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1 INTRODUCTION

Traffic congestion occurs when the traffic density increases while the traffic flow remains constant
or decreases. Macroscopic models aim to rule out urban traffic congestion by holding several
assumptions. The common assumption between all macroscopic models is the homogeneity of
the speed at a single zone with respect to its traffic density (i.e., accumulation). Seminal work
of Geroliminis & Daganzo (2008) showed that single-unit macroscopic models could represent
the congestion of an urban area independently of the demand. In order to better understand the
congestion, accurate calculation of traffic network optimums are crucial. Network operators aim
to minimize the sum of all user costs. The solution is called system optimum (SO) (Wardrop,
1952). To accurately calculate SO at the macroscopic level, we need to consider the charac-
teristics of trips. In the context of macroscopic models, a given trip has limited attributes. In
simplified models, e.g., bottleneck models (Li et al., 2020), a trip is only defined by its departure
time and desired arrival time. However, the characteristics of the user trip (path choice) have to
be considered. Macroscopic fundamental diagram (MFD)/bathtub models are able to overcome
this drawback by considering trip-length distribution in addition to departure time and desired
arrival time distributions. Classic bathtub model Vickrey (1991) assumes that time-independent
negative exponential distribution represents the remaining trip distance of all trips traveling in
the system. This assumption is cannot represent a real test case based on the empirical studies
(cf. e.g. Liu et al. (2012)). Recently, Jin (2020) proposed the generalized bathtub model that
extends the classic bathtub model to capture various distributions of the trip length by introduc-
ing a new state variable: the number of active trips at time t with remaining distances greater
than or equal to threshold x, denoted by K(x, t). He formulates the traffic dynamics by four
equivalent partial differential equations that track the distribution of the remaining trip lengths
(Jin, 2020). This study aims to formulate and solve system optimum, also known as social opti-
mum, for departure time choice model based on generalized bathtub model with heterogeneous
trip attributes. In particular, the proposed framework is able to address any distribution for
desired arrival time and trip length.
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2 METHODOLOGY
The notations are collected in table 1. Bathtub models assume that at time t, the velocity
(vt) is the same for all traveling users. vt is a function of the network characteristics and the
network load, that is to say, the number of travellers in the network, H(t). Let us define the
characteristic travel distance z(t) as the distance traveled by a virtual user up until time t:

z(t) :=

∫ t

0
vsds. (1)

Where vt = V (H(t)), and V is assumed bounded from above and below: 0 < Vmin ≤ V ≤
Vmax. Since vt > 0 ∀t ∈ T , z is an invertible function. Let z−1 denote the inverse function
of z. Then, we have z−1

(
z(t)

)
= t and z−1(x) represents the time at which the virtual user

has reached x. Note that the negative exponential distribution of the trip length transforms
the generalized bathtub model to the classic bathtub model (Jin, 2020). Therefore, the results
from both models will be identical. It is worth mentioning that the assumption of exponential
distribution for the demand profile also transforms other common macroscopic models (e.g.,
MFD or trip-based MFD models) to the simple accumulation model and results in the same
solution (see Lamotte et al. 2018 for the details).

Now, let T (tid, xi) denote the travel time of a player departing at time tid with trip length xi.
Considering (1), T (tid, xi) can be determined by,

T (tid, x
i) = z−1

(
xi + z(tid)

)
− tid. (2)

In assignment problems, the travel cost is usually defined based on α-β-γ scheduling prefer-
ences (Fosgerau, 2015). That means the cost function is defined as the sum of the travel time
and a penalty cost for arriving at tid + T (tid, x

i) instead of the desired arrival time. Specifically,
we assume that each player’s cost function is given by,

Ji(t
i
d, t

i
a; t

−i
d , x−i) = αT (tid, x

i) + β
(
tia − tid − T (tid, x

i)
)
+
+ γ

(
tid + T (tid, x

i)− tia
)
+
, (3)

where α denotes the cost of traveling per unit of time, β and γ denote, respectively, the cost
of earliness and lateness for the traveller arrival. We assume that the penalty for travel time is
higher than the penalty for early arrival time, i.e., α > β. Note that (y)+ = max{y, 0} as well
t−i
d and x−i respectively express the dependency of J on the departure times and trip lengths

of the other users ( ̸= i) via their travel times.
The cost function defined in (3) captures the fact that travellers prefer not to deviate from

their desired arrival time (i.e., arrive as close as possible to their desired arrival time) while they

TABLE 1 – List of notations

T Time horizon.
i Index of trips, i ∈ N .
x Vector of trip lengths.
ta Vector of desired arrival times.
K(x, t) Number of agents at time t with remaining trip distance greater than x.
H(t) := K(0, t). Number of agents at time t in the network.
v(t) = V (H(t). Common velocity of agents at time t.
z(t) Characteristic travel distance.
T (tid, x

i, t) Travel time of a trip started at tid with trip length xi at time t.
m(ta, x) distributions of demand with trip length x and desired arrival time ta.
h(x) distributions of initial agents with trip length x.
f(ta, x, t) distributions of departure times t with desired arrival time ta and trip

length x. This is the unknown of the problem.
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do not spend too much time on the traffic. Note that the dependency of the cost function on
the trip lengths are not emphasized in the notation, while it holds implicitly.

Let us now complete the description of the bathtub model. The data is given by the distri-
bution of travel demand m(ta, x)dtadx wrt desired arrival time ta ∈ Xa and trip length x ∈ X .
The unknown in the SO problem is the distributions of departure times t ∈ T with desired
arrival time ta ∈ Ta and trip length x ∈ X . The resulting distribution of traveller demand is
denoted as f(ta, x, t)dtadxdt. Thus f satisfies to the following convex set of constraints (K):

(K)

∣∣∣∣ ∫
T f(ta, x, t)dt = m(ta, x)
f(ta, x, t) ≥ 0

(4)

The dynamics of the bathtub system result from the following processes: i) travellers are con-
served, ii) travellers travel at speed vt = V (H(t)), iii) travellers exit the system when they
have travelled the trip length x (thus yielding the outflow of the system), iv) the travel de-
mand f(ta, x, t) yields the inflow into the system. The distribution of initial agents with trip
length x provides the initial condition of the system. z(t) and H(t) constitute the main dynamic
variables. The following set of equations describes the dynamics of the system:∣∣∣∣∣∣

z(t) :=
∫ t
0 dtV (H(t)) (5.1)

H(t) = h(z(t)) +
∫ t
0 ds F̄ (z(t)− z(s), s) (5.2)

F̄ (x, t) =
∫
Ta dta f(ta, x, t) (5.3)

(5)

It can be shown (refer to Ameli et al. (2021a)) that (5) admits a unique solution in z and H
which depends continuously on the data and initial conditions, given some regularity conditions
on the data m.

The objective of the SO problem is to optimize the total travel cost of travellers. Thus the
objective, denoted as J , can be viewed as the sum over all travellers (i) of Ji given by (3), and
the Jis must be calculated using (5). Thus J is given by

J def
=

∫
Ta×X×T dta dx dt f(ta, x, t)J(ta, x, t)∣∣∣∣∣∣
J(ta, x, t) = αT (t, x) + β

(
ta − t− T (t, x)

)
+
+ γ

(
t+ T (t, x)− ta

)
+

(6.1)

T (t, x) = z−1 (x+ z(t)− t) (6.2)
z(.) solution of (5) (6.3)

(6)

Actually J is a function of ta, x, t through z which itself is a function of f, h through (5). Thus
we can also denote J as J(f, h). It can be shown that J is weakly continuous wrt f , choosing
as a functional setting for f either the space of bounded positive finite measures, or the space
of square integrable functions L2 (Ta ×X × T ). For applications and numerical approximations
we shall opt for the latter functional space. Note also that in the definition of J given in (6) we
could substitute the block β

(
ta − t − T (t, x)

)
+
+ γ

(
t + T (t, x) − ta

)
+

with any other suitable
convex function L. Thus the SO problem can be stated as:

min
f∈K

J =

∫
Ta×X×T

dta dx dt f J(f, h) (7)

with J(f, h) being calculated from (5) by (6.2) ,(6.3). By a Weierstrass-type argument, it is
shown that (7) admits a solution (not necessarily unique) in any of the two functional spaces
mentioned above. A solution in the measure space should have a better criterion value but
exhibit less regularity than a solution in the L2-space.

It can be shown that in the space L2 (Ta ×X × T ), J admits a gradient. Further, the
projector on the convex set K is well-defined and easy to calculate. These two facts open the
way for finding numerical solutions of (7). Several discretization methods are available, based
either on a particle discretization or on a cell discretization of (5), which is then used for the
numerical approximation of (7).
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3 PRELIMINARY RESULTS AND DISCUSSION
The numerical example illustrated by Figure 1 was calculated based on a cell discretization
(discrete values of ta, cells for x and t values). The desired arrival time takes 7 discrete values
(starting 7.30 am, separated by half-an-hour). For this relatively small-sized example, con-
vergence is achieved after some 25 iterations and finds the optimal. Convergence depends on
network characteristics level of congestion.
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FIGURE 1 – Example of calculation based on continuous approximation of the Lyon data
(Ameli et al., 2021b). The resolution is imposed by the original data. On the left: the demand
m. On the right: the density of departure times f for a single arrival time (9 am).

The SO distribution of the departure time for the trips with the desired arrival time of 9
am is shown in Figure 1. The results show that the solution for the SO does not follow any
sorting pattern, e.g., FIFO and LIFO. In order to investigate further the sorting pattern and
the solution characteristic, we are currently running simulations on a real scenario (Ameli et al.,
2021b) for the large-scale network of Lyon North (representing the morning peak hours with
62,450 trips) with trip-based dynamic implementation, and the results are consistence with the
continuous test case.
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