
Crowd-shipping under Uncertainty:

Models and Solution Approaches

M. Gendreaua,b,∗, F.A. Torres Durána,b, W. Reia,c

a CIRRELT, Montreal, Canada
michel.gendreau@cirrelt.net, fabiantodu@gmail.com

b Département de mathématiques et de génie industriel
Polytechnique Montréal, Montreal, Canada

c Département d'Analytique, Opérations et Technologies de l'Information
École des Sciences de la Gestion, Université du Québec à Montréal, Montreal, Canada

rei.walter@uqam.ca
∗ Corresponding author

Extended abstract submitted for presentation at the 11th Triennial Symposium on

Transportation Analysis conference (TRISTAN XI)

June 19-25, 2022, Mauritius Island

January 15, 2022

Keywords: Crowd-shipping; crowd drivers; stochastic programming; dynamic programming; col-
umn generation

1 INTRODUCTION

The extensive development of on-line retailing and of collaborative consumption systems, such as
Uber, has led large retailers to consider new ways of making deliveries to their on-line consumers.
One of them is crowd-shipping, which consists in having goods bought on-line delivered to �nal
customers by other customers or other crowd drivers (CD). In either case, individuals who are
not employed by the retailer or one of its logistics subcontractors are used to make deliveries.
This tendency to move towards e-commerce and crowd-shipping has been exacerbated by the
COVID-19 pandemic and the associated risks when visiting brick-and-mortar retail stores.

The most successful crowd-shipping platform (CSP) is Amazon Flex that now operates in
the US and Canada, and in over 100 cities (AmazonFlex, 2021). Amazon has solved some of the
challenges by creating a program where individuals can sign up a priori only if they meet some
basic requirements. Walmart recently started its own CSP called Walmart Spark Delivery. For
a review of the di�erent CSPs and the scienti�c literature on crowd-shipping, see Alnaggar et al.
(2021).

After crowd-shipping was conceptualized by Amazon and other companies, a �rst quantitative
study of crowd-shipping was presented by Archetti et al. (2016). The authors introduce the
Vehicle Routing Problem with Occasional Drivers (VRPOD). They formulate a deterministic
and static model where a set of delivery requests have to be ful�lled from a central depot either
by an unlimited �eet of vehicles driven by professional drivers (employed either directly by the
CSP or through a logistics partner), in the following we refer to these vehicles as Professionnal
Vehicles (PV), which complete closed routes, or by a set of CDs that are willing to deliver
some packages while they travel towards their speci�c destination. The compensation of CDs
could be based on di�erent strategies. A mixed integer program (MIP) is introduced to solve
small instances, and a multi-start heuristic is proposed to provide solutions to larger instances.
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It is shown that signi�cant cost reductions can be achieved by employing CDs compared to
conventional delivery means.

A main question that arises from Archetti et al. (2016) is how can CDs be applied in a
dynamic and/or stochastic setting? In practice, CDs could arrive dynamically throughout the
day; thus, the total number of CDs is unknown until late in the day. Furthermore, CDs could
reject or accept routes. In Gdowska et al. (2018), the authors consider the possible rejection
of delivery tasks by ODs. The probability of rejecting a delivery request by a CD is viewed as
independent from other delivery requests.

In this paper, we consider a general crowd-shipping situation, in which the participation of
CDs and the acceptance of CD routes is uncertain. We derive a general stochastic model that
can be applied to di�erent variants of this basic situation, and we develop e�ective algorithms
that can be used to tackle variants of this model.

2 PROBLEM DESCRIPTION

We consider a CSP that allows individuals to sign up if they are interested in delivering parcels
with their personal vehicles. This provides the CSP with a pool of CDs. We assume that each
vehicle has at least a minimum pre-speci�ed capacity Q′ available. While CDs could arrive at
various times, we assume that they all show up at the depot early enough to handle the delivery
tasks at hand. Therefore, in our basic situation, the only source of stochasticity that we consider
is the availability of CDs for the current planning period, which is given by a random variable
ξ, which follows a binomial distribution on the interval {0, . . . ,M}, with given probability p.

The CSP has a known list of delivery requests by online customers. Each request has a
speci�c demand or quantity and must be delivered within a speci�c time window. To complete
the delivery tasks, the CSP can use CDs or its own �eet of PVs with capacity Q > Q′. Routes
must be planned for both PVs and the vehicles of CDs.

The compensation scheme used to pay CDs is �exible and consists of a �xed cost that every
driver gets by delivering at least one parcel, a variable cost associated with the total distance
traveled on the route performed, and a reward that is paid for each parcel delivered. These
three types of compensations can be applied in any proportion to incentivize di�erent types of
behaviors in CDs. Similarly, there are three costs associated with PV routes, a (larger) �xed
cost, a (larger) variable cost, and a (similar) cost to service each customer.

In a second variant of the problem, we consider a setting in which the territory served by
the CSP is divided into geographical sectors. In this variant, CDs are characterized by their
destination sector. They perform open routes from the depot to their destination sector, subject
to capacity and route duration constraints. CDs' availability is also de�ned by sector.

3 MODELS

The basic structure of the models for both problem variants described above is that of a two-
stage stochastic programming problem with recourse. We now focus on the �rst variant in which
we consider the complete territory served by the CSP. The main decisions are all taken in the
�rst-stage problem, in which we create a set of routes serving all customer requests. The requests
are split into two subsets: one to be served by CDs and the remainder by PVs, and routes are
created for both PVs and CDs. The cost of routes for PVs is deterministic and easy to compute.
Conversely, routes planned for CDs are not deterministic and their cost depends on future events
at the second stage, i.e., the realization of the random parameter ξ. However, since we assume
that the probability distribution of ξ is available, we can derive the expected cost of each route.
Let r be a route created for a CD. If a CD is available to complete route r, then the route is
completed, and the compensation is paid to the CD. Conversely, if there is no CD to complete
the route a recourse action has to be taken. The recourse cost of a route in the second stage is
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the incremental cost of serving this route with a PV instead of a CD. It is computed as the cost
of performing this route with a PV times a penalty α (to represent the additional inconvenience
associated with the late assignment of the route to a PV) less the cost of having the route served
by a CD.

The second-stage problem requires assigning, for any given value of ξ, the available CDs to
the constructed routes. We assume that the CSP decides the assignment of routes to available
CDs to minimize its own costs, which amounts to assigning CDs in priority to the routes requiring
expensive recourse actions. We also assume that CDs complete the routes that are assigned to
them. Although this assumption might seem limiting, routes requiring more expensive recourse
actions are also better compensated for CDs and should be more attractive to them. We showed
that, if the reward per delivery is trivial, this assumption is equivalent to assuming that CDs
will choose better compensated routes.

The overall formulation of the problem thus corresponds to a fairly standard set partitioning
formulation of the VRPTW with two types of vehicles (PVs and CDs' vehicles), with one major
di�erence: the addition of an expected recourse term that accounts for the additional costs
incurred for routes originally designed for CDs that will have to be performed by PVs, if the
participation of CDs is not large enough. The computation of this expected recourse term relies
on additional binary variables that allow us to choose the priority of routes assigned to CDs and
thus the probability that they will be actually performed by a CD.

In the second variant of the problem, the set partitioning formulation also accounts for the
various sectors that are served.

4 SOLUTION METHODS

To solve the proposed models, we �rst develop exact solution methods based on column gen-
eration and Branch-and-Price. Considering the issues relative to the priorities assigned to the
routes, one could expect that the column (route) generation procedure would require de�ning
several subproblems to allow for proper pricing of routes: one for PVs and one for each possible
route priority for CDs. Even though it is possible to derive an analytical method to calculate
an upper bound on the supply of vehicles (i.e., a bound on the largest number of routes that
one would like to construct for CDs based on expected costs arguments) and thus on the range
of priorities to consider, this could become intractable for problems with a large pool of CDs.
To circumvent this di�culty, we propose an innovative cohesive pricing problem that allows to
consider simultaneously all CD route priorities when pricing routes. This problem is solved using
extensions of standard dynamic programming (DP) labeling algorithms for elementary shortest
path problems with resource constraints (ESPPRC). To speed up the solution process, we resort
to a heuristic DP procedure for solving the pricing problem, whenever possible.

The branching scheme for the Branch-and-Price procedure considers in priority the total
number of PVs and CDs and then �ow values between customers. We branch on the most
fractional variables �rst.

We also propose a column generation heuristic (C-Gen) to solve larger instances quickly and
e�ectively. In this procedure, the branching process is interrupted and the restricted master
problem is sent to CPLEX to �nd a feasible integer solution. In our implementation, the pricing
problems are solved with the DP heuristic mentioned above.

Finally, we develop a Large Neighborhood Search Algorithm (LNS) heuristic. The removal
and insertion operators used in this procedure are adapted or inspired by operators used in
other works, such as in Pisinger & Ropke (2007): Random Removal, Random Route Removal,
First Customers Removal, and Last Customers Removal; Greedy insertion, Greedy insertion with
noise, PV �rst insertion, and CD �rst insertion. A distinctive feature of our LNS is the use of
a Route assignment procedure, which �nds the optimal assignment of the routes within a given
set with the corresponding preference of CDs.
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5 COMPUTATIONAL RESULTS

Extensive computational experiments were conducted for the �rst model. To obtain the set of
instances for these experiments, we modi�ed the well-known Solomon instances C1, R1, and RC1
with 25, 50 and 100 customers by including an additional �eet of CDs. The discrete probability
function used for the availability of CDs in the instances is the binomial distribution B(p;M),
where p is the probability of each trial and M is the total size of the pool of CDs.

We solved all instances with the exact branch-and-price algorithm, the column generation
heuristic, and the LNS heuristic. The B&P algorithm was executed for 3 hours. If we consider all
instances with a gap of less than 1% solved, then all 29 instances were solved for 25 customers,
20 out of 29 for 50-customer instances, and 6 were solved optimally for instances with 100
customers. The B&P performs well for smaller instances with 25 customers, however, as the
number of delivery requests increases to 100, the algorithm fails to converge to a solution in
under 3 hours for most instances.

While B&P takes hours to execute, the column generation heuristic takes minutes and �nds
good feasible solutions for all instances. It performs especially well for clustered instances where
the gap is only 1.18% for large instances with 100 customers.

We observed that LNS is much faster than C-Gen and that it provides better average solution
values for the larger 100-customer instances. On average, LNS terminates within a minute while
can C-Gen take up to 41 minutes on average for the R1 instances. However, the smaller 25-
customer instances are solved in about the same time with C-Gen and the gaps are better. In
practice, platforms can have hundreds or thousands of delivery requests that need to be ful�lled,
a method that can solve large instances quickly is thus required.

We also ran LNS on larger instances with 200 customers and a pool of 1,000 CDs. This
allowed us to perform detailed sensitivity analyses of the parameters used for computing the
compensation of CDs and to derive managerial insights regarding the optimal level of CDs'
compensation.

Computational experiments were also performed for the second model (with sectors). In that
case, we focused on the Solomon instances C1 with 25, 50 and 100 customers. The C1 set of
instances with 100 customers has 10 clusters that we use to represent the sectors in a city u ∈ U ,
i.e., |U | = 10 when we consider all 100 customers. The discrete probability function used for of
ξu in all instances is the binomial distribution Bu(pu;Mu) for each sectoru ∈ U , where pu is the
probability of success of each trial and Mu is the size of the pool of ODs in sector u. Variants of
the base instances focusing on sectors further or nearer to the depot were also considered.

The B&P exact algorithm and three versions of the column generation heuristic (stopping
after exploring 1, 10 or 100 nodes in the branch-and-bound tree) were applied to these instances.
C-Gen-100, i.e., the version that stops after exploring 100 nodes of the tree, provides the best
balance between solution quality and running times.
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