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1 INTRODUCTION

The ongoing growth in shipping cargo globally is urging terminals and shipping line companies
to increase the efficiency and sustainability of their operations. The berth planning of a terminal
is categorized as one of the most critical sea-side operations due to the scarcity of berthing space
(Steenken et al., 2004). It can be modelled mathematically as the Berth Allocation Problem
(BAP) where the aim is to assign incoming ships to berthing positions along the terminal.

When each terminal does its planning independently, a delay in one terminal can potentially
be propagated through the shipping service to other ports (Notteboom & Vernimmen, 2009) or
incur higher fuel costs for the carriers (shipping lines) if they need to increase the vessel’s speed
to make up for lost time.

A potential solution to avoid this type of scenarios is to establish some form of collaboration
between players in the maritime industry. Collaboration can be established not only between
same type of stakeholders (i.e., between multiple carriers) but also between more players (i.e.,
carriers and terminal operators). This is the goal of the Multiport Berth Allocation Problem
(MBAP), first introduced by Venturini et al. (2017), which simultaneously plans the berth allo-
cation of multiple ports taking into account the vessels’ speed.

Currently, exact methods have successfully been applied to the version of the problem with
a discrete quay (Martin-Iradi et al., 2022). In this variant, we divide the quay into a discrete
set of berths, with only one ship allowed to one berth at a time. The continuous variant of the
MBAP allows ships to berth at any point along the quay as long as a safe distance is kept to
other ships. In reality, the mooring bollards are distributed at least 10 meters apart from each
other restricting the positions where ships can berth. Therefore, a 10 meter discretization of the
quay is assumed to be a fair approximation of the continuous version of the problem.

2 PROBLEM FORMULATION

We present two formulations for the continuous MBAP: (1) a mixed-integer problem formulation
and, (2) a generalized set partitioning problem formulation.
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The MIP formulation can be seen as an hybrid between the formulation for the continous
BAP from Kim & Moon (2003) and the formulation for the discrete MBAP from Venturini et al.
(2017).

In this study, we focus on the set partitioning formulation where each column represents a
feasible schedule for a ship (i.e., sequence of berthing positions and times along the ports visited).
Ω is the set of columns and λj is a binary variable that defines if column j is part of the solution
or not. The cost of column j is denoted by cj . The parameter Ai

j is 1 if column j corresponds
to ship i and 0 otherwise. The parameter Bp,b,t

j is 1 if column j occupies berthing position b at
time t at port p ∈ P and 0 otherwise.

min
∑
j∈Ω

cjλj (1)

∑
j∈Ω

Ai
jλj = 1 ∀i ∈ N (2)

∑
j∈Ω

Qp,b,t
j λj ≤ 1 ∀p ∈ P, b ∈ Bp, t ∈ [sp; ep) (3)

λj ∈ {0, 1} ∀j ∈ Ω (4)

The objective function (1) minimizes the cost of the solution columns. In our case, it is a weighted
sum of the operational costs for both carriers and port operators, namely waiting, handling and
delay time at port and fuel consumption when sailing between ports. Constraints (2) enforces
one column in the solution for each ship and constraints (3) ensures that there is no overlapping
of berthing periods and positions between ships by at most allowing one ship to be berthing at
each position and time instant. Finally constraints(4) define the binary property of the decision
variables.

The set of columns Ω can be defined using a graph representation. We define a directed and
acyclic graph (DAG) for each ship. The graph is defined on a time-expanded network meaning
that each node does not only represent a berthing position at a given terminal but also it has a
berthing time associated to it. We therefore restrict the set of nodes to those that correspond
to feasible berthing positions and times at each port that the ship visits. Feasibility of a node
is defined by the operational constraints (e.g., time windows and processing times) at the port
but also the ones that a ship can visit given the range of sailing speeds. An arc in the graph
connects two nodes of ports that are visited consecutively by the ship. The time and position
of the destination node of the arc is given by the time and position of the source node and the
required minimum speed to arrive on time. Based on the premise that a ship will not sail faster
than required, there is at most one arc connecting a pair of nodes. The reader is referred to
Martin-Iradi et al. (2022) for a more detailed description of a similar representation used for the
discrete MBAP.

3 SOLUTION METHOD

We solve the relaxed version of (1)-(4) using column generation and use a branching strategy to
achieve the optimal integer solution.

A pricing problem per ship is defined using the time-expanded network mentioned in the
previous section. The dual values from the master solution can be directly updated on the
weight of the graph nodes and, therefore, columns can be efficiently generated solving a shortest
path problem using a dynamic programming algorithm.

Finding an efficient branching strategy is important in a branch-and-price method. Branching
on the master variables or on a single node or arc of the pricing problem can be highly unbalanced,
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therefore, we use a branching strategy based on a set of nodes that tries to have a significant
impact in both child branches.

Given a linear and fractional solution to the problem, we group the berthing time and posi-
tions of all the columns for each ship and port visit. Then, we measure the average and standard
deviation in berthing times and positions separately for all ships and port visits. Finally, our
branching candidate will be the ship and port visit with the highest variance either in position
or in time. If the highest variance is in berthing time, the child branches will enforce the ship
to berth before or after the average time, whereas if the highest variance is in position, the child
branches will enforce the ship to berth to the left or right of the average time. By exploring
both the time and space partitions, we always guarantee a branching candidate for this strategy,
otherwise the solution is integer.

4 PRELIMINARY COMPUTATIONAL RESULTS

We compare the branch-and-price method with the MIP formulation solved by CPLEX. All
instances consider 3 ports where the number of ships planned ranges between 13 and 19. The
route of each ship contains between 2 and 4 port visits. We use CPLEX v12.10 as a solver and
a total time limit of 1 hour. The results are summarized in Table 1.

Table 1 – Average results on a set of 54 instances

Method Branch-and-price CPLEX
% of instances where an upper bound is found 44 80

Optimality gap (%) 1.50 4.45

We observe that CPLEX is able to find feasible and better solutions to more instances,
whereas the branch-and-price method, thanks mostly to a tighter root node relaxation achieves
a better optimality gap. Both exact methods scale poorly when the instances become larger. This
leads us to explore heuristic or matheuristic methods. Preliminary results of a simple randomize
fix-and-optimize heuristic show that a better integer solutions can be found for most instances
(see Table 2). This comparison is done in a subset of 26 instances where CPLEX is able to find
an integer solution within the time limit. We observe that most of the solution improvements of
the heuristic often occur within the first 10 minutes. This can be useful from a real-life planning
perspective where re-planning needs to be done within a short period.

Table 2 – Performance of the fix-and-optimize heuristic compared to CPLEX with a 1 hour time
limit

Objective compared to CPLEX Worse Equal Better
Fix-and-optimize 6 8 12

We are currently exploring this research direction further and developing a matheuristic
method that takes advantage of the capabilities of both exact methods and scales better to
larger real-life instances.
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