOLLOWING MODEL

The modelling so far has focused on safe operations under constant braking assumptions. This is
also the premise of the classical Gipps CFM (Gipps, 1981), which (translating into the notation
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Figure 2 – Fundamental diagrams (FDs) for mainline rail traffic. Black lines show legacy op-
erations and blue lines show the improved performance of connected and/or autonomous trains.
(a) Speed v versus net spacing s. (b) Speed v versus density ρ. (c) Flow q versus density ρ. (d)
Speed v versus flow q.

of this paper) has an equilibrium speed-spacing function (Wilson, 2001) that takes the form

v =

(
τ + θ
1
b −

1
b̂

)−1 +
√√√√√{1 + 2s

(
1
b −

1
b̂

)
(τ + θ)2

} . (4)

Here b̂ is the maximum assumed braking rate of the lead vehicle, and τ and θ are parameters
that model a safety margin in terms of reaction-time delays. For trains, we effectively assume
the worst case scenario where the leader may undergo a ‘brick-wall’ stop. Hence we set b̂ = ∞.
Exploiting definitions of v† and ρJ, we may thus obtain

v = −v‡ +
[
v2‡ + v2†

(
1− ρ̃
ρ̃

)] 1
2

, (5)

where v‡ := b(τ + θ) describes the additional velocity reduction that might have been achieved
if there were no reaction-time delay. By setting v‡ = 0, we recover the earlier result (3).

We might use (5) a starting point to model the reduction in capacity due to communication
and actuation delays. However, supposing that τ + θ is of the order of several seconds, then v‡ is
of the order of just 1 or 2 ms−1, far less than typical mainline operating speeds v†. So the effect
of these delays on capacity is likely to be rather small.
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There are a couple of further avenues for investigation. Firstly, (i) Gipps’s model (4) with b̂
finite would allow us to relax the ‘brick-wall’ stop assumption of the earlier theory — although
this seems at odds with current railway safety thinking. Secondly (ii) it is known (Morey et al.,
2021, Wilson, 2001) that these Gipps-based models can display dynamical instabilities and other
undesirable behaviour. Finally (iii) one should consider mixtures of legacy trains — one might
say Driver Operated and/or Guided trains (DOGs) — and CATs. However, the benefits of CATs
are only realised if the CATs follow other CATs — which might be very difficult to organise given
practical timetabling constraints. We have a proverb in English: it is very difficult to herd CATs!

Of course, line capacity is only one part of the broader question of operational rail capacity,
which also involves node capacity, fleet utilisation, crew provision etc. These points will be
expanded upon in our presentation at the TRISTAN meeting.

References
Gipps, P. G. 1981. A behavioural car-following model for computer simulation. Transportation Research

Part B: Methodological, 15(2), 105–111.
Morey, E. J., Wilson, R. E., & Galvin, K. 2021. Fundamental diagrams and emergent dynamics of

mainline rail operations.
Pachl, J. 2020. Railway Signalling Principles. Technische Universität Braunschweig.
Stanley, P., Hagelin, G., Heijnen, F., Löfstedt, K., Poré, J., Suwe, K. H., & Zoetardt, P. 2011. ETCS for

Engineers. Hamburg, Germany: DVV Media Group.
Theeg, G., & Vlasenko, S. 2020. Railway Signalling & Interlocking. 3 edn. Leverkusen: PMC Media

International Publishing.
Wilson, R. E. 2001. An analysis of Gipps’s car-following model of highway traffic. IMA Journal of Applied

Mathematics, 66(5), 509–537.

5 Acknowledgements

This work is funded and delivered in partnership between the Thales Group and the University
of Bristol, and with the support of the UK Engineering and Physical Sciences Research Council
Grant Award EP/R004757/1 entitled ‘Thales-Bristol Partnership in Hybrid Autonomous Systems
Engineering (T-B PHASE)’.

TRISTAN XI Symposium Original abstract submittal


	INTRODUCTION
	SUMMARY OF LEGACY FIXED-BLOCK THEORY
	CONNECTED AND/OR AUTONOMOUS TRAINS
	CONNECTION TO GIPPS'S CAR-FOLLOWING MODEL
	Acknowledgements

