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1 INTRODUCTION

The design of transit systems is a classical yet persistently challenging problem. Part of the
difficulty stems from the complexity of the application domain; it has a lot of moving parts.
These include the design of the underlying physical infrastructure network (e.g., the network
of bus lanes), the design of the operational network (e.g., the set of bus lines), timetabling,
crew and fleet scheduling, and so on. To add to this, there may be multiple objectives and/or
quality of service targets, often without a clear mathematical description and in conflict with
one another. As a result, there is no single “global” optimization problem, and if there were it
would not be tractable. Rather, the problem is typically decomposed into a sequence of steps,
starting from the bare bones—the design of the physical infrastructure network—and continuing
on toward increasingly operational bells and whistles. Even when the process is decomposed,
the optimization problems arising in each step are usually NP-hard (see Desaulniers & Hickman
(2007) and Schöbel (2012) for an overview of the transit system design process).

The rise of on-demand mobility technologies over the past decade has sparked interest in the
integration of traditional transit and on-demand systems—the number of microtransit (i.e., high-
capacity on-demand shuttles) pilot programs conducted by transit agencies across the United
States is a testament to this (see Westervelt et al. (2018) for a compilation of experiences). One
of the main reasons behind this is the potential for microtransit to address a fundamental trade-off
in transit: the ridership versus coverage dilemma. It is well-known that, given a limited budget,
transit networks that maximize ridership and transit networks that maximize coverage (e.g., the
geographical service area) tend to be vastly different (see Walker (2012) for a practitioner-oriented
discussion). Intuitively, integrated systems may bridge this gap by letting each sub-system do
what it does best: transit should focus on ridership, microtransit should extend coverage as a
first/last mile service, and the two should be jointly optimized.

However, unlike purely fixed systems or purely on-demand systems, integrated systems are not
well-understood. In particular, their planning and operational problems are significantly more
challenging, and their broader implications are the source of a heated debate. Some transporta-
tion researchers and practitioners have suggested that on-demand systems can be complementary
and benefitial to traditional transit (e.g., Shaheen & Chan (2016), Feigon & Murphy (2016), Hall
et al. (2018), Alonso-González et al. (2018), Stiglic et al. (2018), Liu & Ouyang (2021)). At the
same time, others have raised concerns about or even flat-out dismissed the supposed benefits
(e.g., Walker (2012), Rayle et al. (2016), Walker (2018), Westervelt et al. (2018), Merlin (2019)).
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Motivated by the debate we introduce the dynamicity gap, a general concept in multi-stage
optimization. This concept quantifies the attainable benefit of allowing (but not requiring)
dynamic components in the response strategy to a multi-stage optimization problem. We study
the dynamicity gap within the context of designing transit infrastructure networks; the first step
in the the transit system design process, and arguably the most decisive one since all subsequent
steps depend on it. However, we note that the concept is more generally applicable in domains
where goals can be met through a combination of static and dynamic (i.e, stage-specific) decisions.

2 DESIGN OF TRANSIT NETWORKS

We study the dynamicity gap within the design of integrated transit networks. To this end, we
first describe the Steiner forest problem; the prototypical problem in network design. We are
given a weighted graph G = (V,E) and a set I ⊆ V ×V of origin-destination pairs. The problem is
to find a minimum cost subset X ⊆ E of edges supporting a path between each origin-destination
pair. We extend this abstraction to the design of integrated networks by allowing us to pick two
subsets X,Z ⊆ E of edges such that X ∪ Z supports a path between each origin-destination
pair. In the context of transit, G represents the underlying topology (e.g., a road network), I
represents the travel demand, and X and Z represent different “modes” of transportation, so
that X ∪Z represents an integrated multi-modal network. In particular, we treat X as a transit
network and Z as a microtransit network. Going forward, we represent subsets X,Z ⊆ E of
edges by their characteristic vectors x, z ∈ {0, 1}m, where m = |E|.

Admittedly, this abstraction ignores important operational aspects of transit. One can in
principle enhance it with a number of transit-specific features and constraints. However, it is
not our goal to provide a detailed operational model of transit networks. Indeed, producing
and efficiently solving such models is a research area in and of itself. Instead, our focus is
on fundamental abstractions that lend themselves to mathematical analysis and comprehensive
experimentation while capturing the essence of the first step of the transit system design process:
the design of the physical infrastructure network.

3 DYNAMICITY GAP

We consider a multi-stage version of the design of integrated transit networks, wherein the transit
network is static but the microtransit network is dynamic. The temporal planning horizon is
partitioned into T ∈ N stages indexed by [T ] := {1, 2, . . . , T}. It is implicit that each stage
has a (say uniform) duration δ > 0; we elaborate on this shortly. Let I := {I1, I2, . . . , Ik} ⊆
2V×V be the collection of possible travel demand realizations (i.e., the possible sets of origin-
destination pairs). For each t ∈ [T ], let It ∈ I be the travel demand during the tth stage and
Pt be the finite and non-empty set of integrated network configurations that can serve it. Let
x ∈ {0, 1}m be decision variables corresponding to the static network (e.g., transit) paid for
at cost cs := cs(δ) ∈ Rm

≥0 on every stage. Let z1, z2, . . . , zT ∈ {0, 1}m be decision variables
corresponding to the dynamic network (e.g., microtransit) over the stages, each paid for once
at cost cd := cd(δ) ∈ Rm

≥0. Then, the design of integrated transit networks can be posed as a
multi-stage optimization problem of the form:

min
x,z1,z2,...,zT

T∑
t=1

(
cs · x+ cd · zt

)
s.t. (x, zt) ∈ Pt, ∀t ∈ [T ]

(1)

The constraints (x, zt) ∈ Pt for t ∈ [T ] ensure the static network x and the dynamic network zt

during the tth stage together serve the travel demand It during the tth stage.
We emphasize the general dependency of the per-stage costs cs := cs(δ) and cd := cd(δ) on

the stage duration δ. If a system operates at a time-scale different from δ, it is crucial that
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its per-stage cost is pro-rated. Going forward, let c ∈ Rm
≥0 be the cost of a single run of the

static system and let η · c be the cost of a single run of the dynamic system, for some η > 0.
The surcharge coefficient η captures the notion that static systems and dynamic systems have
different operational costs on a per mile basis, independent of their frequencies. Let δd > 0
be the batching interval of microtransit (e.g., 5 minutes). If the stage duration is tied to the
microtransit batching interval (i.e., δ := δd), then the microtransit cost cd := η · c is in the same
scale as δ—no pro-rating is needed. However, transit may have a headway δs > 0 independent
of δd (e.g., 15 minutes). If so, we need to pro-rate its per-stage cost as cs := (δd/δs) · c.

Let OPT denote the cost of an optimal trade-off solution to (1) and OPTΣ denote the cost
of an optimal static solution to (1), that is one in which we additionally require z1 = z2 = · · · =
zT = 0. We define the dynamicity gap α of (1) as the unit-less coefficient

α :=
OPTΣ

OPT
≥ 1. (2)

Large values of α indicate large gains from introducing dynamism.

4 RESULTS

The dynamicity gap α quantifies the value of dynamism, but computing it generally involves
solving (1), which may be intractable. Moreover, we observe from (1) that α is influenced
by implicit and explicit parameters such as the costs cs and cd, the stage duration δ, and the
relationship between the sets of feasible configurations P1,P2, . . . ,PT . In transit network design,
the latter depends on the underlying topology and on the sequence of travel demands.

The overarching goal of this work is to parametrically study the behavior of α without the
need of solving the underlying multi-stage optimization problem. To this end, we initially assume
cs := c for some c ∈ Rm

≥0 and cd := θ · c for some relative cost coefficient θ > 0, regardless of δ.
That is, we initially restrict our study to problems of the form:

min
x,z1,z2,...,zT

T∑
t=1

(
c · x+ θ · c · zt

)
s.t. (x, zt) ∈ Pt, ∀t ∈ [T ]

(3)

We first show that if the input scenarios I1, I2, . . . , IT are sampled i.i.d. from a probability distri-
bution D over I, and moreover T → ∞, then we can reformulate the horizon-normalized version
of (3) as a two-stage stochastic optimization problem. This intuitive result is closely related to
the convergence of the Sample Average Approximation (SAA) method shown by Kleywegt et al.
(2002). As a corollary, in this case, the dynamicity gap α of (3) reduces to the stochasticity gap
(see Bertsimas & Goyal (2010)) of the resulting two-stage stochastic problem.

This result allows us to treat the dynamicity gap α := α(θ) as a function α : R>0 → R≥1

of the relative cost coefficient θ that is implicitly parametrized by D. In this way, our second
contribution is a certificate of the value of dynamism (i.e., a certificate that α > 1) whenever the
relative cost coefficient does not exceed a certain value. Although this certificate is not tight in
general, we show that producing it does not involve solving a two-stage stochastic problem.

Theorem 1. Let θ† := α(1) be the dynamicity gap when θ = 1. We have θ† ≤ θ∗, where
θ∗ := argminθ>0{α(θ) = 1} ≥ 1 is the critical relative cost coefficient after which dynamism is
no longer valuable. More generally, for θ > 0 we have

max
{
θ†/θ, 1

}
≤ α(θ).

In other words, if the relative cost coefficient θ is such that θ < θ†, then dynamism is
certifiably valuable. We can strengthen this result to estimate α to any arbitrary precision,
provided we solve a finite number of two-stage stochastic problems.

We tie our results back to transit with the following corollary.
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Corollary 2. Let δ := δd, cs := (δd/δs) · c, and cd := η · c; as described in Section 3. Then, for
any fixed δs, δd > 0, we can transform (1) into a scaled version of (3) with θ = η · (δs/δd) so that
the condition θ < θ† from Theorem 1 is equivalent to η · (δs/δd) < θ†.

We view this as a quick, high-level “rule of thumb” giving a green light for the full-blown
integrated transit system design process: given a microtransit batching interval δd > 0 and the
corresponding probability distribution D over I (e.g., by aggregating historical data into bins of
size δ := δd), we set η · (δs/δd) = 1 and (relatively) tractably compute θ†. We then use δd and the
computed θ† to certify the value of microtransit for certain combinations of transit frequency δs
and surcharge coefficient η, namely whenever η · δs < θ† · δd.

Higher values of θ† lead to a larger regime wherein dynamism is certifiably valuable. There-
fore, we use θ† as a proxy for the value of dynamism and study how it is influenced by parameters
implicit in (3). We conduct two sets of computational experiments.
1. Stylized Experiments. We conduct stylized experiments involving a multi-stage version of
the Steiner tree problem (i.e., Steiner forest with a common root) on all unweighted, connected
simple graphs on 2 ≤ n ≤ 7 nodes and various distributions over input scenarios. We find:

• If demand arises at a node with probability proportional to its “centrality” (as quantified
by closeness centrality Bavelas (1950)), dynamism tends to be more valuable on sparsely
connected graphs. Tying our work back to transit, given that road networks are far from
complete graphs, this supports the notion that microtransit may be beneficial when demand
is concentrated on “central” areas but still appears sparingly on “peripheral” areas.

• If demand arises at a node with probability inversely proportional to its “centrality,” dy-
namism tends to be more valuable on well-connected graphs. For example, if the graph is
a tree, certain edges may be used repeatedly on most input scenarios, rendering dynamism
unnecessary. The converse holds for complete graphs, where direct connectivity is possible.

2. Realistic Experiments. We conduct more realistic experiments using data from New York
City and a multi-stage version of the Steiner forest problem as a proxy for the design of integrated
transit networks. We focus on the area of Manhattan roughly south of the Flatiron Building
using a crowd-sourced, distance-weighted graph G representing the road network. We take a
subset1 of weekday morning trip records from the Taxi and Limousine Commission throughout
June 2016 and partition it by timestamp into uniform stages of duration δ := δd for various
choices of microtransit batching interval δd > 0. To bring our abstraction closer to reality, and
for tractability purposes, we impose detour constraints on pairwise connectivity: if (s, t) ∈ I and
the shortest-path length between s and t in G is ℓ(s, t), the shortest-path length between s and
t in the solution must be less than ∆ · ℓ(s, t) for some allowable detour factor ∆ ≥ 1. We find:

• Dynamism tends to be slightly more valuable with a larger allowable detour factor ∆.
• We can produce quantitative results of the following style: if microtransit is batched for
δd = 15 minutes and passengers tolerate a ∆ = 3/2 factor detour, integration is worthwhile
for a transit headway of δs = 15 minutes and surcharge coefficients η less than ≈ 1.5.

5 CONCLUSION

Our goal with work is to provide a principled and (relatively) tractable analytical framework
with which to study the value of dynamism, as quantified by the dynamicity gap. We hope this
style of characterization enables accessible insight for both researchers and practitioners: given
the problem at hand, leverage knowledge about the input parameters to quickly assess whether
dynamism is worthwhile investment.

1We filter out trips starting or ending outside the area of study as well as trips shorter than 1000 meters.
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