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1 INTRODUCTION

There are several possible objective functions for public transport planning. While passenger con-
venience and operational costs are the most common objectives in the well researched sequential
solution process, other objectives such as the robustness of the obtained public transport system
are considered in the literature as well, see e.g. Friedrich et al. (2017).

In this work we investigate the objective to minimize the energy needed to serve the public
transport system while still considering the passenger convenience. Note that we are not only
considering the special case of electric vehicles, see e.g. Perumal et al. (2021) but want to find a
general public transport system that consumes a lower amount of energy than a system obtained
by the algorithms in literature. This may as well be a system operated by traditional fuel-driven
buses where we hence want to find a solution consuming less fuel.

To introduce energy in the public transport optimization process, we first need to define the
elements used in public transport planning. We assume that a public transport network (PTN)
is given, consisting of stops V and direct connections E between them. Lines are then defined
as simple paths on the PTN that should be served regularly in a planning period. We assume
that a set of possible lines, the line pool L, is given as well. Then line planning is the problem
of finding a set of lines with frequencies such that all given passengers can be transported. For
an overview on line planning, we refer to Schöbel (2012). For a given line plan, we can assign
(periodic) arrival and departure times for each line at its respective stations. This process is
called timetabling, for an overview see Lusby et al. (2011). Afterwards, the periodic timetable
can be rolled out to cover a given planning period (e.g. extend a periodic timetable for one hour
to a day), where each line serving defines a trip that needs to be covered by a vehicle. Vehicle
scheduling describes the process of finding an assignment of vehicles to trips, where each vehicle
serves a list of trips, with potential empty trips connecting the end of one line to the start of
the next line. We refer to Bunte & Kliewer (2009) for more details and an overview on different
models to solve this problem.
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2 DIFFERENT ABSTRACTIONS FOR ENERGY-BASED
OPTIMIZATION

There are different problem stages and levels of detail to consider when we want to allow the
optimization process to respect the energy needed to operate the created public transport system.
We discuss possible models based on the data available. For this, we adapt models for line
planning and vehicle scheduling. Since the model for computing the energy consumption of a
vehicle in detail is computationally difficult (and non-linear), see e.g. Speckert et al. (2014), we
use abstractions that allow us to approximate the energy needed using linear integer optimization
models.

2.1 Planning based on altitude data

Information that is easy to obtain for a given infrastructure network is altitude data for the edges
e ∈ E. To approximate the energy needed to traverse an edge e = (v, w), we use the upward
altitude difference, i.e., the positive altitude difference that needs to be traversed when traveling
from v to w along e. We call this u(e). As a baseline cost function we choose the cost function
cost(l) for each line l ∈ L from Gattermann et al. (2017), i.e.,

cost(l) = cl
∑
e∈l

len(e) + ce|{e ∈ l}|+ cf , (1)

where cl, ce and cf are given weight factors and len(e) is the (given) length of an edge e ∈ E.
We now extend this formulation by adding the upward altitude difference as well:

costa(l) = ca
∑
e∈l

u(e) + cl
∑
e∈l

len(e) + ce|{e ∈ l}|+ cf . (2)

This now allows us to use known line planning algorithms such as cost-based models or weighted
sum methods containing the line costs to optimize w.r.t. the upward altitude difference used by
the lines, resulting in less energy needed for the computed public transport system. Additionally,
we may adapt the weighting factors ca, ce, cf and cl to change the focus between operational costs
and energy consumption.

We can extend this approach to the vehicle scheduling stage as well. Again, the baseline cost
function that we use to compute the costs of a vehicle schedule is a weighted sum, i.e.,

cost(t) = cddur(t) + cslen(t), (3)

where cd and cs are weight factors, dur(t) is the duration of the trip t (based on the current
timetable) and len(t) is the length of t. Note that the length can be computed based on the
length len(e), e ∈ E of all edges contained in the trip, i.e., e ∈ t. This is based on the line (for
service trips) or on the edges used in the empty trip. Again, we can extend this formulation to

costa(t) = ca
∑
e∈t

u(e) + cddur(t) + cslen(t). (4)

Note that for the overall costs of a vehicle schedule, we consider the number of vehicles needed
as well but this term is not dependent on a single trip and therefore not present in (4).

With this, we are now able to use models from the literature to do energy-aware cost opti-
mization in both line planning and vehicle scheduling. For a computational evaluation of this
modelling propositions, see Section 3.
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Figure 1 – Comparing different solutions for their energy-efficiency using the approach of Sec-
tion 2.1 on the bus system in Göttingen. Solutions marked with a cross are computed using a
cost-oriented line planning algorithm and solutions marked with a diamond are computed using
a weighted sum approach of costs and direct travellers. Direct travellers are passengers that can
travel from their origin to their destination without transferring between lines.

2.2 Planning based on simulation data

Instead of using the altitude approximation described in Section 2.1 we can use more detailed
information as well. For this, we assume that we have a black-box tool to simulate the energy
needed for a given path in the infrastructure network. This could e.g. be the simulation module
of the tool “Geo-referenced Analysis and Virtual Measurement Campaign (VMC)”, see Speck-
ert et al. (2014), which is used for this work. Again, we discuss possibilities to include such
simulation results in line planning as well as in vehicle scheduling.

For line planning, using the simulation allows us to approximate the energy needed to serve
every single line very accurately. We call this en(l). We can therefore replace the altitude term
in (2) and obtain

costen(l) = cenen(l) + cl
∑
e∈l

l(e) + ce|{e ∈ l}|+ cf . (5)

For vehicle scheduling, the exact energy consumption of service trips is important to deter-
mine the overall energy consumption but since all service trips need to be covered and are fixed,
we do not need these values for the optimization process. Instead, we use the simulation to
approximate the energy used for empty trips in more detail. We need to find energy-efficient
shortest paths between all end and start stations of lines. To do so, we use a linear objective
function, namely

w(e) = wau(e) + wll(e), (6)

to approximate the energy needed for each edge e ∈ E of the PTN using the altitude data
from Section 2.1. Since (6) is linear and non-negative, we can now use known shortest paths
algorithms from literature to obtain all possible empty trips t ∈ T . Afterwards, every t ∈ T can
be simulated to obtain en(t) and we adapt (4):

costen(t) = cenen(t) + cddur(t) + csl(t). (7)

3 FIRST COMPUTATIONAL RESULTS

We used the open-source software framework LinTim, see Schiewe et al. (2021, n.d.), to test
our adaptions in algorithms from the literature and the bus system in Göttingen, and VMC,
see Speckert et al. (2014), for simulating the energy consumption of lines and vehicle schedules.
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Using the adaptions proposed in Section 2.1, we obtain the results presented in Figure 1.
For this, we preprocessed the infrastructure in VMC to obtain altitude data. Note that this can
be done very efficiently since no simulation is needed. Afterwards, we used a cost-oriented and
a weighted-sum (cost and direct travelers) integer programming approach to compute two line
plans for three different weight scenarios. Then a periodic timetable, a vehicle schedule and the
cost function (4) were computed. We can observe that for the cost-oriented approach all three
weight factors perform very well with regard to their consumed energy but still the solutions
with higher altitude weight are able to outperform solutions with lower altitude weight, with a
maximal effect of around 6%. But this effect is even stronger for the weighted-sum line plans,
allowing to reduce the energy needed to perform the resulting public transport system by around
30%. Of course, this energy saving is not for free, the corresponding perceived passenger travel
time is increased by around 4%. Note that the perceived passenger travel time is a weighted
sum of the travel time and the number of transfers needed and the passengers are routed using
a shortest path approach w.r.t. their perceived travel time.

Similar effects can be seen when using the adaptions from Section 2.2, since the energy
consumption can be approximated even better. But this also increases the computation times,
since we need to compute more simulations using VMC, which is time consuming.

4 CONCLUSION

In this work, we presented different approaches to incorporating energy consumption into public
transport planning and showed their effectiveness with first computational results. An impor-
tant next step is to incorporate the timetabling process as well. Here, we adapted the stages
line planning and vehicle scheduling but the timetable plays an important role in the energy
consumption of a public transport system as well, since the energy consumption depends on the
speed of driving. Another aspect would be a further coupling to the simulation software, i.e.,
allowing the optimization direct access to the simulation itself or important parts of it instead
of only using the output to improve the linear objective functions.
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