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1 INTRODUCTION

Ride-hailing is an on-demand, individual transportation service that can be appealing for its
convenience and comfort. By contrast, mass transit and microtransit services ask riders to be
�exible in time (waiting) and space (walking), enabling the services to operate more e�ciently
than purely on-demand systems. A key question, then, is whether on-demand ride-hailing can
incorporate a degree of rider �exibility into its operations. Cost savings from improved operations
in ride-sharing could be passed onto riders while also mitigating congestion and emissions.

Riders' �exibility in time has been studied under the Vehicle Routing Problem with Time
Windows (Kolen et al., 1987), and their �exibility in space has been studied under the Vehicle
Routing Problem with Floating Targets (Gambella et al., 2018, Zhang et al., 2020). In both
problems, riders are asked to accept a window of time or space for their pickup to occur, expand-
ing the feasible region of the optimization problem relative to problems with �xed pickup times
and locations. Driver assignments and routes are then optimized jointly within these windows
to �nd higher-quality solutions. Riders' �exibility in space has attracted relatively less attention
than their �exibility in time. However, walking can shorten trips, bring riders closer to drivers
for faster pickup times, or coalesce demand for shared rides, especially when tra�c and one-way
streets restrict drivers' mobility (Stiglic et al., 2015).

In 2021, Lyft introduced a product that encouraged time-sensitive riders to accept a short
walk to pickup locations that would enable faster travel times. A screenshot of Lyft's current
walking user interface is shown in Figure 1a. As a rider selects the origin location with a pin, a
bubble with a short walking radius is shown around the pin, representing the ��oating target� in
the Vehicle Routing Problem with Floating Targets (VRPFT). Riders are then asked via a toggle
switch whether they are willing to walk to a pickup location that could lie anywhere within the
bubble.
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(a) Floating/Dynamic Walk (b) Fixed/Static Walk

Figure 1 � Two proposed user interfaces for walking.

The VRPFT is attractive for the �exibility gained from the expansion of the feasible region,
but it takes as given that riders are willing to accept the uncertainty that comes with this
�exibility. The uncertainty arises from the joint optimization of riders' pickup locations and
drivers' assignments, which means that riders' pickup locations remain unknown until the solution
is computed. Rider opt-in is critical to realizing the bene�ts of walking, motivating our interest
in lessening the burden on riders while still leveraging their �exibility.

We make the following contributions. First, we formulate a dynamic walking model.,
which jointly determines riders' pickup locations and driver assignments as in Figure 1a. Sec-
ond, we propose the new static walking paradigm, which alleviates uncertainty for riders by
showing a static, predetermined pickup location to the rider before asking for the opt-in and
assigning a driver. A user interface is shown in Figure 1b; here, the rider is asked to walk along
the gray dashed line from the purple origin pin to the pink pickup pin. We propose algorithms to
determine static pickup locations and discuss network characteristics that make static walking
viable. Third, we provide detailed simulations quantifying the value of walking , de�ned
as the travel time savings for walking relative to no walking, in minutes per ride. The simula-
tions are built using real Lyft data on drivers' locations and riders' origins and destinations in
Manhattan, and a detailed representation of the underlying road network. We show that despite
being more constrained, static walking performs competitively, achieving as much as 94% of the
value of dynamic walking. Consequently, static walking can outperform dynamic walking if it
achieves as little as a 6% relative increase in adoption rate. Finally, we provide empirical evi-

dence of the value of static walking. Using a �xed-e�ects model on hundreds of thousands
of Lyft rides, we show that riders who are very close to our static pickup locations see substantial
improvements in travel times.

2 METHODOLOGY

Basic matching A service region is represented on a directed graph G = (V, E). The function
c(u, v) returns the driving time from node u to node v. In each period, sets of riders and
available drivers arrive; we use the random variables N and M to denote the number of riders
and drivers arriving in a period, respectively.1 Each rider i is associated with origin-destination

1We will consider driver availability high enough that we can assume M ≥ N , which is usually true in practice.
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(Oi, Di) ∈ V2, and each driver j with location Lj ∈ V.
We use the binary variable xi,j to denote whether driver j is matched to rider i, and seek to

minimize the total travel time (pickup/deadheading plus in-vehicle). The formulation is then:

min
x∈X

N∑
i=1

M∑
j=1

(c(Lj , Oi) + c(Oi, Di))xi,j , (1)

where X = {x ∈ {0, 1}N×M |
∑N

i=1 xi,j ≤ 1 ∀j ∈ [M ],
∑M

j=1 xi,j = 1 ∀i ∈ [N ]}. Problem (1) is a
bipartite matching problem, standard in the ride-hailing literature.

Walking Now, consider that riders can walk from their origin to a nearby pickup location. To
this end, we use the function δ(u, v) to denote the walking time from node u to node v, and
de�ne the set WΓ(u) to be the set of nodes within a walking radius Γ of node u.

We introduce the idea of a walking function f : V3 → V, which maps an origin-destination
pair and driver location to a pickup location for the rider to walk to. For a given walking function
f , we can express the matching problem as:

J(S | f) = min
x∈X

N∑
i=1

M∑
j=1

c̄ (Oi, Di, Lj , f(Oi, Di, Lj))xi,j , (2)

where we use c̄(O,D,L,w) = max {c(L,w), δ(O,w)}+ c(w,D) for the total travel time when a
rider for origin-destination pair (O,D) is picked up at w by a driver coming from location L. We
use S = ({(Oi, Di)}Ni=1, {Lj}Mj=1) as shorthand for the state of all riders and drivers in a period.

For no walking and dynamic walking, we apply the following functions to Problem (2):

fNO(O,D,L) = O, (3a)

fDYN(O,D,L) = argmin
w∈WΓ(O)

c̄(O,D,L,w). (3b)

A static walking function will assign a riders' pickup node based only on their origin and des-
tination. It therefore must satisfy the following conditions: (i) f(O,D,L) ∈ WΓ(O), and (ii)
f(O,D,L) = f(O,D,L′) ∀L,L′ (L could of course be removed from the arguments). We use
FSTAT to denote the set of walking functions that satisfy these conditions. Among the feasible
static walking functions, we are interested in achieving the best expected performance, namely:

fSTAT ∈ argmin
f∈FSTAT

ES [J(S | f)]. (4)

In the full paper, we will propose algorithms to solve (4). We can quantify their performance by
computing the following values of walking:

V DYN =
1

E[N ]

(
ES [J(S | fNO)]− ES [J(S | fDYN)]

)
, (5a)

V STAT =
1

E[N ]

(
ES [J(S | fNO)]− ES [J(S | fSTAT)]

)
. (5b)

As V DYN ≥ V STAT, we have a convenient measure of the optimality gap when we solve (4).

3 RESULTS

Here, we present a selection of simulated results and empirical analysis on historical Lyft data
in Manhattan. The road network was represented as a graph structure using the OSMnx package
in Python, with travel times from Uber Movement. On the Manhattan network, we simulated
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arrivals of riders and drivers using internal Lyft data on riders and idle drivers. Our analysis
included both a short walk setting that would ask riders originating on a road segment to simply
walk to one of the two intersections at either end of the origin road segment, as well as a long

walk setting that would ask riders to walk to any intersection within about a �ve minute walk.
Table 1 shows results for dynamic and static walking. Naturally, dynamic walking has the

highest value, saving 1.69 minutes per ride for short walks and 3.47 minutes per ride for long
walks. But surprisingly, static walking performs competitively with dynamic walking, achieving
94% of the value for a short walk radius, and 85% of the value even for the long walk radius.

Table 1 � Performance metrics on Manhattan simulation

Walk Radius Design Walk Time Value of Walking (min./ride)

(min./ride) Pickup In-Vehicle Total (%Dyn)

Short Walk Dynamic 1.04 0.81 0.88 1.69 (100%)
Static 1.05 0.64 0.95 1.59 (094%)

Long Walk Dynamic 2.98 1.27 2.20 3.47 (100%)
Static 3.24 0.46 2.48 2.94 (085%)

We also �t a �xed-e�ects model to data on hundreds of thousands of historical Lyft rides in
Manhattan to estimate the value of walking at di�erent distances from our static pickup locations.
The estimates are plotted in Figure 2 and show that the value of walking can be substantial,
with especially high value for shorter walks. These estimates give us con�dence that our static
pickup locations are indeed valuable, and that the value in our simulations would translate well
in practice.

Figure 2 � Empirical estimates of value of walking for di�erent bins of walking time.
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