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1 INTRODUCTION

Districting-and-routing is the process of partitioning a service region, represented as a collection
of basic geographical units, into larger clusters called districts, and operating distinct routes
within each district. This practice is ubiquitous in large-scale transportation and last-mile de-
livery systems for mail delivery, home care services, or maintenance services. A delivery policy
in fixed districts has several interests: (1) allowing the separation and the aggregation of the
requests in advance before all information is available, (2) reducing the complexity of the task
thanks to the decomposition of the routing optimization process, (3) stimulating the familiarity
of drivers and thus their efficiency within their respective geographical regions, and (4) increasing
the satisfaction of customers thanks to a higher familiarity with their drivers.

Districting decisions are ubiquitous in large supply chains and linked with major financial and
societal stakes. These decisions are strategic: they concern a few months or years, especially when
dedicated facilities (e.g., warehouses) should be established. Simulating their impact, however,
requires to evaluate the expected routing costs, which occur on a daily basis and vary with the
demands. Because of these two different classes of decisions and planning horizons, the resulting
problems pose considerable challenges (Drexl & Schneider, 2015).

Solution approaches for these problems can be generally divided into two classes, depending
on how routing costs are evaluated. The first group of methods relies on continuous approx-
imation models, e.g., Beardwood’s TSP approximation formula, which estimates routing costs
through n independently distributed points in a compact area of size A as α

√
nA, where α is a

constant (Franceschetti et al., 2017). In contrast, the second group of methods explicitly solves
routing sub-problems on a set of scenarios, a more accurate but time-consuming process. Yet,
evaluation speed is critical when applying optimization techniques (e.g., local search) on the
districting decisions, and it becomes prohibitively long to generate optimized routes for each
scenario at each optimization step.

To fill this methodological gap, we capitalize upon the considerable progress in machine
learning and deep neural networks to propose a solution approach which learns routing costs.
More specifically, we train a graph neural network (GNN: Scarselli et al. 2008, Kipf & Welling
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2016) to approximate the routing costs for a network of contiguous geographical units. We train
the neural network on a set of examples that include the basic features of the geographical units
in the city (density, area, shape, and adjacency matrix), as well as the routing costs estimated
with Lin–Kernighan algorithm on a set of scenarios for different subsets of contiguous units.

2 METHODOLOGY

The problem is formalized as follows. A region R is divided into n geographical units gR, within
which transportation operations will be independently performed over a long-term planning
horizon. A district DR ⊆ {1, . . . , n} of a region R is a subset of geographical units of R. The
delivery cost of a district is a function C : DR → R, indicating the expected long-term cost of
delivering customers in this district. Based on this context, the problem targeted by this paper
is the design of districts such that the long-term operational cost is minimized. This is done
under the assumption that the demand is modelled as a random distribution, independent and
proportional to density of customers in an area. Besides, two constraints are considered: (1) the
districts must be connected, and (2) the number of BUs inside each district is bounded to ensure
a balance between vehicle workloads.

To search among possible districting solutions, any optimization method needs an oracle
capable of accurately estimating the delivery cost Cd associated to a district d. Given the
large number of districting-cost calculations in classical combinatorial optimization approaches,
estimating Cd on a set of scenarios becomes a critical computational time bottleneck. In view
of this, we propose to learn an approximate delivery cost function Ĉd from historical data using
a supervised learning approach together with a graph neural network. Figure 1 provides a high-
level representation of the proposed network architecture. Our graph neural network is trained
on a data set containing 10,000 districts, with their list of BUs and geographical characteristics.
For each such district, the expected routing cost are calculated on a set of scenarios using the
Lin-Kernighan heuristic of Helsgaun (2000).

+ + + + + = ...

Graph representation Graph neural network Graph embedding Neural network 

bCd
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Figure 1 – Neural architecture dedicated to estimate delivery costs (Ĉd)

Once the neural network is trained, we rely on an iterative heuristic to find good districting
plans. First we create an initial solution satisfying connectivity and balance requirements. This
is equivalent to solving a balanced connected k-partition problem (Miyazawa et al., 2020). We do
so by representing it as a mixed integer program through a network flow formulation and solving
it with CPLEX. Next, we improve the resulting solution using an Iterated Local Search (ILS)
algorithm, using the routing-cost estimation oracle to evaluate whether moves are improving the
current solution, and restricting the search to feasible solutions respecting the connectivity and
balance constraints. We use Relocate and generalized Swap moves, whereas the perturbation
operator consists in several combined random moves. The search method terminates after Nit
iterations of the local search and perturbation operator, and the best overall solution is returned.

To validate the performance of this heuristic, we also finally designed a set partitioning
approach able to find optimal solutions for cases with small districts.
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3 EXPERIMENTAL ANALYSES AND DISCUSSIONS

The goal of our experimental analyses is twofold: i) evaluating the accuracy of our GNN oracle
for delivery-cost estimations, and ii) analyzing the impact of good cost estimations on the value of
the districting solutions. As a baseline, we use a classic variation of the continuous approximation
formula of Beardwood et al. (1959), which consists of a weighted sum of a) the distance between
the depot and the closest point in the district, and of b) the term

√
nA that estimates the internal

routing costs. The weights are fine-tuned on a validation set prior to optimization. A similar
formula been used in many previous studies (Franceschetti et al., 2017). The resulting BD oracle
can be used as a substitute for GNN in the districting solution method, and therefore permits
to develop comparative analyses.

We rely on data sets built from five metropolitan areas in the United Kingdoms (Bristol,
Manchester, Leeds, London and West-Midlands), with different geographical characteristics and
varying population densities. The BUs correspond to the Middle Super Output Area (MSOA)
in the regions, designed to have roughly a similar number of inhabitants (approximately 8,000).
We assume that delivery requests are independent random events, with a frequency that is
proportional to the number of inhabitants. We further create data sets considering different
depot positions δ ∈ {C,NE,NW,SE, SW}, number of BUs considered n ∈ {60, 90, 120} and
district-size targets t ∈ {3, 6, 12, 20, 30} for the balancing constraints.

In a first experiment, we compare the quality of GNN and BD route-cost predictions. Table 1
reports the minimum squared error (MSE) evaluated in a validation set with the two different
approaches, averaged over all considered depot-position configurations. Moreover, Figure 2 de-
picts the prediction performance of GNN and BD on the Bristol metropolitan area. We observe
that GNN and BD predictions tend to be less accurate as the number of BUs in the districts
increases. Nevertheless, the GNN approach is much more precise than BD, with an average MSE
of 8.43 compared to 32.13.

n = 60 n = 90 n = 120
GNN BD GNN BD GNN BD

3 2.49 5.87 3.08 9.9 3.69 16.49
6 2.52 14.11 5.07 22.04 6.25 23.32
12 5.64 21.59 9.65 36.58 11.46 39.8
20 8.68 34.33 12.96 49.06 16.11 52.7
30 7.96 31.95 13.33 55.16 17.49 69.11

Table 1 – Route-cost prediction performance
Districts of the validation set (ordered by inc. cost)
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Figure 2 – Prediction on Bristol-C-120-3

After observing that the GNN generally provides more accurate routing cost estimates, we
wish to evaluate the impact of a better oracle when searching for good districts. We therefore
ran our ILS-based solution approach using either GNN or BD as an oracle, and measure the final
solution quality using routing-cost simulation on a large number of scenarios. Table 2 compares
the results of both approaches for different data set categories.

On average, the ILS using GNN achieved solutions with 6.45% lower long-term cost. Among
important factors, we noticed that performance differences between BD and GNN are more
significant when districts should be formed with a larger number of BUs (e.g., t = 30). This
corresponds to a regime where GNN is known to be significantly better than BD (see Table 1).
Moreover, the depot positioning also plays an important role. Improvement are more significant
for GNN in cases where the depot is placed in the center. This is likely due to the fact that
the share of distance to reach the districts is larger when the depot is placed in the corners,
and this share of the cost is generally easier to estimate. Finally, we also observed that district
compactness arose naturally as a by-product of the optimization oracle alone.
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n t Depot Position
C NE NW SE SW Average

60

3 1.82 0.86 0.83 0.31 0.76 0.92
6 7.78 3.33 3.13 2.86 3.17 4.05

12 12.54 7.19 3.69 4.54 5.96 6.78
20 13.89 9.08 11.13 7.89 10.13 10.43
30 12.48 9.30 8.17 7.45 8.28 9.14

90

3 1.90 -0.13 -0.35 -0.24 0.26 0.29
6 6.41 1.95 1.93 1.82 2.65 2.95

12 13.73 4.27 6.24 5.78 5.09 7.02
20 14.62 11.89 8.15 7.76 9.22 10.33
30 15.71 10.00 9.67 14.21 11.54 12.23

120

3 0.44 0.52 0.33 0.49 0.36 0.43
6 3.96 1.91 2.47 2.95 3.20 2.90

12 10.69 4.33 4.65 4.22 4.93 5.77
20 17.35 9.05 9.65 5.41 13.86 11.06
30 17.10 9.56 11.32 12.68 11.70 12.47

Average 10.03 5.54 5.40 5.21 6.07 6.45

Table 2 – Districting-and-routing solution quality with BD or GNN

4 CONCLUSIONS

As seen in this study, hybrid machine learning and optimization techniques can present notable
advantages for strategic or stochastic problems in which it is challenging to efficiently evaluate
long-term operational costs. Hereby, in the context of a districting-and-routing problem, the use
of a GNN has permitted to obtain more accurate cost estimates as well significant long-term
savings. The research perspectives are numerous and span three main directions. Firstly, more
sophisticated network architectures could be developed to achieve better accuracy and general-
ization. Next, extensions of this solution paradigm could be devised for other classes of problems
that include, e.g., production or facility location decisions. Lastly, other learning paradigms
(e.g., reinforcement learning) may be exploited to allow an integration of the learned models
in a mathematical programming approach (instead of an heuristic). These are all promising
directions for future works.
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